1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
|
/* -*- Mode: Asm -*- */
/* Copyright (C) 1998-2013 Free Software Foundation, Inc.
Contributed by Denis Chertykov <chertykov@gmail.com>
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#define __zero_reg__ r1
#define __tmp_reg__ r0
#define __SREG__ 0x3f
#if defined (__AVR_HAVE_SPH__)
#define __SP_H__ 0x3e
#endif
#define __SP_L__ 0x3d
#define __RAMPZ__ 0x3B
#define __EIND__ 0x3C
/* Most of the functions here are called directly from avr.md
patterns, instead of using the standard libcall mechanisms.
This can make better code because GCC knows exactly which
of the call-used registers (not all of them) are clobbered. */
/* FIXME: At present, there is no SORT directive in the linker
script so that we must not assume that different modules
in the same input section like .libgcc.text.mul will be
located close together. Therefore, we cannot use
RCALL/RJMP to call a function like __udivmodhi4 from
__divmodhi4 and have to use lengthy XCALL/XJMP even
though they are in the same input section and all same
input sections together are small enough to reach every
location with a RCALL/RJMP instruction. */
.macro mov_l r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
movw \r_dest, \r_src
#else
mov \r_dest, \r_src
#endif
.endm
.macro mov_h r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
; empty
#else
mov \r_dest, \r_src
#endif
.endm
.macro wmov r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
movw \r_dest, \r_src
#else
mov \r_dest, \r_src
mov \r_dest+1, \r_src+1
#endif
.endm
#if defined (__AVR_HAVE_JMP_CALL__)
#define XCALL call
#define XJMP jmp
#else
#define XCALL rcall
#define XJMP rjmp
#endif
.macro DEFUN name
.global \name
.func \name
\name:
.endm
.macro ENDF name
.size \name, .-\name
.endfunc
.endm
.macro FALIAS name
.global \name
.func \name
\name:
.size \name, .-\name
.endfunc
.endm
;; Negate a 2-byte value held in consecutive registers
.macro NEG2 reg
com \reg+1
neg \reg
sbci \reg+1, -1
.endm
;; Negate a 4-byte value held in consecutive registers
;; Sets the V flag for signed overflow tests if REG >= 16
.macro NEG4 reg
com \reg+3
com \reg+2
com \reg+1
.if \reg >= 16
neg \reg
sbci \reg+1, -1
sbci \reg+2, -1
sbci \reg+3, -1
.else
com \reg
adc \reg, __zero_reg__
adc \reg+1, __zero_reg__
adc \reg+2, __zero_reg__
adc \reg+3, __zero_reg__
.endif
.endm
#define exp_lo(N) hlo8 ((N) << 23)
#define exp_hi(N) hhi8 ((N) << 23)
.section .text.libgcc.mul, "ax", @progbits
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
/* Note: mulqi3, mulhi3 are open-coded on the enhanced core. */
#if !defined (__AVR_HAVE_MUL__)
/*******************************************************
Multiplication 8 x 8 without MUL
*******************************************************/
#if defined (L_mulqi3)
#define r_arg2 r22 /* multiplicand */
#define r_arg1 r24 /* multiplier */
#define r_res __tmp_reg__ /* result */
DEFUN __mulqi3
clr r_res ; clear result
__mulqi3_loop:
sbrc r_arg1,0
add r_res,r_arg2
add r_arg2,r_arg2 ; shift multiplicand
breq __mulqi3_exit ; while multiplicand != 0
lsr r_arg1 ;
brne __mulqi3_loop ; exit if multiplier = 0
__mulqi3_exit:
mov r_arg1,r_res ; result to return register
ret
ENDF __mulqi3
#undef r_arg2
#undef r_arg1
#undef r_res
#endif /* defined (L_mulqi3) */
/*******************************************************
Widening Multiplication 16 = 8 x 8 without MUL
Multiplication 16 x 16 without MUL
*******************************************************/
#define A0 r22
#define A1 r23
#define B0 r24
#define BB0 r20
#define B1 r25
;; Output overlaps input, thus expand result in CC0/1
#define C0 r24
#define C1 r25
#define CC0 __tmp_reg__
#define CC1 R21
#if defined (L_umulqihi3)
;;; R25:R24 = (unsigned int) R22 * (unsigned int) R24
;;; (C1:C0) = (unsigned int) A0 * (unsigned int) B0
;;; Clobbers: __tmp_reg__, R21..R23
DEFUN __umulqihi3
clr A1
clr B1
XJMP __mulhi3
ENDF __umulqihi3
#endif /* L_umulqihi3 */
#if defined (L_mulqihi3)
;;; R25:R24 = (signed int) R22 * (signed int) R24
;;; (C1:C0) = (signed int) A0 * (signed int) B0
;;; Clobbers: __tmp_reg__, R20..R23
DEFUN __mulqihi3
;; Sign-extend B0
clr B1
sbrc B0, 7
com B1
;; The multiplication runs twice as fast if A1 is zero, thus:
;; Zero-extend A0
clr A1
#ifdef __AVR_HAVE_JMP_CALL__
;; Store B0 * sign of A
clr BB0
sbrc A0, 7
mov BB0, B0
call __mulhi3
#else /* have no CALL */
;; Skip sign-extension of A if A >= 0
;; Same size as with the first alternative but avoids errata skip
;; and is faster if A >= 0
sbrs A0, 7
rjmp __mulhi3
;; If A < 0 store B
mov BB0, B0
rcall __mulhi3
#endif /* HAVE_JMP_CALL */
;; 1-extend A after the multiplication
sub C1, BB0
ret
ENDF __mulqihi3
#endif /* L_mulqihi3 */
#if defined (L_mulhi3)
;;; R25:R24 = R23:R22 * R25:R24
;;; (C1:C0) = (A1:A0) * (B1:B0)
;;; Clobbers: __tmp_reg__, R21..R23
DEFUN __mulhi3
;; Clear result
clr CC0
clr CC1
rjmp 3f
1:
;; Bit n of A is 1 --> C += B << n
add CC0, B0
adc CC1, B1
2:
lsl B0
rol B1
3:
;; If B == 0 we are ready
sbiw B0, 0
breq 9f
;; Carry = n-th bit of A
lsr A1
ror A0
;; If bit n of A is set, then go add B * 2^n to C
brcs 1b
;; Carry = 0 --> The ROR above acts like CP A0, 0
;; Thus, it is sufficient to CPC the high part to test A against 0
cpc A1, __zero_reg__
;; Only proceed if A != 0
brne 2b
9:
;; Move Result into place
mov C0, CC0
mov C1, CC1
ret
ENDF __mulhi3
#endif /* L_mulhi3 */
#undef A0
#undef A1
#undef B0
#undef BB0
#undef B1
#undef C0
#undef C1
#undef CC0
#undef CC1
#define A0 22
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define B0 18
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define CC0 26
#define CC1 CC0+1
#define CC2 30
#define CC3 CC2+1
#define C0 22
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
/*******************************************************
Widening Multiplication 32 = 16 x 16 without MUL
*******************************************************/
#if defined (L_umulhisi3)
DEFUN __umulhisi3
wmov B0, 24
;; Zero-extend B
clr B2
clr B3
;; Zero-extend A
wmov A2, B2
XJMP __mulsi3
ENDF __umulhisi3
#endif /* L_umulhisi3 */
#if defined (L_mulhisi3)
DEFUN __mulhisi3
wmov B0, 24
;; Sign-extend B
lsl r25
sbc B2, B2
mov B3, B2
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Sign-extend A
clr A2
sbrc A1, 7
com A2
mov A3, A2
XJMP __mulsi3
#else /* no __AVR_ERRATA_SKIP_JMP_CALL__ */
;; Zero-extend A and __mulsi3 will run at least twice as fast
;; compared to a sign-extended A.
clr A2
clr A3
sbrs A1, 7
XJMP __mulsi3
;; If A < 0 then perform the B * 0xffff.... before the
;; very multiplication by initializing the high part of the
;; result CC with -B.
