1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
|
/* reducer_list.h -*- C++ -*-
*
* @copyright
* Copyright (C) 2009-2013, Intel Corporation
* All rights reserved.
*
* @copyright
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* @copyright
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @file reducer_list.h
*
* @brief Defines classes for doing parallel list creation by appending or
* prepending.
*
* @ingroup ReducersList
*
* @see ReducersList
*/
#ifndef REDUCER_LIST_H_INCLUDED
#define REDUCER_LIST_H_INCLUDED
#include <cilk/reducer.h>
#include <list>
/** @defgroup ReducersList List Reducers
*
* List append and prepend reducers allow the creation of a standard list by
* concatenating a set of lists or values in parallel.
*
* @ingroup Reducers
*
* You should be familiar with @ref pagereducers "Cilk reducers", described in
* file `reducers.md`, and particularly with @ref reducers_using, before trying
* to use the information in this file.
*
* @section redlist_usage Usage Example
*
* // Create a list containing the labels of the nodes of a tree in
* // “inorder” (left subtree, root, right subtree).
*
* struct Tree { Tree* left; Tree* right; string label; ... };
*
* list<string> x;
* cilk::reducer< cilk::op_list_append<string> > xr(cilk::move_in(x));
* collect_labels(tree, xr);
* xr.move_out(x);
*
* void collect_labels(Tree* node,
* cilk::reducer< cilk::op_list_append<string> >& xr)
* {
* if (node) {
* cilk_spawn collect_labels(node->left, xr);
* xr->push_back(node->label);
* collect_labels(node->right, xr);
* cilk_sync;
* }
* }
*
* @section redlist_monoid The Monoid
*
* @subsection redlist_monoid_values Value Set
*
* The value set of a list reducer is the set of values of the class
* `std::list<Type, Allocator>`, which we refer to as “the reducer’s list
* type”.
*
* @subsection redlist_monoid_operator Operator
*
* The operator of a list append reducer is defined as
*
* x CAT y == (every element of x, followed by every element of y)
*
* The operator of a list prepend reducer is defined as
*
* x RCAT y == (every element of y, followed by every element of x)
*
* @subsection redlist_monoid_identity Identity
*
* The identity value of a list reducer is the empty list, which is the value
* of the expression `std::list<Type, Allocator>([allocator])`.
*
* @section redlist_operations Operations
*
* In the operation descriptions below, the type name `List` refers to the
* reducer’s string type, `std::list<Type, Allocator>`.
*
* @subsection redlist_constructors Constructors
*
* Any argument list which is valid for a `std::list` constructor is valid for
* a list reducer constructor. The usual move-in constructor is also provided:
*
* reducer(move_in(List& variable))
*
* A list reducer with no constructor arguments, or with only an allocator
* argument, will initially contain the identity value, an empty list.
*
* @subsection redlist_get_set Set and Get
*
* r.set_value(const List& value)
* const List& = r.get_value() const
* r.move_in(List& variable)
* r.move_out(List& variable)
*
* @subsection redlist_view_ops View Operations
*
* The view of a list append reducer provides the following member functions:
*
* void push_back(const Type& element)
* void insert_back(List::size_type n, const Type& element)
* template <typename Iter> void insert_back(Iter first, Iter last)
* void splice_back(List& x)
* void splice_back(List& x, List::iterator i)
* void splice_back(List& x, List::iterator first, List::iterator last)
*
* The view of a list prepend reducer provides the following member functions:
*
* void push_front(const Type& element)
* void insert_front(List::size_type n, const Type& element)
* template <typename Iter> void insert_front(Iter first, Iter last)
* void splice_front(List& x)
* void splice_front(List& x, List::iterator i)
* void splice_front(List& x, List::iterator first, List::iterator last)
*
* The `push_back` and `push_front` functions are the same as the
* corresponding `std::list` functions. The `insert_back`, `splice_back`,
* `insert_front`, and `splice_front` functions are the same as the
* `std::list` `insert` and `splice` functions, with the first parameter
* fixed to the end or beginning of the list, respectively.
