summaryrefslogtreecommitdiffstats
path: root/gcc/ra-colorize.c
blob: 4411f00de6a7362f9b4646d957ed0caf1f634376 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
/* Graph coloring register allocator
   Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
   Contributed by Michael Matz <matz@suse.de>
   and Daniel Berlin <dan@cgsoftware.com>.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it under the
   terms of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
   details.

   You should have received a copy of the GNU General Public License along
   with GCC; see the file COPYING.  If not, write to the Free Software
   Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "function.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "df.h"
#include "output.h"
#include "ra.h"

/* This file is part of the graph coloring register allocator.
   It contains the graph colorizer.  Given an interference graph
   as set up in ra-build.c the toplevel function in this file
   (ra_colorize_graph) colorizes the graph, leaving a list
   of colored, coalesced and spilled nodes.

   The algorithm used is a merge of George & Appels iterative coalescing
   and optimistic coalescing, switchable at runtime.  The current default
   is "optimistic coalescing +", which is based on the normal Briggs/Cooper
   framework.  We can also use biased coloring.  Most of the structure
   here follows the different papers.

   Additionally there is a custom step to locally improve the overall
   spill cost of the colored graph (recolor_spills).  */

static void push_list (struct dlist *, struct dlist **);
static void push_list_end (struct dlist *, struct dlist **);
static void free_dlist (struct dlist **);
static void put_web_at_end (struct web *, enum node_type);
static void put_move (struct move *, enum move_type);
static void build_worklists (struct df *);
static void enable_move (struct web *);
static void decrement_degree (struct web *, int);
static void simplify (void);
static void remove_move_1 (struct web *, struct move *);
static void remove_move (struct web *, struct move *);
static void add_worklist (struct web *);
static int ok (struct web *, struct web *);
static int conservative (struct web *, struct web *);
static inline unsigned int simplify_p (enum node_type);
static void combine (struct web *, struct web *);
static void coalesce (void);
static void freeze_moves (struct web *);
static void freeze (void);
static void select_spill (void);
static int color_usable_p (int, HARD_REG_SET, HARD_REG_SET,
			   enum machine_mode);
int get_free_reg (HARD_REG_SET, HARD_REG_SET, enum machine_mode);
static int get_biased_reg (HARD_REG_SET, HARD_REG_SET, HARD_REG_SET,
			   HARD_REG_SET, enum machine_mode);
static int count_long_blocks (HARD_REG_SET, int);
static char * hardregset_to_string (HARD_REG_SET);
static void calculate_dont_begin (struct web *, HARD_REG_SET *);
static void colorize_one_web (struct web *, int);
static void assign_colors (void);
static void try_recolor_web (struct web *);
static void insert_coalesced_conflicts (void);
static int comp_webs_maxcost (const void *, const void *);
static void recolor_spills (void);
static void check_colors (void);
static void restore_conflicts_from_coalesce (struct web *);
static void break_coalesced_spills (void);
static void unalias_web (struct web *);
static void break_aliases_to_web (struct web *);
static void break_precolored_alias (struct web *);
static void init_web_pairs (void);
static void add_web_pair_cost (struct web *, struct web *,
		               unsigned HOST_WIDE_INT, unsigned int);
static int comp_web_pairs (const void *, const void *);
static void sort_and_combine_web_pairs (int);
static void aggressive_coalesce (void);
static void extended_coalesce_2 (void);
static void check_uncoalesced_moves (void);

static struct dlist *mv_worklist, *mv_coalesced, *mv_constrained;
static struct dlist *mv_frozen, *mv_active;

/* Push a node onto the front of the list.  */

static void
push_list (struct dlist *x, struct dlist **list)
{
  if (x->next || x->prev)
    abort ();
  x->next = *list;
  if (*list)
    (*list)->prev = x;
  *list = x;
}

static void
push_list_end (struct dlist *x, struct dlist **list)
{
  if (x->prev || x->next)
    abort ();
  if (!*list)
    {
      *list = x;
      return;
    }
  while ((*list)->next)
    list = &((*list)->next);
  x->prev = *list;
  (*list)->next = x;
}

/* Remove a node from the list.  */

void
remove_list (struct dlist *x, struct dlist **list)
{
  struct dlist *y = x->prev;
  if (y)
    y->next = x->next;
  else
    *list = x->next;
  y = x->next;
  if (y)
    y->prev = x->prev;
  x->next = x->prev = NULL;
}

/* Pop the front of the list.  */

struct dlist *
pop_list (struct dlist **list)
{
  struct dlist *r = *list;
  if (r)
    remove_list (r, list);
  return r;
}

/* Free the given double linked list.  */

static void
free_dlist (struct dlist **list)
{
  *list = NULL;
}

/* The web WEB should get the given new TYPE.  Put it onto the
   appropriate list.
   Inline, because it's called with constant TYPE every time.  */

inline void
put_web (struct web *web, enum node_type type)
{
  switch (type)
    {
      case INITIAL:
      case FREE:
      case FREEZE:
      case SPILL:
      case SPILLED:
      case COALESCED:
      case COLORED:
      case SELECT:
	push_list (web->dlink, &WEBS(type));
	break;
      case PRECOLORED:
	push_list (web->dlink, &WEBS(INITIAL));
	break;
      case SIMPLIFY:
	if (web->spill_temp)
	  push_list (web->dlink, &WEBS(type = SIMPLIFY_SPILL));
	else if (web->add_hardregs)
	  push_list (web->dlink, &WEBS(type = SIMPLIFY_FAT));
	else
	  push_list (web->dlink, &WEBS(SIMPLIFY));
	break;
      default:
	abort ();
    }
  web->type = type;
}

/* After we are done with the whole pass of coloring/spilling,
   we reset the lists of webs, in preparation of the next pass.
   The spilled webs become free, colored webs go to the initial list,
   coalesced webs become free or initial, according to what type of web
   they are coalesced to.  */

void
reset_lists (void)
{
  struct dlist *d;
  unsigned int i;
  if (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_SPILL) || WEBS(SIMPLIFY_FAT)
      || WEBS(FREEZE) || WEBS(SPILL) || WEBS(SELECT))
    abort ();

  while ((d = pop_list (&WEBS(COALESCED))) != NULL)
    {
      struct web *web = DLIST_WEB (d);
      struct web *aweb = alias (web);
      /* Note, how alias() becomes invalid through the two put_web()'s
	 below.  It might set the type of a web to FREE (from COALESCED),
	 which itself is a target of aliasing (i.e. in the middle of
	 an alias chain).  We can handle this by checking also for
	 type == FREE.  Note nevertheless, that alias() is invalid
	 henceforth.  */
      if (aweb->type == SPILLED || aweb->type == FREE)
	put_web (web, FREE);
      else
	put_web (web, INITIAL);
    }
  while ((d = pop_list (&WEBS(SPILLED))) != NULL)
    put_web (DLIST_WEB (d), FREE);
  while ((d = pop_list (&WEBS(COLORED))) != NULL)
    put_web (DLIST_WEB (d), INITIAL);