wmov CC2, A2
sub CC2, B0
sbc CC3, B1
XJMP __mulsi3_helper
#endif /* __AVR_ERRATA_SKIP_JMP_CALL__ */
ENDF __mulhisi3
#endif /* L_mulhisi3 */
/*******************************************************
Multiplication 32 x 32 without MUL
*******************************************************/
#if defined (L_mulsi3)
DEFUN __mulsi3
;; Clear result
clr CC2
clr CC3
;; FALLTHRU
ENDF __mulsi3
DEFUN __mulsi3_helper
clr CC0
clr CC1
rjmp 3f
1: ;; If bit n of A is set, then add B * 2^n to the result in CC
;; CC += B
add CC0,B0 $ adc CC1,B1 $ adc CC2,B2 $ adc CC3,B3
2: ;; B <<= 1
lsl B0 $ rol B1 $ rol B2 $ rol B3
3: ;; A >>= 1: Carry = n-th bit of A
lsr A3 $ ror A2 $ ror A1 $ ror A0
brcs 1b
;; Only continue if A != 0
sbci A1, 0
brne 2b
sbiw A2, 0
brne 2b
;; All bits of A are consumed: Copy result to return register C
wmov C0, CC0
wmov C2, CC2
ret
ENDF __mulsi3_helper
#endif /* L_mulsi3 */
#undef A0
#undef A1
#undef A2
#undef A3
#undef B0
#undef B1
#undef B2
#undef B3
#undef C0
#undef C1
#undef C2
#undef C3
#undef CC0
#undef CC1
#undef CC2
#undef CC3
#endif /* !defined (__AVR_HAVE_MUL__) */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#if defined (__AVR_HAVE_MUL__)
#define A0 26
#define B0 18
#define C0 22
#define A1 A0+1
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
/*******************************************************
Widening Multiplication 32 = 16 x 16 with MUL
*******************************************************/
#if defined (L_mulhisi3)
;;; R25:R22 = (signed long) R27:R26 * (signed long) R19:R18
;;; C3:C0 = (signed long) A1:A0 * (signed long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulhisi3
XCALL __umulhisi3
;; Sign-extend B
tst B1
brpl 1f
sub C2, A0
sbc C3, A1
1: ;; Sign-extend A
XJMP __usmulhisi3_tail
ENDF __mulhisi3
#endif /* L_mulhisi3 */
#if defined (L_usmulhisi3)
;;; R25:R22 = (signed long) R27:R26 * (unsigned long) R19:R18
;;; C3:C0 = (signed long) A1:A0 * (unsigned long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __usmulhisi3
XCALL __umulhisi3
;; FALLTHRU
ENDF __usmulhisi3
DEFUN __usmulhisi3_tail
;; Sign-extend A
sbrs A1, 7
ret
sub C2, B0
sbc C3, B1
ret
ENDF __usmulhisi3_tail
#endif /* L_usmulhisi3 */
#if defined (L_umulhisi3)
;;; R25:R22 = (unsigned long) R27:R26 * (unsigned long) R19:R18
;;; C3:C0 = (unsigned long) A1:A0 * (unsigned long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __umulhisi3
mul A0, B0
movw C0, r0
mul A1, B1
movw C2, r0
mul A0, B1
#ifdef __AVR_HAVE_JMP_CALL__
;; This function is used by many other routines, often multiple times.
;; Therefore, if the flash size is not too limited, avoid the RCALL
;; and inverst 6 Bytes to speed things up.
add C1, r0
adc C2, r1
clr __zero_reg__
adc C3, __zero_reg__
#else
rcall 1f
#endif
mul A1, B0
1: add C1, r0
adc C2, r1
clr __zero_reg__
adc C3, __zero_reg__
ret
ENDF __umulhisi3
#endif /* L_umulhisi3 */
/*******************************************************
Widening Multiplication 32 = 16 x 32 with MUL
*******************************************************/
#if defined (L_mulshisi3)
;;; R25:R22 = (signed long) R27:R26 * R21:R18
;;; (C3:C0) = (signed long) A1:A0 * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulshisi3
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Some cores have problem skipping 2-word instruction
tst A1
brmi __mulohisi3
#else
sbrs A1, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
XJMP __muluhisi3
;; FALLTHRU
ENDF __mulshisi3
;;; R25:R22 = (one-extended long) R27:R26 * R21:R18
;;; (C3:C0) = (one-extended long) A1:A0 * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulohisi3
XCALL __muluhisi3
;; One-extend R27:R26 (A1:A0)
sub C2, B0
sbc C3, B1
ret
ENDF __mulohisi3
#endif /* L_mulshisi3 */
#if defined (L_muluhisi3)
;;; R25:R22 = (unsigned long) R27:R26 * R21:R18
;;; (C3:C0) = (unsigned long) A1:A0 * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __muluhisi3
XCALL __umulhisi3
mul A0, B3
add C3, r0
mul A1, B2
add C3, r0
mul A0, B2
add C2, r0
adc C3, r1
clr __zero_reg__
ret
ENDF __muluhisi3
#endif /* L_muluhisi3 */
/*******************************************************
Multiplication 32 x 32 with MUL
*******************************************************/
#if defined (L_mulsi3)
;;; R25:R22 = R25:R22 * R21:R18
;;; (C3:C0) = C3:C0 * B3:B0
;;; Clobbers: R26, R27, __tmp_reg__
DEFUN __mulsi3
movw A0, C0
push C2
push C3
XCALL __muluhisi3
pop A1
pop A0
;; A1:A0 now contains the high word of A
mul A0, B0
add C2, r0
adc C3, r1
mul A0, B1
add C3, r0
mul A1, B0
add C3, r0
clr __zero_reg__
ret
ENDF __mulsi3
#endif /* L_mulsi3 */
#undef A0
#undef A1
#undef B0
#undef B1
#undef B2
#undef B3
#undef C0
#undef C1
#undef C2
#undef C3
#endif /* __AVR_HAVE_MUL__ */
/*******************************************************
Multiplication 24 x 24 with MUL
*******************************************************/
#if defined (L_mulpsi3)
;; A[0..2]: In: Multiplicand; Out: Product
#define A0 22
#define A1 A0+1
#define A2 A0+2
;; B[0..2]: In: Multiplier
#define B0 18
#define B1 B0+1
#define B2 B0+2
#if defined (__AVR_HAVE_MUL__)
;; C[0..2]: Expand Result
#define C0 22
#define C1 C0+1
#define C2 C0+2
;; R24:R22 *= R20:R18
;; Clobbers: r21, r25, r26, r27, __tmp_reg__
#define AA0 26
#define AA2 21
DEFUN __mulpsi3
wmov AA0, A0
mov AA2, A2
XCALL __umulhisi3
mul AA2, B0 $ add C2, r0
mul AA0, B2 $ add C2, r0
clr __zero_reg__
ret
ENDF __mulpsi3
#undef AA2
#undef AA0
#undef C2
#undef C1
#undef C0
#else /* !HAVE_MUL */
;; C[0..2]: Expand Result
#define C0 0
#define C1 C0+1
#define C2 21
;; R24:R22 *= R20:R18
;; Clobbers: __tmp_reg__, R18, R19, R20, R21
DEFUN __mulpsi3
;; C[] = 0
clr __tmp_reg__
clr C2
0: ;; Shift N-th Bit of B[] into Carry. N = 24 - Loop
LSR B2 $ ror B1 $ ror B0
;; If the N-th Bit of B[] was set...
brcc 1f
;; ...then add A[] * 2^N to the Result C[]
ADD C0,A0 $ adc C1,A1 $ adc C2,A2
1: ;; Multiply A[] by 2
LSL A0 $ rol A1 $ rol A2
;; Loop until B[] is 0
subi B0,0 $ sbci B1,0 $ sbci B2,0
brne 0b
;; Copy C[] to the return Register A[]
wmov A0, C0
mov A2, C2
clr __zero_reg__
ret
ENDF __mulpsi3
#undef C2
#undef C1
#undef C0
#endif /* HAVE_MUL */
#undef B2
#undef B1
#undef B0
#undef A2
#undef A1
#undef A0
#endif /* L_mulpsi3 */
#if defined (L_mulsqipsi3) && defined (__AVR_HAVE_MUL__)
;; A[0..2]: In: Multiplicand
#define A0 22
#define A1 A0+1
#define A2 A0+2
;; BB: In: Multiplier
#define BB 25
;; C[0..2]: Result
#define C0 18
#define C1 C0+1
#define C2 C0+2
;; C[] = A[] * sign_extend (BB)
DEFUN __mulsqipsi3
mul A0, BB
movw C0, r0
mul A2, BB
mov C2, r0
mul A1, BB
add C1, r0
adc C2, r1
clr __zero_reg__
sbrs BB, 7
ret
;; One-extend BB
sub C1, A0
sbc C2, A1
ret
ENDF __mulsqipsi3
#undef C2
#undef C1
#undef C0
#undef BB
#undef A2
#undef A1
#undef A0
#endif /* L_mulsqipsi3 && HAVE_MUL */
/*******************************************************
Multiplication 64 x 64
*******************************************************/
#if defined (L_muldi3)
;; A[] = A[] * B[]
;; A[0..7]: In: Multiplicand
;; Out: Product
#define A0 18
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define A4 A0+4
#define A5 A0+5
#define A6 A0+6
#define A7 A0+7
;; B[0..7]: In: Multiplier
#define B0 10
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define B4 B0+4
#define B5 B0+5
#define B6 B0+6
#define B7 B0+7
#if defined (__AVR_HAVE_MUL__)
;; Define C[] for convenience
;; Notice that parts of C[] overlap A[] respective B[]
#define C0 16
#define C1 C0+1
#define C2 20
#define C3 C2+1
#define C4 28
#define C5 C4+1
#define C6 C4+2
#define C7 C4+3
;; A[] *= B[]
;; R25:R18 *= R17:R10
;; Ordinary ABI-Function
DEFUN __muldi3
push r29
push r28
push r17
push r16
;; Counting in Words, we have to perform a 4 * 4 Multiplication
;; 3 * 0 + 0 * 3
mul A7,B0 $ $ mov C7,r0
mul A0,B7 $ $ add C7,r0
mul A6,B1 $ $ add C7,r0
mul A6,B0 $ mov C6,r0 $ add C7,r1
mul B6,A1 $ $ add C7,r0
mul B6,A0 $ add C6,r0 $ adc C7,r1
;; 1 * 2
mul A2,B4 $ add C6,r0 $ adc C7,r1
mul A3,B4 $ $ add C7,r0
mul A2,B5 $ $ add C7,r0
push A5
push A4
push B1
push B0
push A3
push A2
;; 0 * 0
wmov 26, B0
XCALL __umulhisi3
wmov C0, 22
wmov C2, 24
;; 0 * 2
wmov 26, B4
XCALL __umulhisi3 $ wmov C4,22 $ add C6,24 $ adc C7,25
wmov 26, B2
;; 0 * 1
rcall __muldi3_6
pop A0
pop A1
;; 1 * 1
wmov 26, B2
XCALL __umulhisi3 $ add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25
pop r26
pop r27
;; 1 * 0
rcall __muldi3_6
pop A0
pop A1
;; 2 * 0
XCALL __umulhisi3 $ add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25
;; 2 * 1
wmov 26, B2
XCALL __umulhisi3 $ $ $ add C6,22 $ adc C7,23
;; A[] = C[]
wmov A0, C0
;; A2 = C2 already
wmov A4, C4
wmov A6, C6
clr __zero_reg__
pop r16
pop r17
pop r28
pop r29
ret
__muldi3_6:
XCALL __umulhisi3
add C2, 22
adc C3, 23
adc C4, 24
adc C5, 25
brcc 0f
adiw C6, 1
0: ret
ENDF __muldi3
#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0
#else /* !HAVE_MUL */
#define C0 26
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3
#define C4 C0+4
#define C5 C0+5
#define C6 0
#define C7 C6+1
#define Loop 9
;; A[] *= B[]
;; R25:R18 *= R17:R10
;; Ordinary ABI-Function
DEFUN __muldi3
push r29
push r28
push Loop
ldi C0, 64
mov Loop, C0
;; C[] = 0
clr __tmp_reg__
wmov C0, 0
wmov C2, 0
wmov C4, 0
0: ;; Rotate B[] right by 1 and set Carry to the N-th Bit of B[]
;; where N = 64 - Loop.