*
* @section redlist_performance Performance Considerations
*
* An efficient reducer requires that combining the values of two views (using
* the view `reduce()` function) be a constant-time operations. Two lists can
* be merged in constant time using the `splice()` function if they have the
* same allocator. Therefore, the lists for new views are created (by the view
* identity constructor) using the same allocator as the list that was created
* when the reducer was constructed.
*
* The performance of adding elements to a list reducer depends on the view
* operations that are used:
*
* * The `push` functions add a single element to the list, and therefore
* take constant time.
* * An `insert` function that inserts _N_ elements adds each of them
* individually, and therefore takes _O(N)_ time.
* * A `splice` function that inserts _N_ elements just adjusts a couple of
* pointers, and therefore takes constant time, _if the splice is from a
* list with the same allocator as the reducer_. Otherwise, it is
* equivalent to an `insert`, and takes _O(N)_ time.
*
* This means that for best performance, if you will be adding elements to a
* list reducer in batches, you should `splice` them from a list having the
* same allocator as the reducer.
*
* The reducer `move_in` and `move_out` functions do a constant-time `swap` if
* the variable has the same allocator as the reducer, and a linear-time copy
* otherwise.
*
* Note that the allocator of a list reducer is determined when the reducer is
* constructed. The following two examples may have very different behavior:
*
* list<Element, Allocator> a_list;
*
* reducer< list_append<Element, Allocator> reducer1(move_in(a_list));
* ... parallel computation ...
* reducer1.move_out(a_list);
*
* reducer< list_append<Element, Allocator> reducer2;
* reducer2.move_in(a_list);
* ... parallel computation ...
* reducer2.move_out(a_list);
*
* * `reducer1` will be constructed with the same allocator as `a_list`,
* because the list was was specified in the constructor. The `move_in`
* and`move_out` can therefore be done with a `swap` in constant time.
* * `reducer2` will be constructed with a _default_ allocator,
* “`Allocator()`”, which may or may not be the same as the allocator of
* `a_list`. Therefore, the `move_in` and `move_out` may have to be done
* with a copy in _O(N)_ time.
*
* (All instances of an allocator type with no internal state (like
* `std::allocator`) are “the same”. You only need to worry about the “same
* allocator” issue when you create list reducers with custom allocator types.)
*
* @section redlist_types Type and Operator Requirements
*
* `std::list<Type, Allocator>` must be a valid type.
*/
namespace cilk {
namespace internal {
/** @ingroup ReducersList */
//@{
/** Base class for list append and prepend view classes.
*
* @note This class provides the definitions that are required for a class
* that will be used as the parameter of a @ref list_monoid_base
* specialization.
*
* @tparam Type The list element type (not the list type).
* @tparam Allocator The list's allocator class.
*
* @see ReducersList
* @see list_monoid_base
*/
template <typename Type, typename Allocator>
class list_view_base
{
protected:
/// The type of the contained list.
typedef std::list<Type, Allocator> list_type;
/// The list accumulator variable.
list_type m_value;
public:
/** @name Monoid support.
*/
//@{
/// Required by @ref monoid_with_view
typedef list_type value_type;
/// Required by @ref list_monoid_base
Allocator get_allocator() const
{
return m_value.get_allocator();
}
//@}
/** @name Constructors.
*/
//@{
/// Standard list constructor.
explicit list_view_base(const Allocator& a = Allocator()) : m_value(a) {}
explicit list_view_base(
typename list_type::size_type n,
const Type& value = Type(),
const Allocator& a = Allocator() ) : m_value(n, value, a) {}
template <typename Iter>
list_view_base(Iter first, Iter last, const Allocator& a = Allocator()) :
m_value(first, last, a) {}
list_view_base(const list_type& list) : m_value(list) {}
/// Move-in constructor.
explicit list_view_base(move_in_wrapper<value_type> w)
: m_value(w.value().get_allocator())
{
m_value.swap(w.value());
}
//@}
/** @name Reducer support.
