summaryrefslogtreecommitdiffstats
path: root/libgcc/config/avr/lib1funcs.S
blob: 9ca83a8652c1750d936b6e0b00ae02e88077798d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
/*  -*- Mode: Asm -*-  */
/* Copyright (C) 1998-2013 Free Software Foundation, Inc.
   Contributed by Denis Chertykov <chertykov@gmail.com>

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#define __zero_reg__ r1
#define __tmp_reg__ r0
#define __SREG__ 0x3f
#if defined (__AVR_HAVE_SPH__)
#define __SP_H__ 0x3e
#endif
#define __SP_L__ 0x3d
#define __RAMPZ__ 0x3B
#define __EIND__  0x3C

/* Most of the functions here are called directly from avr.md
   patterns, instead of using the standard libcall mechanisms.
   This can make better code because GCC knows exactly which
   of the call-used registers (not all of them) are clobbered.  */

/* FIXME:  At present, there is no SORT directive in the linker
           script so that we must not assume that different modules
           in the same input section like .libgcc.text.mul will be
           located close together.  Therefore, we cannot use
           RCALL/RJMP to call a function like __udivmodhi4 from
           __divmodhi4 and have to use lengthy XCALL/XJMP even
           though they are in the same input section and all same
           input sections together are small enough to reach every
           location with a RCALL/RJMP instruction.  */

	.macro	mov_l  r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
	movw	\r_dest, \r_src
#else
	mov	\r_dest, \r_src
#endif
	.endm

	.macro	mov_h  r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
	; empty
#else
	mov	\r_dest, \r_src
#endif
	.endm

.macro	wmov  r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
    movw \r_dest,   \r_src
#else
    mov \r_dest,    \r_src
    mov \r_dest+1,  \r_src+1
#endif
.endm

#if defined (__AVR_HAVE_JMP_CALL__)
#define XCALL call
#define XJMP  jmp
#else
#define XCALL rcall
#define XJMP  rjmp
#endif

.macro DEFUN name
.global \name
.func \name
\name:
.endm

.macro ENDF name
.size \name, .-\name
.endfunc
.endm

.macro FALIAS name
.global \name
.func \name
\name:
.size \name, .-\name
.endfunc
.endm

;; Negate a 2-byte value held in consecutive registers
.macro NEG2  reg
    com     \reg+1
    neg     \reg
    sbci    \reg+1, -1
.endm

;; Negate a 4-byte value held in consecutive registers
;; Sets the V flag for signed overflow tests if REG >= 16
.macro NEG4  reg
    com     \reg+3
    com     \reg+2
    com     \reg+1
.if \reg >= 16
    neg     \reg
    sbci    \reg+1, -1
    sbci    \reg+2, -1
    sbci    \reg+3, -1
.else
    com     \reg
    adc     \reg,   __zero_reg__
    adc     \reg+1, __zero_reg__
    adc     \reg+2, __zero_reg__
    adc     \reg+3, __zero_reg__
.endif
.endm

#define exp_lo(N)  hlo8 ((N) << 23)
#define exp_hi(N)  hhi8 ((N) << 23)


.section .text.libgcc.mul, "ax", @progbits

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
/* Note: mulqi3, mulhi3 are open-coded on the enhanced core.  */
#if !defined (__AVR_HAVE_MUL__)
/*******************************************************
    Multiplication  8 x 8  without MUL
*******************************************************/
#if defined (L_mulqi3)

#define	r_arg2	r22		/* multiplicand */
#define	r_arg1 	r24		/* multiplier */
#define r_res	__tmp_reg__	/* result */

DEFUN __mulqi3
	clr	r_res		; clear result
__mulqi3_loop:
	sbrc	r_arg1,0
	add	r_res,r_arg2
	add	r_arg2,r_arg2	; shift multiplicand
	breq	__mulqi3_exit	; while multiplicand != 0
	lsr	r_arg1		;
	brne	__mulqi3_loop	; exit if multiplier = 0
__mulqi3_exit:	
	mov	r_arg1,r_res	; result to return register
	ret
ENDF __mulqi3

#undef r_arg2
#undef r_arg1
#undef r_res
	
#endif 	/* defined (L_mulqi3) */


/*******************************************************
    Widening Multiplication  16 = 8 x 8  without MUL
    Multiplication  16 x 16  without MUL
*******************************************************/

#define A0  r22
#define A1  r23
#define B0  r24
#define BB0 r20
#define B1  r25
;; Output overlaps input, thus expand result in CC0/1
#define C0  r24
#define C1  r25
#define CC0  __tmp_reg__
#define CC1  R21

#if defined (L_umulqihi3)
;;; R25:R24 = (unsigned int) R22 * (unsigned int) R24
;;; (C1:C0) = (unsigned int) A0  * (unsigned int) B0
;;; Clobbers: __tmp_reg__, R21..R23
DEFUN __umulqihi3
    clr     A1
    clr     B1
    XJMP    __mulhi3
ENDF __umulqihi3
#endif /* L_umulqihi3 */

#if defined (L_mulqihi3)
;;; R25:R24 = (signed int) R22 * (signed int) R24
;;; (C1:C0) = (signed int) A0  * (signed int) B0
;;; Clobbers: __tmp_reg__, R20..R23
DEFUN __mulqihi3
    ;; Sign-extend B0
    clr     B1
    sbrc    B0, 7
    com     B1
    ;; The multiplication runs twice as fast if A1 is zero, thus:
    ;; Zero-extend A0
    clr     A1
#ifdef __AVR_HAVE_JMP_CALL__
    ;; Store  B0 * sign of A
    clr     BB0
    sbrc    A0, 7
    mov     BB0, B0
    call    __mulhi3
#else /* have no CALL */
    ;; Skip sign-extension of A if A >= 0
    ;; Same size as with the first alternative but avoids errata skip
    ;; and is faster if A >= 0
    sbrs    A0, 7
    rjmp    __mulhi3
    ;; If  A < 0  store B
    mov     BB0, B0
    rcall   __mulhi3
#endif /* HAVE_JMP_CALL */
    ;; 1-extend A after the multiplication
    sub     C1, BB0
    ret
ENDF __mulqihi3
#endif /* L_mulqihi3 */

#if defined (L_mulhi3)
;;; R25:R24 = R23:R22 * R25:R24
;;; (C1:C0) = (A1:A0) * (B1:B0)
;;; Clobbers: __tmp_reg__, R21..R23
DEFUN __mulhi3

    ;; Clear result
    clr     CC0
    clr     CC1
    rjmp 3f
1:
    ;; Bit n of A is 1  -->  C += B << n
    add     CC0, B0
    adc     CC1, B1
2:
    lsl     B0
    rol     B1
3:
    ;; If B == 0 we are ready
    sbiw    B0, 0
    breq 9f

    ;; Carry = n-th bit of A
    lsr     A1
    ror     A0
    ;; If bit n of A is set, then go add  B * 2^n  to  C
    brcs 1b

    ;; Carry = 0  -->  The ROR above acts like  CP A0, 0
    ;; Thus, it is sufficient to CPC the high part to test A against 0
    cpc     A1, __zero_reg__
    ;; Only proceed if A != 0
    brne    2b
9:
    ;; Move Result into place
    mov     C0, CC0
    mov     C1, CC1
    ret
ENDF  __mulhi3
#endif /* L_mulhi3 */

#undef A0
#undef A1
#undef B0
#undef BB0
#undef B1
#undef C0
#undef C1
#undef CC0
#undef CC1


#define A0 22
#define A1 A0+1
#define A2 A0+2
#define A3 A0+3

#define B0 18
#define B1 B0+1
#define B2 B0+2
#define B3 B0+3

#define CC0 26
#define CC1 CC0+1
#define CC2 30
#define CC3 CC2+1

#define C0 22
#define C1 C0+1
#define C2 C0+2
#define C3 C0+3

/*******************************************************
    Widening Multiplication  32 = 16 x 16  without MUL
*******************************************************/

#if defined (L_umulhisi3)
DEFUN __umulhisi3
    wmov    B0, 24
    ;; Zero-extend B
    clr     B2
    clr     B3
    ;; Zero-extend A
    wmov    A2, B2
    XJMP    __mulsi3
ENDF __umulhisi3
#endif /* L_umulhisi3 */

#if defined (L_mulhisi3)
DEFUN __mulhisi3
    wmov    B0, 24
    ;; Sign-extend B
    lsl     r25
    sbc     B2, B2
    mov     B3, B2
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
    ;; Sign-extend A
    clr     A2
    sbrc    A1, 7
    com     A2
    mov     A3, A2
    XJMP __mulsi3
#else /*  no __AVR_ERRATA_SKIP_JMP_CALL__ */
    ;; Zero-extend A and __mulsi3 will run at least twice as fast
    ;; compared to a sign-extended A.
    clr     A2
    clr     A3
    sbrs    A1, 7
    XJMP __mulsi3
    ;; If  A < 0  then perform the  B * 0xffff.... before the
    ;; very multiplication by initializing the high part of the
    ;; result CC with -B.
    wmov    CC2, A2
    sub     CC2, B0
    sbc     CC3, B1
    XJMP __mulsi3_helper
#endif /*  __AVR_ERRATA_SKIP_JMP_CALL__ */
ENDF __mulhisi3
#endif /* L_mulhisi3 */


/*******************************************************
    Multiplication  32 x 32  without MUL
*******************************************************/

#if defined (L_mulsi3)
DEFUN __mulsi3
    ;; Clear result
    clr     CC2
    clr     CC3
    ;; FALLTHRU
ENDF  __mulsi3

DEFUN __mulsi3_helper
    clr     CC0
    clr     CC1
    rjmp 3f

1:  ;; If bit n of A is set, then add  B * 2^n  to the result in CC
    ;; CC += B
    add  CC0,B0  $  adc  CC1,B1  $  adc  CC2,B2  $  adc  CC3,B3

2:  ;; B <<= 1
    lsl  B0      $  rol  B1      $  rol  B2      $  rol  B3

3:  ;; A >>= 1:  Carry = n-th bit of A
    lsr  A3      $  ror  A2      $  ror  A1      $  ror  A0

    brcs 1b
    ;; Only continue if  A != 0
    sbci    A1, 0
    brne 2b
    sbiw    A2, 0
    brne 2b