;; Notice that B[] = B[] >>> 64 so after this Routine has finished,
;; B[] will have its initial Value again.
LSR B7 $ ror B6 $ ror B5 $ ror B4
ror B3 $ ror B2 $ ror B1 $ ror B0
;; If the N-th Bit of B[] was set then...
brcc 1f
;; ...finish Rotation...
ori B7, 1 << 7
;; ...and add A[] * 2^N to the Result C[]
ADD C0,A0 $ adc C1,A1 $ adc C2,A2 $ adc C3,A3
adc C4,A4 $ adc C5,A5 $ adc C6,A6 $ adc C7,A7
1: ;; Multiply A[] by 2
LSL A0 $ rol A1 $ rol A2 $ rol A3
rol A4 $ rol A5 $ rol A6 $ rol A7
dec Loop
brne 0b
;; We expanded the Result in C[]
;; Copy Result to the Return Register A[]
wmov A0, C0
wmov A2, C2
wmov A4, C4
wmov A6, C6
clr __zero_reg__
pop Loop
pop r28
pop r29
ret
ENDF __muldi3
#undef Loop
#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0
#endif /* HAVE_MUL */
#undef B7
#undef B6
#undef B5
#undef B4
#undef B3
#undef B2
#undef B1
#undef B0
#undef A7
#undef A6
#undef A5
#undef A4
#undef A3
#undef A2
#undef A1
#undef A0
#endif /* L_muldi3 */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
.section .text.libgcc.div, "ax", @progbits
/*******************************************************
Division 8 / 8 => (result + remainder)
*******************************************************/
#define r_rem r25 /* remainder */
#define r_arg1 r24 /* dividend, quotient */
#define r_arg2 r22 /* divisor */
#define r_cnt r23 /* loop count */
#if defined (L_udivmodqi4)
DEFUN __udivmodqi4
sub r_rem,r_rem ; clear remainder and carry
ldi r_cnt,9 ; init loop counter
rjmp __udivmodqi4_ep ; jump to entry point
__udivmodqi4_loop:
rol r_rem ; shift dividend into remainder
cp r_rem,r_arg2 ; compare remainder & divisor
brcs __udivmodqi4_ep ; remainder <= divisor
sub r_rem,r_arg2 ; restore remainder
__udivmodqi4_ep:
rol r_arg1 ; shift dividend (with CARRY)
dec r_cnt ; decrement loop counter
brne __udivmodqi4_loop
com r_arg1 ; complement result
; because C flag was complemented in loop
ret
ENDF __udivmodqi4
#endif /* defined (L_udivmodqi4) */
#if defined (L_divmodqi4)
DEFUN __divmodqi4
bst r_arg1,7 ; store sign of dividend
mov __tmp_reg__,r_arg1
eor __tmp_reg__,r_arg2; r0.7 is sign of result
sbrc r_arg1,7
neg r_arg1 ; dividend negative : negate
sbrc r_arg2,7
neg r_arg2 ; divisor negative : negate
XCALL __udivmodqi4 ; do the unsigned div/mod
brtc __divmodqi4_1
neg r_rem ; correct remainder sign
__divmodqi4_1:
sbrc __tmp_reg__,7
neg r_arg1 ; correct result sign
__divmodqi4_exit:
ret
ENDF __divmodqi4
#endif /* defined (L_divmodqi4) */
#undef r_rem
#undef r_arg1
#undef r_arg2
#undef r_cnt
/*******************************************************
Division 16 / 16 => (result + remainder)
*******************************************************/
#define r_remL r26 /* remainder Low */
#define r_remH r27 /* remainder High */
/* return: remainder */
#define r_arg1L r24 /* dividend Low */
#define r_arg1H r25 /* dividend High */
/* return: quotient */
#define r_arg2L r22 /* divisor Low */
#define r_arg2H r23 /* divisor High */
#define r_cnt r21 /* loop count */
#if defined (L_udivmodhi4)
DEFUN __udivmodhi4
sub r_remL,r_remL
sub r_remH,r_remH ; clear remainder and carry
ldi r_cnt,17 ; init loop counter
rjmp __udivmodhi4_ep ; jump to entry point
__udivmodhi4_loop:
rol r_remL ; shift dividend into remainder
rol r_remH
cp r_remL,r_arg2L ; compare remainder & divisor
cpc r_remH,r_arg2H
brcs __udivmodhi4_ep ; remainder < divisor
sub r_remL,r_arg2L ; restore remainder
sbc r_remH,r_arg2H
__udivmodhi4_ep:
rol r_arg1L ; shift dividend (with CARRY)
rol r_arg1H
dec r_cnt ; decrement loop counter
brne __udivmodhi4_loop
com r_arg1L
com r_arg1H
; div/mod results to return registers, as for the div() function
mov_l r_arg2L, r_arg1L ; quotient
mov_h r_arg2H, r_arg1H
mov_l r_arg1L, r_remL ; remainder
mov_h r_arg1H, r_remH
ret
ENDF __udivmodhi4
#endif /* defined (L_udivmodhi4) */
#if defined (L_divmodhi4)
DEFUN __divmodhi4
.global _div
_div:
bst r_arg1H,7 ; store sign of dividend
mov __tmp_reg__,r_arg2H
brtc 0f
com __tmp_reg__ ; r0.7 is sign of result
rcall __divmodhi4_neg1 ; dividend negative: negate
0:
sbrc r_arg2H,7
rcall __divmodhi4_neg2 ; divisor negative: negate
XCALL __udivmodhi4 ; do the unsigned div/mod
sbrc __tmp_reg__,7
rcall __divmodhi4_neg2 ; correct remainder sign
brtc __divmodhi4_exit
__divmodhi4_neg1:
;; correct dividend/remainder sign
com r_arg1H
neg r_arg1L
sbci r_arg1H,0xff
ret
__divmodhi4_neg2:
;; correct divisor/result sign
com r_arg2H
neg r_arg2L
sbci r_arg2H,0xff
__divmodhi4_exit:
ret
ENDF __divmodhi4
#endif /* defined (L_divmodhi4) */
#undef r_remH
#undef r_remL
#undef r_arg1H
#undef r_arg1L
#undef r_arg2H
#undef r_arg2L
#undef r_cnt
/*******************************************************
Division 24 / 24 => (result + remainder)
*******************************************************/
;; A[0..2]: In: Dividend; Out: Quotient
#define A0 22
#define A1 A0+1
#define A2 A0+2
;; B[0..2]: In: Divisor; Out: Remainder
#define B0 18
#define B1 B0+1
#define B2 B0+2
;; C[0..2]: Expand remainder
#define C0 __zero_reg__
#define C1 26
#define C2 25
;; Loop counter
#define r_cnt 21
#if defined (L_udivmodpsi4)
;; R24:R22 = R24:R22 udiv R20:R18
;; R20:R18 = R24:R22 umod R20:R18
;; Clobbers: R21, R25, R26
DEFUN __udivmodpsi4
; init loop counter
ldi r_cnt, 24+1
; Clear remainder and carry. C0 is already 0
clr C1
sub C2, C2
; jump to entry point
rjmp __udivmodpsi4_start
__udivmodpsi4_loop:
; shift dividend into remainder
rol C0
rol C1
rol C2
; compare remainder & divisor
cp C0, B0
cpc C1, B1
cpc C2, B2
brcs __udivmodpsi4_start ; remainder <= divisor
sub C0, B0 ; restore remainder
sbc C1, B1
sbc C2, B2
__udivmodpsi4_start:
; shift dividend (with CARRY)
rol A0
rol A1
rol A2
; decrement loop counter
dec r_cnt
brne __udivmodpsi4_loop
com A0
com A1
com A2
; div/mod results to return registers
; remainder
mov B0, C0
