1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package pprof writes runtime profiling data in the format expected
// by the pprof visualization tool.
// For more information about pprof, see
// http://code.google.com/p/google-perftools/.
package pprof
import (
"bufio"
"bytes"
_ "debug/elf"
"fmt"
"io"
"runtime"
"sort"
"strings"
"sync"
"text/tabwriter"
)
// BUG(rsc): A bug in the OS X Snow Leopard 64-bit kernel prevents
// CPU profiling from giving accurate results on that system.
// A Profile is a collection of stack traces showing the call sequences
// that led to instances of a particular event, such as allocation.
// Packages can create and maintain their own profiles; the most common
// use is for tracking resources that must be explicitly closed, such as files
// or network connections.
//
// A Profile's methods can be called from multiple goroutines simultaneously.
//
// Each Profile has a unique name. A few profiles are predefined:
//
// goroutine - stack traces of all current goroutines
// heap - a sampling of all heap allocations
// threadcreate - stack traces that led to the creation of new OS threads
//
// These predefine profiles maintain themselves and panic on an explicit
// Add or Remove method call.
//
// The CPU profile is not available as a Profile. It has a special API,
// the StartCPUProfile and StopCPUProfile functions, because it streams
// output to a writer during profiling.
//
type Profile struct {
name string
mu sync.Mutex
m map[interface{}][]uintptr
count func() int
write func(io.Writer, int) error
}
// profiles records all registered profiles.
var profiles struct {
mu sync.Mutex
m map[string]*Profile
}
var goroutineProfile = &Profile{
name: "goroutine",
count: countGoroutine,
write: writeGoroutine,
}
var threadcreateProfile = &Profile{
name: "threadcreate",
count: countThreadCreate,
write: writeThreadCreate,
}
var heapProfile = &Profile{
name: "heap",
count: countHeap,
write: writeHeap,
}
func lockProfiles() {
profiles.mu.Lock()
if profiles.m == nil {
// Initial built-in profiles.
profiles.m = map[string]*Profile{
"goroutine": goroutineProfile,
"threadcreate": threadcreateProfile,
"heap": heapProfile,
}
}
}
func unlockProfiles() {
profiles.mu.Unlock()
}
// NewProfile creates a new profile with the given name.
// If a profile with that name already exists, NewProfile panics.
// The convention is to use a 'import/path.' prefix to create
// separate name spaces for each package.
func NewProfile(name string) *Profile {
lockProfiles()
defer unlockProfiles()
if name == "" {
panic("pprof: NewProfile with empty name")
}
if profiles.m[name] != nil {
panic("pprof: NewProfile name already in use: " + name)
}
p := &Profile{
name: name,
m: map[interface{}][]uintptr{},
}
profiles.m[name] = p
return p
}
// Lookup returns the profile with the given name, or nil if no such profile exists.
func Lookup(name string) *Profile {
lockProfiles()
defer unlockProfiles()
return profiles.m[name]
}
// Profiles returns a slice of all the known profiles, sorted by name.
func Profiles() []*Profile {
lockProfiles()
defer unlockProfiles()
var all []*Profile
for _, p := range profiles.m {
all = append(all, p)
}
sort.Sort(byName(all))
return all
}
type byName []*Profile
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool { return x[i].name < x[j].name }
// Name returns this profile's name, which can be passed to Lookup to reobtain the profile.
func (p *Profile) Name() string {
return p.name
}
// Count returns the number of execution stacks currently in the profile.
func (p *Profile) Count() int {
p.mu.Lock()
defer p.mu.Unlock()
if p.count != nil {
return p.count()
}
return len(p.m)
}
// Add adds the current execution stack to the profile, associated with value.
// Add stores value in an internal map, so value must be suitable for use as
// a map key and will not be garbage collected until the corresponding
// call to Remove. Add panics if the profile already contains a stack for value.
//
// The skip parameter has the same meaning as runtime.Caller's skip
// and controls where the stack trace begins. Passing skip=0 begins the
// trace in the function calling Add. For example, given this
// execution stack:
//
// Add
// called from rpc.NewClient
// called from mypkg.Run
// called from main.main
//
// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
//
func (p *Profile) Add(value interface{}, skip int) {
if p.name == "" {
panic("pprof: use of uninitialized Profile")
}
if p.write != nil {
panic("pprof: Add called on built-in Profile " + p.name)
}
stk := make([]uintptr, 32)
n := runtime.Callers(skip+1, stk[:])
p.mu.Lock()
defer p.mu.Unlock()
if p.m[value] != nil {
panic("pprof: Profile.Add of duplicate value")
}
p.m[value] = stk[:n]
}
// Remove removes the execution stack associated with value from the profile.
// It is a no-op if the value is not in the profile.
func (p *Profile) Remove(value interface{}) {
p.mu.Lock()
defer p.mu.Unlock()
delete(p.m, value)
}
// WriteTo writes a pprof-formatted snapshot of the profile to w.
// If a write to w returns an error, WriteTo returns that error.
// Otherwise, WriteTo returns nil.
//
// The debug parameter enables additional output.