*/
//@{
/// Required by reducer::move_in()
void view_move_in(value_type& v)
{
if (m_value.get_allocator() == v.get_allocator())
// Equal allocators. Do a (fast) swap.
m_value.swap(v);
else
// Unequal allocators. Do a (slow) copy.
m_value = v;
v.clear();
}
/// Required by reducer::move_out()
void view_move_out(value_type& v)
{
if (m_value.get_allocator() == v.get_allocator())
// Equal allocators. Do a (fast) swap.
m_value.swap(v);
else
// Unequal allocators. Do a (slow) copy.
v = m_value;
m_value.clear();
}
/// Required by reducer::set_value()
void view_set_value(const value_type& v) { m_value = v; }
/// Required by reducer::get_value()
value_type const& view_get_value() const { return m_value; }
// Required by legacy wrapper get_reference()
value_type & view_get_reference() { return m_value; }
value_type const& view_get_reference() const { return m_value; }
//@}
};
/** Base class for list append and prepend monoid classes.
*
* The key to efficient reducers is that the `identity` operation, which
* creates a new per-strand view, and the `reduce` operation, which combines
* two per-strand views, must be constant-time operations. Two lists can be
* concatenated in constant time only if they have the same allocator.
* Therefore, all the per-strand list accumulator variables must be created
* with the same allocator as the leftmost view list.
*
* This means that a list reduction monoid must have a copy of the allocator
* of the leftmost view’s list, so that it can use it in the `identity`
* operation. This, in turn, requires that list reduction monoids have a
* specialized `construct()` function, which constructs the leftmost view
* before the monoid, and then passes the leftmost view’s allocator to the
* monoid constructor.
*
* @tparam View The list append or prepend view class.
* @tparam Align If `false` (the default), reducers instantiated on this
* monoid will be naturally aligned (the Cilk library 1.0
* behavior). If `true`, reducers instantiated on this monoid
* will be cache-aligned for binary compatibility with
* reducers in Cilk library version 0.9.
*
* @see ReducersList
* @see list_view_base
*/
template <typename View, bool Align>
class list_monoid_base : public monoid_with_view<View, Align>
{
typedef typename View::value_type list_type;
typedef typename list_type::allocator_type allocator_type;
allocator_type m_allocator;
using monoid_base<list_type, View>::provisional;
public:
/** Constructor.
*
* There is no default constructor for list monoids, because the allocator
* must always be specified.
*
* @param allocator The list allocator to be used when
* identity-constructing new views.
*/
list_monoid_base(const allocator_type& allocator = allocator_type()) :
m_allocator(allocator) {}
/** Create an identity view.
*
* List view identity constructors take the list allocator as an argument.
*
* @param v The address of the uninitialized memory in which the view
* will be constructed.
*/
void identity(View *v) const { ::new((void*) v) View(m_allocator); }
/** @name construct functions
*
* All `construct()` functions first construct the leftmost view, using
* the optional @a x1, @a x2, and @a x3 arguments that were passed in from
* the reducer constructor. They then call the view’s `get_allocator()`
* function to get the list allocator from its contained list, and pass it
* to the monoid constructor.
*/
//@{
template <typename Monoid>
static void construct(Monoid* monoid, View* view)
{ provisional( new ((void*)view) View() ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
template <typename Monoid, typename T1>
static void construct(Monoid* monoid, View* view, const T1& x1)
{ provisional( new ((void*)view) View(x1) ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
template <typename Monoid, typename T1, typename T2>
static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2)
{ provisional( new ((void*)view) View(x1, x2) ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
template <typename Monoid, typename T1, typename T2, typename T3>
static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2,
const T3& x3)
{ provisional( new ((void*)view) View(x1, x2, x3) ).confirm_if(
new ((void*)monoid) Monoid(view->get_allocator()) ); }
//@}
};
//@}
} // namespace internal
/** @ingroup ReducersList */
//@{
/** The list append reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_list_append<Type, Allocator> >`. It holds the
* accumulator variable for the reduction, and allows only append operations
* to be performed on it.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view class’s
* `push_back` operation would be used in an expression like
* `r->push_back(a)`, where `r` is a list append reducer variable.
*
* @tparam Type The list element type (not the list type).
* @tparam Allocator The list allocator type.