mov B1, C1
mov B2, C2
clr __zero_reg__ ; C0
ret
ENDF __udivmodpsi4
#endif /* defined (L_udivmodpsi4) */
#if defined (L_divmodpsi4)
;; R24:R22 = R24:R22 div R20:R18
;; R20:R18 = R24:R22 mod R20:R18
;; Clobbers: T, __tmp_reg__, R21, R25, R26
DEFUN __divmodpsi4
; R0.7 will contain the sign of the result:
; R0.7 = A.sign ^ B.sign
mov __tmp_reg__, B2
; T-flag = sign of dividend
bst A2, 7
brtc 0f
com __tmp_reg__
; Adjust dividend's sign
rcall __divmodpsi4_negA
0:
; Adjust divisor's sign
sbrc B2, 7
rcall __divmodpsi4_negB
; Do the unsigned div/mod
XCALL __udivmodpsi4
; Adjust quotient's sign
sbrc __tmp_reg__, 7
rcall __divmodpsi4_negA
; Adjust remainder's sign
brtc __divmodpsi4_end
__divmodpsi4_negB:
; Correct divisor/remainder sign
com B2
com B1
neg B0
sbci B1, -1
sbci B2, -1
ret
; Correct dividend/quotient sign
__divmodpsi4_negA:
com A2
com A1
neg A0
sbci A1, -1
sbci A2, -1
__divmodpsi4_end:
ret
ENDF __divmodpsi4
#endif /* defined (L_divmodpsi4) */
#undef A0
#undef A1
#undef A2
#undef B0
#undef B1
#undef B2
#undef C0
#undef C1
#undef C2
#undef r_cnt
/*******************************************************
Division 32 / 32 => (result + remainder)
*******************************************************/
#define r_remHH r31 /* remainder High */
#define r_remHL r30
#define r_remH r27
#define r_remL r26 /* remainder Low */
/* return: remainder */
#define r_arg1HH r25 /* dividend High */
#define r_arg1HL r24
#define r_arg1H r23
#define r_arg1L r22 /* dividend Low */
/* return: quotient */
#define r_arg2HH r21 /* divisor High */
#define r_arg2HL r20
#define r_arg2H r19
#define r_arg2L r18 /* divisor Low */
#define r_cnt __zero_reg__ /* loop count (0 after the loop!) */
#if defined (L_udivmodsi4)
DEFUN __udivmodsi4
ldi r_remL, 33 ; init loop counter
mov r_cnt, r_remL
sub r_remL,r_remL
sub r_remH,r_remH ; clear remainder and carry
mov_l r_remHL, r_remL
mov_h r_remHH, r_remH
rjmp __udivmodsi4_ep ; jump to entry point
__udivmodsi4_loop:
rol r_remL ; shift dividend into remainder
rol r_remH
rol r_remHL
rol r_remHH
cp r_remL,r_arg2L ; compare remainder & divisor
cpc r_remH,r_arg2H
cpc r_remHL,r_arg2HL
cpc r_remHH,r_arg2HH
brcs __udivmodsi4_ep ; remainder <= divisor
sub r_remL,r_arg2L ; restore remainder
sbc r_remH,r_arg2H
sbc r_remHL,r_arg2HL
sbc r_remHH,r_arg2HH
__udivmodsi4_ep:
rol r_arg1L ; shift dividend (with CARRY)
rol r_arg1H
rol r_arg1HL
rol r_arg1HH
dec r_cnt ; decrement loop counter
brne __udivmodsi4_loop
; __zero_reg__ now restored (r_cnt == 0)
com r_arg1L
com r_arg1H
com r_arg1HL
com r_arg1HH
; div/mod results to return registers, as for the ldiv() function
mov_l r_arg2L, r_arg1L ; quotient
mov_h r_arg2H, r_arg1H
mov_l r_arg2HL, r_arg1HL
mov_h r_arg2HH, r_arg1HH
mov_l r_arg1L, r_remL ; remainder
mov_h r_arg1H, r_remH
mov_l r_arg1HL, r_remHL
mov_h r_arg1HH, r_remHH
ret
ENDF __udivmodsi4
#endif /* defined (L_udivmodsi4) */
#if defined (L_divmodsi4)
DEFUN __divmodsi4
mov __tmp_reg__,r_arg2HH
bst r_arg1HH,7 ; store sign of dividend
brtc 0f
com __tmp_reg__ ; r0.7 is sign of result
XCALL __negsi2 ; dividend negative: negate
0:
sbrc r_arg2HH,7
rcall __divmodsi4_neg2 ; divisor negative: negate
XCALL __udivmodsi4 ; do the unsigned div/mod
sbrc __tmp_reg__, 7 ; correct quotient sign
rcall __divmodsi4_neg2
brtc __divmodsi4_exit ; correct remainder sign
XJMP __negsi2
__divmodsi4_neg2:
;; correct divisor/quotient sign
com r_arg2HH
com r_arg2HL
com r_arg2H
neg r_arg2L
sbci r_arg2H,0xff
sbci r_arg2HL,0xff
sbci r_arg2HH,0xff
__divmodsi4_exit:
ret
ENDF __divmodsi4
#endif /* defined (L_divmodsi4) */
#if defined (L_negsi2)
;; (set (reg:SI 22)
;; (neg:SI (reg:SI 22)))
;; Sets the V flag for signed overflow tests
DEFUN __negsi2
NEG4 22
ret
ENDF __negsi2
#endif /* L_negsi2 */
#undef r_remHH
#undef r_remHL
#undef r_remH
#undef r_remL
#undef r_arg1HH
#undef r_arg1HL
#undef r_arg1H
#undef r_arg1L
#undef r_arg2HH
#undef r_arg2HL
#undef r_arg2H
#undef r_arg2L
#undef r_cnt
/*******************************************************
Division 64 / 64
Modulo 64 % 64
*******************************************************/
;; Use Speed-optimized Version on "big" Devices, i.e. Devices with
;; at least 16k of Program Memory. For smaller Devices, depend
;; on MOVW and SP Size. There is a Connexion between SP Size and
;; Flash Size so that SP Size can be used to test for Flash Size.
#if defined (__AVR_HAVE_JMP_CALL__)
# define SPEED_DIV 8
#elif defined (__AVR_HAVE_MOVW__) && defined (__AVR_HAVE_SPH__)
# define SPEED_DIV 16
#else
# define SPEED_DIV 0
#endif
;; A[0..7]: In: Dividend;
;; Out: Quotient (T = 0)
;; Out: Remainder (T = 1)
#define A0 18
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3
#define A4 A0+4
#define A5 A0+5
#define A6 A0+6
#define A7 A0+7
;; B[0..7]: In: Divisor; Out: Clobber
#define B0 10
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3
#define B4 B0+4
#define B5 B0+5
#define B6 B0+6
#define B7 B0+7
;; C[0..7]: Expand remainder; Out: Remainder (unused)
#define C0 8
#define C1 C0+1
#define C2 30
#define C3 C2+1
#define C4 28
#define C5 C4+1
#define C6 26
#define C7 C6+1
;; Holds Signs during Division Routine
#define SS __tmp_reg__
;; Bit-Counter in Division Routine
#define R_cnt __zero_reg__
;; Scratch Register for Negation
#define NN r31
#if defined (L_udivdi3)
;; R25:R18 = R24:R18 umod R17:R10
;; Ordinary ABI-Function
DEFUN __umoddi3
set
rjmp __udivdi3_umoddi3
ENDF __umoddi3
;; R25:R18 = R24:R18 udiv R17:R10
;; Ordinary ABI-Function
DEFUN __udivdi3
clt
ENDF __udivdi3
DEFUN __udivdi3_umoddi3
push C0
push C1
push C4
push C5
XCALL __udivmod64
pop C5
pop C4
pop C1
pop C0
ret
ENDF __udivdi3_umoddi3
#endif /* L_udivdi3 */
#if defined (L_udivmod64)
;; Worker Routine for 64-Bit unsigned Quotient and Remainder Computation
;; No Registers saved/restored; the Callers will take Care.