// Passing debug=0 prints only the hexadecimal addresses that pprof needs.
// Passing debug=1 adds comments translating addresses to function names
// and line numbers, so that a programmer can read the profile without tools.
//
// The predefined profiles may assign meaning to other debug values;
// for example, when printing the "goroutine" profile, debug=2 means to
// print the goroutine stacks in the same form that a Go program uses
// when dying due to an unrecovered panic.
func (p *Profile) WriteTo(w io.Writer, debug int) error {
if p.name == "" {
panic("pprof: use of zero Profile")
}
if p.write != nil {
return p.write(w, debug)
}
// Obtain consistent snapshot under lock; then process without lock.
var all [][]uintptr
p.mu.Lock()
for _, stk := range p.m {
all = append(all, stk)
}
p.mu.Unlock()
// Map order is non-deterministic; make output deterministic.
sort.Sort(stackProfile(all))
return printCountProfile(w, debug, p.name, stackProfile(all))
}
type stackProfile [][]uintptr
func (x stackProfile) Len() int { return len(x) }
func (x stackProfile) Stack(i int) []uintptr { return x[i] }
func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x stackProfile) Less(i, j int) bool {
t, u := x[i], x[j]
for k := 0; k < len(t) && k < len(u); k++ {
if t[k] != u[k] {
return t[k] < u[k]
}
}
return len(t) < len(u)
}
// A countProfile is a set of stack traces to be printed as counts
// grouped by stack trace. There are multiple implementations:
// all that matters is that we can find out how many traces there are
// and obtain each trace in turn.
type countProfile interface {
Len() int
Stack(i int) []uintptr
}
// printCountProfile prints a countProfile at the specified debug level.
func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
b := bufio.NewWriter(w)
var tw *tabwriter.Writer
w = b
if debug > 0 {
tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
w = tw
}
fmt.Fprintf(w, "%s profile: total %d\n", name, p.Len())
// Build count of each stack.
var buf bytes.Buffer
key := func(stk []uintptr) string {
buf.Reset()
fmt.Fprintf(&buf, "@")
for _, pc := range stk {
fmt.Fprintf(&buf, " %#x", pc)
}
return buf.String()
}
m := map[string]int{}
n := p.Len()
for i := 0; i < n; i++ {
m[key(p.Stack(i))]++
}
// Print stacks, listing count on first occurrence of a unique stack.
for i := 0; i < n; i++ {
stk := p.Stack(i)
s := key(stk)
if count := m[s]; count != 0 {
fmt.Fprintf(w, "%d %s\n", count, s)
if debug > 0 {
printStackRecord(w, stk, false)
}
delete(m, s)
}
}
if tw != nil {
tw.Flush()
}
return b.Flush()
}
// printStackRecord prints the function + source line information
// for a single stack trace.
func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
show := allFrames
for _, pc := range stk {
f := runtime.FuncForPC(pc)
if f == nil {
show = true
fmt.Fprintf(w, "#\t%#x\n", pc)
} else {
file, line := f.FileLine(pc)
name := f.Name()
// Hide runtime.goexit and any runtime functions at the beginning.
// This is useful mainly for allocation traces.
if name == "runtime.goexit" || !show && strings.HasPrefix(name, "runtime.") {
continue
}
show = true
fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", pc, f.Name(), pc-f.Entry(), file, line)
}
}
if !show {
// We didn't print anything; do it again,
// and this time include runtime functions.
printStackRecord(w, stk, true)
return
}
fmt.Fprintf(w, "\n")
}
// Interface to system profiles.
type byInUseBytes []runtime.MemProfileRecord
func (x byInUseBytes) Len() int { return len(x) }
func (x byInUseBytes) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byInUseBytes) Less(i, j int) bool { return x[i].InUseBytes() > x[j].InUseBytes() }
// WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0).
// It is preserved for backwards compatibility.
func WriteHeapProfile(w io.Writer) error {
return writeHeap(w, 0)
}
// countHeap returns the number of records in the heap profile.
func countHeap() int {
n, _ := runtime.MemProfile(nil, false)
return n
}
// writeHeapProfile writes the current runtime heap profile to w.
func writeHeap(w io.Writer, debug int) error {
// Find out how many records there are (MemProfile(nil, false)),
// allocate that many records, and get the data.
// There's a race—more records might be added between
// the two calls—so allocate a few extra records for safety
// and also try again if we're very unlucky.
// The loop should only execute one iteration in the common case.
var p []runtime.MemProfileRecord
n, ok := runtime.MemProfile(nil, false)
for {
// Allocate room for a slightly bigger profile,
// in case a few more entries have been added
// since the call to MemProfile.
p = make([]runtime.MemProfileRecord, n+50)
n, ok = runtime.MemProfile(p, false)
if ok {
p = p[0:n]
break
}
// Profile grew; try again.