    ;; All bits of A are consumed:  Copy result to return register C
    wmov    C0, CC0
    wmov    C2, CC2
    ret
ENDF __mulsi3_helper
#endif /* L_mulsi3 */

#undef A0
#undef A1
#undef A2
#undef A3
#undef B0
#undef B1
#undef B2
#undef B3
#undef C0
#undef C1
#undef C2
#undef C3
#undef CC0
#undef CC1
#undef CC2
#undef CC3

#endif /* !defined (__AVR_HAVE_MUL__) */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#if defined (__AVR_HAVE_MUL__)
#define A0 26
#define B0 18
#define C0 22

#define A1 A0+1

#define B1 B0+1
#define B2 B0+2
#define B3 B0+3

#define C1 C0+1
#define C2 C0+2
#define C3 C0+3

/*******************************************************
    Widening Multiplication  32 = 16 x 16  with MUL
*******************************************************/

#if defined (L_mulhisi3)
;;; R25:R22 = (signed long) R27:R26 * (signed long) R19:R18
;;; C3:C0   = (signed long) A1:A0   * (signed long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulhisi3
    XCALL   __umulhisi3
    ;; Sign-extend B
    tst     B1
    brpl    1f
    sub     C2, A0
    sbc     C3, A1
1:  ;; Sign-extend A
    XJMP __usmulhisi3_tail
ENDF __mulhisi3
#endif /* L_mulhisi3 */

#if defined (L_usmulhisi3)
;;; R25:R22 = (signed long) R27:R26 * (unsigned long) R19:R18
;;; C3:C0   = (signed long) A1:A0   * (unsigned long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __usmulhisi3
    XCALL   __umulhisi3
    ;; FALLTHRU
ENDF __usmulhisi3

DEFUN __usmulhisi3_tail
    ;; Sign-extend A
    sbrs    A1, 7
    ret
    sub     C2, B0
    sbc     C3, B1
    ret
ENDF __usmulhisi3_tail
#endif /* L_usmulhisi3 */

#if defined (L_umulhisi3)
;;; R25:R22 = (unsigned long) R27:R26 * (unsigned long) R19:R18
;;; C3:C0   = (unsigned long) A1:A0   * (unsigned long) B1:B0
;;; Clobbers: __tmp_reg__
DEFUN __umulhisi3
    mul     A0, B0
    movw    C0, r0
    mul     A1, B1
    movw    C2, r0
    mul     A0, B1
#ifdef __AVR_HAVE_JMP_CALL__
    ;; This function is used by many other routines, often multiple times.
    ;; Therefore, if the flash size is not too limited, avoid the RCALL
    ;; and inverst 6 Bytes to speed things up.
    add     C1, r0
    adc     C2, r1
    clr     __zero_reg__
    adc     C3, __zero_reg__
#else
    rcall   1f
#endif
    mul     A1, B0
1:  add     C1, r0
    adc     C2, r1
    clr     __zero_reg__
    adc     C3, __zero_reg__
    ret
ENDF __umulhisi3
#endif /* L_umulhisi3 */

/*******************************************************
    Widening Multiplication  32 = 16 x 32  with MUL
*******************************************************/

#if defined (L_mulshisi3)
;;; R25:R22 = (signed long) R27:R26 * R21:R18
;;; (C3:C0) = (signed long) A1:A0   * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulshisi3
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
    ;; Some cores have problem skipping 2-word instruction
    tst     A1
    brmi    __mulohisi3
#else
    sbrs    A1, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
    XJMP    __muluhisi3
    ;; FALLTHRU
ENDF __mulshisi3

;;; R25:R22 = (one-extended long) R27:R26 * R21:R18
;;; (C3:C0) = (one-extended long) A1:A0   * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __mulohisi3
    XCALL   __muluhisi3
    ;; One-extend R27:R26 (A1:A0)
    sub     C2, B0
    sbc     C3, B1
    ret
ENDF __mulohisi3
#endif /* L_mulshisi3 */

#if defined (L_muluhisi3)
;;; R25:R22 = (unsigned long) R27:R26 * R21:R18
;;; (C3:C0) = (unsigned long) A1:A0   * B3:B0
;;; Clobbers: __tmp_reg__
DEFUN __muluhisi3
    XCALL   __umulhisi3
    mul     A0, B3
    add     C3, r0
    mul     A1, B2
    add     C3, r0
    mul     A0, B2
    add     C2, r0
    adc     C3, r1
    clr     __zero_reg__
    ret
ENDF __muluhisi3
#endif /* L_muluhisi3 */

/*******************************************************
    Multiplication  32 x 32  with MUL
*******************************************************/

#if defined (L_mulsi3)
;;; R25:R22 = R25:R22 * R21:R18
;;; (C3:C0) = C3:C0   * B3:B0
;;; Clobbers: R26, R27, __tmp_reg__
DEFUN __mulsi3
    movw    A0, C0
    push    C2
    push    C3
    XCALL   __muluhisi3
    pop     A1
    pop     A0
    ;; A1:A0 now contains the high word of A
    mul     A0, B0
    add     C2, r0
    adc     C3, r1
    mul     A0, B1
    add     C3, r0
    mul     A1, B0
    add     C3, r0
    clr     __zero_reg__
    ret
ENDF __mulsi3
#endif /* L_mulsi3 */

#undef A0
#undef A1

#undef B0
#undef B1
#undef B2
#undef B3

#undef C0
#undef C1
#undef C2
#undef C3

#endif /* __AVR_HAVE_MUL__ */

/*******************************************************
       Multiplication 24 x 24 with MUL
*******************************************************/

#if defined (L_mulpsi3)

;; A[0..2]: In: Multiplicand; Out: Product
#define A0  22
#define A1  A0+1
#define A2  A0+2

;; B[0..2]: In: Multiplier
#define B0  18
#define B1  B0+1
#define B2  B0+2

#if defined (__AVR_HAVE_MUL__)

;; C[0..2]: Expand Result
#define C0  22
#define C1  C0+1
#define C2  C0+2

;; R24:R22 *= R20:R18
;; Clobbers: r21, r25, r26, r27, __tmp_reg__

#define AA0 26
#define AA2 21

DEFUN __mulpsi3
    wmov    AA0, A0
    mov     AA2, A2
    XCALL   __umulhisi3
    mul     AA2, B0     $  add  C2, r0
    mul     AA0, B2     $  add  C2, r0
    clr     __zero_reg__
    ret
ENDF __mulpsi3

#undef AA2
#undef AA0

#undef C2
#undef C1
#undef C0

#else /* !HAVE_MUL */

;; C[0..2]: Expand Result
#define C0  0
#define C1  C0+1
#define C2  21

;; R24:R22 *= R20:R18
;; Clobbers: __tmp_reg__, R18, R19, R20, R21

DEFUN __mulpsi3

    ;; C[] = 0
    clr     __tmp_reg__
    clr     C2

0:  ;; Shift N-th Bit of B[] into Carry.  N = 24 - Loop
    LSR  B2     $  ror  B1     $  ror  B0

    ;; If the N-th Bit of B[] was set...
    brcc    1f

    ;; ...then add A[] * 2^N to the Result C[]
    ADD  C0,A0  $  adc  C1,A1  $  adc  C2,A2

1:  ;; Multiply A[] by 2
    LSL  A0     $  rol  A1     $  rol  A2

    ;; Loop until B[] is 0
    subi B0,0   $  sbci B1,0   $  sbci B2,0
    brne    0b

    ;; Copy C[] to the return Register A[]
    wmov    A0, C0
    mov     A2, C2

    clr     __zero_reg__
    ret
ENDF __mulpsi3

#undef C2
#undef C1
#undef C0

#endif /* HAVE_MUL */

#undef B2
#undef B1
#undef B0

#undef A2
#undef A1
#undef A0

#endif /* L_mulpsi3 */

#if defined (L_mulsqipsi3) && defined (__AVR_HAVE_MUL__)

;; A[0..2]: In: Multiplicand
#define A0  22
#define A1  A0+1
#define A2  A0+2

;; BB: In: Multiplier
#define BB  25

;; C[0..2]: Result
#define C0  18
#define C1  C0+1
#define C2  C0+2

;; C[] = A[] * sign_extend (BB)
DEFUN __mulsqipsi3
    mul     A0, BB
    movw    C0, r0
    mul     A2, BB
    mov     C2, r0
    mul     A1, BB
    add     C1, r0
    adc     C2, r1
    clr     __zero_reg__
    sbrs    BB, 7
    ret
    ;; One-extend BB
    sub     C1, A0
    sbc     C2, A1
    ret
ENDF __mulsqipsi3

#undef C2
#undef C1
#undef C0

#undef BB

#undef A2
#undef A1
#undef A0

#endif /* L_mulsqipsi3  &&  HAVE_MUL */

/*******************************************************
       Multiplication 64 x 64
*******************************************************/

#if defined (L_muldi3)

;; A[] = A[] * B[]

;; A[0..7]: In: Multiplicand
;; Out: Product
#define A0  18
#define A1  A0+1
#define A2  A0+2
#define A3  A0+3
#define A4  A0+4
#define A5  A0+5
#define A6  A0+6
#define A7  A0+7

;; B[0..7]: In: Multiplier
#define B0  10
#define B1  B0+1
#define B2  B0+2
#define B3  B0+3
#define B4  B0+4
#define B5  B0+5
#define B6  B0+6
#define B7  B0+7

#if defined (__AVR_HAVE_MUL__)

;; Define C[] for convenience
;; Notice that parts of C[] overlap A[] respective B[]
#define C0  16
#define C1  C0+1
#define C2  20
#define C3  C2+1
#define C4  28
#define C5  C4+1
#define C6  C4+2
#define C7  C4+3

;; A[]     *= B[]
;; R25:R18 *= R17:R10
;; Ordinary ABI-Function

DEFUN __muldi3
    push    r29
    push    r28
    push    r17
    push    r16

    ;; Counting in Words, we have to perform a 4 * 4 Multiplication

    ;; 3 * 0  +  0 * 3
    mul  A7,B0  $             $  mov C7,r0
    mul  A0,B7  $             $  add C7,r0
    mul  A6,B1  $             $  add C7,r0
    mul  A6,B0  $  mov C6,r0  $  add C7,r1
    mul  B6,A1  $             $  add C7,r0
    mul  B6,A0  $  add C6,r0  $  adc C7,r1

