1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
|
/* Try to unroll loops, and split induction variables.
Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Try to unroll a loop, and split induction variables.
Loops for which the number of iterations can be calculated exactly are
handled specially. If the number of iterations times the insn_count is
less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
Otherwise, we try to unroll the loop a number of times modulo the number
of iterations, so that only one exit test will be needed. It is unrolled
a number of times approximately equal to MAX_UNROLLED_INSNS divided by
the insn count.
Otherwise, if the number of iterations can be calculated exactly at
run time, and the loop is always entered at the top, then we try to
precondition the loop. That is, at run time, calculate how many times
the loop will execute, and then execute the loop body a few times so
that the remaining iterations will be some multiple of 4 (or 2 if the
loop is large). Then fall through to a loop unrolled 4 (or 2) times,
with only one exit test needed at the end of the loop.
Otherwise, if the number of iterations can not be calculated exactly,
not even at run time, then we still unroll the loop a number of times
approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
but there must be an exit test after each copy of the loop body.
For each induction variable, which is dead outside the loop (replaceable)
or for which we can easily calculate the final value, if we can easily
calculate its value at each place where it is set as a function of the
current loop unroll count and the variable's value at loop entry, then
the induction variable is split into `N' different variables, one for
each copy of the loop body. One variable is live across the backward
branch, and the others are all calculated as a function of this variable.
This helps eliminate data dependencies, and leads to further opportunities
for cse. */
/* Possible improvements follow: */
/* ??? Add an extra pass somewhere to determine whether unrolling will
give any benefit. E.g. after generating all unrolled insns, compute the
cost of all insns and compare against cost of insns in rolled loop.
- On traditional architectures, unrolling a non-constant bound loop
is a win if there is a giv whose only use is in memory addresses, the
memory addresses can be split, and hence giv increments can be
eliminated.
- It is also a win if the loop is executed many times, and preconditioning
can be performed for the loop.
Add code to check for these and similar cases. */
/* ??? Improve control of which loops get unrolled. Could use profiling
info to only unroll the most commonly executed loops. Perhaps have
a user specifyable option to control the amount of code expansion,
or the percent of loops to consider for unrolling. Etc. */
/* ??? Look at the register copies inside the loop to see if they form a
simple permutation. If so, iterate the permutation until it gets back to
the start state. This is how many times we should unroll the loop, for
best results, because then all register copies can be eliminated.
For example, the lisp nreverse function should be unrolled 3 times
while (this)
{
next = this->cdr;
this->cdr = prev;
prev = this;
this = next;
}
??? The number of times to unroll the loop may also be based on data
references in the loop. For example, if we have a loop that references
x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
/* ??? Add some simple linear equation solving capability so that we can
determine the number of loop iterations for more complex loops.
For example, consider this loop from gdb
#define SWAP_TARGET_AND_HOST(buffer,len)
{
char tmp;
char *p = (char *) buffer;
char *q = ((char *) buffer) + len - 1;
int iterations = (len + 1) >> 1;
int i;
for (p; p < q; p++, q--;)
{
tmp = *q;
*q = *p;
*p = tmp;
}
}
Note that:
start value = p = &buffer + current_iteration
end value = q = &buffer + len - 1 - current_iteration
Given the loop exit test of "p < q", then there must be "q - p" iterations,
set equal to zero and solve for number of iterations:
q - p = len - 1 - 2*current_iteration = 0
current_iteration = (len - 1) / 2
Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
iterations of this loop. */
/* ??? Currently, no labels are marked as loop invariant when doing loop
unrolling. This is because an insn inside the loop, that loads the address
of a label inside the loop into a register, could be moved outside the loop
by the invariant code motion pass if labels were invariant. If the loop
is subsequently unrolled, the code will be wrong because each unrolled
body of the loop will use the same address, whereas each actually needs a
different address. A case where this happens is when a loop containing
a switch statement is unrolled.
It would be better to let labels be considered invariant. When we
unroll loops here, check to see if any insns using a label local to the
loop were moved before the loop. If so, then correct the problem, by
moving the insn back into the loop, or perhaps replicate the insn before
the loop, one copy for each time the loop is unrolled. */
/* The prime factors looked for when trying to unroll a loop by some
number which is modulo the total number of iterations. Just checking
for these 4 prime factors will find at least one factor for 75% of
all numbers theoretically. Practically speaking, this will succeed
almost all of the time since loops are generally a multiple of 2
and/or 5. */
#define NUM_FACTORS 4
struct _factor { int factor, count; }
factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
/* Describes the different types of loop unrolling performed. */
enum unroll_types
{
UNROLL_COMPLETELY,
UNROLL_MODULO,
UNROLL_NAIVE
};
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "integrate.h"
#include "regs.h"
#include "recog.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "loop.h"
#include "toplev.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "predict.h"
/* This controls which loops are unrolled, and by how much we unroll
them. */
#ifndef MAX_UNROLLED_INSNS
#define MAX_UNROLLED_INSNS 100
#endif
/* Indexed by register number, if non-zero, then it contains a pointer
to a struct induction for a DEST_REG giv which has been combined with
one of more address givs. This is needed because whenever such a DEST_REG
giv is modified, we must modify the value of all split address givs
that were combined with this DEST_REG giv. */
static struct induction **addr_combined_regs;
/* Indexed by register number, if this is a splittable induction variable,
then this will hold the current value of the register, which depends on the
iteration number. */
static rtx *splittable_regs;
/* Indexed by register number, if this is a splittable induction variable,
then this will hold the number of instructions in the loop that modify
the induction variable. Used to ensure that only the last insn modifying
a split iv will update the original iv of the dest. */
static int *splittable_regs_updates;
/* Forward declarations. */
static void init_reg_map PARAMS ((struct inline_remap *, int));
static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
struct inline_remap *, rtx, int,
enum unroll_types, rtx, rtx, rtx, rtx));
static int find_splittable_regs PARAMS ((const struct loop *,
enum unroll_types, int));
static int find_splittable_givs PARAMS ((const struct loop *,
struct iv_class *, enum unroll_types,
rtx, int));
static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
static int verify_addresses PARAMS ((struct induction *, rtx, int));
static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
static rtx find_common_reg_term PARAMS ((rtx, rtx));
static rtx subtract_reg_term PARAMS ((rtx, rtx));
static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
/* Try to unroll one loop and split induction variables in the loop.
The loop is described by the arguments LOOP and INSN_COUNT.
STRENGTH_REDUCTION_P indicates whether information generated in the
strength reduction pass is available.
This function is intended to be called from within `strength_reduce'
in loop.c. */
void
unroll_loop (loop, insn_count, strength_reduce_p)
struct loop *loop;
int insn_count;
int strength_reduce_p;
{
struct loop_info *loop_info = LOOP_INFO (loop);
struct loop_ivs *ivs = LOOP_IVS (loop);
int i, j;
unsigned int r;
unsigned HOST_WIDE_INT temp;
int unroll_number = 1;
rtx copy_start, copy_end;
rtx insn, sequence, pattern, tem;
int max_labelno, max_insnno;
rtx insert_before;
struct inline_remap *map;
char *local_label = NULL;
char *local_regno;
unsigned int max_local_regnum;
unsigned int maxregnum;
rtx exit_label = 0;
rtx start_label;
struct iv_class *bl;
int splitting_not_safe = 0;
enum unroll_types unroll_type = UNROLL_NAIVE;
int loop_preconditioned = 0;
rtx safety_label;
/* This points to the last real insn in the loop, which should be either
a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
jumps). */
rtx last_loop_insn;
rtx loop_start = loop->start;
rtx loop_end = loop->end;
/* Don't bother unrolling huge loops. Since the minimum factor is
two, loops greater than one half of MAX_UNROLLED_INSNS will never
be unrolled. */
if (insn_count > MAX_UNROLLED_INSNS / 2)
{
if (loop_dump_stream)
fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
return;
}
/* When emitting debugger info, we can't unroll loops with unequal numbers
of block_beg and block_end notes, because that would unbalance the block
structure of the function. This can happen as a result of the
"if (foo) bar; else break;" optimization in jump.c. */
/* ??? Gcc has a general policy that -g is never supposed to change the code
that the compiler emits, so we must disable this optimization always,
even if debug info is not being output. This is rare, so this should
not be a significant performance problem. */
if (1 /* write_symbols != NO_DEBUG */)
{
int block_begins = 0;
int block_ends = 0;
for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == NOTE)
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
block_begins++;
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
block_ends++;
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
{
/* Note, would be nice to add code to unroll EH
regions, but until that time, we punt (don't
unroll). For the proper way of doing it, see
expand_inline_function. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: cannot unroll EH regions.\n");
return;
}
}
}
if (block_begins != block_ends)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: Unbalanced block notes.\n");
return;
}
}
/* Determine type of unroll to perform. Depends on the number of iterations
and the size of the loop. */
/* If there is no strength reduce info, then set
loop_info->n_iterations to zero. This can happen if
strength_reduce can't find any bivs in the loop. A value of zero
indicates that the number of iterations could not be calculated. */
if (! strength_reduce_p)
loop_info->n_iterations = 0;
if (loop_dump_stream && loop_info->n_iterations > 0)
{
fputs ("Loop unrolling: ", loop_dump_stream);
fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
loop_info->n_iterations);
fputs (" iterations.\n", loop_dump_stream);
}
/* Find and save a pointer to the last nonnote insn in the loop. */
last_loop_insn = prev_nonnote_insn (loop_end);
/* Calculate how many times to unroll the loop. Indicate whether or
not the loop is being completely unrolled. */
if (loop_info->n_iterations == 1)
{
/* Handle the case where the loop begins with an unconditional
jump to the loop condition. Make sure to delete the jump
insn, otherwise the loop body will never execute. */
rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
if (ujump)
delete_related_insns (ujump);
/* If number of iterations is exactly 1, then eliminate the compare and
branch at the end of the loop since they will never be taken.
Then return, since no other action is needed here. */
/* If the last instruction is not a BARRIER or a JUMP_INSN, then
don't do anything. */
if (GET_CODE (last_loop_insn) == BARRIER)
{
/* Delete the jump insn. This will delete the barrier also. */
delete_related_insns (PREV_INSN (last_loop_insn));
}
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
#ifdef HAVE_cc0
rtx prev = PREV_INSN (last_loop_insn);
#endif
delete_related_insns (last_loop_insn);
#ifdef HAVE_cc0
/* The immediately preceding insn may be a compare which must be
deleted. */
if (only_sets_cc0_p (prev))
delete_related_insns (prev);
#endif
}
/* Remove the loop notes since this is no longer a loop. */
if (loop->vtop)
delete_related_insns (loop->vtop);
if (loop->cont)
delete_related_insns (loop->cont);
if (loop_start)
delete_related_insns (loop_start);
if (loop_end)
delete_related_insns (loop_end);
return;
}
else if (loop_info->n_iterations > 0
/* Avoid overflow in the next expression. */
&& loop_info->n_iterations < MAX_UNROLLED_INSNS
&& loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
{
unroll_number = loop_info->n_iterations;
unroll_type = UNROLL_COMPLETELY;
}
else if (loop_info->n_iterations > 0)
{
/* Try to factor the number of iterations. Don't bother with the
general case, only using 2, 3, 5, and 7 will get 75% of all
numbers theoretically, and almost all in practice. */
for (i = 0; i < NUM_FACTORS; i++)
factors[i].count = 0;
temp = loop_info->n_iterations;
for (i = NUM_FACTORS - 1; i >= 0; i--)
while (temp % factors[i].factor == 0)
{
factors[i].count++;
temp = temp / factors[i].factor;
}
/* Start with the larger factors first so that we generally
get lots of unrolling. */
unroll_number = 1;
temp = insn_count;
for (i = 3; i >= 0; i--)
while (factors[i].count--)
{
if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
{
unroll_number *= factors[i].factor;
temp *= factors[i].factor;
}
else
break;
}
/* If we couldn't find any factors, then unroll as in the normal
case. */
if (unroll_number == 1)
{
if (loop_dump_stream)
fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
}
else
unroll_type = UNROLL_MODULO;
}
/* Default case, calculate number of times to unroll loop based on its
size. */
if (unroll_type == UNROLL_NAIVE)
{
if (8 * insn_count < MAX_UNROLLED_INSNS)
unroll_number = 8;
else if (4 * insn_count < MAX_UNROLLED_INSNS)
unroll_number = 4;
else
unroll_number = 2;
}
/* Now we know how many times to unroll the loop. */
if (loop_dump_stream)
fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
{
/* Loops of these types can start with jump down to the exit condition
in rare circumstances.
Consider a pair of nested loops where the inner loop is part
of the exit code for the outer loop.
In this case jump.c will not duplicate the exit test for the outer
loop, so it will start with a jump to the exit code.
Then consider if the inner loop turns out to iterate once and
only once. We will end up deleting the jumps associated with
the inner loop. However, the loop notes are not removed from
the instruction stream.
And finally assume that we can compute the number of iterations
for the outer loop.
In this case unroll may want to unroll the outer loop even though
it starts with a jump to the outer loop's exit code.
We could try to optimize this case, but it hardly seems worth it.
Just return without unrolling the loop in such cases. */
insn = loop_start;
while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
insn = NEXT_INSN (insn);
if (GET_CODE (insn) == JUMP_INSN)
return;
}
if (unroll_type == UNROLL_COMPLETELY)
{
/* Completely unrolling the loop: Delete the compare and branch at
the end (the last two instructions). This delete must done at the
very end of loop unrolling, to avoid problems with calls to
back_branch_in_range_p, which is called by find_splittable_regs.