  /* All free webs have no conflicts anymore.  */
  for (d = WEBS(FREE); d; d = d->next)
    {
      struct web *web = DLIST_WEB (d);
      BITMAP_XFREE (web->useless_conflicts);
      web->useless_conflicts = NULL;
    }

  /* Sanity check, that we only have free, initial or precolored webs.  */
  for (i = 0; i < num_webs; i++)
    {
      struct web *web = ID2WEB (i);
      if (web->type != INITIAL && web->type != FREE && web->type != PRECOLORED)
	abort ();
    }
  free_dlist (&mv_worklist);
  free_dlist (&mv_coalesced);
  free_dlist (&mv_constrained);
  free_dlist (&mv_frozen);
  free_dlist (&mv_active);
}

/* Similar to put_web(), but add the web to the end of the appropriate
   list.  Additionally TYPE may not be SIMPLIFY.  */

static void
put_web_at_end (struct web *web, enum node_type type)
{
  if (type == PRECOLORED)
    type = INITIAL;
  else if (type == SIMPLIFY)
    abort ();
  push_list_end (web->dlink, &WEBS(type));
  web->type = type;
}

/* Unlink WEB from the list it's currently on (which corresponds to
   its current type).  */

void
remove_web_from_list (struct web *web)
{
  if (web->type == PRECOLORED)
    remove_list (web->dlink, &WEBS(INITIAL));
  else
    remove_list (web->dlink, &WEBS(web->type));
}

/* Give MOVE the TYPE, and link it into the correct list.  */

static inline void
put_move (struct move *move, enum move_type type)
{
  switch (type)
    {
      case WORKLIST:
	push_list (move->dlink, &mv_worklist);
	break;
      case MV_COALESCED:
	push_list (move->dlink, &mv_coalesced);
	break;
      case CONSTRAINED:
	push_list (move->dlink, &mv_constrained);
	break;
      case FROZEN:
	push_list (move->dlink, &mv_frozen);
	break;
      case ACTIVE:
	push_list (move->dlink, &mv_active);
	break;
      default:
	abort ();
    }
  move->type = type;
}

/* Build the worklists we are going to process.  */

static void
build_worklists (struct df *df ATTRIBUTE_UNUSED)
{
  struct dlist *d, *d_next;
  struct move_list *ml;

  /* If we are not the first pass, put all stackwebs (which are still
     backed by a new pseudo, but conceptually can stand for a stackslot,
     i.e. it doesn't really matter if they get a color or not), on
     the SELECT stack first, those with lowest cost first.  This way
     they will be colored last, so do not constrain the coloring of the
     normal webs.  But still those with the highest count are colored
     before, i.e. get a color more probable.  The use of stackregs is
     a pure optimization, and all would work, if we used real stackslots
     from the begin.  */
  if (ra_pass > 1)
    {
      unsigned int i, num, max_num;
      struct web **order2web;
      max_num = num_webs - num_subwebs;
      order2web = xmalloc (max_num * sizeof (order2web[0]));
      for (i = 0, num = 0; i < max_num; i++)
	if (id2web[i]->regno >= max_normal_pseudo)
	  order2web[num++] = id2web[i];
      if (num)
	{
	  qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
	  for (i = num - 1;; i--)
	    {
	      struct web *web = order2web[i];
	      struct conflict_link *wl;
	      remove_list (web->dlink, &WEBS(INITIAL));
	      put_web (web, SELECT);
	      for (wl = web->conflict_list; wl; wl = wl->next)
		{
		  struct web *pweb = wl->t;
		  pweb->num_conflicts -= 1 + web->add_hardregs;
		}
	      if (i == 0)
		break;
	    }
	}
      free (order2web);
    }

  /* For all remaining initial webs, classify them.  */
  for (d = WEBS(INITIAL); d; d = d_next)
    {
      struct web *web = DLIST_WEB (d);
      d_next = d->next;
      if (web->type == PRECOLORED)
        continue;

      remove_list (d, &WEBS(INITIAL));
      if (web->num_conflicts >= NUM_REGS (web))
	put_web (web, SPILL);
      else if (web->moves)
	put_web (web, FREEZE);
      else
	put_web (web, SIMPLIFY);
    }

  /* And put all moves on the worklist for iterated coalescing.
     Note, that if iterated coalescing is off, then wl_moves doesn't
     contain any moves.  */
  for (ml = wl_moves; ml; ml = ml->next)
    if (ml->move)
      {
	struct move *m = ml->move;
        d = ra_calloc (sizeof (struct dlist));
        DLIST_MOVE (d) = m;
        m->dlink = d;
	put_move (m, WORKLIST);
      }
}

/* Enable the active moves, in which WEB takes part, to be processed.  */

static void
enable_move (struct web *web)
{
  struct move_list *ml;
  for (ml = web->moves; ml; ml = ml->next)
    if (ml->move->type == ACTIVE)
      {
	remove_list (ml->move->dlink, &mv_active);
	put_move (ml->move, WORKLIST);
      }
}

/* Decrement the degree of node WEB by the amount DEC.
   Possibly change the type of WEB, if the number of conflicts is
   now smaller than its freedom.  */

static void
decrement_degree (struct web *web, int dec)
{
  int before = web->num_conflicts;
  web->num_conflicts -= dec;
  if (web->num_conflicts < NUM_REGS (web) && before >= NUM_REGS (web))
    {
      struct conflict_link *a;
      enable_move (web);
      for (a = web->conflict_list; a; a = a->next)
	{
	  struct web *aweb = a->t;
	  if (aweb->type != SELECT && aweb->type != COALESCED)
	    enable_move (aweb);
	}
      if (web->type != FREEZE)
	{
	  remove_web_from_list (web);
	  if (web->moves)
	    put_web (web, FREEZE);
	  else
	    put_web (web, SIMPLIFY);
	}
    }
}

/* Repeatedly simplify the nodes on the simplify worklists.  */

static void
simplify (void)
{
  struct dlist *d;
  struct web *web;
  struct conflict_link *wl;
  while (1)
    {
      /* We try hard to color all the webs resulting from spills first.
	 Without that on register starved machines (x86 e.g) with some live
	 DImode pseudos, -fPIC, and an asm requiring %edx, it might be, that
	 we do rounds over rounds, because the conflict graph says, we can
	 simplify those short webs, but later due to irregularities we can't
	 color those pseudos.  So we have to spill them, which in later rounds
	 leads to other spills.  */
      d = pop_list (&WEBS(SIMPLIFY));
      if (!d)
	d = pop_list (&WEBS(SIMPLIFY_FAT));
      if (!d)
	d = pop_list (&WEBS(SIMPLIFY_SPILL));
      if (!d)
	break;
      web = DLIST_WEB (d);
      ra_debug_msg (DUMP_PROCESS, " simplifying web %3d, conflicts = %d\n",
		 web->id, web->num_conflicts);
      put_web (web, SELECT);
      for (wl = web->conflict_list; wl; wl = wl->next)
	{
	  struct web *pweb = wl->t;
	  if (pweb->type != SELECT && pweb->type != COALESCED)
	    {
	      decrement_degree (pweb, 1 + web->add_hardregs);
	    }
	}
    }
}