    ;; 1 * 2
    mul  A2,B4  $  add C6,r0  $  adc C7,r1
    mul  A3,B4  $             $  add C7,r0
    mul  A2,B5  $             $  add C7,r0

    push    A5
    push    A4
    push    B1
    push    B0
    push    A3
    push    A2

    ;; 0 * 0
    wmov    26, B0
    XCALL   __umulhisi3
    wmov    C0, 22
    wmov    C2, 24

    ;; 0 * 2
    wmov    26, B4
    XCALL   __umulhisi3  $  wmov C4,22            $ add C6,24 $ adc C7,25

    wmov    26, B2
    ;; 0 * 1
    rcall   __muldi3_6

    pop     A0
    pop     A1
    ;; 1 * 1
    wmov    26, B2
    XCALL   __umulhisi3  $  add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25

    pop     r26
    pop     r27
    ;; 1 * 0
    rcall   __muldi3_6

    pop     A0
    pop     A1
    ;; 2 * 0
    XCALL   __umulhisi3  $  add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25

    ;; 2 * 1
    wmov    26, B2
    XCALL   __umulhisi3  $            $           $ add C6,22 $ adc C7,23

    ;; A[] = C[]
    wmov    A0, C0
    ;; A2 = C2 already
    wmov    A4, C4
    wmov    A6, C6

    clr     __zero_reg__
    pop     r16
    pop     r17
    pop     r28
    pop     r29
    ret

__muldi3_6:
    XCALL   __umulhisi3
    add     C2, 22
    adc     C3, 23
    adc     C4, 24
    adc     C5, 25
    brcc    0f
    adiw    C6, 1
0:  ret
ENDF __muldi3

#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0

#else /* !HAVE_MUL */

#define C0  26
#define C1  C0+1
#define C2  C0+2
#define C3  C0+3
#define C4  C0+4
#define C5  C0+5
#define C6  0
#define C7  C6+1

#define Loop 9

;; A[]     *= B[]
;; R25:R18 *= R17:R10
;; Ordinary ABI-Function

DEFUN __muldi3
    push    r29
    push    r28
    push    Loop

    ldi     C0, 64
    mov     Loop, C0

    ;; C[] = 0
    clr     __tmp_reg__
    wmov    C0, 0
    wmov    C2, 0
    wmov    C4, 0

0:  ;; Rotate B[] right by 1 and set Carry to the N-th Bit of B[]
    ;; where N = 64 - Loop.
    ;; Notice that B[] = B[] >>> 64 so after this Routine has finished,
    ;; B[] will have its initial Value again.
    LSR  B7     $  ror  B6     $  ror  B5     $  ror  B4
    ror  B3     $  ror  B2     $  ror  B1     $  ror  B0

    ;; If the N-th Bit of B[] was set then...
    brcc    1f
    ;; ...finish Rotation...
    ori     B7, 1 << 7

    ;; ...and add A[] * 2^N to the Result C[]
    ADD  C0,A0  $  adc  C1,A1  $  adc  C2,A2  $  adc  C3,A3
    adc  C4,A4  $  adc  C5,A5  $  adc  C6,A6  $  adc  C7,A7

1:  ;; Multiply A[] by 2
    LSL  A0     $  rol  A1     $  rol  A2     $  rol  A3
    rol  A4     $  rol  A5     $  rol  A6     $  rol  A7

    dec     Loop
    brne    0b

    ;; We expanded the Result in C[]
    ;; Copy Result to the Return Register A[]
    wmov    A0, C0
    wmov    A2, C2
    wmov    A4, C4
    wmov    A6, C6

    clr     __zero_reg__
    pop     Loop
    pop     r28
    pop     r29
    ret
ENDF __muldi3

#undef Loop

#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0

#endif /* HAVE_MUL */

#undef B7
#undef B6
#undef B5
#undef B4
#undef B3
#undef B2
#undef B1
#undef B0

#undef A7
#undef A6
#undef A5
#undef A4
#undef A3
#undef A2
#undef A1
#undef A0

#endif /* L_muldi3 */

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	

.section .text.libgcc.div, "ax", @progbits

/*******************************************************
       Division 8 / 8 => (result + remainder)
*******************************************************/
#define	r_rem	r25	/* remainder */
#define	r_arg1	r24	/* dividend, quotient */
#define	r_arg2	r22	/* divisor */
#define	r_cnt	r23	/* loop count */

#if defined (L_udivmodqi4)
DEFUN __udivmodqi4
	sub	r_rem,r_rem	; clear remainder and carry
	ldi	r_cnt,9		; init loop counter
	rjmp	__udivmodqi4_ep	; jump to entry point
__udivmodqi4_loop:
	rol	r_rem		; shift dividend into remainder
	cp	r_rem,r_arg2	; compare remainder & divisor
	brcs	__udivmodqi4_ep	; remainder <= divisor
	sub	r_rem,r_arg2	; restore remainder
__udivmodqi4_ep:
	rol	r_arg1		; shift dividend (with CARRY)
	dec	r_cnt		; decrement loop counter
	brne	__udivmodqi4_loop
	com	r_arg1		; complement result
				; because C flag was complemented in loop
	ret
ENDF __udivmodqi4
#endif /* defined (L_udivmodqi4) */

#if defined (L_divmodqi4)
DEFUN __divmodqi4
        bst     r_arg1,7	; store sign of dividend
        mov     __tmp_reg__,r_arg1
        eor     __tmp_reg__,r_arg2; r0.7 is sign of result
        sbrc	r_arg1,7
	neg     r_arg1		; dividend negative : negate
        sbrc	r_arg2,7
	neg     r_arg2		; divisor negative : negate
	XCALL	__udivmodqi4	; do the unsigned div/mod
	brtc	__divmodqi4_1
	neg	r_rem		; correct remainder sign
__divmodqi4_1:
	sbrc	__tmp_reg__,7
	neg	r_arg1		; correct result sign
__divmodqi4_exit:
	ret
ENDF __divmodqi4
#endif /* defined (L_divmodqi4) */

#undef r_rem
#undef r_arg1
#undef r_arg2
#undef r_cnt
	
		
/*******************************************************
       Division 16 / 16 => (result + remainder)
*******************************************************/
#define	r_remL	r26	/* remainder Low */
#define	r_remH	r27	/* remainder High */

/* return: remainder */
#define	r_arg1L	r24	/* dividend Low */
#define	r_arg1H	r25	/* dividend High */

/* return: quotient */
#define	r_arg2L	r22	/* divisor Low */
#define	r_arg2H	r23	/* divisor High */
	
#define	r_cnt	r21	/* loop count */

#if defined (L_udivmodhi4)
DEFUN __udivmodhi4
	sub	r_remL,r_remL
	sub	r_remH,r_remH	; clear remainder and carry
	ldi	r_cnt,17	; init loop counter
	rjmp	__udivmodhi4_ep	; jump to entry point
__udivmodhi4_loop:
        rol	r_remL		; shift dividend into remainder
	rol	r_remH
        cp	r_remL,r_arg2L	; compare remainder & divisor
	cpc	r_remH,r_arg2H
        brcs	__udivmodhi4_ep	; remainder < divisor
        sub	r_remL,r_arg2L	; restore remainder
        sbc	r_remH,r_arg2H
__udivmodhi4_ep:
        rol	r_arg1L		; shift dividend (with CARRY)
        rol	r_arg1H
        dec	r_cnt		; decrement loop counter
        brne	__udivmodhi4_loop
	com	r_arg1L
	com	r_arg1H
; div/mod results to return registers, as for the div() function
	mov_l	r_arg2L, r_arg1L	; quotient
	mov_h	r_arg2H, r_arg1H
	mov_l	r_arg1L, r_remL		; remainder
	mov_h	r_arg1H, r_remH
	ret
ENDF __udivmodhi4
#endif /* defined (L_udivmodhi4) */

#if defined (L_divmodhi4)
DEFUN __divmodhi4
    .global _div
_div:
    bst     r_arg1H,7           ; store sign of dividend
    mov     __tmp_reg__,r_arg2H
    brtc    0f
    com     __tmp_reg__         ; r0.7 is sign of result
    rcall   __divmodhi4_neg1    ; dividend negative: negate
0:
    sbrc    r_arg2H,7
    rcall   __divmodhi4_neg2    ; divisor negative: negate
    XCALL   __udivmodhi4        ; do the unsigned div/mod
    sbrc    __tmp_reg__,7
    rcall   __divmodhi4_neg2    ; correct remainder sign
    brtc    __divmodhi4_exit
__divmodhi4_neg1:
    ;; correct dividend/remainder sign
    com     r_arg1H
    neg     r_arg1L
    sbci    r_arg1H,0xff
    ret
__divmodhi4_neg2:
    ;; correct divisor/result sign
    com     r_arg2H
    neg     r_arg2L
    sbci    r_arg2H,0xff
__divmodhi4_exit:
    ret
ENDF __divmodhi4
#endif /* defined (L_divmodhi4) */

#undef r_remH
#undef r_remL

#undef r_arg1H
#undef r_arg1L

#undef r_arg2H
#undef r_arg2L
             	
#undef r_cnt   	

/*******************************************************
       Division 24 / 24 => (result + remainder)
*******************************************************/

;; A[0..2]: In: Dividend; Out: Quotient
#define A0  22
#define A1  A0+1
#define A2  A0+2

;; B[0..2]: In: Divisor;   Out: Remainder
#define B0  18
#define B1  B0+1
#define B2  B0+2

;; C[0..2]: Expand remainder
#define C0  __zero_reg__
#define C1  26
#define C2  25

;; Loop counter
#define r_cnt   21

#if defined (L_udivmodpsi4)
;; R24:R22 = R24:R22  udiv  R20:R18
;; R20:R18 = R24:R22  umod  R20:R18
;; Clobbers: R21, R25, R26