*
* @see ReducersList
* @see op_list_append
*/
template <class Type,
class Allocator = typename std::list<Type>::allocator_type>
class op_list_append_view : public internal::list_view_base<Type, Allocator>
{
typedef internal::list_view_base<Type, Allocator> base;
typedef std::list<Type, Allocator> list_type;
typedef typename list_type::iterator iterator;
iterator end() { return this->m_value.end(); }
public:
/** @name Constructors.
*
* All op_list_append_view constructors simply pass their arguments on to
* the @ref internal::list_view_base base class constructor.
*
* @ref internal::list_view_base supports all the std::list constructor
* forms, as well as the reducer move_in constructor form.
*/
//@{
op_list_append_view() : base() {}
template <typename T1>
op_list_append_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_list_append_view(const T1& x1, const T2& x2) : base(x1, x2) {}
template <typename T1, typename T2, typename T3>
op_list_append_view(const T1& x1, const T2& x2, const T3& x3) :
base(x1, x2, x3) {}
//@}
/** @name View modifier operations.
*/
//@{
/** Add an element at the end of the list.
*
* This is equivalent to `list.push_back(element)`
*/
void push_back(const Type& element)
{ this->m_value.push_back(element); }
/** Insert elements at the end of the list.
*
* This is equivalent to `list.insert(list.end(), n, element)`
*/
void insert_back(typename list_type::size_type n, const Type& element)
{ this->m_value.insert(end(), n, element); }
/** Insert elements at the end of the list.
*
* This is equivalent to `list.insert(list.end(), first, last)`
*/
template <typename Iter>
void insert_back(Iter first, Iter last)
{ this->m_value.insert(end(), first, last); }
/** Splice elements at the end of the list.
*
* This is equivalent to `list.splice(list.end(), x)`
*/
void splice_back(list_type& x) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(end(), x);
else {
insert_back(x.begin(), x.end());
x.clear();
}
}
/** Splice elements at the end of the list.
*
* This is equivalent to `list.splice(list.end(), x, i)`
*/
void splice_back(list_type& x, iterator i) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(end(), x, i);
else {
push_back(*i);
x.erase(i);
}
}
/** Splice elements at the end of the list.
*
* This is equivalent to `list.splice(list.end(), x, first, last)`
*/
void splice_back(list_type& x, iterator first, iterator last) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(end(), x, first, last);
else {
insert_back(first, last);
x.erase(first, last);
}
}
//@}
/** Reduction operation.
*
* This function is invoked by the @ref op_list_append monoid to combine
* the views of two strands when the right strand merges with the left
* one. It appends the value contained in the right-strand view to the
* value contained in the left-strand view, and leaves the value in the
* right-strand view undefined.
*
* @param right A pointer to the right-strand view. (`this` points to
* the left-strand view.)
*
* @note Used only by the @ref op_list_append monoid to implement the
* monoid reduce operation.
*/
void reduce(op_list_append_view* right)
{
__CILKRTS_ASSERT(
this->m_value.get_allocator() == right->m_value.get_allocator());
this->m_value.splice(end(), right->m_value);
}
};
/** The list prepend reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_list_prepend<Type, Allocator> >`. It holds the
* accumulator variable for the reduction, and allows only prepend operations
* to be performed on it.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view class’s
* `push_front` operation would be used in an expression like
* `r->push_front(a)`, where `r` is a list prepend reducer variable.
*
* @tparam Type The list element type (not the list type).
* @tparam Allocator The list allocator type.
*
* @see ReducersList
* @see op_list_prepend
*/
template <class Type,
class Allocator = typename std::list<Type>::allocator_type>
class op_list_prepend_view : public internal::list_view_base<Type, Allocator>
{
typedef internal::list_view_base<Type, Allocator> base;
typedef std::list<Type, Allocator> list_type;
typedef typename list_type::iterator iterator;
iterator begin() { return this->m_value.begin(); }
public:
/** @name Constructors.
*
* All op_list_prepend_view constructors simply pass their arguments on to
* the @ref internal::list_view_base base class constructor.
*
* @ref internal::list_view_base supports all the std::list constructor
* forms, as well as the reducer move_in constructor form.