/* Helper function to remove a move from the movelist of the web.  */

static void
remove_move_1 (struct web *web, struct move *move)
{
  struct move_list *ml = web->moves;
  if (!ml)
    return;
  if (ml->move == move)
    {
      web->moves = ml->next;
      return;
    }
  for (; ml->next && ml->next->move != move; ml = ml->next) ;
  if (!ml->next)
    return;
  ml->next = ml->next->next;
}

/* Remove a move from the movelist of the web.  Actually this is just a
   wrapper around remove_move_1(), making sure, the removed move really is
   not in the list anymore.  */

static void
remove_move (struct web *web, struct move *move)
{
  struct move_list *ml;
  remove_move_1 (web, move);
  for (ml = web->moves; ml; ml = ml->next)
    if (ml->move == move)
      abort ();
}

/* Merge the moves for the two webs into the first web's movelist.  */

void
merge_moves (struct web *u, struct web *v)
{
  regset seen;
  struct move_list *ml, *ml_next;

  seen = BITMAP_XMALLOC ();
  for (ml = u->moves; ml; ml = ml->next)
    bitmap_set_bit (seen, INSN_UID (ml->move->insn));
  for (ml = v->moves; ml; ml = ml_next)
    {
      ml_next = ml->next;
      if (! bitmap_bit_p (seen, INSN_UID (ml->move->insn)))
        {
	  ml->next = u->moves;
	  u->moves = ml;
	}
    }
  BITMAP_XFREE (seen);
  v->moves = NULL;
}

/* Add a web to the simplify worklist, from the freeze worklist.  */

static void
add_worklist (struct web *web)
{
  if (web->type != PRECOLORED && !web->moves
      && web->num_conflicts < NUM_REGS (web))
    {
      remove_list (web->dlink, &WEBS(FREEZE));
      put_web (web, SIMPLIFY);
    }
}

/* Precolored node coalescing heuristic.  */

static int
ok (struct web *target, struct web *source)
{
  struct conflict_link *wl;
  int i;
  int color = source->color;
  int size;

  /* Normally one would think, the next test wouldn't be needed.
     We try to coalesce S and T, and S has already a color, and we checked
     when processing the insns, that both have the same mode.  So naively
     we could conclude, that of course that mode was valid for this color.
     Hah.  But there is sparc.  Before reload there are copy insns
     (e.g. the ones copying arguments to locals) which happily refer to
     colors in invalid modes.  We can't coalesce those things.  */
  if (! HARD_REGNO_MODE_OK (source->color, GET_MODE (target->orig_x)))
    return 0;

  /* Sanity for funny modes.  */
  size = hard_regno_nregs[color][GET_MODE (target->orig_x)];
  if (!size)
    return 0;

  /* We can't coalesce target with a precolored register which isn't in
     usable_regs.  */
  for (i = size; i--;)
    if (TEST_HARD_REG_BIT (never_use_colors, color + i)
	|| !TEST_HARD_REG_BIT (target->usable_regs, color + i)
	/* Before usually calling ok() at all, we already test, if the
	   candidates conflict in sup_igraph.  But when wide webs are
	   coalesced to hardregs, we only test the hardweb coalesced into.
	   This is only the begin color.  When actually coalescing both,
	   it will also take the following size colors, i.e. their webs.
	   We nowhere checked if the candidate possibly conflicts with
	   one of _those_, which is possible with partial conflicts,
	   so we simply do it here (this does one bit-test more than
	   necessary, the first color).  Note, that if X is precolored
	   bit [X*num_webs + Y] can't be set (see add_conflict_edge()).  */
	|| TEST_BIT (sup_igraph,
		     target->id * num_webs + hardreg2web[color + i]->id))
      return 0;

  for (wl = target->conflict_list; wl; wl = wl->next)
    {
      struct web *pweb = wl->t;
      if (pweb->type == SELECT || pweb->type == COALESCED)
	continue;

      /* Coalescing target (T) and source (S) is o.k, if for
	 all conflicts C of T it is true, that:
	  1) C will be colored, or
	  2) C is a hardreg (precolored), or
	  3) C already conflicts with S too, or
	  4) a web which contains C conflicts already with S.
	 XXX: we handle here only the special case of 4), that C is
	 a subreg, and the containing thing is the reg itself, i.e.
	 we dont handle the situation, were T conflicts with
	 (subreg:SI x 1), and S conflicts with (subreg:DI x 0), which
	 would be allowed also, as the S-conflict overlaps
	 the T-conflict.
         So, we first test the whole web for any of these conditions, and
         continue with the next C, if 1, 2 or 3 is true.  */
      if (pweb->num_conflicts < NUM_REGS (pweb)
	  || pweb->type == PRECOLORED
	  || TEST_BIT (igraph, igraph_index (source->id, pweb->id)) )
	continue;

      /* This is reached, if not one of 1, 2 or 3 was true.  In the case C has
         no subwebs, 4 can't be true either, so we can't coalesce S and T.  */
      if (wl->sub == NULL)
        return 0;
      else
	{
	  /* The main webs do _not_ conflict, only some parts of both.  This
	     means, that 4 is possibly true, so we need to check this too.
	     For this we go through all sub conflicts between T and C, and see if
	     the target part of C already conflicts with S.  When this is not
	     the case we disallow coalescing.  */
	  struct sub_conflict *sl;
	  for (sl = wl->sub; sl; sl = sl->next)
	    {
              if (!TEST_BIT (igraph, igraph_index (source->id, sl->t->id)))
	        return 0;
	    }
        }
    }
  return 1;
}

/* Non-precolored node coalescing heuristic.  */

static int
conservative (struct web *target, struct web *source)
{
  unsigned int k;
  unsigned int loop;
  regset seen;
  struct conflict_link *wl;
  unsigned int num_regs = NUM_REGS (target); /* XXX */