DEFUN __udivmodpsi4
    ; init loop counter
    ldi     r_cnt, 24+1
    ; Clear remainder and carry.  C0 is already 0
    clr     C1
    sub     C2, C2
    ; jump to entry point
    rjmp    __udivmodpsi4_start
__udivmodpsi4_loop:
    ; shift dividend into remainder
    rol     C0
    rol     C1
    rol     C2
    ; compare remainder & divisor
    cp      C0, B0
    cpc     C1, B1
    cpc     C2, B2
    brcs    __udivmodpsi4_start ; remainder <= divisor
    sub     C0, B0              ; restore remainder
    sbc     C1, B1
    sbc     C2, B2
__udivmodpsi4_start:
    ; shift dividend (with CARRY)
    rol     A0
    rol     A1
    rol     A2
    ; decrement loop counter
    dec     r_cnt
    brne    __udivmodpsi4_loop
    com     A0
    com     A1
    com     A2
    ; div/mod results to return registers
    ; remainder
    mov     B0, C0
    mov     B1, C1
    mov     B2, C2
    clr     __zero_reg__ ; C0
    ret
ENDF __udivmodpsi4
#endif /* defined (L_udivmodpsi4) */

#if defined (L_divmodpsi4)
;; R24:R22 = R24:R22  div  R20:R18
;; R20:R18 = R24:R22  mod  R20:R18
;; Clobbers: T, __tmp_reg__, R21, R25, R26

DEFUN __divmodpsi4
    ; R0.7 will contain the sign of the result:
    ; R0.7 = A.sign ^ B.sign
    mov __tmp_reg__, B2
    ; T-flag = sign of dividend
    bst     A2, 7
    brtc    0f
    com     __tmp_reg__
    ; Adjust dividend's sign
    rcall   __divmodpsi4_negA
0:
    ; Adjust divisor's sign
    sbrc    B2, 7
    rcall   __divmodpsi4_negB

    ; Do the unsigned div/mod
    XCALL   __udivmodpsi4

    ; Adjust quotient's sign
    sbrc    __tmp_reg__, 7
    rcall   __divmodpsi4_negA

    ; Adjust remainder's sign
    brtc    __divmodpsi4_end

__divmodpsi4_negB:
    ; Correct divisor/remainder sign
    com     B2
    com     B1
    neg     B0
    sbci    B1, -1
    sbci    B2, -1
    ret

    ; Correct dividend/quotient sign
__divmodpsi4_negA:
    com     A2
    com     A1
    neg     A0
    sbci    A1, -1
    sbci    A2, -1
__divmodpsi4_end:
    ret

ENDF __divmodpsi4
#endif /* defined (L_divmodpsi4) */

#undef A0
#undef A1
#undef A2

#undef B0
#undef B1
#undef B2

#undef C0
#undef C1
#undef C2

#undef r_cnt

/*******************************************************
       Division 32 / 32 => (result + remainder)
*******************************************************/
#define	r_remHH	r31	/* remainder High */
#define	r_remHL	r30
#define	r_remH	r27
#define	r_remL	r26	/* remainder Low */

/* return: remainder */
#define	r_arg1HH r25	/* dividend High */
#define	r_arg1HL r24
#define	r_arg1H  r23
#define	r_arg1L  r22	/* dividend Low */

/* return: quotient */
#define	r_arg2HH r21	/* divisor High */
#define	r_arg2HL r20
#define	r_arg2H  r19
#define	r_arg2L  r18	/* divisor Low */
	
#define	r_cnt __zero_reg__  /* loop count (0 after the loop!) */

#if defined (L_udivmodsi4)
DEFUN __udivmodsi4
	ldi	r_remL, 33	; init loop counter
	mov	r_cnt, r_remL
	sub	r_remL,r_remL
	sub	r_remH,r_remH	; clear remainder and carry
	mov_l	r_remHL, r_remL
	mov_h	r_remHH, r_remH
	rjmp	__udivmodsi4_ep	; jump to entry point
__udivmodsi4_loop:
        rol	r_remL		; shift dividend into remainder
	rol	r_remH
	rol	r_remHL
	rol	r_remHH
        cp	r_remL,r_arg2L	; compare remainder & divisor
	cpc	r_remH,r_arg2H
	cpc	r_remHL,r_arg2HL
	cpc	r_remHH,r_arg2HH
	brcs	__udivmodsi4_ep	; remainder <= divisor
        sub	r_remL,r_arg2L	; restore remainder
        sbc	r_remH,r_arg2H
        sbc	r_remHL,r_arg2HL
        sbc	r_remHH,r_arg2HH
__udivmodsi4_ep:
        rol	r_arg1L		; shift dividend (with CARRY)
        rol	r_arg1H
        rol	r_arg1HL
        rol	r_arg1HH
        dec	r_cnt		; decrement loop counter
        brne	__udivmodsi4_loop
				; __zero_reg__ now restored (r_cnt == 0)
	com	r_arg1L
	com	r_arg1H
	com	r_arg1HL
	com	r_arg1HH
; div/mod results to return registers, as for the ldiv() function
	mov_l	r_arg2L,  r_arg1L	; quotient
	mov_h	r_arg2H,  r_arg1H
	mov_l	r_arg2HL, r_arg1HL
	mov_h	r_arg2HH, r_arg1HH
	mov_l	r_arg1L,  r_remL	; remainder
	mov_h	r_arg1H,  r_remH
	mov_l	r_arg1HL, r_remHL
	mov_h	r_arg1HH, r_remHH
	ret
ENDF __udivmodsi4
#endif /* defined (L_udivmodsi4) */

#if defined (L_divmodsi4)
DEFUN __divmodsi4
    mov     __tmp_reg__,r_arg2HH
    bst     r_arg1HH,7          ; store sign of dividend
    brtc    0f
    com     __tmp_reg__         ; r0.7 is sign of result
    XCALL   __negsi2            ; dividend negative: negate
0:
    sbrc    r_arg2HH,7
    rcall   __divmodsi4_neg2    ; divisor negative: negate
    XCALL   __udivmodsi4        ; do the unsigned div/mod
    sbrc    __tmp_reg__, 7      ; correct quotient sign
    rcall   __divmodsi4_neg2
    brtc    __divmodsi4_exit    ; correct remainder sign
    XJMP    __negsi2
__divmodsi4_neg2:
    ;; correct divisor/quotient sign
    com     r_arg2HH
    com     r_arg2HL
    com     r_arg2H
    neg     r_arg2L
    sbci    r_arg2H,0xff
    sbci    r_arg2HL,0xff
    sbci    r_arg2HH,0xff
__divmodsi4_exit:
    ret
ENDF __divmodsi4
#endif /* defined (L_divmodsi4) */

#if defined (L_negsi2)
;; (set (reg:SI 22)
;;      (neg:SI (reg:SI 22)))
;; Sets the V flag for signed overflow tests
DEFUN __negsi2
    NEG4    22
    ret
ENDF __negsi2
#endif /* L_negsi2 */

#undef r_remHH
#undef r_remHL
#undef r_remH
#undef r_remL
#undef r_arg1HH
#undef r_arg1HL
#undef r_arg1H
#undef r_arg1L
#undef r_arg2HH
#undef r_arg2HL
#undef r_arg2H
#undef r_arg2L
#undef r_cnt

/*******************************************************
       Division 64 / 64
       Modulo   64 % 64
*******************************************************/

;; Use Speed-optimized Version on "big" Devices, i.e. Devices with
;; at least 16k of Program Memory.  For smaller Devices, depend
;; on MOVW and SP Size.  There is a Connexion between SP Size and
;; Flash Size so that SP Size can be used to test for Flash Size.

#if defined (__AVR_HAVE_JMP_CALL__)
#   define SPEED_DIV 8
#elif defined (__AVR_HAVE_MOVW__) && defined (__AVR_HAVE_SPH__)
#   define SPEED_DIV 16
#else
#   define SPEED_DIV 0
#endif

;; A[0..7]: In: Dividend;
;; Out: Quotient  (T = 0)
;; Out: Remainder (T = 1)
#define A0  18
#define A1  A0+1
#define A2  A0+2
#define A3  A0+3
#define A4  A0+4
#define A5  A0+5
#define A6  A0+6
#define A7  A0+7

;; B[0..7]: In: Divisor;   Out: Clobber
#define B0  10
#define B1  B0+1
#define B2  B0+2
#define B3  B0+3
#define B4  B0+4
#define B5  B0+5
#define B6  B0+6
#define B7  B0+7

;; C[0..7]: Expand remainder;  Out: Remainder (unused)
#define C0  8
#define C1  C0+1
#define C2  30
#define C3  C2+1
#define C4  28
#define C5  C4+1
#define C6  26
#define C7  C6+1

;; Holds Signs during Division Routine
#define SS      __tmp_reg__

;; Bit-Counter in Division Routine
#define R_cnt   __zero_reg__

;; Scratch Register for Negation
#define NN      r31

#if defined (L_udivdi3)

;; R25:R18 = R24:R18  umod  R17:R10
;; Ordinary ABI-Function

DEFUN __umoddi3
    set
    rjmp __udivdi3_umoddi3
ENDF __umoddi3

;; R25:R18 = R24:R18  udiv  R17:R10
;; Ordinary ABI-Function

DEFUN __udivdi3
    clt
ENDF __udivdi3

DEFUN __udivdi3_umoddi3
    push    C0
    push    C1
    push    C4
    push    C5
    XCALL   __udivmod64
    pop     C5
    pop     C4
    pop     C1
    pop     C0
    ret
ENDF __udivdi3_umoddi3
#endif /* L_udivdi3 */

#if defined (L_udivmod64)

;; Worker Routine for 64-Bit unsigned Quotient and Remainder Computation
;; No Registers saved/restored; the Callers will take Care.
;; Preserves B[] and T-flag
;; T = 0: Compute Quotient  in A[]
;; T = 1: Compute Remainder in A[] and shift SS one Bit left

DEFUN __udivmod64

    ;; Clear Remainder (C6, C7 will follow)
    clr     C0
    clr     C1
    wmov    C2, C0
    wmov    C4, C0
    ldi     C7, 64

#if SPEED_DIV == 0 || SPEED_DIV == 16
    ;; Initialize Loop-Counter
    mov     R_cnt, C7
    wmov    C6, C0
#endif /* SPEED_DIV */