*
*/
//@{
op_list_prepend_view() : base() {}
template <typename T1>
op_list_prepend_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_list_prepend_view(const T1& x1, const T2& x2) : base(x1, x2) {}
template <typename T1, typename T2, typename T3>
op_list_prepend_view(const T1& x1, const T2& x2, const T3& x3) :
base(x1, x2, x3) {}
//@}
/** @name View modifier operations.
*/
//@{
/** Add an element at the beginning of the list.
*
* This is equivalent to `list.push_front(element)`
*/
void push_front(const Type& element)
{ this->m_value.push_front(element); }
/** Insert elements at the beginning of the list.
*
* This is equivalent to `list.insert(list.begin(), n, element)`
*/
void insert_front(typename list_type::size_type n, const Type& element)
{ this->m_value.insert(begin(), n, element); }
/** Insert elements at the beginning of the list.
*
* This is equivalent to `list.insert(list.begin(), first, last)`
*/
template <typename Iter>
void insert_front(Iter first, Iter last)
{ this->m_value.insert(begin(), first, last); }
/** Splice elements at the beginning of the list.
*
* This is equivalent to `list.splice(list.begin(), x)`
*/
void splice_front(list_type& x) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(begin(), x);
else {
insert_front(x.begin(), x.begin());
x.clear();
}
}
/** Splice elements at the beginning of the list.
*
* This is equivalent to `list.splice(list.begin(), x, i)`
*/
void splice_front(list_type& x, iterator i) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(begin(), x, i);
else {
push_front(*i);
x.erase(i);
}
}
/** Splice elements at the beginning of the list.
*
* This is equivalent to `list.splice(list.begin(), x, first, last)`
*/
void splice_front(list_type& x, iterator first, iterator last) {
if (x.get_allocator() == this->m_value.get_allocator())
this->m_value.splice(begin(), x, first, last);
else {
insert_front(first, last);
x.erase(first, last);
}
}
//@}
/** Reduction operation.
*
* This function is invoked by the @ref op_list_prepend monoid to combine
* the views of two strands when the right strand merges with the left
* one. It prepends the value contained in the right-strand view to the
* value contained in the left-strand view, and leaves the value in the
* right-strand view undefined.
*
* @param right A pointer to the right-strand view. (`this` points to
* the left-strand view.)
*
* @note Used only by the @ref op_list_prepend monoid to implement the
* monoid reduce operation.
*/
/** Reduce operation.
*
* Required by @ref monoid_base.
*/
void reduce(op_list_prepend_view* right)
{
__CILKRTS_ASSERT(
this->m_value.get_allocator() == right->m_value.get_allocator());
this->m_value.splice(begin(), right->m_value);
}
};
/** Monoid class for list append reductions. Instantiate the cilk::reducer
* template class with a op_list_append monoid to create a list append reducer
* class. For example, to create a list of strings:
*
* cilk::reducer< cilk::op_list_append<std::string> > r;
*
* @tparam Type The list element type (not the list type).
* @tparam Alloc The list allocator type.
* @tparam Align If `false` (the default), reducers instantiated on this
* monoid will be naturally aligned (the Cilk library 1.0
* behavior). If `true`, reducers instantiated on this monoid
* will be cache-aligned for binary compatibility with
* reducers in Cilk library version 0.9.
*
* @see ReducersList
* @see op_list_append_view
*/
template <typename Type,
typename Allocator = typename std::list<Type>::allocator_type,
bool Align = false>
struct op_list_append :
public internal::list_monoid_base<op_list_append_view<Type, Allocator>, Align>
{
/// Construct with default allocator.
op_list_append() {}
/// Construct with specified allocator.
op_list_append(const Allocator& alloc) :
internal::list_monoid_base<op_list_append_view<Type, Allocator>, Align>(alloc) {}
};
/** Monoid class for list prepend reductions. Instantiate the cilk::reducer
* template class with a op_list_prepend monoid to create a list prepend
* reducer class. For example, to create a list of strings:
*
* cilk::reducer< cilk::op_list_prepend<std::string> > r;
*
* @tparam Type The list element type (not the list type).
* @tparam Alloc The list allocator type.
* @tparam Align If `false` (the default), reducers instantiated on this
* monoid will be naturally aligned (the Cilk library 1.0
* behavior). If `true`, reducers instantiated on this monoid
* will be cache-aligned for binary compatibility with
* reducers in Cilk library version 0.9.