All increments of splittable bivs/givs are changed to load constant
instructions. */
copy_start = loop_start;
/* Set insert_before to the instruction immediately after the JUMP_INSN
(or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
the loop will be correctly handled by copy_loop_body. */
insert_before = NEXT_INSN (last_loop_insn);
/* Set copy_end to the insn before the jump at the end of the loop. */
if (GET_CODE (last_loop_insn) == BARRIER)
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
copy_end = PREV_INSN (last_loop_insn);
#ifdef HAVE_cc0
/* The instruction immediately before the JUMP_INSN may be a compare
instruction which we do not want to copy. */
if (sets_cc0_p (PREV_INSN (copy_end)))
copy_end = PREV_INSN (copy_end);
#endif
}
else
{
/* We currently can't unroll a loop if it doesn't end with a
JUMP_INSN. There would need to be a mechanism that recognizes
this case, and then inserts a jump after each loop body, which
jumps to after the last loop body. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop does not end with a JUMP_INSN.\n");
return;
}
}
else if (unroll_type == UNROLL_MODULO)
{
/* Partially unrolling the loop: The compare and branch at the end
(the last two instructions) must remain. Don't copy the compare
and branch instructions at the end of the loop. Insert the unrolled
code immediately before the compare/branch at the end so that the
code will fall through to them as before. */
copy_start = loop_start;
/* Set insert_before to the jump insn at the end of the loop.
Set copy_end to before the jump insn at the end of the loop. */
if (GET_CODE (last_loop_insn) == BARRIER)
{
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
}
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
insert_before = last_loop_insn;
#ifdef HAVE_cc0
/* The instruction immediately before the JUMP_INSN may be a compare
instruction which we do not want to copy or delete. */
if (sets_cc0_p (PREV_INSN (insert_before)))
insert_before = PREV_INSN (insert_before);
#endif
copy_end = PREV_INSN (insert_before);
}
else
{
/* We currently can't unroll a loop if it doesn't end with a
JUMP_INSN. There would need to be a mechanism that recognizes
this case, and then inserts a jump after each loop body, which
jumps to after the last loop body. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop does not end with a JUMP_INSN.\n");
return;
}
}
else
{
/* Normal case: Must copy the compare and branch instructions at the
end of the loop. */
if (GET_CODE (last_loop_insn) == BARRIER)
{
/* Loop ends with an unconditional jump and a barrier.
Handle this like above, don't copy jump and barrier.
This is not strictly necessary, but doing so prevents generating
unconditional jumps to an immediately following label.
This will be corrected below if the target of this jump is
not the start_label. */
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
}
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
/* Set insert_before to immediately after the JUMP_INSN, so that
NOTEs at the end of the loop will be correctly handled by
copy_loop_body. */
insert_before = NEXT_INSN (last_loop_insn);
copy_end = last_loop_insn;
}
else
{
/* We currently can't unroll a loop if it doesn't end with a
JUMP_INSN. There would need to be a mechanism that recognizes
this case, and then inserts a jump after each loop body, which
jumps to after the last loop body. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop does not end with a JUMP_INSN.\n");
return;
}
/* If copying exit test branches because they can not be eliminated,
then must convert the fall through case of the branch to a jump past
the end of the loop. Create a label to emit after the loop and save
it for later use. Do not use the label after the loop, if any, since
it might be used by insns outside the loop, or there might be insns
added before it later by final_[bg]iv_value which must be after
the real exit label. */
exit_label = gen_label_rtx ();
insn = loop_start;
while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
insn = NEXT_INSN (insn);
if (GET_CODE (insn) == JUMP_INSN)
{
/* The loop starts with a jump down to the exit condition test.
Start copying the loop after the barrier following this
jump insn. */
copy_start = NEXT_INSN (insn);
/* Splitting induction variables doesn't work when the loop is
entered via a jump to the bottom, because then we end up doing
a comparison against a new register for a split variable, but
we did not execute the set insn for the new register because
it was skipped over. */
splitting_not_safe = 1;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Splitting not safe, because loop not entered at top.\n");
}
else
copy_start = loop_start;
}
/* This should always be the first label in the loop. */
start_label = NEXT_INSN (copy_start);
/* There may be a line number note and/or a loop continue note here. */
while (GET_CODE (start_label) == NOTE)
start_label = NEXT_INSN (start_label);
if (GET_CODE (start_label) != CODE_LABEL)
{
/* This can happen as a result of jump threading. If the first insns in
the loop test the same condition as the loop's backward jump, or the
opposite condition, then the backward jump will be modified to point
to elsewhere, and the loop's start label is deleted.
This case currently can not be handled by the loop unrolling code. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: unknown insns between BEG note and loop label.\n");
return;
}
if (LABEL_NAME (start_label))
{
/* The jump optimization pass must have combined the original start label
with a named label for a goto. We can't unroll this case because
jumps which go to the named label must be handled differently than
jumps to the loop start, and it is impossible to differentiate them
in this case. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop start label is gone\n");
return;
}
if (unroll_type == UNROLL_NAIVE
&& GET_CODE (last_loop_insn) == BARRIER
&& GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
&& start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
{
/* In this case, we must copy the jump and barrier, because they will
not be converted to jumps to an immediately following label. */
insert_before = NEXT_INSN (last_loop_insn);
copy_end = last_loop_insn;
}
if (unroll_type == UNROLL_NAIVE
&& GET_CODE (last_loop_insn) == JUMP_INSN
&& start_label != JUMP_LABEL (last_loop_insn))
{
/* ??? The loop ends with a conditional branch that does not branch back
to the loop start label. In this case, we must emit an unconditional
branch to the loop exit after emitting the final branch.
copy_loop_body does not have support for this currently, so we
give up. It doesn't seem worthwhile to unroll anyways since
unrolling would increase the number of branch instructions
executed. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: final conditional branch not to loop start\n");
return;
}
/* Allocate a translation table for the labels and insn numbers.
They will be filled in as we copy the insns in the loop. */
max_labelno = max_label_num ();
max_insnno = get_max_uid ();
/* Various paths through the unroll code may reach the "egress" label
without initializing fields within the map structure.
To be safe, we use xcalloc to zero the memory. */
map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
/* Allocate the label map. */
if (max_labelno > 0)
{
map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
local_label = (char *) xcalloc (max_labelno, sizeof (char));
}
/* Search the loop and mark all local labels, i.e. the ones which have to
be distinct labels when copied. For all labels which might be
non-local, set their label_map entries to point to themselves.
If they happen to be local their label_map entries will be overwritten
before the loop body is copied. The label_map entries for local labels
will be set to a different value each time the loop body is copied. */
for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
{
rtx note;
if (GET_CODE (insn) == CODE_LABEL)
local_label[CODE_LABEL_NUMBER (insn)] = 1;
else if (GET_CODE (insn) == JUMP_INSN)
{
if (JUMP_LABEL (insn))
set_label_in_map (map,
CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
JUMP_LABEL (insn));
else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
{
rtx pat = PATTERN (insn);
int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
rtx label;
for (i = 0; i < len; i++)
{
label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
}
}
}
if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
XEXP (note, 0));
}
/* Allocate space for the insn map. */
map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
/* Set this to zero, to indicate that we are doing loop unrolling,
not function inlining. */
map->inline_target = 0;
/* The register and constant maps depend on the number of registers
present, so the final maps can't be created until after
find_splittable_regs is called. However, they are needed for
preconditioning, so we create temporary maps when preconditioning
is performed. */
/* The preconditioning code may allocate two new pseudo registers. */
maxregnum = max_reg_num ();
/* local_regno is only valid for regnos < max_local_regnum. */
max_local_regnum = maxregnum;
/* Allocate and zero out the splittable_regs and addr_combined_regs
arrays. These must be zeroed here because they will be used if
loop preconditioning is performed, and must be zero for that case.
It is safe to do this here, since the extra registers created by the
preconditioning code and find_splittable_regs will never be used
to access the splittable_regs[] and addr_combined_regs[] arrays. */
splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
addr_combined_regs
= (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
local_regno = (char *) xcalloc (maxregnum, sizeof (char));
/* Mark all local registers, i.e. the ones which are referenced only
inside the loop. */
if (INSN_UID (copy_end) < max_uid_for_loop)
{
int copy_start_luid = INSN_LUID (copy_start);
int copy_end_luid = INSN_LUID (copy_end);
/* If a register is used in the jump insn, we must not duplicate it
since it will also be used outside the loop. */
if (GET_CODE (copy_end) == JUMP_INSN)
copy_end_luid--;
/* If we have a target that uses cc0, then we also must not duplicate
the insn that sets cc0 before the jump insn, if one is present. */
#ifdef HAVE_cc0
if (GET_CODE (copy_end) == JUMP_INSN
&& sets_cc0_p (PREV_INSN (copy_end)))
copy_end_luid--;
#endif
/* If copy_start points to the NOTE that starts the loop, then we must
use the next luid, because invariant pseudo-regs moved out of the loop
have their lifetimes modified to start here, but they are not safe
to duplicate. */
if (copy_start == loop_start)
copy_start_luid++;
/* If a pseudo's lifetime is entirely contained within this loop, then we
can use a different pseudo in each unrolled copy of the loop. This
results in better code. */
/* We must limit the generic test to max_reg_before_loop, because only
these pseudo registers have valid regno_first_uid info. */
for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
&& REGNO_FIRST_LUID (r) >= copy_start_luid
&& REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
&& REGNO_LAST_LUID (r) <= copy_end_luid)
{
/* However, we must also check for loop-carried dependencies.
If the value the pseudo has at the end of iteration X is
used by iteration X+1, then we can not use a different pseudo
for each unrolled copy of the loop. */
/* A pseudo is safe if regno_first_uid is a set, and this
set dominates all instructions from regno_first_uid to
regno_last_uid. */
/* ??? This check is simplistic. We would get better code if
this check was more sophisticated. */
if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
copy_start, copy_end))
local_regno[r] = 1;
if (loop_dump_stream)
{
if (local_regno[r])
fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
else
fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
r);
}
}
}
/* If this loop requires exit tests when unrolled, check to see if we
can precondition the loop so as to make the exit tests unnecessary.
Just like variable splitting, this is not safe if the loop is entered
via a jump to the bottom. Also, can not do this if no strength
reduce info, because precondition_loop_p uses this info. */
/* Must copy the loop body for preconditioning before the following
find_splittable_regs call since that will emit insns which need to
be after the preconditioned loop copies, but immediately before the
unrolled loop copies. */
/* Also, it is not safe to split induction variables for the preconditioned
copies of the loop body. If we split induction variables, then the code
assumes that each induction variable can be represented as a function
of its initial value and the loop iteration number. This is not true
in this case, because the last preconditioned copy of the loop body
could be any iteration from the first up to the `unroll_number-1'th,
depending on the initial value of the iteration variable. Therefore
we can not split induction variables here, because we can not calculate
their value. Hence, this code must occur before find_splittable_regs
is called. */
if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
{
rtx initial_value, final_value, increment;
enum machine_mode mode;
if (precondition_loop_p (loop,
&initial_value, &final_value, &increment,
&mode))
{
rtx diff;
rtx *labels;
int abs_inc, neg_inc;
map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
"unroll_loop_precondition");
global_const_equiv_varray = map->const_equiv_varray;
init_reg_map (map, maxregnum);
/* Limit loop unrolling to 4, since this will make 7 copies of
the loop body. */
if (unroll_number > 4)
unroll_number = 4;
/* Save the absolute value of the increment, and also whether or
not it is negative. */
neg_inc = 0;
abs_inc = INTVAL (increment);
if (abs_inc < 0)
{
abs_inc = -abs_inc;
neg_inc = 1;
}
start_sequence ();
/* Calculate the difference between the final and initial values.
Final value may be a (plus (reg x) (const_int 1)) rtx.
Let the following cse pass simplify this if initial value is
a constant.
We must copy the final and initial values here to avoid
improperly shared rtl. */
diff = expand_simple_binop (mode, MINUS, copy_rtx (final_value),
copy_rtx (initial_value), NULL_RTX, 0,
OPTAB_LIB_WIDEN);
/* Now calculate (diff % (unroll * abs (increment))) by using an
and instruction. */
diff = expand_simple_binop (GET_MODE (diff), AND, diff,
GEN_INT (unroll_number * abs_inc - 1),
NULL_RTX, 0, OPTAB_LIB_WIDEN);
/* Now emit a sequence of branches to jump to the proper precond
loop entry point. */
labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
for (i = 0; i < unroll_number; i++)
labels[i] = gen_label_rtx ();
/* Check for the case where the initial value is greater than or
equal to the final value. In that case, we want to execute
exactly one loop iteration. The code below will fail for this
case. This check does not apply if the loop has a NE
comparison at the end. */
if (loop_info->comparison_code != NE)
{
emit_cmp_and_jump_insns (initial_value, final_value,
neg_inc ? LE : GE,
NULL_RTX, mode, 0, labels[1]);
predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION,
NOT_TAKEN);
JUMP_LABEL (get_last_insn ()) = labels[1];
LABEL_NUSES (labels[1])++;
}
/* Assuming the unroll_number is 4, and the increment is 2, then
for a negative increment: for a positive increment:
diff = 0,1 precond 0 diff = 0,7 precond 0
diff = 2,3 precond 3 diff = 1,2 precond 1
diff = 4,5 precond 2 diff = 3,4 precond 2
diff = 6,7 precond 1 diff = 5,6 precond 3 */
/* We only need to emit (unroll_number - 1) branches here, the
last case just falls through to the following code. */
/* ??? This would give better code if we emitted a tree of branches
instead of the current linear list of branches. */
for (i = 0; i < unroll_number - 1; i++)
{
int cmp_const;
enum rtx_code cmp_code;
/* For negative increments, must invert the constant compared
against, except when comparing against zero. */
if (i == 0)
{
cmp_const = 0;
cmp_code = EQ;
}
else if (neg_inc)
{
cmp_const = unroll_number - i;
cmp_code = GE;
}
else
{
cmp_const = i;
cmp_code = LE;
}
emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
cmp_code, NULL_RTX, mode, 0, labels[i]);
JUMP_LABEL (get_last_insn ()) = labels[i];
LABEL_NUSES (labels[i])++;
predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
REG_BR_PROB_BASE / (unroll_number - i));
}
/* If the increment is greater than one, then we need another branch,
to handle other cases equivalent to 0. */
/* ??? This should be merged into the code above somehow to help
simplify the code here, and reduce the number of branches emitted.