#if SPEED_DIV == 8

    push    A7
    clr     C6

1:  ;; Compare shifted Devidend against Divisor
    ;; If -- even after Shifting -- it is smaller...
    CP  A7,B0  $  cpc C0,B1  $  cpc C1,B2  $  cpc C2,B3
    cpc C3,B4  $  cpc C4,B5  $  cpc C5,B6  $  cpc C6,B7
    brcc    2f

    ;; ...then we can subtract it.  Thus, it is legal to shift left
               $  mov C6,C5  $  mov C5,C4  $  mov C4,C3
    mov C3,C2  $  mov C2,C1  $  mov C1,C0  $  mov C0,A7
    mov A7,A6  $  mov A6,A5  $  mov A5,A4  $  mov A4,A3
    mov A3,A2  $  mov A2,A1  $  mov A1,A0  $  clr A0

    ;; 8 Bits are done
    subi    C7, 8
    brne    1b

    ;; Shifted 64 Bits:  A7 has traveled to C7
    pop     C7
    ;; Divisor is greater than Dividend. We have:
    ;; A[] % B[] = A[]
    ;; A[] / B[] = 0
    ;; Thus, we can return immediately
    rjmp    5f

2:  ;; Initialze Bit-Counter with Number of Bits still to be performed
    mov     R_cnt, C7

    ;; Push of A7 is not needed because C7 is still 0
    pop     C7
    clr     C7

#elif  SPEED_DIV == 16

    ;; Compare shifted Dividend against Divisor
    cp      A7, B3
    cpc     C0, B4
    cpc     C1, B5
    cpc     C2, B6
    cpc     C3, B7
    brcc    2f

    ;; Divisor is greater than shifted Dividen: We can shift the Dividend
    ;; and it is still smaller than the Divisor --> Shift one 32-Bit Chunk
    wmov  C2,A6  $  wmov C0,A4
    wmov  A6,A2  $  wmov A4,A0
    wmov  A2,C6  $  wmov A0,C4

    ;; Set Bit Counter to 32
    lsr     R_cnt
2:
#elif SPEED_DIV
#error SPEED_DIV = ?
#endif /* SPEED_DIV */

;; The very Division + Remainder Routine

3:  ;; Left-shift Dividend...
    lsl A0     $  rol A1     $  rol A2     $  rol A3
    rol A4     $  rol A5     $  rol A6     $  rol A7

    ;; ...into Remainder
    rol C0     $  rol C1     $  rol C2     $  rol C3
    rol C4     $  rol C5     $  rol C6     $  rol C7

    ;; Compare Remainder and Divisor
    CP  C0,B0  $  cpc C1,B1  $  cpc C2,B2  $  cpc C3,B3
    cpc C4,B4  $  cpc C5,B5  $  cpc C6,B6  $  cpc C7,B7

    brcs 4f

    ;; Divisor fits into Remainder:  Subtract it from Remainder...
    SUB C0,B0  $  sbc C1,B1  $  sbc C2,B2  $  sbc C3,B3
    sbc C4,B4  $  sbc C5,B5  $  sbc C6,B6  $  sbc C7,B7

    ;; ...and set according Bit in the upcoming Quotient
    ;; The Bit will travel to its final Position
    ori A0, 1

4:  ;; This Bit is done
    dec     R_cnt
    brne    3b
    ;; __zero_reg__ is 0 again

    ;; T = 0: We are fine with the Quotient in A[]
    ;; T = 1: Copy Remainder to A[]
5:  brtc    6f
    wmov    A0, C0
    wmov    A2, C2
    wmov    A4, C4
    wmov    A6, C6
    ;; Move the Sign of the Result to SS.7
    lsl     SS

6:  ret

ENDF __udivmod64
#endif /* L_udivmod64 */


#if defined (L_divdi3)

;; R25:R18 = R24:R18  mod  R17:R10
;; Ordinary ABI-Function

DEFUN __moddi3
    set
    rjmp    __divdi3_moddi3
ENDF __moddi3

;; R25:R18 = R24:R18  div  R17:R10
;; Ordinary ABI-Function

DEFUN __divdi3
    clt
ENDF __divdi3

DEFUN  __divdi3_moddi3
#if SPEED_DIV
    mov     r31, A7
    or      r31, B7
    brmi    0f
    ;; Both Signs are 0:  the following Complexitiy is not needed
    XJMP    __udivdi3_umoddi3
#endif /* SPEED_DIV */

0:  ;; The Prologue
    ;; Save 12 Registers:  Y, 17...8
    ;; No Frame needed (X = 0)
    clr r26
    clr r27
    ldi r30, lo8(gs(1f))
    ldi r31, hi8(gs(1f))
    XJMP __prologue_saves__ + ((18 - 12) * 2)

1:  ;; SS.7 will contain the Sign of the Quotient  (A.sign * B.sign)
    ;; SS.6 will contain the Sign of the Remainder (A.sign)
    mov     SS, A7
    asr     SS
    ;; Adjust Dividend's Sign as needed
#if SPEED_DIV
    ;; Compiling for Speed we know that at least one Sign must be < 0
    ;; Thus, if A[] >= 0 then we know B[] < 0
    brpl    22f
#else
    brpl    21f
#endif /* SPEED_DIV */

    XCALL   __negdi2

    ;; Adjust Divisor's Sign and SS.7 as needed
21: tst     B7
    brpl    3f
22: ldi     NN, 1 << 7
    eor     SS, NN

    ldi NN, -1
    com B4     $  com B5     $  com B6     $  com B7
               $  com B1     $  com B2     $  com B3
    NEG B0
               $  sbc B1,NN  $  sbc B2,NN  $  sbc B3,NN
    sbc B4,NN  $  sbc B5,NN  $  sbc B6,NN  $  sbc B7,NN

3:  ;; Do the unsigned 64-Bit Division/Modulo (depending on T-flag)
    XCALL   __udivmod64

    ;; Adjust Result's Sign
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
    tst     SS
    brpl    4f
#else
    sbrc    SS, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
    XCALL   __negdi2

4:  ;; Epilogue: Restore the Z = 12 Registers and return
    in r28, __SP_L__
#if defined (__AVR_HAVE_SPH__)
    in r29, __SP_H__
#else
    clr r29
#endif /* #SP = 8/16 */
    ldi r30, 12
    XJMP __epilogue_restores__ + ((18 - 12) * 2)

ENDF __divdi3_moddi3

#undef R_cnt
#undef SS
#undef NN

#endif /* L_divdi3 */

.section .text.libgcc, "ax", @progbits

#define TT __tmp_reg__

#if defined (L_adddi3)
;; (set (reg:DI 18)
;;      (plus:DI (reg:DI 18)
;;               (reg:DI 10)))
;; Sets the V flag for signed overflow tests
;; Sets the C flag for unsigned overflow tests
DEFUN __adddi3
    ADD A0,B0  $  adc A1,B1  $  adc A2,B2  $  adc A3,B3
    adc A4,B4  $  adc A5,B5  $  adc A6,B6  $  adc A7,B7
    ret
ENDF __adddi3
#endif /* L_adddi3 */

#if defined (L_adddi3_s8)
;; (set (reg:DI 18)
;;      (plus:DI (reg:DI 18)
;;               (sign_extend:SI (reg:QI 26))))
;; Sets the V flag for signed overflow tests
;; Sets the C flag for unsigned overflow tests provided 0 <= R26 < 128
DEFUN __adddi3_s8
    clr     TT
    sbrc    r26, 7
    com     TT
    ADD A0,r26 $  adc A1,TT  $  adc A2,TT  $  adc A3,TT
    adc A4,TT  $  adc A5,TT  $  adc A6,TT  $  adc A7,TT
    ret
ENDF __adddi3_s8
#endif /* L_adddi3_s8 */

#if defined (L_subdi3)
;; (set (reg:DI 18)
;;      (minus:DI (reg:DI 18)
;;                (reg:DI 10)))
;; Sets the V flag for signed overflow tests
;; Sets the C flag for unsigned overflow tests
DEFUN __subdi3
    SUB A0,B0  $  sbc A1,B1  $  sbc A2,B2  $  sbc A3,B3
    sbc A4,B4  $  sbc A5,B5  $  sbc A6,B6  $  sbc A7,B7
    ret
ENDF __subdi3
#endif /* L_subdi3 */

#if defined (L_cmpdi2)
;; (set (cc0)
;;      (compare (reg:DI 18)
;;               (reg:DI 10)))
DEFUN __cmpdi2
    CP  A0,B0  $  cpc A1,B1  $  cpc A2,B2  $  cpc A3,B3
    cpc A4,B4  $  cpc A5,B5  $  cpc A6,B6  $  cpc A7,B7
    ret
ENDF __cmpdi2
#endif /* L_cmpdi2 */

#if defined (L_cmpdi2_s8)
;; (set (cc0)
;;      (compare (reg:DI 18)
;;               (sign_extend:SI (reg:QI 26))))
DEFUN __cmpdi2_s8
    clr     TT
    sbrc    r26, 7
    com     TT
    CP  A0,r26 $  cpc A1,TT  $  cpc A2,TT  $  cpc A3,TT
    cpc A4,TT  $  cpc A5,TT  $  cpc A6,TT  $  cpc A7,TT
    ret
ENDF __cmpdi2_s8
#endif /* L_cmpdi2_s8 */

#if defined (L_negdi2)
;; (set (reg:DI 18)
;;      (neg:DI (reg:DI 18)))
;; Sets the V flag for signed overflow tests
DEFUN __negdi2

    com  A4    $  com  A5    $  com  A6    $  com  A7
               $  com  A1    $  com  A2    $  com  A3
    NEG  A0
               $  sbci A1,-1 $  sbci A2,-1 $  sbci A3,-1
    sbci A4,-1 $  sbci A5,-1 $  sbci A6,-1 $  sbci A7,-1
    ret

ENDF __negdi2
#endif /* L_negdi2 */

#undef TT

#undef C7
#undef C6
#undef C5
#undef C4
#undef C3
#undef C2
#undef C1
#undef C0

#undef B7
#undef B6
#undef B5
#undef B4
#undef B3
#undef B2
#undef B1
#undef B0

#undef A7
#undef A6
#undef A5
#undef A4
#undef A3
#undef A2
#undef A1
#undef A0


.section .text.libgcc.prologue, "ax", @progbits

/**********************************
 * This is a prologue subroutine
 **********************************/
#if defined (L_prologue)