}
sort.Sort(byInUseBytes(p))
b := bufio.NewWriter(w)
var tw *tabwriter.Writer
w = b
if debug > 0 {
tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
w = tw
}
var total runtime.MemProfileRecord
for i := range p {
r := &p[i]
total.AllocBytes += r.AllocBytes
total.AllocObjects += r.AllocObjects
total.FreeBytes += r.FreeBytes
total.FreeObjects += r.FreeObjects
}
// Technically the rate is MemProfileRate not 2*MemProfileRate,
// but early versions of the C++ heap profiler reported 2*MemProfileRate,
// so that's what pprof has come to expect.
fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
total.InUseObjects(), total.InUseBytes(),
total.AllocObjects, total.AllocBytes,
2*runtime.MemProfileRate)
for i := range p {
r := &p[i]
fmt.Fprintf(w, "%d: %d [%d: %d] @",
r.InUseObjects(), r.InUseBytes(),
r.AllocObjects, r.AllocBytes)
for _, pc := range r.Stack() {
fmt.Fprintf(w, " %#x", pc)
}
fmt.Fprintf(w, "\n")
if debug > 0 {
printStackRecord(w, r.Stack(), false)
}
}
// Print memstats information too.
// Pprof will ignore, but useful for people
if debug > 0 {
s := new(runtime.MemStats)
runtime.ReadMemStats(s)
fmt.Fprintf(w, "\n# runtime.MemStats\n")
fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
fmt.Fprintf(w, "# EnableGC = %v\n", s.EnableGC)
fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
}
if tw != nil {
tw.Flush()
}
return b.Flush()
}
// countThreadCreate returns the size of the current ThreadCreateProfile.
func countThreadCreate() int {
n, _ := runtime.ThreadCreateProfile(nil)
return n
}
// writeThreadCreate writes the current runtime ThreadCreateProfile to w.
func writeThreadCreate(w io.Writer, debug int) error {
return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile)
}
// countGoroutine returns the number of goroutines.
func countGoroutine() int {
return runtime.NumGoroutine()
}
// writeGoroutine writes the current runtime GoroutineProfile to w.
func writeGoroutine(w io.Writer, debug int) error {
if debug >= 2 {
return writeGoroutineStacks(w)
}
return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile)
}
func writeGoroutineStacks(w io.Writer) error {
// We don't know how big the buffer needs to be to collect
// all the goroutines. Start with 1 MB and try a few times, doubling each time.
// Give up and use a truncated trace if 64 MB is not enough.
buf := make([]byte, 1<<20)
for i := 0; ; i++ {
n := runtime.Stack(buf, true)
if n < len(buf) {
buf = buf[:n]
break
}
if len(buf) >= 64<<20 {
// Filled 64 MB - stop there.
break
}
buf = make([]byte, 2*len(buf))
}
_, err := w.Write(buf)
return err
}
func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error {
// Find out how many records there are (fetch(nil)),
// allocate that many records, and get the data.
// There's a race—more records might be added between
// the two calls—so allocate a few extra records for safety
// and also try again if we're very unlucky.
// The loop should only execute one iteration in the common case.
var p []runtime.StackRecord
n, ok := fetch(nil)
for {
// Allocate room for a slightly bigger profile,
// in case a few more entries have been added
// since the call to ThreadProfile.
p = make([]runtime.StackRecord, n+10)
n, ok = fetch(p)
if ok {
p = p[0:n]
break
}
// Profile grew; try again.
}
return printCountProfile(w, debug, name, runtimeProfile(p))
}
type runtimeProfile []runtime.StackRecord
func (p runtimeProfile) Len() int { return len(p) }
func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() }
var cpu struct {
sync.Mutex
profiling bool
done chan bool
}
// StartCPUProfile enables CPU profiling for the current process.
// While profiling, the profile will be buffered and written to w.
// StartCPUProfile returns an error if profiling is already enabled.
func StartCPUProfile(w io.Writer) error {
// The runtime routines allow a variable profiling rate,
// but in practice operating systems cannot trigger signals
// at more than about 500 Hz, and our processing of the
// signal is not cheap (mostly getting the stack trace).
// 100 Hz is a reasonable choice: it is frequent enough to
// produce useful data, rare enough not to bog down the
// system, and a nice round number to make it easy to
// convert sample counts to seconds. Instead of requiring
// each client to specify the frequency, we hard code it.
const hz = 100
// Avoid queueing behind StopCPUProfile.
// Could use TryLock instead if we had it.
if cpu.profiling {
return fmt.Errorf("cpu profiling already in use")
}
cpu.Lock()
defer cpu.Unlock()
if cpu.done == nil {
cpu.done = make(chan bool)
}
// Double-check.
if cpu.profiling {
return fmt.Errorf("cpu profiling already in use")
}
cpu.profiling = true
runtime.SetCPUProfileRate(hz)
go profileWriter(w)
return nil
}
func profileWriter(w io.Writer) {
for {
data := runtime.CPUProfile()
if data == nil {
break
}
w.Write(data)
}
cpu.done <- true
}
// StopCPUProfile stops the current CPU profile, if any.
// StopCPUProfile only returns after all the writes for the
// profile have completed.
func StopCPUProfile() {
cpu.Lock()
defer cpu.Unlock()
if !cpu.profiling {
return
}
cpu.profiling = false
runtime.SetCPUProfileRate(0)
<-cpu.done
}
|