For the negative increment case, the branch here could easily
be merged with the `0' case branch above. For the positive
increment case, it is not clear how this can be simplified. */
if (abs_inc != 1)
{
int cmp_const;
enum rtx_code cmp_code;
if (neg_inc)
{
cmp_const = abs_inc - 1;
cmp_code = LE;
}
else
{
cmp_const = abs_inc * (unroll_number - 1) + 1;
cmp_code = GE;
}
emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
NULL_RTX, mode, 0, labels[0]);
JUMP_LABEL (get_last_insn ()) = labels[0];
LABEL_NUSES (labels[0])++;
}
sequence = gen_sequence ();
end_sequence ();
loop_insn_hoist (loop, sequence);
/* Only the last copy of the loop body here needs the exit
test, so set copy_end to exclude the compare/branch here,
and then reset it inside the loop when get to the last
copy. */
if (GET_CODE (last_loop_insn) == BARRIER)
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
copy_end = PREV_INSN (last_loop_insn);
#ifdef HAVE_cc0
/* The immediately preceding insn may be a compare which
we do not want to copy. */
if (sets_cc0_p (PREV_INSN (copy_end)))
copy_end = PREV_INSN (copy_end);
#endif
}
else
abort ();
for (i = 1; i < unroll_number; i++)
{
emit_label_after (labels[unroll_number - i],
PREV_INSN (loop_start));
memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
0, (VARRAY_SIZE (map->const_equiv_varray)
* sizeof (struct const_equiv_data)));
map->const_age = 0;
for (j = 0; j < max_labelno; j++)
if (local_label[j])
set_label_in_map (map, j, gen_label_rtx ());
for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
if (local_regno[r])
{
map->reg_map[r]
= gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
record_base_value (REGNO (map->reg_map[r]),
regno_reg_rtx[r], 0);
}
/* The last copy needs the compare/branch insns at the end,
so reset copy_end here if the loop ends with a conditional
branch. */
if (i == unroll_number - 1)
{
if (GET_CODE (last_loop_insn) == BARRIER)
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
else
copy_end = last_loop_insn;
}
/* None of the copies are the `last_iteration', so just
pass zero for that parameter. */
copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
unroll_type, start_label, loop_end,
loop_start, copy_end);
}
emit_label_after (labels[0], PREV_INSN (loop_start));
if (GET_CODE (last_loop_insn) == BARRIER)
{
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
}
else
{
insert_before = last_loop_insn;
#ifdef HAVE_cc0
/* The instruction immediately before the JUMP_INSN may
be a compare instruction which we do not want to copy
or delete. */
if (sets_cc0_p (PREV_INSN (insert_before)))
insert_before = PREV_INSN (insert_before);
#endif
copy_end = PREV_INSN (insert_before);
}
/* Set unroll type to MODULO now. */
unroll_type = UNROLL_MODULO;
loop_preconditioned = 1;
/* Clean up. */
free (labels);
}
}
/* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
the loop unless all loops are being unrolled. */
if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: Naive unrolling not being done.\n");
goto egress;
}
/* At this point, we are guaranteed to unroll the loop. */
/* Keep track of the unroll factor for the loop. */
loop_info->unroll_number = unroll_number;
/* For each biv and giv, determine whether it can be safely split into
a different variable for each unrolled copy of the loop body.
We precalculate and save this info here, since computing it is
expensive.
Do this before deleting any instructions from the loop, so that
back_branch_in_range_p will work correctly. */
if (splitting_not_safe)
temp = 0;
else
temp = find_splittable_regs (loop, unroll_type, unroll_number);
/* find_splittable_regs may have created some new registers, so must
reallocate the reg_map with the new larger size, and must realloc
the constant maps also. */
maxregnum = max_reg_num ();
map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
init_reg_map (map, maxregnum);
if (map->const_equiv_varray == 0)
VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
maxregnum + temp * unroll_number * 2,
"unroll_loop");
global_const_equiv_varray = map->const_equiv_varray;
/* Search the list of bivs and givs to find ones which need to be remapped
when split, and set their reg_map entry appropriately. */
for (bl = ivs->list; bl; bl = bl->next)
{
if (REGNO (bl->biv->src_reg) != bl->regno)
map->reg_map[bl->regno] = bl->biv->src_reg;
#if 0
/* Currently, non-reduced/final-value givs are never split. */
for (v = bl->giv; v; v = v->next_iv)
if (REGNO (v->src_reg) != bl->regno)
map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
#endif
}
/* Use our current register alignment and pointer flags. */
map->regno_pointer_align = cfun->emit->regno_pointer_align;
map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
/* If the loop is being partially unrolled, and the iteration variables
are being split, and are being renamed for the split, then must fix up
the compare/jump instruction at the end of the loop to refer to the new
registers. This compare isn't copied, so the registers used in it
will never be replaced if it isn't done here. */
if (unroll_type == UNROLL_MODULO)
{
insn = NEXT_INSN (copy_end);
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
}
/* For unroll_number times, make a copy of each instruction
between copy_start and copy_end, and insert these new instructions
before the end of the loop. */
for (i = 0; i < unroll_number; i++)
{
memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
map->const_age = 0;
for (j = 0; j < max_labelno; j++)
if (local_label[j])
set_label_in_map (map, j, gen_label_rtx ());
for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
if (local_regno[r])
{
map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
record_base_value (REGNO (map->reg_map[r]),
regno_reg_rtx[r], 0);
}
/* If loop starts with a branch to the test, then fix it so that
it points to the test of the first unrolled copy of the loop. */
if (i == 0 && loop_start != copy_start)
{
insn = PREV_INSN (copy_start);
pattern = PATTERN (insn);
tem = get_label_from_map (map,
CODE_LABEL_NUMBER
(XEXP (SET_SRC (pattern), 0)));
SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
/* Set the jump label so that it can be used by later loop unrolling
passes. */
JUMP_LABEL (insn) = tem;
LABEL_NUSES (tem)++;
}
copy_loop_body (loop, copy_start, copy_end, map, exit_label,
i == unroll_number - 1, unroll_type, start_label,
loop_end, insert_before, insert_before);
}
/* Before deleting any insns, emit a CODE_LABEL immediately after the last
insn to be deleted. This prevents any runaway delete_insn call from
more insns that it should, as it always stops at a CODE_LABEL. */
/* Delete the compare and branch at the end of the loop if completely
unrolling the loop. Deleting the backward branch at the end also
deletes the code label at the start of the loop. This is done at
the very end to avoid problems with back_branch_in_range_p. */
if (unroll_type == UNROLL_COMPLETELY)
safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
else
safety_label = emit_label_after (gen_label_rtx (), copy_end);
/* Delete all of the original loop instructions. Don't delete the
LOOP_BEG note, or the first code label in the loop. */
insn = NEXT_INSN (copy_start);
while (insn != safety_label)
{
/* ??? Don't delete named code labels. They will be deleted when the
jump that references them is deleted. Otherwise, we end up deleting
them twice, which causes them to completely disappear instead of turn
into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
to handle deleted labels instead. Or perhaps fix DECL_RTL of the
associated LABEL_DECL to point to one of the new label instances. */
/* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
if (insn != start_label
&& ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
&& ! (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
insn = delete_related_insns (insn);
else
insn = NEXT_INSN (insn);
}
/* Can now delete the 'safety' label emitted to protect us from runaway
delete_related_insns calls. */
if (INSN_DELETED_P (safety_label))
abort ();
delete_related_insns (safety_label);
/* If exit_label exists, emit it after the loop. Doing the emit here
forces it to have a higher INSN_UID than any insn in the unrolled loop.
This is needed so that mostly_true_jump in reorg.c will treat jumps
to this loop end label correctly, i.e. predict that they are usually
not taken. */
if (exit_label)
emit_label_after (exit_label, loop_end);
egress:
if (unroll_type == UNROLL_COMPLETELY)
{
/* Remove the loop notes since this is no longer a loop. */
if (loop->vtop)
delete_related_insns (loop->vtop);
if (loop->cont)
delete_related_insns (loop->cont);
if (loop_start)
delete_related_insns (loop_start);
if (loop_end)
delete_related_insns (loop_end);
}
if (map->const_equiv_varray)
VARRAY_FREE (map->const_equiv_varray);
if (map->label_map)
{
free (map->label_map);
free (local_label);
}
free (map->insn_map);
free (splittable_regs);
free (splittable_regs_updates);
free (addr_combined_regs);
free (local_regno);
if (map->reg_map)
free (map->reg_map);
free (map);
}
/* Return true if the loop can be safely, and profitably, preconditioned
so that the unrolled copies of the loop body don't need exit tests.
This only works if final_value, initial_value and increment can be
determined, and if increment is a constant power of 2.
If increment is not a power of 2, then the preconditioning modulo
operation would require a real modulo instead of a boolean AND, and this
is not considered `profitable'. */
/* ??? If the loop is known to be executed very many times, or the machine
has a very cheap divide instruction, then preconditioning is a win even
when the increment is not a power of 2. Use RTX_COST to compute
whether divide is cheap.
??? A divide by constant doesn't actually need a divide, look at
expand_divmod. The reduced cost of this optimized modulo is not
reflected in RTX_COST. */
int
precondition_loop_p (loop, initial_value, final_value, increment, mode)
const struct loop *loop;
rtx *initial_value, *final_value, *increment;
enum machine_mode *mode;
{
rtx loop_start = loop->start;
struct loop_info *loop_info = LOOP_INFO (loop);
if (loop_info->n_iterations > 0)
{
*initial_value = const0_rtx;
*increment = const1_rtx;
*final_value = GEN_INT (loop_info->n_iterations);
*mode = word_mode;
if (loop_dump_stream)
{
fputs ("Preconditioning: Success, number of iterations known, ",
loop_dump_stream);
fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
loop_info->n_iterations);
fputs (".\n", loop_dump_stream);
}
return 1;
}
if (loop_info->iteration_var == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Could not find iteration variable.\n");
return 0;
}
else if (loop_info->initial_value == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Could not find initial value.\n");
return 0;
}
else if (loop_info->increment == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Could not find increment value.\n");
return 0;
}
else if (GET_CODE (loop_info->increment) != CONST_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Increment not a constant.\n");
return 0;
}
else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
&& (exact_log2 (-INTVAL (loop_info->increment)) < 0))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Increment not a constant power of 2.\n");
return 0;
}
/* Unsigned_compare and compare_dir can be ignored here, since they do
not matter for preconditioning. */
if (loop_info->final_value == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: EQ comparison loop.\n");
return 0;
}
/* Must ensure that final_value is invariant, so call
loop_invariant_p to check. Before doing so, must check regno
against max_reg_before_loop to make sure that the register is in
the range covered by loop_invariant_p. If it isn't, then it is
most likely a biv/giv which by definition are not invariant. */
if ((GET_CODE (loop_info->final_value) == REG
&& REGNO (loop_info->final_value) >= max_reg_before_loop)
|| (GET_CODE (loop_info->final_value) == PLUS
&& REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
|| ! loop_invariant_p (loop, loop_info->final_value))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Final value not invariant.\n");
return 0;
}
/* Fail for floating point values, since the caller of this function
does not have code to deal with them. */
if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
|| GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Floating point final or initial value.\n");
return 0;
}
/* Fail if loop_info->iteration_var is not live before loop_start,
since we need to test its value in the preconditioning code. */
if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
> INSN_LUID (loop_start))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Iteration var not live before loop start.\n");
return 0;
}
/* Note that loop_iterations biases the initial value for GIV iterators
such as "while (i-- > 0)" so that we can calculate the number of
iterations just like for BIV iterators.
Also note that the absolute values of initial_value and
final_value are unimportant as only their difference is used for
calculating the number of loop iterations. */
*initial_value = loop_info->initial_value;
*increment = loop_info->increment;
*final_value = loop_info->final_value;
/* Decide what mode to do these calculations in. Choose the larger
of final_value's mode and initial_value's mode, or a full-word if
both are constants. */
*mode = GET_MODE (*final_value);
if (*mode == VOIDmode)
{
*mode = GET_MODE (*initial_value);
if (*mode == VOIDmode)
*mode = word_mode;
}
else if (*mode != GET_MODE (*initial_value)
&& (GET_MODE_SIZE (*mode)
< GET_MODE_SIZE (GET_MODE (*initial_value))))
*mode = GET_MODE (*initial_value);
/* Success! */
if (loop_dump_stream)
fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
return 1;
}
/* All pseudo-registers must be mapped to themselves. Two hard registers
must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
REGNUM, to avoid function-inlining specific conversions of these
registers. All other hard regs can not be mapped because they may be
used with different
modes. */
static void
init_reg_map (map, maxregnum)
struct inline_remap *map;
int maxregnum;
{
int i;
for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
map->reg_map[i] = regno_reg_rtx[i];
/* Just clear the rest of the entries. */
for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
map->reg_map[i] = 0;
map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
= regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
= regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
}
/* Strength-reduction will often emit code for optimized biv/givs which
calculates their value in a temporary register, and then copies the result
to the iv. This procedure reconstructs the pattern computing the iv;
verifying that all operands are of the proper form.