*
* @see ReducersList
* @see op_list_prepend_view
*/
template <typename Type,
typename Allocator = typename std::list<Type>::allocator_type,
bool Align = false>
struct op_list_prepend :
public internal::list_monoid_base<op_list_prepend_view<Type, Allocator>, Align>
{
/// Construct with default allocator.
op_list_prepend() {}
/// Construct with specified allocator.
op_list_prepend(const Allocator& alloc) :
internal::list_monoid_base<op_list_prepend_view<Type, Allocator>, Align>(alloc) {}
};
/** Deprecated list append reducer wrapper class.
*
* reducer_list_append is the same as
* @ref reducer<@ref op_list_append>, except that reducer_list_append is a
* proxy for the contained view, so that accumulator variable update
* operations can be applied directly to the reducer. For example, an element
* is appended to a `reducer<%op_list_append>` with `r->push_back(a)`, but an
* element can be appended to a `%reducer_list_append` with `r.push_back(a)`.
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_list_append.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_list_append`
* and `reducer<%op_list_append>`. This allows incremental code
* conversion: old code that used `%reducer_list_append` can pass a
* `%reducer_list_append` to a converted function that now expects a
* pointer or reference to a `reducer<%op_list_append>`, and vice
* versa.
*
* @tparam Type The value type of the list.
* @tparam Allocator The allocator type of the list.
*
* @see op_list_append
* @see reducer
* @see ReducersList
*/
template <class Type, class Allocator = std::allocator<Type> >
class reducer_list_append :
public reducer<op_list_append<Type, Allocator, true> >
{
typedef reducer<op_list_append<Type, Allocator, true> > base;
using base::view;
public:
/// The reducer’s list type.
typedef typename base::value_type list_type;
/// The list’s element type.
typedef Type list_value_type;
/// The reducer’s primitive component type.
typedef Type basic_value_type;
/// The monoid type.
typedef typename base::monoid_type Monoid;
/** @name Constructors
*/
//@{
/** Construct a reducer with an empty list.
*/
reducer_list_append() {}
/** Construct a reducer with a specified initial list value.
*/
reducer_list_append(const std::list<Type, Allocator> &initial_value) :
base(initial_value) {}
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_and_view. */
//@{
/// @copydoc op_list_append_view::push_back(const Type&)
void push_back(const Type& element) { view().push_back(element); }
//@}
/** Allow mutable access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A mutable reference to the list within the current view.
*/
list_type &get_reference() { return view().view_get_reference(); }
/** Allow read-only access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A const reference to the list within the current view.
*/
list_type const &get_reference() const { return view().view_get_reference(); }
/// @name Dereference
//@{
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_list_append<int> > r;
* r->push_back(a); // *r returns the view
* // push_back is a view member function
*
* reducer_list_append<int> w;
* w->push_back(a); // *w returns the wrapper
* // push_back is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_list_append& operator*() { return *this; }
reducer_list_append const& operator*() const { return *this; }
reducer_list_append* operator->() { return this; }
reducer_list_append const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_list_append<Type, Allocator, false> >& ()
{
return *reinterpret_cast<
reducer< op_list_append<Type, Allocator, false> >*
>(this);
}
operator const reducer< op_list_append<Type, Allocator, false> >& () const
{
return *reinterpret_cast<
const reducer< op_list_append<Type, Allocator, false> >*
>(this);
}
//@}
};
/** Deprecated list prepend reducer wrapper class.
*
* reducer_list_prepend is the same as
* @ref reducer<@ref op_list_prepend>, except that reducer_list_prepend is a
* proxy for the contained view, so that accumulator variable update operations
* can be applied directly to the reducer. For example, an element is prepended
* to a `reducer<op_list_prepend>` with `r->push_back(a)`, but an element is
* prepended to a `reducer_list_prepend` with `r.push_back(a)`.
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_list_prepend.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_list_prepend`
* and `reducer<%op_list_prepend>`. This allows incremental code
* conversion: old code that used `%reducer_list_prepend` can pass a
* `%reducer_list_prepend` to a converted function that now expects a
* pointer or reference to a `reducer<%op_list_prepend>`, and vice
* versa.