;; This function does not clobber T-flag; 64-bit division relies on it
DEFUN __prologue_saves__
	push r2
	push r3
	push r4
	push r5
	push r6
	push r7
	push r8
	push r9
	push r10
	push r11
	push r12
	push r13
	push r14
	push r15
	push r16
	push r17
	push r28
	push r29
#if !defined (__AVR_HAVE_SPH__)
	in	r28,__SP_L__
	sub	r28,r26
	out	__SP_L__,r28
	clr	r29
#elif defined (__AVR_XMEGA__)
	in	r28,__SP_L__
	in	r29,__SP_H__
	sub	r28,r26
	sbc	r29,r27
	out	__SP_L__,r28
	out	__SP_H__,r29
#else
	in	r28,__SP_L__
	in	r29,__SP_H__
	sub	r28,r26
	sbc	r29,r27
	in	__tmp_reg__,__SREG__
	cli
	out	__SP_H__,r29
	out	__SREG__,__tmp_reg__
	out	__SP_L__,r28
#endif /* #SP = 8/16 */

#if defined (__AVR_HAVE_EIJMP_EICALL__)
	eijmp
#else
	ijmp
#endif

ENDF __prologue_saves__
#endif /* defined (L_prologue) */

/*
 * This is an epilogue subroutine
 */
#if defined (L_epilogue)

DEFUN __epilogue_restores__
	ldd	r2,Y+18
	ldd	r3,Y+17
	ldd	r4,Y+16
	ldd	r5,Y+15
	ldd	r6,Y+14
	ldd	r7,Y+13
	ldd	r8,Y+12
	ldd	r9,Y+11
	ldd	r10,Y+10
	ldd	r11,Y+9
	ldd	r12,Y+8
	ldd	r13,Y+7
	ldd	r14,Y+6
	ldd	r15,Y+5
	ldd	r16,Y+4
	ldd	r17,Y+3
	ldd	r26,Y+2
#if !defined (__AVR_HAVE_SPH__)
	ldd	r29,Y+1
	add	r28,r30
	out	__SP_L__,r28
	mov	r28, r26
#elif defined (__AVR_XMEGA__)
	ldd  r27,Y+1
	add  r28,r30
	adc  r29,__zero_reg__
	out  __SP_L__,r28
	out  __SP_H__,r29
	wmov 28, 26
#else
	ldd	r27,Y+1
	add	r28,r30
	adc	r29,__zero_reg__
	in	__tmp_reg__,__SREG__
	cli
	out	__SP_H__,r29
	out	__SREG__,__tmp_reg__
	out	__SP_L__,r28
	mov_l	r28, r26
	mov_h	r29, r27
#endif /* #SP = 8/16 */
	ret
ENDF __epilogue_restores__
#endif /* defined (L_epilogue) */

#ifdef L_exit
	.section .fini9,"ax",@progbits
DEFUN _exit
	.weak	exit
exit:
ENDF _exit

	/* Code from .fini8 ... .fini1 sections inserted by ld script.  */

	.section .fini0,"ax",@progbits
	cli
__stop_program:
	rjmp	__stop_program
#endif /* defined (L_exit) */

#ifdef L_cleanup
	.weak	_cleanup
	.func	_cleanup
_cleanup:
	ret
.endfunc
#endif /* defined (L_cleanup) */


.section .text.libgcc, "ax", @progbits

#ifdef L_tablejump
DEFUN __tablejump2__
	lsl	r30
	rol	r31
    ;; FALLTHRU
ENDF __tablejump2__

DEFUN __tablejump__
#if defined (__AVR_HAVE_LPMX__)
	lpm __tmp_reg__, Z+
	lpm r31, Z
	mov r30, __tmp_reg__
#if defined (__AVR_HAVE_EIJMP_EICALL__)
	eijmp
#else
	ijmp
#endif

#else /* !HAVE_LPMX */
	lpm
	adiw r30, 1
	push r0
	lpm
	push r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
	in   __tmp_reg__, __EIND__
	push __tmp_reg__
#endif
	ret
#endif /* !HAVE_LPMX */
ENDF __tablejump__
#endif /* defined (L_tablejump) */

#ifdef L_copy_data
	.section .init4,"ax",@progbits
DEFUN __do_copy_data
#if defined(__AVR_HAVE_ELPMX__)
	ldi	r17, hi8(__data_end)
	ldi	r26, lo8(__data_start)
	ldi	r27, hi8(__data_start)
	ldi	r30, lo8(__data_load_start)
	ldi	r31, hi8(__data_load_start)
	ldi	r16, hh8(__data_load_start)
	out	__RAMPZ__, r16
	rjmp	.L__do_copy_data_start
.L__do_copy_data_loop:
	elpm	r0, Z+
	st	X+, r0
.L__do_copy_data_start:
	cpi	r26, lo8(__data_end)
	cpc	r27, r17
	brne	.L__do_copy_data_loop
#elif  !defined(__AVR_HAVE_ELPMX__) && defined(__AVR_HAVE_ELPM__)
	ldi	r17, hi8(__data_end)
	ldi	r26, lo8(__data_start)
	ldi	r27, hi8(__data_start)
	ldi	r30, lo8(__data_load_start)
	ldi	r31, hi8(__data_load_start)
	ldi	r16, hh8(__data_load_start - 0x10000)
.L__do_copy_data_carry:
	inc	r16
	out	__RAMPZ__, r16
	rjmp	.L__do_copy_data_start
.L__do_copy_data_loop:
	elpm
	st	X+, r0
	adiw	r30, 1
	brcs	.L__do_copy_data_carry
.L__do_copy_data_start:
	cpi	r26, lo8(__data_end)
	cpc	r27, r17
	brne	.L__do_copy_data_loop
#elif !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__)
	ldi	r17, hi8(__data_end)
	ldi	r26, lo8(__data_start)
	ldi	r27, hi8(__data_start)
	ldi	r30, lo8(__data_load_start)
	ldi	r31, hi8(__data_load_start)
	rjmp	.L__do_copy_data_start
.L__do_copy_data_loop:
#if defined (__AVR_HAVE_LPMX__)
	lpm	r0, Z+
#else
	lpm
	adiw	r30, 1
#endif
	st	X+, r0
.L__do_copy_data_start:
	cpi	r26, lo8(__data_end)
	cpc	r27, r17
	brne	.L__do_copy_data_loop
#endif /* !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__) */
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
	;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
	out	__RAMPZ__, __zero_reg__
#endif /* ELPM && RAMPD */
ENDF __do_copy_data
#endif /* L_copy_data */

/* __do_clear_bss is only necessary if there is anything in .bss section.  */

#ifdef L_clear_bss
	.section .init4,"ax",@progbits
DEFUN __do_clear_bss
	ldi	r17, hi8(__bss_end)
	ldi	r26, lo8(__bss_start)
	ldi	r27, hi8(__bss_start)
	rjmp	.do_clear_bss_start
.do_clear_bss_loop:
	st	X+, __zero_reg__
.do_clear_bss_start:
	cpi	r26, lo8(__bss_end)
	cpc	r27, r17
	brne	.do_clear_bss_loop
ENDF __do_clear_bss
#endif /* L_clear_bss */

/* __do_global_ctors and __do_global_dtors are only necessary
   if there are any constructors/destructors.  */

#ifdef L_ctors
	.section .init6,"ax",@progbits
DEFUN __do_global_ctors
#if defined(__AVR_HAVE_ELPM__)
	ldi	r17, hi8(__ctors_start)
	ldi	r28, lo8(__ctors_end)
	ldi	r29, hi8(__ctors_end)
	ldi	r16, hh8(__ctors_end)
	rjmp	.L__do_global_ctors_start
.L__do_global_ctors_loop:
	sbiw	r28, 2
	sbc     r16, __zero_reg__
	mov_h	r31, r29
	mov_l	r30, r28
	out     __RAMPZ__, r16
	XCALL	__tablejump_elpm__
.L__do_global_ctors_start:
	cpi	r28, lo8(__ctors_start)
	cpc	r29, r17
	ldi	r24, hh8(__ctors_start)
	cpc	r16, r24
	brne	.L__do_global_ctors_loop
#else
	ldi	r17, hi8(__ctors_start)
	ldi	r28, lo8(__ctors_end)
	ldi	r29, hi8(__ctors_end)
	rjmp	.L__do_global_ctors_start
.L__do_global_ctors_loop:
	sbiw	r28, 2
	mov_h	r31, r29
	mov_l	r30, r28
	XCALL	__tablejump__
.L__do_global_ctors_start:
	cpi	r28, lo8(__ctors_start)
	cpc	r29, r17
	brne	.L__do_global_ctors_loop
#endif /* defined(__AVR_HAVE_ELPM__) */
ENDF __do_global_ctors
#endif /* L_ctors */

#ifdef L_dtors
	.section .fini6,"ax",@progbits
DEFUN __do_global_dtors
#if defined(__AVR_HAVE_ELPM__)
	ldi	r17, hi8(__dtors_end)
	ldi	r28, lo8(__dtors_start)
	ldi	r29, hi8(__dtors_start)
	ldi	r16, hh8(__dtors_start)
	rjmp	.L__do_global_dtors_start
.L__do_global_dtors_loop:
	sbiw	r28, 2
	sbc     r16, __zero_reg__
	mov_h	r31, r29
	mov_l	r30, r28
	out     __RAMPZ__, r16
	XCALL	__tablejump_elpm__
.L__do_global_dtors_start:
	cpi	r28, lo8(__dtors_end)
	cpc	r29, r17
	ldi	r24, hh8(__dtors_end)
	cpc	r16, r24
	brne	.L__do_global_dtors_loop
#else
	ldi	r17, hi8(__dtors_end)
	ldi	r28, lo8(__dtors_start)
	ldi	r29, hi8(__dtors_start)
	rjmp	.L__do_global_dtors_start
.L__do_global_dtors_loop:
	mov_h	r31, r29
	mov_l	r30, r28
	XCALL	__tablejump__
	adiw	r28, 2
.L__do_global_dtors_start:
	cpi	r28, lo8(__dtors_end)
	cpc	r29, r17
	brne	.L__do_global_dtors_loop
#endif /* defined(__AVR_HAVE_ELPM__) */
ENDF __do_global_dtors
#endif /* L_dtors */