PATTERN must be the result of single_set.
The return value is the amount that the giv is incremented by. */
static rtx
calculate_giv_inc (pattern, src_insn, regno)
rtx pattern, src_insn;
unsigned int regno;
{
rtx increment;
rtx increment_total = 0;
int tries = 0;
retry:
/* Verify that we have an increment insn here. First check for a plus
as the set source. */
if (GET_CODE (SET_SRC (pattern)) != PLUS)
{
/* SR sometimes computes the new giv value in a temp, then copies it
to the new_reg. */
src_insn = PREV_INSN (src_insn);
pattern = single_set (src_insn);
if (GET_CODE (SET_SRC (pattern)) != PLUS)
abort ();
/* The last insn emitted is not needed, so delete it to avoid confusing
the second cse pass. This insn sets the giv unnecessarily. */
delete_related_insns (get_last_insn ());
}
/* Verify that we have a constant as the second operand of the plus. */
increment = XEXP (SET_SRC (pattern), 1);
if (GET_CODE (increment) != CONST_INT)
{
/* SR sometimes puts the constant in a register, especially if it is
too big to be an add immed operand. */
increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
/* SR may have used LO_SUM to compute the constant if it is too large
for a load immed operand. In this case, the constant is in operand
one of the LO_SUM rtx. */
if (GET_CODE (increment) == LO_SUM)
increment = XEXP (increment, 1);
/* Some ports store large constants in memory and add a REG_EQUAL
note to the store insn. */
else if (GET_CODE (increment) == MEM)
{
rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
if (note)
increment = XEXP (note, 0);
}
else if (GET_CODE (increment) == IOR
|| GET_CODE (increment) == ASHIFT
|| GET_CODE (increment) == PLUS)
{
/* The rs6000 port loads some constants with IOR.
The alpha port loads some constants with ASHIFT and PLUS. */
rtx second_part = XEXP (increment, 1);
enum rtx_code code = GET_CODE (increment);
increment = find_last_value (XEXP (increment, 0),
&src_insn, NULL_RTX, 0);
/* Don't need the last insn anymore. */
delete_related_insns (get_last_insn ());
if (GET_CODE (second_part) != CONST_INT
|| GET_CODE (increment) != CONST_INT)
abort ();
if (code == IOR)
increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
else if (code == PLUS)
increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
else
increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
}
if (GET_CODE (increment) != CONST_INT)
abort ();
/* The insn loading the constant into a register is no longer needed,
so delete it. */
delete_related_insns (get_last_insn ());
}
if (increment_total)
increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
else
increment_total = increment;
/* Check that the source register is the same as the register we expected
to see as the source. If not, something is seriously wrong. */
if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
|| REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
{
/* Some machines (e.g. the romp), may emit two add instructions for
certain constants, so lets try looking for another add immediately
before this one if we have only seen one add insn so far. */
if (tries == 0)
{
tries++;
src_insn = PREV_INSN (src_insn);
pattern = single_set (src_insn);
delete_related_insns (get_last_insn ());
goto retry;
}
abort ();
}
return increment_total;
}
/* Copy REG_NOTES, except for insn references, because not all insn_map
entries are valid yet. We do need to copy registers now though, because
the reg_map entries can change during copying. */
static rtx
initial_reg_note_copy (notes, map)
rtx notes;
struct inline_remap *map;
{
rtx copy;
if (notes == 0)
return 0;
copy = rtx_alloc (GET_CODE (notes));
PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
if (GET_CODE (notes) == EXPR_LIST)
XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
else if (GET_CODE (notes) == INSN_LIST)
/* Don't substitute for these yet. */
XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
else
abort ();
XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
return copy;
}
/* Fixup insn references in copied REG_NOTES. */
static void
final_reg_note_copy (notesp, map)
rtx *notesp;
struct inline_remap *map;
{
while (*notesp)
{
rtx note = *notesp;
if (GET_CODE (note) == INSN_LIST)
{
/* Sometimes, we have a REG_WAS_0 note that points to a
deleted instruction. In that case, we can just delete the
note. */
if (REG_NOTE_KIND (note) == REG_WAS_0)
{
*notesp = XEXP (note, 1);
continue;
}
else
{
rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
/* If we failed to remap the note, something is awry. */
if (!insn)
abort ();
XEXP (note, 0) = insn;
}
}
notesp = &XEXP (note, 1);
}
}
/* Copy each instruction in the loop, substituting from map as appropriate.
This is very similar to a loop in expand_inline_function. */
static void
copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
unroll_type, start_label, loop_end, insert_before,
copy_notes_from)
struct loop *loop;
rtx copy_start, copy_end;
struct inline_remap *map;
rtx exit_label;
int last_iteration;
enum unroll_types unroll_type;
rtx start_label, loop_end, insert_before, copy_notes_from;
{
struct loop_ivs *ivs = LOOP_IVS (loop);
rtx insn, pattern;
rtx set, tem, copy = NULL_RTX;
int dest_reg_was_split, i;
#ifdef HAVE_cc0
rtx cc0_insn = 0;
#endif
rtx final_label = 0;
rtx giv_inc, giv_dest_reg, giv_src_reg;
/* If this isn't the last iteration, then map any references to the
start_label to final_label. Final label will then be emitted immediately
after the end of this loop body if it was ever used.
If this is the last iteration, then map references to the start_label
to itself. */
if (! last_iteration)
{
final_label = gen_label_rtx ();
set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
}
else
set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
start_sequence ();
/* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
Else gen_sequence could return a raw pattern for a jump which we pass
off to emit_insn_before (instead of emit_jump_insn_before) which causes
a variety of losing behaviors later. */
emit_note (0, NOTE_INSN_DELETED);
insn = copy_start;
do
{
insn = NEXT_INSN (insn);
map->orig_asm_operands_vector = 0;
switch (GET_CODE (insn))
{
case INSN:
pattern = PATTERN (insn);
copy = 0;
giv_inc = 0;
/* Check to see if this is a giv that has been combined with
some split address givs. (Combined in the sense that
`combine_givs' in loop.c has put two givs in the same register.)
In this case, we must search all givs based on the same biv to
find the address givs. Then split the address givs.
Do this before splitting the giv, since that may map the
SET_DEST to a new register. */
if ((set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == REG
&& addr_combined_regs[REGNO (SET_DEST (set))])
{
struct iv_class *bl;
struct induction *v, *tv;
unsigned int regno = REGNO (SET_DEST (set));
v = addr_combined_regs[REGNO (SET_DEST (set))];
bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
/* Although the giv_inc amount is not needed here, we must call
calculate_giv_inc here since it might try to delete the
last insn emitted. If we wait until later to call it,
we might accidentally delete insns generated immediately
below by emit_unrolled_add. */
giv_inc = calculate_giv_inc (set, insn, regno);
/* Now find all address giv's that were combined with this
giv 'v'. */
for (tv = bl->giv; tv; tv = tv->next_iv)
if (tv->giv_type == DEST_ADDR && tv->same == v)
{
int this_giv_inc;
/* If this DEST_ADDR giv was not split, then ignore it. */
if (*tv->location != tv->dest_reg)
continue;
/* Scale this_giv_inc if the multiplicative factors of
the two givs are different. */
this_giv_inc = INTVAL (giv_inc);
if (tv->mult_val != v->mult_val)
this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
* INTVAL (tv->mult_val));
tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
*tv->location = tv->dest_reg;
if (last_iteration && unroll_type != UNROLL_COMPLETELY)
{
/* Must emit an insn to increment the split address
giv. Add in the const_adjust field in case there
was a constant eliminated from the address. */
rtx value, dest_reg;
/* tv->dest_reg will be either a bare register,
or else a register plus a constant. */
if (GET_CODE (tv->dest_reg) == REG)
dest_reg = tv->dest_reg;
else
dest_reg = XEXP (tv->dest_reg, 0);
/* Check for shared address givs, and avoid
incrementing the shared pseudo reg more than
once. */
if (! tv->same_insn && ! tv->shared)
{
/* tv->dest_reg may actually be a (PLUS (REG)
(CONST)) here, so we must call plus_constant
to add the const_adjust amount before calling
emit_unrolled_add below. */
value = plus_constant (tv->dest_reg,
tv->const_adjust);
if (GET_CODE (value) == PLUS)
{
/* The constant could be too large for an add
immediate, so can't directly emit an insn
here. */
emit_unrolled_add (dest_reg, XEXP (value, 0),
XEXP (value, 1));
}
}
/* Reset the giv to be just the register again, in case
it is used after the set we have just emitted.
We must subtract the const_adjust factor added in
above. */
tv->dest_reg = plus_constant (dest_reg,
-tv->const_adjust);
*tv->location = tv->dest_reg;
}
}
}
/* If this is a setting of a splittable variable, then determine
how to split the variable, create a new set based on this split,
and set up the reg_map so that later uses of the variable will
use the new split variable. */
dest_reg_was_split = 0;
if ((set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == REG
&& splittable_regs[REGNO (SET_DEST (set))])
{
unsigned int regno = REGNO (SET_DEST (set));
unsigned int src_regno;
dest_reg_was_split = 1;
giv_dest_reg = SET_DEST (set);
giv_src_reg = giv_dest_reg;
/* Compute the increment value for the giv, if it wasn't
already computed above. */
if (giv_inc == 0)
giv_inc = calculate_giv_inc (set, insn, regno);
src_regno = REGNO (giv_src_reg);
if (unroll_type == UNROLL_COMPLETELY)
{
/* Completely unrolling the loop. Set the induction
variable to a known constant value. */
/* The value in splittable_regs may be an invariant
value, so we must use plus_constant here. */
splittable_regs[regno]
= plus_constant (splittable_regs[src_regno],
INTVAL (giv_inc));
if (GET_CODE (splittable_regs[regno]) == PLUS)
{
giv_src_reg = XEXP (splittable_regs[regno], 0);
giv_inc = XEXP (splittable_regs[regno], 1);
}
else
{
/* The splittable_regs value must be a REG or a
CONST_INT, so put the entire value in the giv_src_reg
variable. */
giv_src_reg = splittable_regs[regno];
giv_inc = const0_rtx;
}
}
else
{
/* Partially unrolling loop. Create a new pseudo
register for the iteration variable, and set it to
be a constant plus the original register. Except
on the last iteration, when the result has to
go back into the original iteration var register. */
/* Handle bivs which must be mapped to a new register
when split. This happens for bivs which need their
final value set before loop entry. The new register
for the biv was stored in the biv's first struct
induction entry by find_splittable_regs. */
if (regno < ivs->n_regs
&& REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
{
giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
giv_dest_reg = giv_src_reg;
}
#if 0
/* If non-reduced/final-value givs were split, then
this would have to remap those givs also. See
find_splittable_regs. */
#endif
splittable_regs[regno]
= simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
giv_inc,
splittable_regs[src_regno]);
giv_inc = splittable_regs[regno];
/* Now split the induction variable by changing the dest
of this insn to a new register, and setting its
reg_map entry to point to this new register.
If this is the last iteration, and this is the last insn
that will update the iv, then reuse the original dest,
to ensure that the iv will have the proper value when
the loop exits or repeats.
Using splittable_regs_updates here like this is safe,
because it can only be greater than one if all
instructions modifying the iv are always executed in
order. */
if (! last_iteration
|| (splittable_regs_updates[regno]-- != 1))
{
tem = gen_reg_rtx (GET_MODE (giv_src_reg));
giv_dest_reg = tem;
map->reg_map[regno] = tem;
record_base_value (REGNO (tem),
giv_inc == const0_rtx
? giv_src_reg
: gen_rtx_PLUS (GET_MODE (giv_src_reg),
giv_src_reg, giv_inc),
1);
}
else
map->reg_map[regno] = giv_src_reg;
}
/* The constant being added could be too large for an add
immediate, so can't directly emit an insn here. */
emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
copy = get_last_insn ();
pattern = PATTERN (copy);
}
else
{
pattern = copy_rtx_and_substitute (pattern, map, 0);
copy = emit_insn (pattern);
}
REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
#ifdef HAVE_cc0
/* If this insn is setting CC0, it may need to look at
the insn that uses CC0 to see what type of insn it is.
In that case, the call to recog via validate_change will
fail. So don't substitute constants here. Instead,
do it when we emit the following insn.
For example, see the pyr.md file. That machine has signed and
unsigned compares. The compare patterns must check the
following branch insn to see which what kind of compare to
emit.
If the previous insn set CC0, substitute constants on it as
well. */
if (sets_cc0_p (PATTERN (copy)) != 0)
cc0_insn = copy;
else
{
if (cc0_insn)
try_constants (cc0_insn, map);
cc0_insn = 0;
try_constants (copy, map);
}
#else
try_constants (copy, map);
#endif
/* Make split induction variable constants `permanent' since we
know there are no backward branches across iteration variable
settings which would invalidate this. */
if (dest_reg_was_split)
{
int regno = REGNO (SET_DEST (set));
if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
&& (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
== map->const_age))
VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
}
break;
case JUMP_INSN:
pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
copy = emit_jump_insn (pattern);
REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
if (JUMP_LABEL (insn) == start_label && insn == copy_end
&& ! last_iteration)
{
/* Update JUMP_LABEL make invert_jump work correctly. */
JUMP_LABEL (copy) = get_label_from_map (map,
CODE_LABEL_NUMBER
(JUMP_LABEL (insn)));
LABEL_NUSES (JUMP_LABEL (copy))++;
/* This is a branch to the beginning of the loop; this is the
last insn being copied; and this is not the last iteration.