  /* k counts the resulting conflict weight, if target and source
     would be merged, and all low-degree neighbors would be
     removed.  */
  k = 0 * MAX (target->add_hardregs, source->add_hardregs);
  seen = BITMAP_XMALLOC ();
  for (loop = 0; loop < 2; loop++)
    for (wl = ((loop == 0) ? target : source)->conflict_list;
	 wl; wl = wl->next)
      {
	struct web *pweb = wl->t;
	if (pweb->type != SELECT && pweb->type != COALESCED
	    && pweb->num_conflicts >= NUM_REGS (pweb)
	    && ! REGNO_REG_SET_P (seen, pweb->id))
	  {
	    SET_REGNO_REG_SET (seen, pweb->id);
	    k += 1 + pweb->add_hardregs;
	  }
      }
  BITMAP_XFREE (seen);

  if (k >= num_regs)
    return 0;
  return 1;
}

/* If the web is coalesced, return it's alias.  Otherwise, return what
   was passed in.  */

struct web *
alias (struct web *web)
{
  while (web->type == COALESCED)
    web = web->alias;
  return web;
}

/* Returns nonzero, if the TYPE belongs to one of those representing
   SIMPLIFY types.  */

static inline unsigned int
simplify_p (enum node_type type)
{
  return type == SIMPLIFY || type == SIMPLIFY_SPILL || type == SIMPLIFY_FAT;
}

/* Actually combine two webs, that can be coalesced.  */

static void
combine (struct web *u, struct web *v)
{
  int i;
  struct conflict_link *wl;
  if (u == v || v->type == COALESCED)
    abort ();
  if ((u->regno >= max_normal_pseudo) != (v->regno >= max_normal_pseudo))
    abort ();
  remove_web_from_list (v);
  put_web (v, COALESCED);
  v->alias = u;
  u->is_coalesced = 1;
  v->is_coalesced = 1;
  u->num_aliased += 1 + v->num_aliased;
  if (flag_ra_merge_spill_costs && u->type != PRECOLORED)
    u->spill_cost += v->spill_cost;
    /*u->spill_cost = MAX (u->spill_cost, v->spill_cost);*/
  merge_moves (u, v);
  /* combine add_hardregs's of U and V.  */

  for (wl = v->conflict_list; wl; wl = wl->next)
    {
      struct web *pweb = wl->t;
      /* We don't strictly need to move conflicts between webs which are
	 already coalesced or selected, if we do iterated coalescing, or
	 better if we need not to be able to break aliases again.
	 I.e. normally we would use the condition
	 (pweb->type != SELECT && pweb->type != COALESCED).
	 But for now we simply merge all conflicts.  It doesn't take that
         much time.  */
      if (1)
	{
	  struct web *web = u;
	  int nregs = 1 + v->add_hardregs;
	  if (u->type == PRECOLORED)
	    nregs = hard_regno_nregs[u->color][GET_MODE (v->orig_x)];

	  /* For precolored U's we need to make conflicts between V's
	     neighbors and as many hardregs from U as V needed if it gets
	     color U.  For now we approximate this by V->add_hardregs, which
	     could be too much in multi-length classes.  We should really
	     count how many hardregs are needed for V with color U.  When U
	     isn't precolored this loop breaks out after one iteration.  */
	  for (i = 0; i < nregs; i++)
	    {
	      if (u->type == PRECOLORED)
		web = hardreg2web[i + u->color];
	      if (wl->sub == NULL)
		record_conflict (web, pweb);
	      else
		{
		  struct sub_conflict *sl;
		  /* So, between V and PWEB there are sub_conflicts.  We
		     need to relocate those conflicts to be between WEB (==
		     U when it wasn't precolored) and PWEB.  In the case
		     only a part of V conflicted with (part of) PWEB we
		     nevertheless make the new conflict between the whole U
		     and the (part of) PWEB.  Later we might try to find in
		     U the correct subpart corresponding (by size and
		     offset) to the part of V (sl->s) which was the source
		     of the conflict.  */
		  for (sl = wl->sub; sl; sl = sl->next)
		    {
		      /* Beware: sl->s is no subweb of web (== U) but of V.
			 We try to search a corresponding subpart of U.
			 If we found none we let it conflict with the whole U.
			 Note that find_subweb() only looks for mode and
			 subreg_byte of the REG rtx but not for the pseudo
			 reg number (otherwise it would be guaranteed to
			 _not_ find any subpart).  */
		      struct web *sweb = NULL;
		      if (SUBWEB_P (sl->s))
			sweb = find_subweb (web, sl->s->orig_x);
		      if (!sweb)
			sweb = web;
		      record_conflict (sweb, sl->t);
		    }
		}
	      if (u->type != PRECOLORED)
		break;
	    }
	  if (pweb->type != SELECT && pweb->type != COALESCED)
	    decrement_degree (pweb, 1 + v->add_hardregs);
	}
    }

  /* Now merge the usable_regs together.  */
  /* XXX That merging might normally make it necessary to
     adjust add_hardregs, which also means to adjust neighbors.  This can
     result in making some more webs trivially colorable, (or the opposite,
     if this increases our add_hardregs).  Because we intersect the
     usable_regs it should only be possible to decrease add_hardregs.  So a
     conservative solution for now is to simply don't change it.  */
  u->use_my_regs = 1;
  AND_HARD_REG_SET (u->usable_regs, v->usable_regs);
  u->regclass = reg_class_subunion[u->regclass][v->regclass];
  /* Count number of possible hardregs.  This might make U a spillweb,
     but that could also happen, if U and V together had too many
     conflicts.  */
  u->num_freedom = hard_regs_count (u->usable_regs);
  u->num_freedom -= u->add_hardregs;
  /* The next would mean an invalid coalesced move (both webs have no
     possible hardreg in common), so abort.  */
  if (!u->num_freedom)
    abort();

  if (u->num_conflicts >= NUM_REGS (u)
      && (u->type == FREEZE || simplify_p (u->type)))
    {
      remove_web_from_list (u);
      put_web (u, SPILL);
    }

  /* We want the most relaxed combination of spill_temp state.
     I.e. if any was no spilltemp or a spilltemp2, the result is so too,
     otherwise if any is short, the result is too.  It remains, when both
     are normal spilltemps.  */
  if (v->spill_temp == 0)
    u->spill_temp = 0;
  else if (v->spill_temp == 2 && u->spill_temp != 0)
    u->spill_temp = 2;
  else if (v->spill_temp == 3 && u->spill_temp == 1)
    u->spill_temp = 3;
}