.section .text.libgcc, "ax", @progbits

#ifdef L_tablejump_elpm
DEFUN __tablejump_elpm__
#if defined (__AVR_HAVE_ELPMX__)
	elpm	__tmp_reg__, Z+
	elpm	r31, Z
	mov	r30, __tmp_reg__
#if defined (__AVR_HAVE_RAMPD__)
	;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
	out	__RAMPZ__, __zero_reg__
#endif /* RAMPD */
#if defined (__AVR_HAVE_EIJMP_EICALL__)
	eijmp
#else
	ijmp
#endif

#elif defined (__AVR_HAVE_ELPM__)
	elpm
	adiw	r30, 1
	push	r0
	elpm
	push	r0
#if defined (__AVR_HAVE_EIJMP_EICALL__)
	in      __tmp_reg__, __EIND__
	push    __tmp_reg__
#endif
	ret
#endif
ENDF __tablejump_elpm__
#endif /* defined (L_tablejump_elpm) */

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Loading n bytes from Flash; n = 3,4
;; R22... = Flash[Z]
;; Clobbers: __tmp_reg__

#if (defined (L_load_3)        \
     || defined (L_load_4))    \
    && !defined (__AVR_HAVE_LPMX__)

;; Destination
#define D0  22
#define D1  D0+1
#define D2  D0+2
#define D3  D0+3

.macro  .load dest, n
    lpm
    mov     \dest, r0
.if \dest != D0+\n-1
    adiw    r30, 1
.else
    sbiw    r30, \n-1
.endif
.endm

#if defined (L_load_3)
DEFUN __load_3
    push  D3
    XCALL __load_4
    pop   D3
    ret
ENDF __load_3
#endif /* L_load_3 */

#if defined (L_load_4)
DEFUN __load_4
    .load D0, 4
    .load D1, 4
    .load D2, 4
    .load D3, 4
    ret
ENDF __load_4
#endif /* L_load_4 */

#endif /* L_load_3 || L_load_3 */

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Loading n bytes from Flash or RAM;  n = 1,2,3,4
;; R22... = Flash[R21:Z] or RAM[Z] depending on R21.7
;; Clobbers: __tmp_reg__, R21, R30, R31

#if (defined (L_xload_1)            \
     || defined (L_xload_2)         \
     || defined (L_xload_3)         \
     || defined (L_xload_4))

;; Destination
#define D0  22
#define D1  D0+1
#define D2  D0+2
#define D3  D0+3

;; Register containing bits 16+ of the address

#define HHI8  21

.macro  .xload dest, n
#if defined (__AVR_HAVE_ELPMX__)
    elpm    \dest, Z+
#elif defined (__AVR_HAVE_ELPM__)
    elpm
    mov     \dest, r0
.if \dest != D0+\n-1
    adiw    r30, 1
    adc     HHI8, __zero_reg__
    out     __RAMPZ__, HHI8
.endif
#elif defined (__AVR_HAVE_LPMX__)
    lpm     \dest, Z+
#else
    lpm
    mov     \dest, r0
.if \dest != D0+\n-1
    adiw    r30, 1
.endif
#endif
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
.if \dest == D0+\n-1
    ;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
    out     __RAMPZ__, __zero_reg__
.endif
#endif
.endm ; .xload

#if defined (L_xload_1)
DEFUN __xload_1
#if defined (__AVR_HAVE_LPMX__) && !defined (__AVR_HAVE_ELPM__)
    sbrc    HHI8, 7
    ld      D0, Z
    sbrs    HHI8, 7
    lpm     D0, Z
    ret
#else
    sbrc    HHI8, 7
    rjmp    1f
#if defined (__AVR_HAVE_ELPM__)
    out     __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
    .xload  D0, 1
    ret
1:  ld      D0, Z
    ret
#endif /* LPMx && ! ELPM */
ENDF __xload_1
#endif /* L_xload_1 */

#if defined (L_xload_2)
DEFUN __xload_2
    sbrc    HHI8, 7
    rjmp    1f
#if defined (__AVR_HAVE_ELPM__)
    out     __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
    .xload  D0, 2
    .xload  D1, 2
    ret
1:  ld      D0, Z+
    ld      D1, Z+
    ret
ENDF __xload_2
#endif /* L_xload_2 */

#if defined (L_xload_3)
DEFUN __xload_3
    sbrc    HHI8, 7
    rjmp    1f
#if defined (__AVR_HAVE_ELPM__)
    out     __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
    .xload  D0, 3
    .xload  D1, 3
    .xload  D2, 3
    ret
1:  ld      D0, Z+
    ld      D1, Z+
    ld      D2, Z+
    ret
ENDF __xload_3
#endif /* L_xload_3 */

#if defined (L_xload_4)
DEFUN __xload_4
    sbrc    HHI8, 7
    rjmp    1f
#if defined (__AVR_HAVE_ELPM__)
    out     __RAMPZ__, HHI8
#endif /* __AVR_HAVE_ELPM__ */
    .xload  D0, 4
    .xload  D1, 4
    .xload  D2, 4
    .xload  D3, 4
    ret
1:  ld      D0, Z+
    ld      D1, Z+
    ld      D2, Z+
    ld      D3, Z+
    ret
ENDF __xload_4
#endif /* L_xload_4 */

#endif /* L_xload_{1|2|3|4} */

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; memcopy from Address Space __pgmx to RAM
;; R23:Z = Source Address
;; X     = Destination Address
;; Clobbers: __tmp_reg__, R23, R24, R25, X, Z

#if defined (L_movmemx)

#define HHI8  23
#define LOOP  24

DEFUN __movmemx_qi
    ;; #Bytes to copy fity in 8 Bits (1..255)
    ;; Zero-extend Loop Counter
    clr     LOOP+1
    ;; FALLTHRU
ENDF __movmemx_qi

DEFUN __movmemx_hi

;; Read from where?
    sbrc    HHI8, 7
    rjmp    1f

;; Read from Flash

#if defined (__AVR_HAVE_ELPM__)
    out     __RAMPZ__, HHI8
#endif

0:  ;; Load 1 Byte from Flash...

#if defined (__AVR_HAVE_ELPMX__)
    elpm    r0, Z+
#elif defined (__AVR_HAVE_ELPM__)
    elpm
    adiw    r30, 1
    adc     HHI8, __zero_reg__
    out     __RAMPZ__, HHI8
#elif defined (__AVR_HAVE_LPMX__)
    lpm     r0, Z+
#else
    lpm
    adiw    r30, 1
#endif

    ;; ...and store that Byte to RAM Destination
    st      X+, r0
    sbiw    LOOP, 1
    brne    0b
#if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__)
    ;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM
    out	__RAMPZ__, __zero_reg__
#endif /* ELPM && RAMPD */
    ret

;; Read from RAM

1:  ;; Read 1 Byte from RAM...
    ld      r0, Z+
    ;; and store that Byte to RAM Destination
    st      X+, r0
    sbiw    LOOP, 1
    brne    1b
    ret
ENDF __movmemx_hi

#undef HHI8
#undef LOOP

#endif /* L_movmemx */


.section .text.libgcc.builtins, "ax", @progbits

/**********************************
 * Find first set Bit (ffs)
 **********************************/

#if defined (L_ffssi2)
;; find first set bit
;; r25:r24 = ffs32 (r25:r22)
;; clobbers: r22, r26
DEFUN __ffssi2
    clr  r26
    tst  r22
    brne 1f
    subi r26, -8
    or   r22, r23
    brne 1f
    subi r26, -8
    or   r22, r24
    brne 1f
    subi r26, -8
    or   r22, r25
    brne 1f
    ret
1:  mov  r24, r22
    XJMP __loop_ffsqi2
ENDF __ffssi2
#endif /* defined (L_ffssi2) */

#if defined (L_ffshi2)
;; find first set bit
;; r25:r24 = ffs16 (r25:r24)
;; clobbers: r26
DEFUN __ffshi2
    clr  r26
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
    ;; Some cores have problem skipping 2-word instruction
    tst  r24
    breq 2f
#else
    cpse r24, __zero_reg__
#endif /* __AVR_HAVE_JMP_CALL__ */
1:  XJMP __loop_ffsqi2
2:  ldi  r26, 8
    or   r24, r25
    brne 1b
    ret
ENDF __ffshi2
#endif /* defined (L_ffshi2) */

#if defined (L_loop_ffsqi2)
;; Helper for ffshi2, ffssi2
;; r25:r24 = r26 + zero_extend16 (ffs8(r24))
;; r24 must be != 0
;; clobbers: r26
DEFUN __loop_ffsqi2
    inc  r26
    lsr  r24
    brcc __loop_ffsqi2
    mov  r24, r26
    clr  r25
    ret
ENDF __loop_ffsqi2
#endif /* defined (L_loop_ffsqi2) */


/**********************************
 * Count trailing Zeros (ctz)
 **********************************/

#if defined (L_ctzsi2)
;; count trailing zeros
;; r25:r24 = ctz32 (r25:r22)
;; clobbers: r26, r22
;; ctz(0) = 255
;; Note that ctz(0) in undefined for GCC
DEFUN __ctzsi2
    XCALL __ffssi2
    dec  r24
    ret
ENDF __ctzsi2
#endif /* defined (L_ctzsi2) */

#if defined (L_ctzhi2)
;; count trailing zeros
;; r25:r24 = ctz16 (r25:r24)
;; clobbers: r26
;; ctz(0) = 255
;; Note that ctz(0) in undefined for GCC
DEFUN __ctzhi2
    XCALL __ffshi2
    dec  r24
    ret
ENDF __ctzhi2
#endif /* defined (L_ctzhi2) */


/**********************************
 * Count leading Zeros (clz)
 **********************************/

#if defined (L_clzdi2)
;; count leading zeros
;; r25:r24 = clz64 (r25:r18)
;; clobbers: r22, r23, r26
DEFUN __clzdi2
    XCALL __clzsi2
    sbrs r24, 5
    ret
    mov_l r22, r18
    mov_h r23, r19
    mov_l r24, r20
    mov_h r25, r21
    XCALL __clzsi2
    subi r24, -32
    ret
ENDF __clzdi2
#endif /* defined (L_clzdi2) */