In this case, we want to change the original fall through
case to be a branch past the end of the loop, and the
original jump label case to fall_through. */
if (!invert_jump (copy, exit_label, 0))
{
rtx jmp;
rtx lab = gen_label_rtx ();
/* Can't do it by reversing the jump (probably because we
couldn't reverse the conditions), so emit a new
jump_insn after COPY, and redirect the jump around
that. */
jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
JUMP_LABEL (jmp) = exit_label;
LABEL_NUSES (exit_label)++;
jmp = emit_barrier_after (jmp);
emit_label_after (lab, jmp);
LABEL_NUSES (lab) = 0;
if (!redirect_jump (copy, lab, 0))
abort ();
}
}
#ifdef HAVE_cc0
if (cc0_insn)
try_constants (cc0_insn, map);
cc0_insn = 0;
#endif
try_constants (copy, map);
/* Set the jump label of COPY correctly to avoid problems with
later passes of unroll_loop, if INSN had jump label set. */
if (JUMP_LABEL (insn))
{
rtx label = 0;
/* Can't use the label_map for every insn, since this may be
the backward branch, and hence the label was not mapped. */
if ((set = single_set (copy)))
{
tem = SET_SRC (set);
if (GET_CODE (tem) == LABEL_REF)
label = XEXP (tem, 0);
else if (GET_CODE (tem) == IF_THEN_ELSE)
{
if (XEXP (tem, 1) != pc_rtx)
label = XEXP (XEXP (tem, 1), 0);
else
label = XEXP (XEXP (tem, 2), 0);
}
}
if (label && GET_CODE (label) == CODE_LABEL)
JUMP_LABEL (copy) = label;
else
{
/* An unrecognizable jump insn, probably the entry jump
for a switch statement. This label must have been mapped,
so just use the label_map to get the new jump label. */
JUMP_LABEL (copy)
= get_label_from_map (map,
CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
}
/* If this is a non-local jump, then must increase the label
use count so that the label will not be deleted when the
original jump is deleted. */
LABEL_NUSES (JUMP_LABEL (copy))++;
}
else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
|| GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
{
rtx pat = PATTERN (copy);
int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
int i;
for (i = 0; i < len; i++)
LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
}
/* If this used to be a conditional jump insn but whose branch
direction is now known, we must do something special. */
if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
{
#ifdef HAVE_cc0
/* If the previous insn set cc0 for us, delete it. */
if (only_sets_cc0_p (PREV_INSN (copy)))
delete_related_insns (PREV_INSN (copy));
#endif
/* If this is now a no-op, delete it. */
if (map->last_pc_value == pc_rtx)
{
delete_insn (copy);
copy = 0;
}
else
/* Otherwise, this is unconditional jump so we must put a
BARRIER after it. We could do some dead code elimination
here, but jump.c will do it just as well. */
emit_barrier ();
}
break;
case CALL_INSN:
pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
copy = emit_call_insn (pattern);
REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
/* Because the USAGE information potentially contains objects other
than hard registers, we need to copy it. */
CALL_INSN_FUNCTION_USAGE (copy)
= copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
map, 0);
#ifdef HAVE_cc0
if (cc0_insn)
try_constants (cc0_insn, map);
cc0_insn = 0;
#endif
try_constants (copy, map);
/* Be lazy and assume CALL_INSNs clobber all hard registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
break;
case CODE_LABEL:
/* If this is the loop start label, then we don't need to emit a
copy of this label since no one will use it. */
if (insn != start_label)
{
copy = emit_label (get_label_from_map (map,
CODE_LABEL_NUMBER (insn)));
map->const_age++;
}
break;
case BARRIER:
copy = emit_barrier ();
break;
case NOTE:
/* VTOP and CONT notes are valid only before the loop exit test.
If placed anywhere else, loop may generate bad code. */
/* BASIC_BLOCK notes exist to stabilize basic block structures with
the associated rtl. We do not want to share the structure in
this new block. */
if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
&& ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
|| (last_iteration && unroll_type != UNROLL_COMPLETELY)))
copy = emit_note (NOTE_SOURCE_FILE (insn),
NOTE_LINE_NUMBER (insn));
else
copy = 0;
break;
default:
abort ();
}
map->insn_map[INSN_UID (insn)] = copy;
}
while (insn != copy_end);
/* Now finish coping the REG_NOTES. */
insn = copy_start;
do
{
insn = NEXT_INSN (insn);
if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
&& map->insn_map[INSN_UID (insn)])
final_reg_note_copy (®_NOTES (map->insn_map[INSN_UID (insn)]), map);
}
while (insn != copy_end);
/* There may be notes between copy_notes_from and loop_end. Emit a copy of
each of these notes here, since there may be some important ones, such as
NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
iteration, because the original notes won't be deleted.
We can't use insert_before here, because when from preconditioning,
insert_before points before the loop. We can't use copy_end, because
there may be insns already inserted after it (which we don't want to
copy) when not from preconditioning code. */
if (! last_iteration)
{
for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
{
/* VTOP notes are valid only before the loop exit test.
If placed anywhere else, loop may generate bad code.
There is no need to test for NOTE_INSN_LOOP_CONT notes
here, since COPY_NOTES_FROM will be at most one or two (for cc0)
instructions before the last insn in the loop, and if the
end test is that short, there will be a VTOP note between
the CONT note and the test. */
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
}
}
if (final_label && LABEL_NUSES (final_label) > 0)
emit_label (final_label);
tem = gen_sequence ();
end_sequence ();
loop_insn_emit_before (loop, 0, insert_before, tem);
}
/* Emit an insn, using the expand_binop to ensure that a valid insn is
emitted. This will correctly handle the case where the increment value
won't fit in the immediate field of a PLUS insns. */
void
emit_unrolled_add (dest_reg, src_reg, increment)
rtx dest_reg, src_reg, increment;
{
rtx result;
result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
dest_reg, 0, OPTAB_LIB_WIDEN);
if (dest_reg != result)
emit_move_insn (dest_reg, result);
}
/* Searches the insns between INSN and LOOP->END. Returns 1 if there
is a backward branch in that range that branches to somewhere between
LOOP->START and INSN. Returns 0 otherwise. */
/* ??? This is quadratic algorithm. Could be rewritten to be linear.
In practice, this is not a problem, because this function is seldom called,
and uses a negligible amount of CPU time on average. */
int
back_branch_in_range_p (loop, insn)
const struct loop *loop;
rtx insn;
{
rtx p, q, target_insn;
rtx loop_start = loop->start;
rtx loop_end = loop->end;
rtx orig_loop_end = loop->end;
/* Stop before we get to the backward branch at the end of the loop. */
loop_end = prev_nonnote_insn (loop_end);
if (GET_CODE (loop_end) == BARRIER)
loop_end = PREV_INSN (loop_end);
/* Check in case insn has been deleted, search forward for first non
deleted insn following it. */
while (INSN_DELETED_P (insn))
insn = NEXT_INSN (insn);
/* Check for the case where insn is the last insn in the loop. Deal
with the case where INSN was a deleted loop test insn, in which case
it will now be the NOTE_LOOP_END. */
if (insn == loop_end || insn == orig_loop_end)
return 0;
for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
{
if (GET_CODE (p) == JUMP_INSN)
{
target_insn = JUMP_LABEL (p);
/* Search from loop_start to insn, to see if one of them is
the target_insn. We can't use INSN_LUID comparisons here,
since insn may not have an LUID entry. */
for (q = loop_start; q != insn; q = NEXT_INSN (q))
if (q == target_insn)
return 1;
}
}
return 0;
}
/* Try to generate the simplest rtx for the expression
(PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
value of giv's. */
static rtx
fold_rtx_mult_add (mult1, mult2, add1, mode)
rtx mult1, mult2, add1;
enum machine_mode mode;
{
rtx temp, mult_res;
rtx result;
/* The modes must all be the same. This should always be true. For now,
check to make sure. */
if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
|| (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
|| (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
abort ();
/* Ensure that if at least one of mult1/mult2 are constant, then mult2
will be a constant. */
if (GET_CODE (mult1) == CONST_INT)
{
temp = mult2;
mult2 = mult1;
mult1 = temp;
}
mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
if (! mult_res)
mult_res = gen_rtx_MULT (mode, mult1, mult2);
/* Again, put the constant second. */
if (GET_CODE (add1) == CONST_INT)
{
temp = add1;
add1 = mult_res;
mult_res = temp;
}
result = simplify_binary_operation (PLUS, mode, add1, mult_res);
if (! result)
result = gen_rtx_PLUS (mode, add1, mult_res);
return result;
}
/* Searches the list of induction struct's for the biv BL, to try to calculate
the total increment value for one iteration of the loop as a constant.
Returns the increment value as an rtx, simplified as much as possible,
if it can be calculated. Otherwise, returns 0. */
rtx
biv_total_increment (bl)
const struct iv_class *bl;
{
struct induction *v;
rtx result;
/* For increment, must check every instruction that sets it. Each
instruction must be executed only once each time through the loop.
To verify this, we check that the insn is always executed, and that
there are no backward branches after the insn that branch to before it.
Also, the insn must have a mult_val of one (to make sure it really is
an increment). */
result = const0_rtx;
for (v = bl->biv; v; v = v->next_iv)
{
if (v->always_computable && v->mult_val == const1_rtx
&& ! v->maybe_multiple)
result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
else
return 0;
}
return result;
}
/* For each biv and giv, determine whether it can be safely split into
a different variable for each unrolled copy of the loop body. If it
is safe to split, then indicate that by saving some useful info
in the splittable_regs array.
If the loop is being completely unrolled, then splittable_regs will hold
the current value of the induction variable while the loop is unrolled.
It must be set to the initial value of the induction variable here.
Otherwise, splittable_regs will hold the difference between the current
value of the induction variable and the value the induction variable had
at the top of the loop. It must be set to the value 0 here.
Returns the total number of instructions that set registers that are
splittable. */
/* ?? If the loop is only unrolled twice, then most of the restrictions to
constant values are unnecessary, since we can easily calculate increment
values in this case even if nothing is constant. The increment value
should not involve a multiply however. */
/* ?? Even if the biv/giv increment values aren't constant, it may still
be beneficial to split the variable if the loop is only unrolled a few
times, since multiplies by small integers (1,2,3,4) are very cheap. */
static int
find_splittable_regs (loop, unroll_type, unroll_number)
const struct loop *loop;
enum unroll_types unroll_type;
int unroll_number;
{
struct loop_ivs *ivs = LOOP_IVS (loop);
struct iv_class *bl;
struct induction *v;
rtx increment, tem;
rtx biv_final_value;
int biv_splittable;
int result = 0;
for (bl = ivs->list; bl; bl = bl->next)
{
/* Biv_total_increment must return a constant value,
otherwise we can not calculate the split values. */
increment = biv_total_increment (bl);
if (! increment || GET_CODE (increment) != CONST_INT)
continue;
/* The loop must be unrolled completely, or else have a known number
of iterations and only one exit, or else the biv must be dead
outside the loop, or else the final value must be known. Otherwise,
it is unsafe to split the biv since it may not have the proper
value on loop exit. */
/* loop_number_exit_count is non-zero if the loop has an exit other than
a fall through at the end. */
biv_splittable = 1;
biv_final_value = 0;
if (unroll_type != UNROLL_COMPLETELY
&& (loop->exit_count || unroll_type == UNROLL_NAIVE)
&& (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
|| ! bl->init_insn
|| INSN_UID (bl->init_insn) >= max_uid_for_loop
|| (REGNO_FIRST_LUID (bl->regno)
< INSN_LUID (bl->init_insn))
|| reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
&& ! (biv_final_value = final_biv_value (loop, bl)))
biv_splittable = 0;
/* If any of the insns setting the BIV don't do so with a simple
PLUS, we don't know how to split it. */
for (v = bl->biv; biv_splittable && v; v = v->next_iv)
if ((tem = single_set (v->insn)) == 0
|| GET_CODE (SET_DEST (tem)) != REG
|| REGNO (SET_DEST (tem)) != bl->regno
|| GET_CODE (SET_SRC (tem)) != PLUS)
biv_splittable = 0;
/* If final value is non-zero, then must emit an instruction which sets
the value of the biv to the proper value. This is done after
handling all of the givs, since some of them may need to use the
biv's value in their initialization code. */
/* This biv is splittable. If completely unrolling the loop, save
the biv's initial value. Otherwise, save the constant zero. */
if (biv_splittable == 1)
{
if (unroll_type == UNROLL_COMPLETELY)
{
/* If the initial value of the biv is itself (i.e. it is too
complicated for strength_reduce to compute), or is a hard
register, or it isn't invariant, then we must create a new
pseudo reg to hold the initial value of the biv. */
if (GET_CODE (bl->initial_value) == REG
&& (REGNO (bl->initial_value) == bl->regno
|| REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
|| ! loop_invariant_p (loop, bl->initial_value)))
{
rtx tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val, 0);
loop_insn_hoist (loop,
gen_move_insn (tem, bl->biv->src_reg));
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Biv %d initial value remapped to %d.\n",
bl->regno, REGNO (tem));
splittable_regs[bl->regno] = tem;
}
else
splittable_regs[bl->regno] = bl->initial_value;
}
else
splittable_regs[bl->regno] = const0_rtx;
/* Save the number of instructions that modify the biv, so that
we can treat the last one specially. */
splittable_regs_updates[bl->regno] = bl->biv_count;
result += bl->biv_count;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Biv %d safe to split.\n", bl->regno);
}
/* Check every giv that depends on this biv to see whether it is
splittable also. Even if the biv isn't splittable, givs which
depend on it may be splittable if the biv is live outside the
loop, and the givs aren't. */
result += find_splittable_givs (loop, bl, unroll_type, increment,
unroll_number);
/* If final value is non-zero, then must emit an instruction which sets
the value of the biv to the proper value. This is done after
handling all of the givs, since some of them may need to use the
biv's value in their initialization code. */
if (biv_final_value)
{
/* If the loop has multiple exits, emit the insns before the
loop to ensure that it will always be executed no matter
how the loop exits. Otherwise emit the insn after the loop,
since this is slightly more efficient. */
if (! loop->exit_count)
loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
biv_final_value));
else
{
/* Create a new register to hold the value of the biv, and then
set the biv to its final value before the loop start. The biv
is set to its final value before loop start to ensure that
this insn will always be executed, no matter how the loop
exits. */
rtx tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val, 0);
loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
biv_final_value));
if (loop_dump_stream)
fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
REGNO (bl->biv->src_reg), REGNO (tem));
/* Set up the mapping from the original biv register to the new
register. */
bl->biv->src_reg = tem;
}
}
}
return result;
}
/* Return 1 if the first and last unrolled copy of the address giv V is valid
for the instruction that is using it. Do not make any changes to that
instruction. */
static int
verify_addresses (v, giv_inc, unroll_number)
struct induction *v;
rtx giv_inc;
int unroll_number;
{
int ret = 1;
rtx orig_addr = *v->location;
rtx last_addr = plus_constant (v->dest_reg,
INTVAL (giv_inc) * (unroll_number - 1));
/* First check to see if either address would fail. Handle the fact
that we have may have a match_dup. */
if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
|| ! validate_replace_rtx (*v->location, last_addr, v->insn))
ret = 0;
/* Now put things back the way they were before. This should always
succeed. */
if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
abort ();
return ret;
}
/* For every giv based on the biv BL, check to determine whether it is
splittable. This is a subroutine to find_splittable_regs ().