/* Attempt to coalesce the first thing on the move worklist.
   This is used only for iterated coalescing.  */

static void
coalesce (void)
{
  struct dlist *d = pop_list (&mv_worklist);
  struct move *m = DLIST_MOVE (d);
  struct web *source = alias (m->source_web);
  struct web *target = alias (m->target_web);

  if (target->type == PRECOLORED)
    {
      struct web *h = source;
      source = target;
      target = h;
    }
  if (source == target)
    {
      remove_move (source, m);
      put_move (m, MV_COALESCED);
      add_worklist (source);
    }
  else if (target->type == PRECOLORED
	   || TEST_BIT (sup_igraph, source->id * num_webs + target->id)
	   || TEST_BIT (sup_igraph, target->id * num_webs + source->id))
    {
      remove_move (source, m);
      remove_move (target, m);
      put_move (m, CONSTRAINED);
      add_worklist (source);
      add_worklist (target);
    }
  else if ((source->type == PRECOLORED && ok (target, source))
	   || (source->type != PRECOLORED
	       && conservative (target, source)))
    {
      remove_move (source, m);
      remove_move (target, m);
      put_move (m, MV_COALESCED);
      combine (source, target);
      add_worklist (source);
    }
  else
    put_move (m, ACTIVE);
}

/* Freeze the moves associated with the web.  Used for iterated coalescing.  */

static void
freeze_moves (struct web *web)
{
  struct move_list *ml, *ml_next;
  for (ml = web->moves; ml; ml = ml_next)
    {
      struct move *m = ml->move;
      struct web *src, *dest;
      ml_next = ml->next;
      if (m->type == ACTIVE)
	remove_list (m->dlink, &mv_active);
      else
	remove_list (m->dlink, &mv_worklist);
      put_move (m, FROZEN);
      remove_move (web, m);
      src = alias (m->source_web);
      dest = alias (m->target_web);
      src = (src == web) ? dest : src;
      remove_move (src, m);
      /* XXX GA use the original v, instead of alias(v) */
      if (!src->moves && src->num_conflicts < NUM_REGS (src))
	{
	  remove_list (src->dlink, &WEBS(FREEZE));
	  put_web (src, SIMPLIFY);
	}
    }
}

/* Freeze the first thing on the freeze worklist (only for iterated
   coalescing).  */

static void
freeze (void)
{
  struct dlist *d = pop_list (&WEBS(FREEZE));
  put_web (DLIST_WEB (d), SIMPLIFY);
  freeze_moves (DLIST_WEB (d));
}

/* The current spill heuristic.  Returns a number for a WEB.
   Webs with higher numbers are selected later.  */

static unsigned HOST_WIDE_INT (*spill_heuristic) (struct web *);

static unsigned HOST_WIDE_INT default_spill_heuristic (struct web *);

/* Our default heuristic is similar to spill_cost / num_conflicts.
   Just scaled for integer arithmetic, and it favors coalesced webs,
   and webs which span more insns with deaths.  */

static unsigned HOST_WIDE_INT
default_spill_heuristic (struct web *web)
{
  unsigned HOST_WIDE_INT ret;
  unsigned int divisor = 1;
  /* Make coalesce targets cheaper to spill, because they will be broken
     up again into smaller parts.  */
  if (flag_ra_break_aliases)
    divisor += web->num_aliased;
  divisor += web->num_conflicts;
  ret = ((web->spill_cost << 8) + divisor - 1) / divisor;
  /* It is better to spill webs that span more insns (deaths in our
     case) than other webs with the otherwise same spill_cost.  So make
     them a little bit cheaper.  Remember that spill_cost is unsigned.  */
  if (web->span_deaths < ret)
    ret -= web->span_deaths;
  return ret;
}

/* Select the cheapest spill to be potentially spilled (we don't
   *actually* spill until we need to).  */

static void
select_spill (void)
{
  unsigned HOST_WIDE_INT best = (unsigned HOST_WIDE_INT) -1;
  struct dlist *bestd = NULL;
  unsigned HOST_WIDE_INT best2 = (unsigned HOST_WIDE_INT) -1;
  struct dlist *bestd2 = NULL;
  struct dlist *d;
  for (d = WEBS(SPILL); d; d = d->next)
    {
      struct web *w = DLIST_WEB (d);
      unsigned HOST_WIDE_INT cost = spill_heuristic (w);
      if ((!w->spill_temp) && cost < best)
	{
	  best = cost;
	  bestd = d;
	}
      /* Specially marked spill temps can be spilled.  Also coalesce
	 targets can.  Eventually they will be broken up later in the
	 colorizing process, so if we have nothing better take that.  */
      else if ((w->spill_temp == 2 || w->is_coalesced) && cost < best2)
	{
	  best2 = cost;
	  bestd2 = d;
	}
    }
  if (!bestd)
    {
      bestd = bestd2;
      best = best2;
    }
  if (!bestd)
    abort ();

  /* Note the potential spill.  */
  DLIST_WEB (bestd)->was_spilled = 1;
  remove_list (bestd, &WEBS(SPILL));
  put_web (DLIST_WEB (bestd), SIMPLIFY);
  freeze_moves (DLIST_WEB (bestd));
  ra_debug_msg (DUMP_PROCESS, " potential spill web %3d, conflicts = %d\n",
	     DLIST_WEB (bestd)->id, DLIST_WEB (bestd)->num_conflicts);
}

/* Given a set of forbidden colors to begin at, and a set of still
   free colors, and MODE, returns nonzero of color C is still usable.  */

static int
color_usable_p (int c, HARD_REG_SET dont_begin_colors,
		HARD_REG_SET free_colors, enum machine_mode  mode)
{
  if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
      && TEST_HARD_REG_BIT (free_colors, c)
      && HARD_REGNO_MODE_OK (c, mode))
    {
      int i, size;
      size = hard_regno_nregs[c][mode];
      for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
      if (i == size)
	return 1;
    }
  return 0;
}

/* I don't want to clutter up the actual code with ifdef's.  */
#ifdef REG_ALLOC_ORDER
#define INV_REG_ALLOC_ORDER(c) inv_reg_alloc_order[c]
#else
#define INV_REG_ALLOC_ORDER(c) c
#endif

/* Searches in FREE_COLORS for a block of hardregs of the right length
   for MODE, which doesn't begin at a hardreg mentioned in DONT_BEGIN_COLORS.
   If it needs more than one hardreg it prefers blocks beginning
   at an even hardreg, and only gives an odd begin reg if no other
   block could be found.  */

int
get_free_reg (HARD_REG_SET dont_begin_colors, HARD_REG_SET free_colors,
	      enum machine_mode mode)
{
  int c;
  int last_resort_reg = -1;
  int pref_reg = -1;
  int pref_reg_order = INT_MAX;
  int last_resort_reg_order = INT_MAX;

  for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
    if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
	&& TEST_HARD_REG_BIT (free_colors, c)
	&& HARD_REGNO_MODE_OK (c, mode))
      {
	int i, size;
	size = hard_regno_nregs[c][mode];
	for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
	if (i != size)
	  {
	    c += i;
	    continue;
	  }
	if (i == size)
	  {
	    if (size < 2 || (c & 1) == 0)
	      {
		if (INV_REG_ALLOC_ORDER (c) < pref_reg_order)
		  {
		    pref_reg = c;
		    pref_reg_order = INV_REG_ALLOC_ORDER (c);
		  }
	      }
	    else if (INV_REG_ALLOC_ORDER (c) < last_resort_reg_order)
	      {
		last_resort_reg = c;
		last_resort_reg_order = INV_REG_ALLOC_ORDER (c);
	      }
	  }
	else
	  c += i;
      }
  return pref_reg >= 0 ? pref_reg : last_resort_reg;
}