*
* @tparam Type The value type of the list.
* @tparam Allocator The allocator type of the list.
*
* @see op_list_prepend
* @see reducer
* @see ReducersList
*/
template <class Type, class Allocator = std::allocator<Type> >
class reducer_list_prepend :
public reducer<op_list_prepend<Type, Allocator, true> >
{
typedef reducer<op_list_prepend<Type, Allocator, true> > base;
using base::view;
public:
/** The reducer’s list type.
*/
typedef typename base::value_type list_type;
/** The list’s element type.
*/
typedef Type list_value_type;
/** The reducer’s primitive component type.
*/
typedef Type basic_value_type;
/** The monoid type.
*/
typedef typename base::monoid_type Monoid;
/** @name Constructors
*/
//@{
/** Construct a reducer with an empty list.
*/
reducer_list_prepend() {}
/** Construct a reducer with a specified initial list value.
*/
reducer_list_prepend(const std::list<Type, Allocator> &initial_value) :
base(initial_value) {}
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_and_view.
*/
//@{
/// @copydoc op_list_prepend_view::push_front(const Type&)
void push_front(const Type& element) { view().push_front(element); }
//@}
/** Allow mutable access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A mutable reference to the list within the current view.
*/
list_type &get_reference() { return view().view_get_reference(); }
/** Allow read-only access to the list within the current view.
*
* @warning If this method is called before the parallel calculation is
* complete, the list returned by this method will be a partial
* result.
*
* @returns A const reference to the list within the current view.
*/
list_type const &get_reference() const { return view().view_get_reference(); }
/// @name Dereference
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_list_prepend<int> > r;
* r->push_front(a); // *r returns the view
* // push_front is a view member function
*
* reducer_list_prepend<int> w;
* w->push_front(a); // *w returns the wrapper
* // push_front is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_list_prepend& operator*() { return *this; }
reducer_list_prepend const& operator*() const { return *this; }
reducer_list_prepend* operator->() { return this; }
reducer_list_prepend const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_list_prepend<Type, Allocator, false> >& ()
{
return *reinterpret_cast<
reducer< op_list_prepend<Type, Allocator, false> >*
>(this);
}
operator const reducer< op_list_prepend<Type, Allocator, false> >& () const
{
return *reinterpret_cast<
const reducer< op_list_prepend<Type, Allocator, false> >*
>(this);
}
//@}
};
/// @cond internal
/** Metafunction specialization for reducer conversion.
*
* This specialization of the @ref legacy_reducer_downcast template class
* defined in reducer.h causes the `reducer< op_list_append<Type, Allocator> >`
* class to have an `operator reducer_list_append<Type, Allocator>& ()`
* conversion operator that statically downcasts the `reducer<op_list_append>`
* to the corresponding `reducer_list_append` type. (The reverse conversion,
* from `reducer_list_append` to `reducer<op_list_append>`, is just an upcast,
* which is provided for free by the language.)
*/
template <class Type, class Allocator, bool Align>
struct legacy_reducer_downcast<reducer<op_list_append<Type, Allocator, Align> > >
{
typedef reducer_list_append<Type, Allocator> type;
};
/** Metafunction specialization for reducer conversion.
*
* This specialization of the @ref legacy_reducer_downcast template class
* defined in reducer.h causes the
* `reducer< op_list_prepend<Type, Allocator> >` class to have an
* `operator reducer_list_prepend<Type, Allocator>& ()` conversion operator
* that statically downcasts the `reducer<op_list_prepend>` to the
* corresponding `reducer_list_prepend` type. (The reverse conversion, from
* `reducer_list_prepend` to `reducer<op_list_prepend>`, is just an upcast,
* which is provided for free by the language.)
*/
template <class Type, class Allocator, bool Align>
struct legacy_reducer_downcast<reducer<op_list_prepend<Type, Allocator, Align> > >
{
typedef reducer_list_prepend<Type, Allocator> type;
};
/// @endcond
//@}
} // Close namespace cilk
#endif // REDUCER_LIST_H_INCLUDED
|