Return the number of instructions that set splittable registers. */
static int
find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
const struct loop *loop;
struct iv_class *bl;
enum unroll_types unroll_type;
rtx increment;
int unroll_number;
{
struct loop_ivs *ivs = LOOP_IVS (loop);
struct induction *v, *v2;
rtx final_value;
rtx tem;
int result = 0;
/* Scan the list of givs, and set the same_insn field when there are
multiple identical givs in the same insn. */
for (v = bl->giv; v; v = v->next_iv)
for (v2 = v->next_iv; v2; v2 = v2->next_iv)
if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
&& ! v2->same_insn)
v2->same_insn = v;
for (v = bl->giv; v; v = v->next_iv)
{
rtx giv_inc, value;
/* Only split the giv if it has already been reduced, or if the loop is
being completely unrolled. */
if (unroll_type != UNROLL_COMPLETELY && v->ignore)
continue;
/* The giv can be split if the insn that sets the giv is executed once
and only once on every iteration of the loop. */
/* An address giv can always be split. v->insn is just a use not a set,
and hence it does not matter whether it is always executed. All that
matters is that all the biv increments are always executed, and we
won't reach here if they aren't. */
if (v->giv_type != DEST_ADDR
&& (! v->always_computable
|| back_branch_in_range_p (loop, v->insn)))
continue;
/* The giv increment value must be a constant. */
giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
v->mode);
if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
continue;
/* The loop must be unrolled completely, or else have a known number of
iterations and only one exit, or else the giv must be dead outside
the loop, or else the final value of the giv must be known.
Otherwise, it is not safe to split the giv since it may not have the
proper value on loop exit. */
/* The used outside loop test will fail for DEST_ADDR givs. They are
never used outside the loop anyways, so it is always safe to split a
DEST_ADDR giv. */
final_value = 0;
if (unroll_type != UNROLL_COMPLETELY
&& (loop->exit_count || unroll_type == UNROLL_NAIVE)
&& v->giv_type != DEST_ADDR
/* The next part is true if the pseudo is used outside the loop.
We assume that this is true for any pseudo created after loop
starts, because we don't have a reg_n_info entry for them. */
&& (REGNO (v->dest_reg) >= max_reg_before_loop
|| (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
/* Check for the case where the pseudo is set by a shift/add
sequence, in which case the first insn setting the pseudo
is the first insn of the shift/add sequence. */
&& (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
|| (REGNO_FIRST_UID (REGNO (v->dest_reg))
!= INSN_UID (XEXP (tem, 0)))))
/* Line above always fails if INSN was moved by loop opt. */
|| (REGNO_LAST_LUID (REGNO (v->dest_reg))
>= INSN_LUID (loop->end)))
&& ! (final_value = v->final_value))
continue;
#if 0
/* Currently, non-reduced/final-value givs are never split. */
/* Should emit insns after the loop if possible, as the biv final value
code below does. */
/* If the final value is non-zero, and the giv has not been reduced,
then must emit an instruction to set the final value. */
if (final_value && !v->new_reg)
{
/* Create a new register to hold the value of the giv, and then set
the giv to its final value before the loop start. The giv is set
to its final value before loop start to ensure that this insn
will always be executed, no matter how we exit. */
tem = gen_reg_rtx (v->mode);
loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
if (loop_dump_stream)
fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
REGNO (v->dest_reg), REGNO (tem));
v->src_reg = tem;
}
#endif
/* This giv is splittable. If completely unrolling the loop, save the
giv's initial value. Otherwise, save the constant zero for it. */
if (unroll_type == UNROLL_COMPLETELY)
{
/* It is not safe to use bl->initial_value here, because it may not
be invariant. It is safe to use the initial value stored in
the splittable_regs array if it is set. In rare cases, it won't
be set, so then we do exactly the same thing as
find_splittable_regs does to get a safe value. */
rtx biv_initial_value;
if (splittable_regs[bl->regno])
biv_initial_value = splittable_regs[bl->regno];
else if (GET_CODE (bl->initial_value) != REG
|| (REGNO (bl->initial_value) != bl->regno
&& REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
biv_initial_value = bl->initial_value;
else
{
rtx tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val, 0);
loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
biv_initial_value = tem;
}
biv_initial_value = extend_value_for_giv (v, biv_initial_value);
value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
v->add_val, v->mode);
}
else
value = const0_rtx;
if (v->new_reg)
{
/* If a giv was combined with another giv, then we can only split
this giv if the giv it was combined with was reduced. This
is because the value of v->new_reg is meaningless in this
case. */
if (v->same && ! v->same->new_reg)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"giv combined with unreduced giv not split.\n");
continue;
}
/* If the giv is an address destination, it could be something other
than a simple register, these have to be treated differently. */
else if (v->giv_type == DEST_REG)
{
/* If value is not a constant, register, or register plus
constant, then compute its value into a register before
loop start. This prevents invalid rtx sharing, and should
generate better code. We can use bl->initial_value here
instead of splittable_regs[bl->regno] because this code
is going before the loop start. */
if (unroll_type == UNROLL_COMPLETELY
&& GET_CODE (value) != CONST_INT
&& GET_CODE (value) != REG
&& (GET_CODE (value) != PLUS
|| GET_CODE (XEXP (value, 0)) != REG
|| GET_CODE (XEXP (value, 1)) != CONST_INT))
{
rtx tem = gen_reg_rtx (v->mode);
record_base_value (REGNO (tem), v->add_val, 0);
loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
v->add_val, tem);
value = tem;
}
splittable_regs[REGNO (v->new_reg)] = value;
}
else
{
/* Splitting address givs is useful since it will often allow us
to eliminate some increment insns for the base giv as
unnecessary. */
/* If the addr giv is combined with a dest_reg giv, then all
references to that dest reg will be remapped, which is NOT
what we want for split addr regs. We always create a new
register for the split addr giv, just to be safe. */
/* If we have multiple identical address givs within a
single instruction, then use a single pseudo reg for
both. This is necessary in case one is a match_dup
of the other. */
v->const_adjust = 0;
if (v->same_insn)
{
v->dest_reg = v->same_insn->dest_reg;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Sharing address givs in insn %d\n",
INSN_UID (v->insn));
}
/* If multiple address GIVs have been combined with the
same dest_reg GIV, do not create a new register for
each. */
else if (unroll_type != UNROLL_COMPLETELY
&& v->giv_type == DEST_ADDR
&& v->same && v->same->giv_type == DEST_ADDR
&& v->same->unrolled
/* combine_givs_p may return true for some cases
where the add and mult values are not equal.
To share a register here, the values must be
equal. */
&& rtx_equal_p (v->same->mult_val, v->mult_val)
&& rtx_equal_p (v->same->add_val, v->add_val)
/* If the memory references have different modes,
then the address may not be valid and we must
not share registers. */
&& verify_addresses (v, giv_inc, unroll_number))
{
v->dest_reg = v->same->dest_reg;
v->shared = 1;
}
else if (unroll_type != UNROLL_COMPLETELY)
{
/* If not completely unrolling the loop, then create a new
register to hold the split value of the DEST_ADDR giv.
Emit insn to initialize its value before loop start. */
rtx tem = gen_reg_rtx (v->mode);
struct induction *same = v->same;
rtx new_reg = v->new_reg;
record_base_value (REGNO (tem), v->add_val, 0);
/* If the address giv has a constant in its new_reg value,
then this constant can be pulled out and put in value,
instead of being part of the initialization code. */
if (GET_CODE (new_reg) == PLUS
&& GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
{
v->dest_reg
= plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
/* Only succeed if this will give valid addresses.
Try to validate both the first and the last
address resulting from loop unrolling, if
one fails, then can't do const elim here. */
if (verify_addresses (v, giv_inc, unroll_number))
{
/* Save the negative of the eliminated const, so
that we can calculate the dest_reg's increment
value later. */
v->const_adjust = -INTVAL (XEXP (new_reg, 1));
new_reg = XEXP (new_reg, 0);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Eliminating constant from giv %d\n",
REGNO (tem));
}
else
v->dest_reg = tem;
}
else
v->dest_reg = tem;
/* If the address hasn't been checked for validity yet, do so
now, and fail completely if either the first or the last
unrolled copy of the address is not a valid address
for the instruction that uses it. */
if (v->dest_reg == tem
&& ! verify_addresses (v, giv_inc, unroll_number))
{
for (v2 = v->next_iv; v2; v2 = v2->next_iv)
if (v2->same_insn == v)
v2->same_insn = 0;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Invalid address for giv at insn %d\n",
INSN_UID (v->insn));
continue;
}
v->new_reg = new_reg;
v->same = same;
/* We set this after the address check, to guarantee that
the register will be initialized. */
v->unrolled = 1;
/* To initialize the new register, just move the value of
new_reg into it. This is not guaranteed to give a valid
instruction on machines with complex addressing modes.
If we can't recognize it, then delete it and emit insns
to calculate the value from scratch. */
loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
copy_rtx (v->new_reg)));
if (recog_memoized (PREV_INSN (loop->start)) < 0)
{
rtx sequence, ret;
/* We can't use bl->initial_value to compute the initial
value, because the loop may have been preconditioned.
We must calculate it from NEW_REG. */
delete_related_insns (PREV_INSN (loop->start));
start_sequence ();
ret = force_operand (v->new_reg, tem);
if (ret != tem)
emit_move_insn (tem, ret);
sequence = gen_sequence ();
end_sequence ();
loop_insn_hoist (loop, sequence);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Invalid init insn, rewritten.\n");
}
}
else
{
v->dest_reg = value;
/* Check the resulting address for validity, and fail
if the resulting address would be invalid. */
if (! verify_addresses (v, giv_inc, unroll_number))
{
for (v2 = v->next_iv; v2; v2 = v2->next_iv)
if (v2->same_insn == v)
v2->same_insn = 0;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Invalid address for giv at insn %d\n",
INSN_UID (v->insn));
continue;
}
}
/* Store the value of dest_reg into the insn. This sharing
will not be a problem as this insn will always be copied
later. */
*v->location = v->dest_reg;
/* If this address giv is combined with a dest reg giv, then
save the base giv's induction pointer so that we will be
able to handle this address giv properly. The base giv
itself does not have to be splittable. */
if (v->same && v->same->giv_type == DEST_REG)
addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
if (GET_CODE (v->new_reg) == REG)
{
/* This giv maybe hasn't been combined with any others.