/* Similar to get_free_reg(), but first search in colors provided
   by BIAS _and_ PREFER_COLORS, then in BIAS alone, then in PREFER_COLORS
   alone, and only then for any free color.  If flag_ra_biased is zero
   only do the last two steps.  */

static int
get_biased_reg (HARD_REG_SET dont_begin_colors, HARD_REG_SET bias,
		HARD_REG_SET prefer_colors, HARD_REG_SET free_colors,
		enum machine_mode mode)
{
  int c = -1;
  HARD_REG_SET s;
  if (flag_ra_biased)
    {
      COPY_HARD_REG_SET (s, dont_begin_colors);
      IOR_COMPL_HARD_REG_SET (s, bias);
      IOR_COMPL_HARD_REG_SET (s, prefer_colors);
      c = get_free_reg (s, free_colors, mode);
      if (c >= 0)
	return c;
      COPY_HARD_REG_SET (s, dont_begin_colors);
      IOR_COMPL_HARD_REG_SET (s, bias);
      c = get_free_reg (s, free_colors, mode);
      if (c >= 0)
	return c;
    }
  COPY_HARD_REG_SET (s, dont_begin_colors);
  IOR_COMPL_HARD_REG_SET (s, prefer_colors);
  c = get_free_reg (s, free_colors, mode);
  if (c >= 0)
      return c;
  c = get_free_reg (dont_begin_colors, free_colors, mode);
  return c;
}

/* Counts the number of non-overlapping bitblocks of length LEN
   in FREE_COLORS.  */

static int
count_long_blocks (HARD_REG_SET free_colors, int len)
{
  int i, j;
  int count = 0;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (!TEST_HARD_REG_BIT (free_colors, i))
	continue;
      for (j = 1; j < len; j++)
	if (!TEST_HARD_REG_BIT (free_colors, i + j))
	  break;
      /* Bits [i .. i+j-1] are free.  */
      if (j == len)
	count++;
      i += j - 1;
    }
  return count;
}

/* Given a hardreg set S, return a string representing it.
   Either as 0/1 string, or as hex value depending on the implementation
   of hardreg sets.  Note that this string is statically allocated.  */

static char *
hardregset_to_string (HARD_REG_SET s)
{
  static char string[/*FIRST_PSEUDO_REGISTER + 30*/1024];
#if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDE_INT
  sprintf (string, HOST_WIDE_INT_PRINT_HEX, s);
#else
  char *c = string;
  int i,j;
  c += sprintf (c, "{ ");
  for (i = 0;i < HARD_REG_SET_LONGS; i++)
    {
      for (j = 0; j < HOST_BITS_PER_WIDE_INT; j++)
	  c += sprintf (c, "%s", ( 1 << j) & s[i] ? "1" : "0");
      c += sprintf (c, "%s", i ? ", " : "");
    }
  c += sprintf (c, " }");
#endif
  return string;
}

/* For WEB, look at its already colored neighbors, and calculate
   the set of hardregs which is not allowed as color for WEB.  Place
   that set int *RESULT.  Note that the set of forbidden begin colors
   is not the same as all colors taken up by neighbors.  E.g. suppose
   two DImode webs, but only the lo-part from one conflicts with the
   hipart from the other, and suppose the other gets colors 2 and 3
   (it needs two SImode hardregs).  Now the first can take also color
   1 or 2, although in those cases there's a partial overlap.  Only
   3 can't be used as begin color.  */

static void
calculate_dont_begin (struct web *web, HARD_REG_SET *result)
{
  struct conflict_link *wl;
  HARD_REG_SET dont_begin;
  /* The bits set in dont_begin correspond to the hardregs, at which
     WEB may not begin.  This differs from the set of _all_ hardregs which
     are taken by WEB's conflicts in the presence of wide webs, where only
     some parts conflict with others.  */
  CLEAR_HARD_REG_SET (dont_begin);
  for (wl = web->conflict_list; wl; wl = wl->next)
    {
      struct web *w;
      struct web *ptarget = alias (wl->t);
      struct sub_conflict *sl = wl->sub;
      w = sl ? sl->t : wl->t;
      while (w)
	{
	  if (ptarget->type == COLORED || ptarget->type == PRECOLORED)
	    {
	      struct web *source = (sl) ? sl->s : web;
	      unsigned int tsize = hard_regno_nregs[ptarget->color]
						   [GET_MODE (w->orig_x)];
	      /* ssize is only a first guess for the size.  */
	      unsigned int ssize = hard_regno_nregs[ptarget->color][GET_MODE
					            (source->orig_x)];
	      unsigned int tofs = 0;
	      unsigned int sofs = 0;
	      /* C1 and C2 can become negative, so unsigned
		 would be wrong.  */
	      int c1, c2;

	      if (SUBWEB_P (w)
		  && GET_MODE_SIZE (GET_MODE (w->orig_x)) >= UNITS_PER_WORD)
		tofs = (SUBREG_BYTE (w->orig_x) / UNITS_PER_WORD);
	      if (SUBWEB_P (source)
		  && GET_MODE_SIZE (GET_MODE (source->orig_x))
		     >= UNITS_PER_WORD)
		sofs = (SUBREG_BYTE (source->orig_x) / UNITS_PER_WORD);
	      c1 = ptarget->color + tofs - sofs - ssize + 1;
	      c2 = ptarget->color + tofs + tsize - 1 - sofs;
	      if (c2 >= 0)
		{
		  if (c1 < 0)
		    c1 = 0;
		  /* Because ssize was only guessed above, which influenced our
		     begin color (c1), we need adjustment, if for that color
		     another size would be needed.  This is done by moving
		     c1 to a place, where the last of sources hardregs does not
		     overlap the first of targets colors.  */
		  while (c1 + sofs
			 + hard_regno_nregs[c1][GET_MODE (source->orig_x)] - 1
			 < ptarget->color + tofs)
		    c1++;
		  while (c1 > 0 && c1 + sofs
			 + hard_regno_nregs[c1][GET_MODE (source->orig_x)] - 1
			 > ptarget->color + tofs)
		    c1--;
		  for (; c1 <= c2; c1++)
		    SET_HARD_REG_BIT (dont_begin, c1);
		}
	    }
	  /* The next if() only gets true, if there was no wl->sub at all, in
	     which case we are only making one go through this loop with W being
	     a whole web.  */
	  if (!sl)
	    break;
	  sl = sl->next;
	  w = sl ? sl->t : NULL;
	}
    }
  COPY_HARD_REG_SET (*result, dont_begin);
}

/* Try to assign a color to WEB.  If HARD if nonzero, we try many
   tricks to get it one color, including respilling already colored
   neighbors.