;; Preserves B[] and T-flag
;; T = 0: Compute Quotient in A[]
;; T = 1: Compute Remainder in A[] and shift SS one Bit left
DEFUN __udivmod64
;; Clear Remainder (C6, C7 will follow)
clr C0
clr C1
wmov C2, C0
wmov C4, C0
ldi C7, 64
#if SPEED_DIV == 0 || SPEED_DIV == 16
;; Initialize Loop-Counter
mov R_cnt, C7
wmov C6, C0
#endif /* SPEED_DIV */
#if SPEED_DIV == 8
push A7
clr C6
1: ;; Compare shifted Devidend against Divisor
;; If -- even after Shifting -- it is smaller...
CP A7,B0 $ cpc C0,B1 $ cpc C1,B2 $ cpc C2,B3
cpc C3,B4 $ cpc C4,B5 $ cpc C5,B6 $ cpc C6,B7
brcc 2f
;; ...then we can subtract it. Thus, it is legal to shift left
$ mov C6,C5 $ mov C5,C4 $ mov C4,C3
mov C3,C2 $ mov C2,C1 $ mov C1,C0 $ mov C0,A7
mov A7,A6 $ mov A6,A5 $ mov A5,A4 $ mov A4,A3
mov A3,A2 $ mov A2,A1 $ mov A1,A0 $ clr A0
;; 8 Bits are done
subi C7, 8
brne 1b
;; Shifted 64 Bits: A7 has traveled to C7
pop C7
;; Divisor is greater than Dividend. We have:
;; A[] % B[] = A[]
;; A[] / B[] = 0
;; Thus, we can return immediately
rjmp 5f
2: ;; Initialze Bit-Counter with Number of Bits still to be performed
mov R_cnt, C7
;; Push of A7 is not needed because C7 is still 0
pop C7
clr C7
#elif SPEED_DIV == 16
;; Compare shifted Dividend against Divisor
cp A7, B3
cpc C0, B4
cpc C1, B5
cpc C2, B6
cpc C3, B7
brcc 2f
;; Divisor is greater than shifted Dividen: We can shift the Dividend
;; and it is still smaller than the Divisor --> Shift one 32-Bit Chunk
wmov C2,A6 $ wmov C0,A4
wmov A6,A2 $ wmov A4,A0
wmov A2,C6 $ wmov A0,C4
;; Set Bit Counter to 32
lsr R_cnt
2:
#elif SPEED_DIV
#error SPEED_DIV = ?
#endif /* SPEED_DIV */
;; The very Division + Remainder Routine
3: ;; Left-shift Dividend...
lsl A0 $ rol A1 $ rol A2 $ rol A3
rol A4 $ rol A5 $ rol A6 $ rol A7
;; ...into Remainder
rol C0 $ rol C1 $ rol C2 $ rol C3
rol C4 $ rol C5 $ rol C6 $ rol C7
;; Compare Remainder and Divisor
CP C0,B0 $ cpc C1,B1 $ cpc C2,B2 $ cpc C3,B3
cpc C4,B4 $ cpc C5,B5 $ cpc C6,B6 $ cpc C7,B7
brcs 4f
;; Divisor fits into Remainder: Subtract it from Remainder...
SUB C0,B0 $ sbc C1,B1 $ sbc C2,B2 $ sbc C3,B3
sbc C4,B4 $ sbc C5,B5 $ sbc C6,B6 $ sbc C7,B7
;; ...and set according Bit in the upcoming Quotient
;; The Bit will travel to its final Position
ori A0, 1
4: ;; This Bit is done
dec R_cnt
brne 3b
;; __zero_reg__ is 0 again
;; T = 0: We are fine with the Quotient in A[]
;; T = 1: Copy Remainder to A[]
5: brtc 6f
wmov A0, C0
wmov A2, C2
wmov A4, C4
wmov A6, C6
;; Move the Sign of the Result to SS.7
lsl SS
6: ret
ENDF __udivmod64
#endif /* L_udivmod64 */
#if defined (L_divdi3)
;; R25:R18 = R24:R18 mod R17:R10
;; Ordinary ABI-Function
DEFUN __moddi3
set
rjmp __divdi3_moddi3
ENDF __moddi3
;; R25:R18 = R24:R18 div R17:R10
;; Ordinary ABI-Function
DEFUN __divdi3
clt
ENDF __divdi3
DEFUN __divdi3_moddi3
#if SPEED_DIV
mov r31, A7
or r31, B7
brmi 0f
;; Both Signs are 0: the following Complexitiy is not needed
XJMP __udivdi3_umoddi3
#endif /* SPEED_DIV */
0: ;; The Prologue
;; Save 12 Registers: Y, 17...8
;; No Frame needed (X = 0)
clr r26
clr r27
ldi r30, lo8(gs(1f))
ldi r31, hi8(gs(1f))
XJMP __prologue_saves__ + ((18 - 12) * 2)
1: ;; SS.7 will contain the Sign of the Quotient (A.sign * B.sign)
;; SS.6 will contain the Sign of the Remainder (A.sign)
mov SS, A7
asr SS
;; Adjust Dividend's Sign as needed
#if SPEED_DIV
;; Compiling for Speed we know that at least one Sign must be < 0
;; Thus, if A[] >= 0 then we know B[] < 0
brpl 22f
#else
brpl 21f
#endif /* SPEED_DIV */
XCALL __negdi2
;; Adjust Divisor's Sign and SS.7 as needed
21: tst B7
brpl 3f
22: ldi NN, 1 << 7
eor SS, NN
ldi NN, -1
com B4 $ com B5 $ com B6 $ com B7
$ com B1 $ com B2 $ com B3
NEG B0
$ sbc B1,NN $ sbc B2,NN $ sbc B3,NN
sbc B4,NN $ sbc B5,NN $ sbc B6,NN $ sbc B7,NN
3: ;; Do the unsigned 64-Bit Division/Modulo (depending on T-flag)
XCALL __udivmod64
;; Adjust Result's Sign
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
tst SS
brpl 4f
#else
sbrc SS, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
XCALL __negdi2
4: ;; Epilogue: Restore the Z = 12 Registers and return
in r28, __SP_L__
#if defined (__AVR_HAVE_SPH__)
in r29, __SP_H__
#else
clr r29
#endif /* #SP = 8/16 */
ldi r30, 12
XJMP __epilogue_restores__ + ((18 - 12) * 2)
ENDF __divdi3_moddi3
#undef R_cnt
#undef SS
#undef NN
#endif /* L_divdi3 */
.section .text.libgcc, "ax", @progbits
#define TT __tmp_reg__
#if defined (L_adddi3)
;; (set (reg:DI 18)
;; (plus:DI (reg:DI 18)
;; (reg:DI 10)))
;; Sets the V flag for signed overflow tests
;; Sets the C flag for unsigned overflow tests
DEFUN __adddi3
ADD A0,B0 $ adc A1,B1 $ adc A2,B2 $ adc A3,B3
adc A4,B4 $ adc A5,B5 $ adc A6,B6 $ adc A7,B7
ret
ENDF __adddi3
#endif /* L_adddi3 */
#if defined (L_adddi3_s8)
;; (set (reg:DI 18)
;; (plus:DI (reg:DI 18)
;; (sign_extend:SI (reg:QI 26))))
;; Sets the V flag for signed overflow tests
;; Sets the C flag for unsigned overflow tests provided 0 <= R26 < 128
DEFUN __adddi3_s8
clr TT
sbrc r26, 7
com TT
ADD A0,r26 $ adc A1,TT $ adc A2,TT $ adc A3,TT
adc A4,TT $ adc A5,TT $ adc A6,TT $ adc A7,TT
ret
ENDF __adddi3_s8
#endif /* L_adddi3_s8 */
#if defined (L_subdi3)
;; (set (reg:DI 18)
;; (minus:DI (reg:DI 18)
;; (reg:DI 10)))
;; Sets the V flag for signed overflow tests
;; Sets the C flag for unsigned overflow tests
DEFUN __subdi3
SUB A0,B0 $ sbc A1,B1 $ sbc A2,B2 $ sbc A3,B3
sbc A4,B4 $ sbc A5,B5 $ sbc A6,B6 $ sbc A7,B7
ret
ENDF __subdi3
#endif /* L_subdi3 */
#if defined (L_cmpdi2)
;; (set (cc0)
;; (compare (reg:DI 18)
;; (reg:DI 10)))
DEFUN __cmpdi2
CP A0,B0 $ cpc A1,B1 $ cpc A2,B2 $ cpc A3,B3
cpc A4,B4 $ cpc A5,B5 $ cpc A6,B6 $ cpc A7,B7
ret
ENDF __cmpdi2
#endif /* L_cmpdi2 */
#if defined (L_cmpdi2_s8)
;; (set (cc0)
;; (compare (reg:DI 18)
;; (sign_extend:SI (reg:QI 26))))
DEFUN __cmpdi2_s8
clr TT
sbrc r26, 7
com TT
CP A0,r26 $ cpc A1,TT $ cpc A2,TT $ cpc A3,TT
cpc A4,TT $ cpc A5,TT $ cpc A6,TT $ cpc A7,TT
ret
ENDF __cmpdi2_s8
#endif /* L_cmpdi2_s8 */
#if defined (L_negdi2)
;; (set (reg:DI 18)
;; (neg:DI (reg:DI 18)))
;; Sets the V flag for signed overflow tests
DEFUN __negdi2
com A4 $ com A5 $ com A6 $ com A7
$ com A1 $ com A2 $ com A3
NEG A0
$ sbci A1,-1 $ sbci A2,-1 $ sbci A3,-1
sbci A4,-1 $ sbci A5,-1 $ sbci A6,-1 $ sbci A7,-1
ret
ENDF __negdi2
#endif /* L_negdi2 */
#undef TT
#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0
#undef B7
#undef B6