Make sure that it's giv is marked as splittable here. */
splittable_regs[REGNO (v->new_reg)] = value;
/* Make it appear to depend upon itself, so that the
giv will be properly split in the main loop above. */
if (! v->same)
{
v->same = v;
addr_combined_regs[REGNO (v->new_reg)] = v;
}
}
if (loop_dump_stream)
fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
}
}
else
{
#if 0
/* Currently, unreduced giv's can't be split. This is not too much
of a problem since unreduced giv's are not live across loop
iterations anyways. When unrolling a loop completely though,
it makes sense to reduce&split givs when possible, as this will
result in simpler instructions, and will not require that a reg
be live across loop iterations. */
splittable_regs[REGNO (v->dest_reg)] = value;
fprintf (stderr, "Giv %d at insn %d not reduced\n",
REGNO (v->dest_reg), INSN_UID (v->insn));
#else
continue;
#endif
}
/* Unreduced givs are only updated once by definition. Reduced givs
are updated as many times as their biv is. Mark it so if this is
a splittable register. Don't need to do anything for address givs
where this may not be a register. */
if (GET_CODE (v->new_reg) == REG)
{
int count = 1;
if (! v->ignore)
count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
splittable_regs_updates[REGNO (v->new_reg)] = count;
}
result++;
if (loop_dump_stream)
{
int regnum;
if (GET_CODE (v->dest_reg) == CONST_INT)
regnum = -1;
else if (GET_CODE (v->dest_reg) != REG)
regnum = REGNO (XEXP (v->dest_reg, 0));
else
regnum = REGNO (v->dest_reg);
fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
regnum, INSN_UID (v->insn));
}
}
return result;
}
/* Try to prove that the register is dead after the loop exits. Trace every
loop exit looking for an insn that will always be executed, which sets
the register to some value, and appears before the first use of the register
is found. If successful, then return 1, otherwise return 0. */
/* ?? Could be made more intelligent in the handling of jumps, so that
it can search past if statements and other similar structures. */
static int
reg_dead_after_loop (loop, reg)
const struct loop *loop;
rtx reg;
{
rtx insn, label;
enum rtx_code code;
int jump_count = 0;
int label_count = 0;
/* In addition to checking all exits of this loop, we must also check
all exits of inner nested loops that would exit this loop. We don't
have any way to identify those, so we just give up if there are any
such inner loop exits. */
for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
label_count++;
if (label_count != loop->exit_count)
return 0;
/* HACK: Must also search the loop fall through exit, create a label_ref
here which points to the loop->end, and append the loop_number_exit_labels
list to it. */
label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
LABEL_NEXTREF (label) = loop->exit_labels;
for (; label; label = LABEL_NEXTREF (label))
{
/* Succeed if find an insn which sets the biv or if reach end of
function. Fail if find an insn that uses the biv, or if come to
a conditional jump. */
insn = NEXT_INSN (XEXP (label, 0));
while (insn)
{
code = GET_CODE (insn);
if (GET_RTX_CLASS (code) == 'i')
{
rtx set;
if (reg_referenced_p (reg, PATTERN (insn)))
return 0;
set = single_set (insn);
if (set && rtx_equal_p (SET_DEST (set), reg))
break;
}
if (code == JUMP_INSN)
{
if (GET_CODE (PATTERN (insn)) == RETURN)
break;
else if (!any_uncondjump_p (insn)
/* Prevent infinite loop following infinite loops. */
|| jump_count++ > 20)
return 0;
else
insn = JUMP_LABEL (insn);
}
insn = NEXT_INSN (insn);
}
}
/* Success, the register is dead on all loop exits. */
return 1;
}
/* Try to calculate the final value of the biv, the value it will have at
the end of the loop. If we can do it, return that value. */
rtx
final_biv_value (loop, bl)
const struct loop *loop;
struct iv_class *bl;
{
unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
rtx increment, tem;
/* ??? This only works for MODE_INT biv's. Reject all others for now. */
if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
return 0;
/* The final value for reversed bivs must be calculated differently than
for ordinary bivs. In this case, there is already an insn after the
loop which sets this biv's final value (if necessary), and there are
no other loop exits, so we can return any value. */
if (bl->reversed)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final biv value for %d, reversed biv.\n", bl->regno);
return const0_rtx;
}
/* Try to calculate the final value as initial value + (number of iterations
* increment). For this to work, increment must be invariant, the only
exit from the loop must be the fall through at the bottom (otherwise
it may not have its final value when the loop exits), and the initial
value of the biv must be invariant. */
if (n_iterations != 0
&& ! loop->exit_count
&& loop_invariant_p (loop, bl->initial_value))
{
increment = biv_total_increment (bl);
if (increment && loop_invariant_p (loop, increment))
{
/* Can calculate the loop exit value, emit insns after loop
end to calculate this value into a temporary register in
case it is needed later. */
tem = gen_reg_rtx (bl->biv->mode);
record_base_value (REGNO (tem), bl->biv->add_val, 0);
loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
bl->initial_value, tem);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final biv value for %d, calculated.\n", bl->regno);
return tem;
}
}
/* Check to see if the biv is dead at all loop exits. */
if (reg_dead_after_loop (loop, bl->biv->src_reg))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final biv value for %d, biv dead after loop exit.\n",
bl->regno);
return const0_rtx;
}
return 0;
}
/* Try to calculate the final value of the giv, the value it will have at
the end of the loop. If we can do it, return that value. */
rtx
final_giv_value (loop, v)
const struct loop *loop;
struct induction *v;
{
struct loop_ivs *ivs = LOOP_IVS (loop);
struct iv_class *bl;
rtx insn;
rtx increment, tem;
rtx seq;
rtx loop_end = loop->end;
unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
/* The final value for givs which depend on reversed bivs must be calculated
differently than for ordinary givs. In this case, there is already an
insn after the loop which sets this giv's final value (if necessary),
and there are no other loop exits, so we can return any value. */
if (bl->reversed)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final giv value for %d, depends on reversed biv\n",
REGNO (v->dest_reg));
return const0_rtx;
}
/* Try to calculate the final value as a function of the biv it depends
upon. The only exit from the loop must be the fall through at the bottom
(otherwise it may not have its final value when the loop exits). */
/* ??? Can calculate the final giv value by subtracting off the
extra biv increments times the giv's mult_val. The loop must have
only one exit for this to work, but the loop iterations does not need
to be known. */
if (n_iterations != 0
&& ! loop->exit_count)
{
/* ?? It is tempting to use the biv's value here since these insns will
be put after the loop, and hence the biv will have its final value
then. However, this fails if the biv is subsequently eliminated.
Perhaps determine whether biv's are eliminable before trying to
determine whether giv's are replaceable so that we can use the
biv value here if it is not eliminable. */
/* We are emitting code after the end of the loop, so we must make
sure that bl->initial_value is still valid then. It will still
be valid if it is invariant. */
increment = biv_total_increment (bl);
if (increment && loop_invariant_p (loop, increment)
&& loop_invariant_p (loop, bl->initial_value))
{
/* Can calculate the loop exit value of its biv as
(n_iterations * increment) + initial_value */
/* The loop exit value of the giv is then
(final_biv_value - extra increments) * mult_val + add_val.
The extra increments are any increments to the biv which
occur in the loop after the giv's value is calculated.
We must search from the insn that sets the giv to the end
of the loop to calculate this value. */
/* Put the final biv value in tem. */
tem = gen_reg_rtx (v->mode);
record_base_value (REGNO (tem), bl->biv->add_val, 0);
loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
GEN_INT (n_iterations),
extend_value_for_giv (v, bl->initial_value),
tem);
/* Subtract off extra increments as we find them. */
for (insn = NEXT_INSN (v->insn); insn != loop_end;
insn = NEXT_INSN (insn))
{
struct induction *biv;
for (biv = bl->biv; biv; biv = biv->next_iv)
if (biv->insn == insn)
{
start_sequence ();
tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
biv->add_val, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
seq = gen_sequence ();
end_sequence ();
loop_insn_sink (loop, seq);
}
}
/* Now calculate the giv's final value. */
loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final giv value for %d, calc from biv's value.\n",
REGNO (v->dest_reg));
return tem;
}
}
/* Replaceable giv's should never reach here. */
if (v->replaceable)
abort ();
/* Check to see if the biv is dead at all loop exits. */
if (reg_dead_after_loop (loop, v->dest_reg))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final giv value for %d, giv dead after loop exit.\n",
REGNO (v->dest_reg));
return const0_rtx;
}
return 0;
}
/* Look back before LOOP->START for the insn that sets REG and return
the equivalent constant if there is a REG_EQUAL note otherwise just
the SET_SRC of REG. */
static rtx
loop_find_equiv_value (loop, reg)
const struct loop *loop;
rtx reg;
{
rtx loop_start = loop->start;
rtx insn, set;
rtx ret;
ret = reg;
for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
break;
else if (INSN_P (insn) && reg_set_p (reg, insn))
{
/* We found the last insn before the loop that sets the register.
If it sets the entire register, and has a REG_EQUAL note,
then use the value of the REG_EQUAL note. */
if ((set = single_set (insn))
&& (SET_DEST (set) == reg))
{
rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
/* Only use the REG_EQUAL note if it is a constant.
Other things, divide in particular, will cause
problems later if we use them. */
if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
&& CONSTANT_P (XEXP (note, 0)))
ret = XEXP (note, 0);
else
ret = SET_SRC (set);
/* We cannot do this if it changes between the
assignment and loop start though. */
if (modified_between_p (ret, insn, loop_start))
ret = reg;
}
break;
}
}
return ret;
}
/* Return a simplified rtx for the expression OP - REG.
REG must appear in OP, and OP must be a register or the sum of a register
and a second term.
Thus, the return value must be const0_rtx or the second term.
The caller is responsible for verifying that REG appears in OP and OP has
the proper form. */
static rtx
subtract_reg_term (op, reg)
rtx op, reg;
{
if (op == reg)
return const0_rtx;
if (GET_CODE (op) == PLUS)
{
if (XEXP (op, 0) == reg)
return XEXP (op, 1);
else if (XEXP (op, 1) == reg)
return XEXP (op, 0);
}
/* OP does not contain REG as a term. */
abort ();
}
/* Find and return register term common to both expressions OP0 and
OP1 or NULL_RTX if no such term exists. Each expression must be a
REG or a PLUS of a REG. */
static rtx
find_common_reg_term (op0, op1)
rtx op0, op1;
{
if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
&& (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
{
rtx op00;
rtx op01;
rtx op10;
rtx op11;
if (GET_CODE (op0) == PLUS)
op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
else
op01 = const0_rtx, op00 = op0;
if (GET_CODE (op1) == PLUS)
op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
else
op11 = const0_rtx, op10 = op1;
/* Find and return common register term if present. */
if (REG_P (op00) && (op00 == op10 || op00 == op11))
return op00;
else if (REG_P (op01) && (op01 == op10 || op01 == op11))
return op01;
}
/* No common register term found. */
return NULL_RTX;
}
/* Determine the loop iterator and calculate the number of loop
iterations. Returns the exact number of loop iterations if it can
be calculated, otherwise returns zero. */
unsigned HOST_WIDE_INT
loop_iterations (loop)
struct loop *loop;
{
struct loop_info *loop_info = LOOP_INFO (loop);
struct loop_ivs *ivs = LOOP_IVS (loop);
rtx comparison, comparison_value;
rtx iteration_var, initial_value, increment, final_value;
enum rtx_code comparison_code;
HOST_WIDE_INT inc;
unsigned HOST_WIDE_INT abs_inc;
unsigned HOST_WIDE_INT abs_diff;
int off_by_one;
int increment_dir;
int unsigned_p, compare_dir, final_larger;
rtx last_loop_insn;
rtx reg_term;
struct iv_class *bl;
loop_info->n_iterations = 0;
loop_info->initial_value = 0;
loop_info->initial_equiv_value = 0;
loop_info->comparison_value = 0;
loop_info->final_value = 0;
loop_info->final_equiv_value = 0;
loop_info->increment = 0;
loop_info->iteration_var = 0;
loop_info->unroll_number = 1;
loop_info->iv = 0;
/* We used to use prev_nonnote_insn here, but that fails because it might
accidentally get the branch for a contained loop if the branch for this
loop was deleted. We can only trust branches immediately before the
loop_end. */
last_loop_insn = PREV_INSN (loop->end);
/* ??? We should probably try harder to find the jump insn
at the end of the loop. The following code assumes that
the last loop insn is a jump to the top of the loop. */
if (GET_CODE (last_loop_insn) != JUMP_INSN)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: No final conditional branch found.\n");
return 0;
}
/* If there is a more than a single jump to the top of the loop
we cannot (easily) determine the iteration count. */
if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Loop has multiple back edges.\n");
return 0;
}
/* If there are multiple conditionalized loop exit tests, they may jump
back to differing CODE_LABELs. */
if (loop->top && loop->cont)
{
rtx temp = PREV_INSN (last_loop_insn);
do
{
if (GET_CODE (temp) == JUMP_INSN
/* Previous unrolling may have generated new insns not covered
by the uid_luid array. */
&& INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
/* Check if we jump back into the loop body. */
&& INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
&& INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Loop has multiple back edges.\n");
return 0;
}
}
while ((temp = PREV_INSN (temp)) != loop->cont);
}
/* Find the iteration variable. If the last insn is a conditional
branch, and the insn before tests a register value, make that the
iteration variable. */
comparison = get_condition_for_loop (loop, last_loop_insn);
if (comparison == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: No final comparison found.\n");
return 0;
}
/* ??? Get_condition may switch position of induction variable and
invariant register when it canonicalizes the comparison. */
comparison_code = GET_CODE (comparison);
iteration_var = XEXP (comparison, 0);
comparison_value = XEXP (comparison, 1);
if (GET_CODE (iteration_var) != REG)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Comparison not against register.\n");
return 0;
}
/* The only new registers that are created before loop iterations
are givs made from biv increments or registers created by
load_mems. In the latter case, it is possible that try_copy_prop
will propagate a new pseudo into the old iteration register but
this will be marked by having the REG_USERVAR_P bit set. */
if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
&& ! REG_USERVAR_P (iteration_var))
abort ();
/* Determine the initial value of the iteration variable, and the amount
that it is incremented each loop. Use the tables constructed by
the strength reduction pass to calculate these values. */
/* Clear the result values, in case no answer can be found. */
initial_value = 0;
increment = 0;
/* The iteration variable can be either a giv or a biv. Check to see
which it is, and compute the variable's initial value, and increment
value if possible. */
/* If this is a new register, can't handle it since we don't have any
reg_iv_type entry for it. */
if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: No reg_iv_type entry for iteration var.\n");
return 0;
}
/* Reject iteration variables larger than the host wide int size, since they
could result in a number of iterations greater than the range of our
`unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
> HOST_BITS_PER_WIDE_INT))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Iteration var rejected because mode too large.\n");
return 0;
}
else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Iteration var not an integer.\n");
return 0;
}
else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
{
if (REGNO (iteration_var) >= ivs->n_regs)
abort ();
/* Grab initial value, only useful if it is a constant. */
bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
initial_value = bl->initial_value;
if (!bl->biv->always_executed || bl->biv->maybe_multiple)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Basic induction var not set once in each iteration.\n");
return 0;
}
increment = biv_total_increment (bl);
}
else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
{
HOST_WIDE_INT offset = 0;
struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
rtx biv_initial_value;
if (REGNO (v->src_reg) >= ivs->n_regs)
abort ();
if (!v->always_executed || v->maybe_multiple)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: General induction var not set once in each iteration.\n");
return 0;
}
bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
/* Increment value is mult_val times the increment value of the biv. */
increment = biv_total_increment (bl);
if (increment)
{
struct induction *biv_inc;
increment = fold_rtx_mult_add (v->mult_val,
extend_value_for_giv (v, increment),
const0_rtx, v->mode);
/* The caller assumes that one full increment has occurred at the
first loop test. But that's not true when the biv is incremented
after the giv is set (which is the usual case), e.g.:
i = 6; do {;} while (i++ < 9) .