   We also trie very hard, to not constrain the uncolored non-spill
   neighbors, which need more hardregs than we.  Consider a situation, 2
   hardregs free for us (0 and 1), and one of our neighbors needs 2
   hardregs, and only conflicts with us.  There are 3 hardregs at all.  Now
   a simple minded method might choose 1 as color for us.  Then our neighbor
   has two free colors (0 and 2) as it should, but they are not consecutive,
   so coloring it later would fail.  This leads to nasty problems on
   register starved machines, so we try to avoid this.  */

static void
colorize_one_web (struct web *web, int hard)
{
  struct conflict_link *wl;
  HARD_REG_SET colors, dont_begin;
  int c = -1;
  int bestc = -1;
  int neighbor_needs= 0;
  struct web *fats_parent = NULL;
  int num_fat = 0;
  int long_blocks = 0;
  int best_long_blocks = -1;
  HARD_REG_SET fat_colors;
  HARD_REG_SET bias;

  CLEAR_HARD_REG_SET (fat_colors);
  
  if (web->regno >= max_normal_pseudo)
    hard = 0;

  /* First we want to know the colors at which we can't begin.  */
  calculate_dont_begin (web, &dont_begin);
  CLEAR_HARD_REG_SET (bias);

  /* Now setup the set of colors used by our neighbors neighbors,
     and search the biggest noncolored neighbor.  */
  neighbor_needs = web->add_hardregs + 1;
  for (wl = web->conflict_list; wl; wl = wl->next)
    {
      struct web *w;
      struct web *ptarget = alias (wl->t);
      struct sub_conflict *sl = wl->sub;
      IOR_HARD_REG_SET (bias, ptarget->bias_colors);
      w = sl ? sl->t : wl->t;
      if (ptarget->type != COLORED && ptarget->type != PRECOLORED
	  && !ptarget->was_spilled)
        while (w)
	  {
	    if (find_web_for_subweb (w)->type != COALESCED
		&& w->add_hardregs >= neighbor_needs)
	      {
		neighbor_needs = w->add_hardregs;
		fats_parent = ptarget;
		num_fat++;
	      }
	    if (!sl)
	      break;
	    sl = sl->next;
	    w = sl ? sl->t : NULL;
	  }
    }

  ra_debug_msg (DUMP_COLORIZE, "colorize web %d [don't begin at %s]", web->id,
             hardregset_to_string (dont_begin));

  /* If there are some fat neighbors, remember their usable regs,
     and how many blocks are free in it for that neighbor.  */
  if (num_fat)
    {
      COPY_HARD_REG_SET (fat_colors, fats_parent->usable_regs);
      long_blocks = count_long_blocks (fat_colors, neighbor_needs + 1);
    }

  /* We break out, if we found a color which doesn't constrain
     neighbors, or if we can't find any colors.  */
  while (1)
    {
      HARD_REG_SET call_clobbered;

      /* Here we choose a hard-reg for the current web.  For non spill
         temporaries we first search in the hardregs for it's preferred
	 class, then, if we found nothing appropriate, in those of the
	 alternate class.  For spill temporaries we only search in
	 usable_regs of this web (which is probably larger than that of
	 the preferred or alternate class).  All searches first try to
	 find a non-call-clobbered hard-reg.
         XXX this should be more finegraned... First look into preferred
         non-callclobbered hardregs, then _if_ the web crosses calls, in
         alternate non-cc hardregs, and only _then_ also in preferred cc
         hardregs (and alternate ones).  Currently we don't track the number
         of calls crossed for webs.  We should.  */
      if (web->use_my_regs)
	{
	  COPY_HARD_REG_SET (colors, web->usable_regs);
	  AND_HARD_REG_SET (colors,
			    usable_regs[reg_preferred_class (web->regno)]);
	}
      else
	COPY_HARD_REG_SET (colors,
			   usable_regs[reg_preferred_class (web->regno)]);
#ifdef CANNOT_CHANGE_MODE_CLASS
      if (web->mode_changed)
        AND_COMPL_HARD_REG_SET (colors, invalid_mode_change_regs);
#endif
      COPY_HARD_REG_SET (call_clobbered, colors);
      AND_HARD_REG_SET (call_clobbered, call_used_reg_set);

      /* If this web got a color in the last pass, try to give it the
	 same color again.  This will to much better colorization
	 down the line, as we spilled for a certain coloring last time.  */
      if (web->old_color)
	{
	  c = web->old_color - 1;
	  if (!color_usable_p (c, dont_begin, colors,
			       PSEUDO_REGNO_MODE (web->regno)))
	    c = -1;
	}
      else
	c = -1;
      if (c < 0)
	c = get_biased_reg (dont_begin, bias, web->prefer_colors,
			    call_clobbered, PSEUDO_REGNO_MODE (web->regno));
      if (c < 0)
	c = get_biased_reg (dont_begin, bias, web->prefer_colors,
			  colors, PSEUDO_REGNO_MODE (web->regno));

      if (c < 0)
	{
	  if (web->use_my_regs)
	    IOR_HARD_REG_SET (colors, web->usable_regs);
	  else
	    IOR_HARD_REG_SET (colors, usable_regs
			      [reg_alternate_class (web->regno)]);
#ifdef CANNOT_CHANGE_MODE_CLASS
	  if (web->mode_changed)
	    AND_COMPL_HARD_REG_SET (colors, invalid_mode_change_regs);
#endif
	  COPY_HARD_REG_SET (call_clobbered, colors);
	  AND_HARD_REG_SET (call_clobbered, call_used_reg_set);