#undef B5
#undef B4
#undef B3
#undef B2
#undef B1
#undef B0
#undef A7
#undef A6
#undef A5
#undef A4
#undef A3
#undef A2
#undef A1
#undef A0
.section .text.libgcc.prologue, "ax", @progbits
/**********************************
* This is a prologue subroutine
**********************************/
#if defined (L_prologue)
;; This function does not clobber T-flag; 64-bit division relies on it
DEFUN __prologue_saves__
push r2
push r3
push r4
push r5
push r6
push r7
push r8
push r9
push r10
push r11
push r12
push r13
push r14
push r15
push r16
push r17
push r28
push r29
#if !defined (__AVR_HAVE_SPH__)
in r28,__SP_L__
sub r28,r26
out __SP_L__,r28
clr r29
#elif defined (__AVR_XMEGA__)
in r28,__SP_L__
in r29,__SP_H__
sub r28,r26
sbc r29,r27
out __SP_L__,r28
out __SP_H__,r29
#else
in r28,__SP_L__
in r29,__SP_H__
sub r28,r26
sbc r29,r27
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28
#endif /* #SP = 8/16 */
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
ENDF __prologue_saves__
#endif /* defined (L_prologue) */
/*
* This is an epilogue subroutine
*/
#if defined (L_epilogue)
DEFUN __epilogue_restores__
ldd r2,Y+18
ldd r3,Y+17
ldd r4,Y+16
ldd r5,Y+15
ldd r6,Y+14
ldd r7,Y+13
ldd r8,Y+12
ldd r9,Y+11
ldd r10,Y+10
ldd r11,Y+9
ldd r12,Y+8
ldd r13,Y+7
ldd r14,Y+6
ldd r15,Y+5
ldd r16,Y+4
ldd r17,Y+3
ldd r26,Y+2
#if !defined (__AVR_HAVE_SPH__)
ldd r29,Y+1
add r28,r30
out __SP_L__,r28
mov r28, r26
#elif defined (__AVR_XMEGA__)
ldd r27,Y+1
add r28,r30
adc r29,__zero_reg__
out __SP_L__,r28
out __SP_H__,r29
wmov 28, 26
#else
ldd r27,Y+1
add r28,r30
adc r29,__zero_reg__
in __tmp_reg__,__SREG__
cli
out __SP_H__,r29
out __SREG__,__tmp_reg__
out __SP_L__,r28
mov_l r28, r26
mov_h r29, r27
#endif /* #SP = 8/16 */
ret
ENDF __epilogue_restores__
#endif /* defined (L_epilogue) */
#ifdef L_exit
.section .fini9,"ax",@progbits
DEFUN _exit
.weak exit
exit:
ENDF _exit
/* Code from .fini8 ... .fini1 sections inserted by ld script. */
.section .fini0,"ax",@progbits
cli
__stop_program:
rjmp __stop_program
#endif /* defined (L_exit) */
#ifdef L_cleanup
.weak _cleanup
.func _cleanup
_cleanup:
ret
.endfunc
#endif /* defined (L_cleanup) */
.section .text.libgcc, "ax", @progbits
#ifdef L_tablejump
DEFUN __tablejump2__
lsl r30
rol r31
;; FALLTHRU
ENDF __tablejump2__
DEFUN __tablejump__
#if defined (__AVR_HAVE_LPMX__)
lpm __tmp_reg__, Z+
lpm r31, Z
mov r30, __tmp_reg__
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
#else /* !HAVE_LPMX */
lpm
adiw r30, 1
push r0
lpm
push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
in __tmp_reg__, __EIND__
push __tmp_reg__
#endif
ret
#endif /* !HAVE_LPMX */
ENDF __tablejump__
#endif /* defined (L_tablejump) */
#ifdef L_copy_data
.section .init4,"ax",@progbits
DEFUN __do_copy_data
#if defined(__AVR_HAVE_ELPMX__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
ldi r16, hh8(__data_load_start)
out __RAMPZ__, r16
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
elpm r0, Z+
st X+, r0
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
ldi r16, hh8(__data_load_start - 0x10000)
.L__do_copy_data_carry:
inc r16
out __RAMPZ__, r16
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
elpm
st X+, r0
adiw r30, 1
brcs .L__do_copy_data_carry
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__data_end)
ldi r26, lo8(__data_start)
ldi r27, hi8(__data_start)
ldi r30, lo8(__data_load_start)
ldi r31, hi8(__data_load_start)
rjmp .L__do_copy_data_start
.L__do_copy_data_loop:
#if defined (__AVR_HAVE_LPMX__)
lpm r0, Z+
#else
lpm
adiw r30, 1
#endif
st X+, r0
.L__do_copy_data_start:
cpi r26, lo8(__data_end)
cpc r27, r17
brne .L__do_copy_data_loop
#endif /* !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__) */
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
#endif /* ELPM && RAMPD */
ENDF __do_copy_data
#endif /* L_copy_data */
/* __do_clear_bss is only necessary if there is anything in .bss section. */
#ifdef L_clear_bss
.section .init4,"ax",@progbits
DEFUN __do_clear_bss
ldi r17, hi8(__bss_end)
ldi r26, lo8(__bss_start)
ldi r27, hi8(__bss_start)
rjmp .do_clear_bss_start
.do_clear_bss_loop:
st X+, __zero_reg__
.do_clear_bss_start:
cpi r26, lo8(__bss_end)
cpc r27, r17
brne .do_clear_bss_loop
ENDF __do_clear_bss
#endif /* L_clear_bss */
/* __do_global_ctors and __do_global_dtors are only necessary
if there are any constructors/destructors. */
#ifdef L_ctors
.section .init6,"ax",@progbits
DEFUN __do_global_ctors
#if defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__ctors_start)
ldi r28, lo8(__ctors_end)
ldi r29, hi8(__ctors_end)
ldi r16, hh8(__ctors_end)
rjmp .L__do_global_ctors_start
.L__do_global_ctors_loop:
sbiw r28, 2
sbc r16, __zero_reg__
mov_h r31, r29
mov_l r30, r28
out __RAMPZ__, r16
XCALL __tablejump_elpm__
.L__do_global_ctors_start:
cpi r28, lo8(__ctors_start)
cpc r29, r17
ldi r24, hh8(__ctors_start)
cpc r16, r24
brne .L__do_global_ctors_loop
#else
ldi r17, hi8(__ctors_start)
ldi r28, lo8(__ctors_end)
ldi r29, hi8(__ctors_end)
rjmp .L__do_global_ctors_start
.L__do_global_ctors_loop:
sbiw r28, 2
mov_h r31, r29
mov_l r30, r28
XCALL __tablejump__
.L__do_global_ctors_start:
cpi r28, lo8(__ctors_start)
cpc r29, r17
brne .L__do_global_ctors_loop
#endif /* defined(__AVR_HAVE_ELPM__) */
ENDF __do_global_ctors
#endif /* L_ctors */
#ifdef L_dtors
.section .fini6,"ax",@progbits
DEFUN __do_global_dtors
#if defined(__AVR_HAVE_ELPM__)
ldi r17, hi8(__dtors_end)
ldi r28, lo8(__dtors_start)
ldi r29, hi8(__dtors_start)
ldi r16, hh8(__dtors_start)
rjmp .L__do_global_dtors_start
.L__do_global_dtors_loop:
sbiw r28, 2
sbc r16, __zero_reg__
mov_h r31, r29
mov_l r30, r28
out __RAMPZ__, r16
XCALL __tablejump_elpm__
.L__do_global_dtors_start:
cpi r28, lo8(__dtors_end)
cpc r29, r17
ldi r24, hh8(__dtors_end)
cpc r16, r24
brne .L__do_global_dtors_loop
#else
ldi r17, hi8(__dtors_end)
ldi r28, lo8(__dtors_start)
ldi r29, hi8(__dtors_start)
rjmp .L__do_global_dtors_start
.L__do_global_dtors_loop:
mov_h r31, r29
mov_l r30, r28
XCALL __tablejump__
adiw r28, 2
.L__do_global_dtors_start:
cpi r28, lo8(__dtors_end)
cpc r29, r17
brne .L__do_global_dtors_loop
#endif /* defined(__AVR_HAVE_ELPM__) */
ENDF __do_global_dtors
#endif /* L_dtors */
.section .text.libgcc, "ax", @progbits
#ifdef L_tablejump_elpm
DEFUN __tablejump_elpm__
#if defined (__AVR_HAVE_ELPMX__)
elpm __tmp_reg__, Z+
elpm r31, Z