#if defined (L_clzsi2)
;; count leading zeros
;; r25:r24 = clz32 (r25:r22)
;; clobbers: r26
DEFUN __clzsi2
    XCALL __clzhi2
    sbrs r24, 4
    ret
    mov_l r24, r22
    mov_h r25, r23
    XCALL __clzhi2
    subi r24, -16
    ret
ENDF __clzsi2
#endif /* defined (L_clzsi2) */

#if defined (L_clzhi2)
;; count leading zeros
;; r25:r24 = clz16 (r25:r24)
;; clobbers: r26
DEFUN __clzhi2
    clr  r26
    tst  r25
    brne 1f
    subi r26, -8
    or   r25, r24
    brne 1f
    ldi  r24, 16
    ret
1:  cpi  r25, 16
    brsh 3f
    subi r26, -3
    swap r25
2:  inc  r26
3:  lsl  r25
    brcc 2b
    mov  r24, r26
    clr  r25
    ret
ENDF __clzhi2
#endif /* defined (L_clzhi2) */


/**********************************
 * Parity
 **********************************/

#if defined (L_paritydi2)
;; r25:r24 = parity64 (r25:r18)
;; clobbers: __tmp_reg__
DEFUN __paritydi2
    eor  r24, r18
    eor  r24, r19
    eor  r24, r20
    eor  r24, r21
    XJMP __paritysi2
ENDF __paritydi2
#endif /* defined (L_paritydi2) */

#if defined (L_paritysi2)
;; r25:r24 = parity32 (r25:r22)
;; clobbers: __tmp_reg__
DEFUN __paritysi2
    eor  r24, r22
    eor  r24, r23
    XJMP __parityhi2
ENDF __paritysi2
#endif /* defined (L_paritysi2) */

#if defined (L_parityhi2)
;; r25:r24 = parity16 (r25:r24)
;; clobbers: __tmp_reg__
DEFUN __parityhi2
    eor  r24, r25
;; FALLTHRU
ENDF __parityhi2

;; r25:r24 = parity8 (r24)
;; clobbers: __tmp_reg__
DEFUN __parityqi2
    ;; parity is in r24[0..7]
    mov  __tmp_reg__, r24
    swap __tmp_reg__
    eor  r24, __tmp_reg__
    ;; parity is in r24[0..3]
    subi r24, -4
    andi r24, -5
    subi r24, -6
    ;; parity is in r24[0,3]
    sbrc r24, 3
    inc  r24
    ;; parity is in r24[0]
    andi r24, 1
    clr  r25
    ret
ENDF __parityqi2
#endif /* defined (L_parityhi2) */


/**********************************
 * Population Count
 **********************************/

#if defined (L_popcounthi2)
;; population count
;; r25:r24 = popcount16 (r25:r24)
;; clobbers: __tmp_reg__
DEFUN __popcounthi2
    XCALL __popcountqi2
    push r24
    mov  r24, r25
    XCALL __popcountqi2
    clr  r25
    ;; FALLTHRU
ENDF __popcounthi2

DEFUN __popcounthi2_tail
    pop   __tmp_reg__
    add   r24, __tmp_reg__
    ret
ENDF __popcounthi2_tail
#endif /* defined (L_popcounthi2) */

#if defined (L_popcountsi2)
;; population count
;; r25:r24 = popcount32 (r25:r22)
;; clobbers: __tmp_reg__
DEFUN __popcountsi2
    XCALL __popcounthi2
    push  r24
    mov_l r24, r22
    mov_h r25, r23
    XCALL __popcounthi2
    XJMP  __popcounthi2_tail
ENDF __popcountsi2
#endif /* defined (L_popcountsi2) */

#if defined (L_popcountdi2)
;; population count
;; r25:r24 = popcount64 (r25:r18)
;; clobbers: r22, r23, __tmp_reg__
DEFUN __popcountdi2
    XCALL __popcountsi2
    push  r24
    mov_l r22, r18
    mov_h r23, r19
    mov_l r24, r20
    mov_h r25, r21
    XCALL __popcountsi2
    XJMP  __popcounthi2_tail
ENDF __popcountdi2
#endif /* defined (L_popcountdi2) */

#if defined (L_popcountqi2)
;; population count
;; r24 = popcount8 (r24)
;; clobbers: __tmp_reg__
DEFUN __popcountqi2
    mov  __tmp_reg__, r24
    andi r24, 1
    lsr  __tmp_reg__
    lsr  __tmp_reg__
    adc  r24, __zero_reg__
    lsr  __tmp_reg__
    adc  r24, __zero_reg__
    lsr  __tmp_reg__
    adc  r24, __zero_reg__
    lsr  __tmp_reg__
    adc  r24, __zero_reg__
    lsr  __tmp_reg__
    adc  r24, __zero_reg__
    lsr  __tmp_reg__
    adc  r24, __tmp_reg__
    ret
ENDF __popcountqi2
#endif /* defined (L_popcountqi2) */


/**********************************
 * Swap bytes
 **********************************/

;; swap two registers with different register number
.macro bswap a, b
    eor \a, \b
    eor \b, \a
    eor \a, \b
.endm

#if defined (L_bswapsi2)
;; swap bytes
;; r25:r22 = bswap32 (r25:r22)
DEFUN __bswapsi2
    bswap r22, r25
    bswap r23, r24
    ret
ENDF __bswapsi2
#endif /* defined (L_bswapsi2) */

#if defined (L_bswapdi2)
;; swap bytes
;; r25:r18 = bswap64 (r25:r18)
DEFUN __bswapdi2
    bswap r18, r25
    bswap r19, r24
    bswap r20, r23
    bswap r21, r22
    ret
ENDF __bswapdi2
#endif /* defined (L_bswapdi2) */


/**********************************
 * 64-bit shifts
 **********************************/

#if defined (L_ashrdi3)
;; Arithmetic shift right
;; r25:r18 = ashr64 (r25:r18, r17:r16)
DEFUN __ashrdi3
    push r16
    andi r16, 63
    breq 2f
1:  asr  r25
    ror  r24
    ror  r23
    ror  r22
    ror  r21
    ror  r20
    ror  r19
    ror  r18
    dec  r16
    brne 1b
2:  pop  r16
    ret
ENDF __ashrdi3
#endif /* defined (L_ashrdi3) */

#if defined (L_lshrdi3)
;; Logic shift right
;; r25:r18 = lshr64 (r25:r18, r17:r16)
DEFUN __lshrdi3
    push r16
    andi r16, 63
    breq 2f
1:  lsr  r25
    ror  r24
    ror  r23
    ror  r22
    ror  r21
    ror  r20
    ror  r19
    ror  r18
    dec  r16
    brne 1b
2:  pop  r16
    ret
ENDF __lshrdi3
#endif /* defined (L_lshrdi3) */

#if defined (L_ashldi3)
;; Shift left
;; r25:r18 = ashl64 (r25:r18, r17:r16)
DEFUN __ashldi3
    push r16
    andi r16, 63
    breq 2f
1:  lsl  r18
    rol  r19
    rol  r20
    rol  r21
    rol  r22
    rol  r23
    rol  r24
    rol  r25
    dec  r16
    brne 1b
2:  pop  r16
    ret
ENDF __ashldi3
#endif /* defined (L_ashldi3) */

#if defined (L_rotldi3)
;; Shift left
;; r25:r18 = rotl64 (r25:r18, r17:r16)
DEFUN __rotldi3
    push r16
    andi r16, 63
    breq 2f
1:  lsl  r18
    rol  r19
    rol  r20
    rol  r21
    rol  r22
    rol  r23
    rol  r24
    rol  r25
    adc  r18, __zero_reg__
    dec  r16
    brne 1b
2:  pop  r16
    ret
ENDF __rotldi3
#endif /* defined (L_rotldi3) */


.section .text.libgcc.fmul, "ax", @progbits

/***********************************************************/
;;; Softmul versions of FMUL, FMULS and FMULSU to implement
;;; __builtin_avr_fmul* if !AVR_HAVE_MUL
/***********************************************************/

#define A1 24
#define B1 25
#define C0 22
#define C1 23
#define A0 __tmp_reg__

#ifdef L_fmuls
;;; r23:r22 = fmuls (r24, r25) like in FMULS instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmuls
    ;; A0.7 = negate result?
    mov  A0, A1
    eor  A0, B1
    ;; B1 = |B1|
    sbrc B1, 7
    neg  B1
    XJMP __fmulsu_exit
ENDF __fmuls
#endif /* L_fmuls */

#ifdef L_fmulsu
;;; r23:r22 = fmulsu (r24, r25) like in FMULSU instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmulsu
    ;; A0.7 = negate result?
    mov  A0, A1
;; FALLTHRU
ENDF __fmulsu

;; Helper for __fmuls and __fmulsu
DEFUN __fmulsu_exit
    ;; A1 = |A1|
    sbrc A1, 7
    neg  A1
#ifdef __AVR_ERRATA_SKIP_JMP_CALL__
    ;; Some cores have problem skipping 2-word instruction
    tst  A0
    brmi 1f
#else
    sbrs A0, 7
#endif /* __AVR_HAVE_JMP_CALL__ */
    XJMP  __fmul
1:  XCALL __fmul
    ;; C = -C iff A0.7 = 1
    NEG2 C0
    ret
ENDF __fmulsu_exit
#endif /* L_fmulsu */


#ifdef L_fmul
;;; r22:r23 = fmul (r24, r25) like in FMUL instruction
;;; Clobbers: r24, r25, __tmp_reg__
DEFUN __fmul
    ; clear result
    clr   C0
    clr   C1
    clr   A0
1:  tst   B1
    ;; 1.0 = 0x80, so test for bit 7 of B to see if A must to be added to C.
2:  brpl  3f
    ;; C += A
    add   C0, A0
    adc   C1, A1
3:  ;; A >>= 1
    lsr   A1
    ror   A0
    ;; B <<= 1
    lsl   B1
    brne  2b
    ret
ENDF __fmul
#endif /* L_fmul */

#undef A0
#undef A1
#undef B1
#undef C0
#undef C1

#include "lib1funcs-fixed.S"
OpenPOWER on IntegriCloud