Therefore, we bias the initial value by subtracting the amount of
the increment that occurs between the giv set and the giv test. */
for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
{
if (loop_insn_first_p (v->insn, biv_inc->insn))
offset -= INTVAL (biv_inc->add_val);
}
}
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Giv iterator, initial value bias %ld.\n",
(long) offset);
/* Initial value is mult_val times the biv's initial value plus
add_val. Only useful if it is a constant. */
biv_initial_value = extend_value_for_giv (v, bl->initial_value);
initial_value
= fold_rtx_mult_add (v->mult_val,
plus_constant (biv_initial_value, offset),
v->add_val, v->mode);
}
else
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Not basic or general induction var.\n");
return 0;
}
if (initial_value == 0)
return 0;
unsigned_p = 0;
off_by_one = 0;
switch (comparison_code)
{
case LEU:
unsigned_p = 1;
case LE:
compare_dir = 1;
off_by_one = 1;
break;
case GEU:
unsigned_p = 1;
case GE:
compare_dir = -1;
off_by_one = -1;
break;
case EQ:
/* Cannot determine loop iterations with this case. */
compare_dir = 0;
break;
case LTU:
unsigned_p = 1;
case LT:
compare_dir = 1;
break;
case GTU:
unsigned_p = 1;
case GT:
compare_dir = -1;
case NE:
compare_dir = 0;
break;
default:
abort ();
}
/* If the comparison value is an invariant register, then try to find
its value from the insns before the start of the loop. */
final_value = comparison_value;
if (GET_CODE (comparison_value) == REG
&& loop_invariant_p (loop, comparison_value))
{
final_value = loop_find_equiv_value (loop, comparison_value);
/* If we don't get an invariant final value, we are better
off with the original register. */
if (! loop_invariant_p (loop, final_value))
final_value = comparison_value;
}
/* Calculate the approximate final value of the induction variable
(on the last successful iteration). The exact final value
depends on the branch operator, and increment sign. It will be
wrong if the iteration variable is not incremented by one each
time through the loop and (comparison_value + off_by_one -
initial_value) % increment != 0.
??? Note that the final_value may overflow and thus final_larger
will be bogus. A potentially infinite loop will be classified
as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
if (off_by_one)
final_value = plus_constant (final_value, off_by_one);
/* Save the calculated values describing this loop's bounds, in case
precondition_loop_p will need them later. These values can not be
recalculated inside precondition_loop_p because strength reduction
optimizations may obscure the loop's structure.
These values are only required by precondition_loop_p and insert_bct
whenever the number of iterations cannot be computed at compile time.
Only the difference between final_value and initial_value is
important. Note that final_value is only approximate. */
loop_info->initial_value = initial_value;
loop_info->comparison_value = comparison_value;
loop_info->final_value = plus_constant (comparison_value, off_by_one);
loop_info->increment = increment;
loop_info->iteration_var = iteration_var;
loop_info->comparison_code = comparison_code;
loop_info->iv = bl;
/* Try to determine the iteration count for loops such
as (for i = init; i < init + const; i++). When running the
loop optimization twice, the first pass often converts simple
loops into this form. */
if (REG_P (initial_value))
{
rtx reg1;
rtx reg2;
rtx const2;
reg1 = initial_value;
if (GET_CODE (final_value) == PLUS)
reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
else
reg2 = final_value, const2 = const0_rtx;
/* Check for initial_value = reg1, final_value = reg2 + const2,
where reg1 != reg2. */
if (REG_P (reg2) && reg2 != reg1)
{
rtx temp;
/* Find what reg1 is equivalent to. Hopefully it will
either be reg2 or reg2 plus a constant. */
temp = loop_find_equiv_value (loop, reg1);
if (find_common_reg_term (temp, reg2))
initial_value = temp;
else
{
/* Find what reg2 is equivalent to. Hopefully it will
either be reg1 or reg1 plus a constant. Let's ignore
the latter case for now since it is not so common. */
temp = loop_find_equiv_value (loop, reg2);
if (temp == loop_info->iteration_var)
temp = initial_value;
if (temp == reg1)
final_value = (const2 == const0_rtx)
? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
}
}
else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
{
rtx temp;
/* When running the loop optimizer twice, check_dbra_loop
further obfuscates reversible loops of the form:
for (i = init; i < init + const; i++). We often end up with
final_value = 0, initial_value = temp, temp = temp2 - init,
where temp2 = init + const. If the loop has a vtop we
can replace initial_value with const. */
temp = loop_find_equiv_value (loop, reg1);
if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
{
rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
if (GET_CODE (temp2) == PLUS
&& XEXP (temp2, 0) == XEXP (temp, 1))
initial_value = XEXP (temp2, 1);
}
}
}
/* If have initial_value = reg + const1 and final_value = reg +
const2, then replace initial_value with const1 and final_value
with const2. This should be safe since we are protected by the
initial comparison before entering the loop if we have a vtop.
For example, a + b < a + c is not equivalent to b < c for all a
when using modulo arithmetic.
??? Without a vtop we could still perform the optimization if we check
the initial and final values carefully. */
if (loop->vtop
&& (reg_term = find_common_reg_term (initial_value, final_value)))
{
initial_value = subtract_reg_term (initial_value, reg_term);
final_value = subtract_reg_term (final_value, reg_term);
}
loop_info->initial_equiv_value = initial_value;
loop_info->final_equiv_value = final_value;
/* For EQ comparison loops, we don't have a valid final value.
Check this now so that we won't leave an invalid value if we
return early for any other reason. */
if (comparison_code == EQ)
loop_info->final_equiv_value = loop_info->final_value = 0;
if (increment == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop iterations: Increment value can't be calculated.\n");
return 0;
}
if (GET_CODE (increment) != CONST_INT)
{
/* If we have a REG, check to see if REG holds a constant value. */
/* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
clear if it is worthwhile to try to handle such RTL. */
if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
increment = loop_find_equiv_value (loop, increment);
if (GET_CODE (increment) != CONST_INT)
{
if (loop_dump_stream)
{
fprintf (loop_dump_stream,
"Loop iterations: Increment value not constant ");
print_simple_rtl (loop_dump_stream, increment);
fprintf (loop_dump_stream, ".\n");
}
return 0;
}
loop_info->increment = increment;
}
if (GET_CODE (initial_value) != CONST_INT)
{
if (loop_dump_stream)
{
fprintf (loop_dump_stream,
"Loop iterations: Initial value not constant ");
print_simple_rtl (loop_dump_stream, initial_value);
fprintf (loop_dump_stream, ".\n");
}
return 0;
}
else if (comparison_code == EQ)
{
if (loop_dump_stream)
fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
return 0;
}
else if (GET_CODE (final_value) != CONST_INT)
{
if (loop_dump_stream)
{
fprintf (loop_dump_stream,
"Loop iterations: Final value not constant ");
print_simple_rtl (loop_dump_stream, final_value);
fprintf (loop_dump_stream, ".\n");
}
return 0;
}
/* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
if (unsigned_p)
final_larger
= ((unsigned HOST_WIDE_INT) INTVAL (final_value)
> (unsigned HOST_WIDE_INT) INTVAL (initial_value))
- ((unsigned HOST_WIDE_INT) INTVAL (final_value)
< (unsigned HOST_WIDE_INT) INTVAL (initial_value));
else
final_larger = (INTVAL (final_value) > INTVAL (initial_value))
- (INTVAL (final_value) < INTVAL (initial_value));
if (INTVAL (increment) > 0)
increment_dir = 1;
else if (INTVAL (increment) == 0)
increment_dir = 0;
else
increment_dir = -1;
/* There are 27 different cases: compare_dir = -1, 0, 1;
final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
There are 4 normal cases, 4 reverse cases (where the iteration variable
will overflow before the loop exits), 4 infinite loop cases, and 15
immediate exit (0 or 1 iteration depending on loop type) cases.
Only try to optimize the normal cases. */
/* (compare_dir/final_larger/increment_dir)
Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
/* ?? If the meaning of reverse loops (where the iteration variable
will overflow before the loop exits) is undefined, then could
eliminate all of these special checks, and just always assume
the loops are normal/immediate/infinite. Note that this means
the sign of increment_dir does not have to be known. Also,
since it does not really hurt if immediate exit loops or infinite loops
are optimized, then that case could be ignored also, and hence all
loops can be optimized.
According to ANSI Spec, the reverse loop case result is undefined,
because the action on overflow is undefined.
See also the special test for NE loops below. */
if (final_larger == increment_dir && final_larger != 0
&& (final_larger == compare_dir || compare_dir == 0))
/* Normal case. */
;
else
{
if (loop_dump_stream)
fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
return 0;
}
/* Calculate the number of iterations, final_value is only an approximation,
so correct for that. Note that abs_diff and n_iterations are
unsigned, because they can be as large as 2^n - 1. */
inc = INTVAL (increment);
if (inc > 0)
{
abs_diff = INTVAL (final_value) - INTVAL (initial_value);
abs_inc = inc;
}
else if (inc < 0)
{
abs_diff = INTVAL (initial_value) - INTVAL (final_value);
abs_inc = -inc;
}
else
abort ();
/* Given that iteration_var is going to iterate over its own mode,
not HOST_WIDE_INT, disregard higher bits that might have come
into the picture due to sign extension of initial and final
values. */
abs_diff &= ((unsigned HOST_WIDE_INT)1
<< (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
<< 1) - 1;
/* For NE tests, make sure that the iteration variable won't miss
the final value. If abs_diff mod abs_incr is not zero, then the
iteration variable will overflow before the loop exits, and we
can not calculate the number of iterations. */
if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
return 0;
/* Note that the number of iterations could be calculated using
(abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
handle potential overflow of the summation. */
loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
return loop_info->n_iterations;
}
/* Replace uses of split bivs with their split pseudo register. This is
for original instructions which remain after loop unrolling without
copying. */
static rtx
remap_split_bivs (loop, x)
struct loop *loop;
rtx x;
{
struct loop_ivs *ivs = LOOP_IVS (loop);
enum rtx_code code;
int i;
const char *fmt;
if (x == 0)
return x;
code = GET_CODE (x);
switch (code)
{
case SCRATCH:
case PC:
case CC0:
case CONST_INT:
case CONST_DOUBLE:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return x;
case REG:
#if 0
/* If non-reduced/final-value givs were split, then this would also
have to remap those givs also. */
#endif
if (REGNO (x) < ivs->n_regs
&& REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
}
}
return x;
}
/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
return 0. COPY_START is where we can start looking for the insns
FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
insns.
If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
must dominate LAST_UID.
If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
may not dominate LAST_UID.
If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
must dominate LAST_UID. */
int
set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
int regno;
int first_uid;
int last_uid;
rtx copy_start;
rtx copy_end;
{
int passed_jump = 0;
rtx p = NEXT_INSN (copy_start);
while (INSN_UID (p) != first_uid)
{
if (GET_CODE (p) == JUMP_INSN)
passed_jump = 1;
/* Could not find FIRST_UID. */
if (p == copy_end)
return 0;
p = NEXT_INSN (p);
}
/* Verify that FIRST_UID is an insn that entirely sets REGNO. */
if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
return 0;
/* FIRST_UID is always executed. */
if (passed_jump == 0)
return 1;
while (INSN_UID (p) != last_uid)
{
/* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
can not be sure that FIRST_UID dominates LAST_UID. */
if (GET_CODE (p) == CODE_LABEL)
return 0;
/* Could not find LAST_UID, but we reached the end of the loop, so
it must be safe. */
else if (p == copy_end)
return 1;
p = NEXT_INSN (p);
}
/* FIRST_UID is always executed if LAST_UID is executed. */
return 1;
}
/* This routine is called when the number of iterations for the unrolled
loop is one. The goal is to identify a loop that begins with an
unconditional branch to the loop continuation note (or a label just after).
In this case, the unconditional branch that starts the loop needs to be
deleted so that we execute the single iteration. */
static rtx
ujump_to_loop_cont (loop_start, loop_cont)
rtx loop_start;
rtx loop_cont;
{
rtx x, label, label_ref;
/* See if loop start, or the next insn is an unconditional jump. */
loop_start = next_nonnote_insn (loop_start);
x = pc_set (loop_start);
if (!x)
return NULL_RTX;
label_ref = SET_SRC (x);
if (!label_ref)
return NULL_RTX;
/* Examine insn after loop continuation note. Return if not a label. */
label = next_nonnote_insn (loop_cont);
if (label == 0 || GET_CODE (label) != CODE_LABEL)
return NULL_RTX;
/* Return the loop start if the branch label matches the code label. */
if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
return loop_start;
else
return NULL_RTX;
}
|