mov r30, __tmp_reg__
#if defined (__AVR_HAVE_RAMPD__)
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
#endif /* RAMPD */
#if defined (__AVR_HAVE_EIJMP_EICALL__)
eijmp
#else
ijmp
#endif
#elif defined (__AVR_HAVE_ELPM__)
elpm
adiw r30, 1
push r0
elpm
push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
in __tmp_reg__, __EIND__
push __tmp_reg__
#endif
ret
#endif
ENDF __tablejump_elpm__
#endif /* defined (L_tablejump_elpm) */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Loading n bytes from Flash; n = 3,4
;; R22... = Flash[Z]
;; Clobbers: __tmp_reg__
#if (defined (L_load_3) \
|| defined (L_load_4)) \
&& !defined (__AVR_HAVE_LPMX__)
;; Destination
#define D0 22
#define D1 D0+1
#define D2 D0+2
#define D3 D0+3
.macro .load dest, n
lpm
mov \dest, r0
.if \dest != D0+\n-1
adiw r30, 1
.else
sbiw r30, \n-1
.endif
.endm
#if defined (L_load_3)
DEFUN __load_3
push D3
XCALL __load_4
pop D3
ret
ENDF __load_3
#endif /* L_load_3 */
#if defined (L_load_4)
DEFUN __load_4
.load D0, 4
.load D1, 4
.load D2, 4
.load D3, 4
ret
ENDF __load_4
#endif /* L_load_4 */
#endif /* L_load_3 || L_load_3 */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Loading n bytes from Flash or RAM; n = 1,2,3,4
;; R22... = Flash[R21:Z] or RAM[Z] depending on R21.7
;; Clobbers: __tmp_reg__, R21, R30, R31
#if (defined (L_xload_1) \
|| defined (L_xload_2) \
|| defined (L_xload_3) \
|| defined (L_xload_4))
;; Destination
#define D0 22
#define D1 D0+1
#define D2 D0+2
#define D3 D0+3
;; Register containing bits 16+ of the address
#define HHI8 21
.macro .xload dest, n
#if defined (__AVR_HAVE_ELPMX__)
elpm \dest, Z+
#elif defined (__AVR_HAVE_ELPM__)
elpm
mov \dest, r0
.if \dest != D0+\n-1
adiw r30, 1
adc HHI8, __zero_reg__
out __RAMPZ__, HHI8
.endif
#elif defined (__AVR_HAVE_LPMX__)
lpm \dest, Z+
#else
lpm
mov \dest, r0
.if \dest != D0+\n-1
adiw r30, 1
.endif
#endif
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
.if \dest == D0+\n-1
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
.endif
#endif
.endm ; .xload
#if defined (L_xload_1)
DEFUN __xload_1
#if defined (__AVR_HAVE_LPMX__) && !defined (__AVR_HAVE_ELPM__)
sbrc HHI8, 7
ld D0, Z
sbrs HHI8, 7
lpm D0, Z
ret
#else
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 1
ret
1: ld D0, Z
ret
#endif /* LPMx && ! ELPM */
ENDF __xload_1
#endif /* L_xload_1 */
#if defined (L_xload_2)
DEFUN __xload_2
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 2
.xload D1, 2
ret
1: ld D0, Z+
ld D1, Z+
ret
ENDF __xload_2
#endif /* L_xload_2 */
#if defined (L_xload_3)
DEFUN __xload_3
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 3
.xload D1, 3
.xload D2, 3
ret
1: ld D0, Z+
ld D1, Z+
ld D2, Z+
ret
ENDF __xload_3
#endif /* L_xload_3 */
#if defined (L_xload_4)
DEFUN __xload_4
sbrc HHI8, 7
rjmp 1f
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
.xload D0, 4
.xload D1, 4
.xload D2, 4
.xload D3, 4
ret
1: ld D0, Z+
ld D1, Z+
ld D2, Z+
ld D3, Z+
ret
ENDF __xload_4
#endif /* L_xload_4 */
#endif /* L_xload_{1|2|3|4} */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; memcopy from Address Space __pgmx to RAM
;; R23:Z = Source Address
;; X = Destination Address
;; Clobbers: __tmp_reg__, R23, R24, R25, X, Z
#if defined (L_movmemx)
#define HHI8 23
#define LOOP 24
DEFUN __movmemx_qi
;; #Bytes to copy fity in 8 Bits (1..255)
;; Zero-extend Loop Counter
clr LOOP+1
;; FALLTHRU
ENDF __movmemx_qi
DEFUN __movmemx_hi
;; Read from where?
sbrc HHI8, 7
rjmp 1f
;; Read from Flash
#if defined (__AVR_HAVE_ELPM__)
out __RAMPZ__, HHI8
#endif
0: ;; Load 1 Byte from Flash...
#if defined (__AVR_HAVE_ELPMX__)
elpm r0, Z+
#elif defined (__AVR_HAVE_ELPM__)
elpm
adiw r30, 1
adc HHI8, __zero_reg__
out __RAMPZ__, HHI8
#elif defined (__AVR_HAVE_LPMX__)
lpm r0, Z+
#else
lpm
adiw r30, 1
#endif
;; ...and store that Byte to RAM Destination
st X+, r0
sbiw LOOP, 1
brne 0b
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
out __RAMPZ__, __zero_reg__
#endif /* ELPM && RAMPD */
ret
;; Read from RAM
1: ;; Read 1 Byte from RAM...
ld r0, Z+
;; and store that Byte to RAM Destination
st X+, r0
sbiw LOOP, 1
brne 1b
ret
ENDF __movmemx_hi
#undef HHI8
#undef LOOP
#endif /* L_movmemx */
.section .text.libgcc.builtins, "ax", @progbits
/**********************************
* Find first set Bit (ffs)
**********************************/
#if defined (L_ffssi2)
;; find first set bit
;; r25:r24 = ffs32 (r25:r22)
;; clobbers: r22, r26
DEFUN __ffssi2
clr r26
tst r22
brne 1f
subi r26, -8
or r22, r23
brne 1f
subi r26, -8
or r22, r24
brne 1f
subi r26, -8
or r22, r25
brne 1f
ret
1: mov r24, r22
XJMP __loop_ffsqi2
ENDF __ffssi2
#endif /* defined (L_ffssi2) */
#if defined (L_ffshi2)
;; find first set bit
;; r25:r24 = ffs16 (r25:r24)
;; clobbers: r26
DEFUN __ffshi2
clr r26
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Some cores have problem skipping 2-word instruction
tst r24
breq 2f
#else
cpse r24, __zero_reg__
#endif /* __AVR_HAVE_JMP_CALL__ */
1: XJMP __loop_ffsqi2
2: ldi r26, 8
or r24, r25
brne 1b
ret
ENDF __ffshi2
#endif /* defined (L_ffshi2) */
#if defined (L_loop_ffsqi2)
;; Helper for ffshi2, ffssi2
;; r25:r24 = r26 + zero_extend16 (ffs8(r24))
;; r24 must be != 0
;; clobbers: r26
DEFUN __loop_ffsqi2
inc r26
lsr r24
brcc __loop_ffsqi2
mov r24, r26
clr r25
ret
ENDF __loop_ffsqi2
#endif /* defined (L_loop_ffsqi2) */
/**********************************
* Count trailing Zeros (ctz)
**********************************/
#if defined (L_ctzsi2)
;; count trailing zeros
;; r25:r24 = ctz32 (r25:r22)
;; clobbers: r26, r22
;; ctz(0) = 255
;; Note that ctz(0) in undefined for GCC
DEFUN __ctzsi2
XCALL __ffssi2
dec r24
ret
ENDF __ctzsi2
#endif /* defined (L_ctzsi2) */
#if defined (L_ctzhi2)
;; count trailing zeros
;; r25:r24 = ctz16 (r25:r24)
;; clobbers: r26
;; ctz(0) = 255
;; Note that ctz(0) in undefined for GCC
DEFUN __ctzhi2
XCALL __ffshi2
dec r24
ret
ENDF __ctzhi2
#endif /* defined (L_ctzhi2) */
/**********************************
* Count leading Zeros (clz)
**********************************/
#if defined (L_clzdi2)
;; count leading zeros
;; r25:r24 = clz64 (r25:r18)
;; clobbers: r22, r23, r26
DEFUN __clzdi2
XCALL __clzsi2
sbrs r24, 5
ret
mov_l r22, r18
mov_h r23, r19
mov_l r24, r20
mov_h r25, r21
XCALL __clzsi2
subi r24, -32
ret
ENDF __clzdi2
#endif /* defined (L_clzdi2) */
#if defined (L_clzsi2)
;; count leading zeros
;; r25:r24 = clz32 (r25:r22)
;; clobbers: r26
DEFUN __clzsi2
XCALL __clzhi2
sbrs r24, 4
ret
mov_l r24, r22
mov_h r25, r23
XCALL __clzhi2
subi r24, -16
ret
ENDF __clzsi2
#endif /* defined (L_clzsi2) */
#if defined (L_clzhi2)
;; count leading zeros
;; r25:r24 = clz16 (r25:r24)
;; clobbers: r26
DEFUN __clzhi2
clr r26
tst r25
brne 1f
subi r26, -8
or r25, r24
brne 1f
ldi r24, 16
ret
1: cpi r25, 16
brsh 3f
subi r26, -3
swap r25
2: inc r26
3: lsl r25
brcc 2b
mov r24, r26
clr r25
ret
ENDF __clzhi2
#endif /* defined (L_clzhi2) */
/**********************************
* Parity
**********************************/
#if defined (L_paritydi2)
;; r25:r24 = parity64 (r25:r18)
;; clobbers: __tmp_reg__
DEFUN __paritydi2
eor r24, r18
eor r24, r19
eor r24, r20
eor r24, r21
XJMP __paritysi2
ENDF __paritydi2
#endif /* defined (L_paritydi2) */
#if defined (L_paritysi2)
;; r25:r24 = parity32 (r25:r22)
;; clobbers: __tmp_reg__
DEFUN __paritysi2
eor r24, r22
eor r24, r23
XJMP __parityhi2
ENDF __paritysi2
#endif /* defined (L_paritysi2) */
#if defined (L_parityhi2)
;; r25:r24 = parity16 (r25:r24)
;; clobbers: __tmp_reg__
DEFUN __parityhi2
eor r24, r25
;; FALLTHRU
ENDF __parityhi2
;; r25:r24 = parity8 (r24)
;; clobbers: __tmp_reg__
DEFUN __parityqi2
;; parity is in r24[0..7]
mov __tmp_reg__, r24
swap __tmp_reg__
eor r24, __tmp_reg__
;; parity is in r24[0..3]
subi r24, -4
andi r24, -5
subi r24, -6
;; parity is in r24[0,3]
sbrc r24, 3
inc r24
;; parity is in r24[0]
andi r24, 1
clr r25
ret
ENDF __parityqi2
#endif /* defined (L_parityhi2) */
/**********************************
* Population Count
**********************************/
#if defined (L_popcounthi2)
;; population count
;; r25:r24 = popcount16 (r25:r24)
;; clobbers: __tmp_reg__
DEFUN __popcounthi2
XCALL __popcountqi2
push r24
mov r24, r25
XCALL __popcountqi2
clr r25
;; FALLTHRU
ENDF __popcounthi2
DEFUN __popcounthi2_tail
pop __tmp_reg__
add r24, __tmp_reg__
ret
ENDF __popcounthi2_tail
#endif /* defined (L_popcounthi2) */
#if defined (L_popcountsi2)
;; population count
;; r25:r24 = popcount32 (r25:r22)
;; clobbers: __tmp_reg__
DEFUN __popcountsi2
XCALL __popcounthi2
push r24
mov_l r24, r22
mov_h r25, r23
XCALL __popcounthi2
XJMP __popcounthi2_tail
ENDF __popcountsi2
#endif /* defined (L_popcountsi2) */
#if defined (L_popcountdi2)
;; population count
;; r25:r24 = popcount64 (r25:r18)
;; clobbers: r22, r23, __tmp_reg__
DEFUN __popcountdi2
XCALL __popcountsi2
push r24
mov_l r22, r18
mov_h r23, r19
mov_l r24, r20
mov_h r25, r21
XCALL __popcountsi2
XJMP __popcounthi2_tail
ENDF __popcountdi2
#endif /* defined (L_popcountdi2) */
#if defined (L_popcountqi2)
;; population count
;; r24 = popcount8 (r24)
;; clobbers: __tmp_reg__
DEFUN __popcountqi2
mov __tmp_reg__, r24
andi r24, 1
lsr __tmp_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __zero_reg__
lsr __tmp_reg__
adc r24, __tmp_reg__
ret
ENDF __popcountqi2
#endif /* defined (L_popcountqi2) */
/**********************************
* Swap bytes
**********************************/
;; swap two registers with different register number
.macro bswap a, b
eor \a, \b
eor \b, \a
eor \a, \b
.endm
#if defined (L_bswapsi2)
;; swap bytes
;; r25:r22 = bswap32 (r25:r22)
DEFUN __bswapsi2
bswap r22, r25
bswap r23, r24
ret
ENDF __bswapsi2
#endif /* defined (L_bswapsi2) */
#if defined (L_bswapdi2)
;; swap bytes
;; r25:r18 = bswap64 (r25:r18)
DEFUN __bswapdi2
bswap r18, r25
bswap r19, r24
bswap r20, r23
bswap r21, r22
ret
ENDF __bswapdi2
#endif /* defined (L_bswapdi2) */
/**********************************
* 64-bit shifts
**********************************/
#if defined (L_ashrdi3)
;; Arithmetic shift right
;; r25:r18 = ashr64 (r25:r18, r17:r16)
DEFUN __ashrdi3
push r16
andi r16, 63
breq 2f
1: asr r25
ror r24
ror r23
ror r22
ror r21
ror r20
ror r19
ror r18
dec r16
brne 1b
2: pop r16
ret
ENDF __ashrdi3
#endif /* defined (L_ashrdi3) */
#if defined (L_lshrdi3)
;; Logic shift right
;; r25:r18 = lshr64 (r25:r18, r17:r16)
DEFUN __lshrdi3
push r16
andi r16, 63
breq 2f
1: lsr r25
ror r24
ror r23
ror r22
ror r21
ror r20
ror r19
ror r18
dec r16
brne 1b
2: pop r16
ret
ENDF __lshrdi3
#endif /* defined (L_lshrdi3) */
#if defined (L_ashldi3)
;; Shift left
;; r25:r18 = ashl64 (r25:r18, r17:r16)
DEFUN __ashldi3
push r16
andi r16, 63
breq 2f
1: lsl r18
rol r19
rol r20
rol r21
rol r22
rol r23
rol r24
rol r25
dec r16
brne 1b
2: pop r16
ret
ENDF __ashldi3
#endif /* defined (L_ashldi3) */
#if defined (L_rotldi3)
;; Shift left
;; r25:r18 = rotl64 (r25:r18, r17:r16)
DEFUN __rotldi3
push r16
andi r16, 63
breq 2f
1: lsl r18
rol r19
rol r20
rol r21
rol r22
rol r23
rol r24
rol r25
adc r18, __zero_reg__
dec r16
brne 1b
2: pop r16
ret
ENDF __rotldi3
#endif /* defined (L_rotldi3) */
.section .text.libgcc.fmul, "ax", @progbits
/***********************************************************/
;;; Softmul versions of FMUL, FMULS and FMULSU to implement
;;; __builtin_avr_fmul* if !AVR_HAVE_MUL
/***********************************************************/
#define A1 24
#define B1 25
#define C0 22
#define C1 23
#define A0 __tmp_reg__
#ifdef L_fmuls
;;; r23:r22 = fmuls (r24, r25) like in FMULS instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmuls
;; A0.7 = negate result?
mov A0, A1
eor A0, B1
;; B1 = |B1|
sbrc B1, 7
neg B1
XJMP __fmulsu_exit
ENDF __fmuls
#endif /* L_fmuls */
#ifdef L_fmulsu
;;; r23:r22 = fmulsu (r24, r25) like in FMULSU instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmulsu
;; A0.7 = negate result?
mov A0, A1
;; FALLTHRU
ENDF __fmulsu
;; Helper for __fmuls and __fmulsu
DEFUN __fmulsu_exit
;; A1 = |A1|
sbrc A1, 7
neg A1
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
;; Some cores have problem skipping 2-word instruction
tst A0
brmi 1f
#else
sbrs A0, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
XJMP __fmul
1: XCALL __fmul
;; C = -C iff A0.7 = 1
NEG2 C0
ret
ENDF __fmulsu_exit
#endif /* L_fmulsu */
#ifdef L_fmul
;;; r22:r23 = fmul (r24, r25) like in FMUL instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmul
; clear result
clr C0
clr C1
clr A0
1: tst B1
;; 1.0 = 0x80, so test for bit 7 of B to see if A must to be added to C.
2: brpl 3f
;; C += A
add C0, A0
adc C1, A1
3: ;; A >>= 1
lsr A1
ror A0
;; B <<= 1
lsl B1
brne 2b
ret
ENDF __fmul
#endif /* L_fmul */
#undef A0
#undef A1
#undef B1
#undef C0
#undef C1
#include "lib1funcs-fixed.S"
|