	  c = get_biased_reg (dont_begin, bias, web->prefer_colors,
			    call_clobbered, PSEUDO_REGNO_MODE (web->regno));
	  if (c < 0)
	    c = get_biased_reg (dont_begin, bias, web->prefer_colors,
			      colors, PSEUDO_REGNO_MODE (web->regno));
	}
      if (c < 0)
	break;
      if (bestc < 0)
        bestc = c;
      /* If one of the yet uncolored neighbors, which is not a potential
	 spill needs a block of hardregs be sure, not to destroy such a block
	 by coloring one reg in the middle.  */
      if (num_fat)
	{
	  int i;
	  int new_long;
	  HARD_REG_SET colors1;
	  COPY_HARD_REG_SET (colors1, fat_colors);
	  for (i = 0; i < 1 + web->add_hardregs; i++)
	    CLEAR_HARD_REG_BIT (colors1, c + i);
	  new_long = count_long_blocks (colors1, neighbor_needs + 1);
	  /* If we changed the number of long blocks, and it's now smaller
	     than needed, we try to avoid this color.  */
	  if (long_blocks != new_long && new_long < num_fat)
	    {
	      if (new_long > best_long_blocks)
		{
		  best_long_blocks = new_long;
		  bestc = c;
		}
	      SET_HARD_REG_BIT (dont_begin, c);
	      ra_debug_msg (DUMP_COLORIZE, " avoid %d", c);
	    }
	  else
	    /* We found a color which doesn't destroy a block.  */
	    break;
	}
      /* If we havee no fat neighbors, the current color won't become
	 "better", so we've found it.  */
      else
	break;
    }
  ra_debug_msg (DUMP_COLORIZE, " --> got %d", c < 0 ? bestc : c);
  if (bestc >= 0 && c < 0 && !web->was_spilled)
    {
      /* This is a non-potential-spill web, which got a color, which did
	 destroy a hardreg block for one of it's neighbors.  We color
	 this web anyway and hope for the best for the neighbor, if we are
	 a spill temp.  */
      if (1 || web->spill_temp)
        c = bestc;
      ra_debug_msg (DUMP_COLORIZE, " [constrains neighbors]");
    }
  ra_debug_msg (DUMP_COLORIZE, "\n");

  if (c < 0)
    {
      /* Guard against a simplified node being spilled.  */
      /* Don't abort.  This can happen, when e.g. enough registers
	 are available in colors, but they are not consecutive.  This is a
	 very serious issue if this web is a short live one, because
	 even if we spill this one here, the situation won't become better
	 in the next iteration.  It probably will have the same conflicts,
	 those will have the same colors, and we would come here again, for
	 all parts, in which this one gets split by the spill.  This
	 can result in endless iteration spilling the same register again and
	 again.  That's why we try to find a neighbor, which spans more
	 instructions that ourself, and got a color, and try to spill _that_.

	 if (DLIST_WEB (d)->was_spilled < 0)
	 abort (); */
      if (hard && (!web->was_spilled || web->spill_temp))
	{
	  unsigned int loop;
	  struct web *try = NULL;
	  struct web *candidates[8];

	  ra_debug_msg (DUMP_COLORIZE, "  *** %d spilled, although %s ***\n",
		     web->id, web->spill_temp ? "spilltemp" : "non-spill");
	  /* We make multiple passes over our conflicts, first trying to
	     spill those webs, which only got a color by chance, but
	     were potential spill ones, and if that isn't enough, in a second
	     pass also to spill normal colored webs.  If we still didn't find
	     a candidate, but we are a spill-temp, we make a third pass
	     and include also webs, which were targets for coalescing, and
	     spill those.  */
	  memset (candidates, 0, sizeof candidates);
#define set_cand(i, w) \
	  do { \
	      if (!candidates[(i)] \
		  || (candidates[(i)]->spill_cost < (w)->spill_cost)) \
		candidates[(i)] = (w); \
	  } while (0)
	  for (wl = web->conflict_list; wl; wl = wl->next)
	    {
	      struct web *w = wl->t;
	      struct web *aw = alias (w);
	      /* If we are a spill-temp, we also look at webs coalesced
		 to precolored ones.  Otherwise we only look at webs which
		 themselves were colored, or coalesced to one.  */
	      if (aw->type == PRECOLORED && w != aw && web->spill_temp
		  && flag_ra_optimistic_coalescing)
		{
		  if (!w->spill_temp)
		    set_cand (4, w);
		  else if (web->spill_temp == 2
			   && w->spill_temp == 2
			   && w->spill_cost < web->spill_cost)
		    set_cand (5, w);
		  else if (web->spill_temp != 2
			   && (w->spill_temp == 2
			       || w->spill_cost < web->spill_cost))
		    set_cand (6, w);
		  continue;
		}
	      if (aw->type != COLORED)
		continue;
	      if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
		  && w->was_spilled)
		{
		  if (w->spill_cost < web->spill_cost)
		    set_cand (0, w);
		  else if (web->spill_temp)
		    set_cand (1, w);
		}
	      if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
		  && !w->was_spilled)
		{
		  if (w->spill_cost < web->spill_cost)
		    set_cand (2, w);
		  else if (web->spill_temp && web->spill_temp != 2)
		    set_cand (3, w);
		}
	      if (web->spill_temp)
		{
		  if (w->type == COLORED && w->spill_temp == 2
		      && !w->is_coalesced
		      && (w->spill_cost < web->spill_cost
			  || web->spill_temp != 2))
		    set_cand (4, w);
		  if (!aw->spill_temp)
		    set_cand (5, aw);
		  if (aw->spill_temp == 2
		      && (aw->spill_cost < web->spill_cost
			  || web->spill_temp != 2))
		    set_cand (6, aw);
		  /* For boehm-gc/misc.c.  If we are a difficult spilltemp,
		     also coalesced neighbors are a chance, _even_ if they
		     too are spilltemps.  At least their coalescing can be
		     broken up, which may be reset usable_regs, and makes
		     it easier colorable.  */
		  if (web->spill_temp != 2 && aw->is_coalesced
		      && flag_ra_optimistic_coalescing)
		    set_cand (7, aw);
		}
	    }
	  for (loop = 0; try == NULL && loop < 8; loop++)
	    if (candidates[loop])
	      try = candidates[loop];
#undef set_cand
	  if (try)
	    {
	      int old_c = try->color;
	      if (try->type == COALESCED)
		{
		  if (alias (try)->type != PRECOLORED)
		    abort ();
		  ra_debug_msg (DUMP_COLORIZE, "  breaking alias %d -> %d\n",
			     try->id, alias (try)->id);
		  break_precolored_alias (try);
		  colorize_one_web (web, hard);
		}
	      else
		{
		  remove_list (try->dlink, &WEBS(COLORED));
		  put_web (try, SPILLED);
		  /* Now try to colorize us again.  Can recursively make other
		     webs also spill, until there are no more unspilled
		     neighbors.  */
		  ra_debug_msg (DUMP_COLORIZE, "  trying to spill %d\n", try->id);
		  colorize_one_web (web, hard);
		  if (web->type != COLORED)
		    {
		      /* We tried recursively to spill all already colored
			 neighbors, but we are still uncolorable.  So it made
			 no sense to spill those neighbors.  Recolor them.  */
		      remove_list (try->dlink, &WEBS(SPILLED));
		      put_web (try, COLORED);
		      try->color = old_c;
		      ra_debug_msg (DUMP_COLORIZE,
				    "  spilling %d was useless\n", try->id);
		    }
		  else
		    {
		      ra_debug_msg (DUMP_COLORIZE,
				    "  to spill %d was a good idea\n",
				    try->id);
		      remove_list (try->dlink, &WEBS(SPILLED));
		      if (try->was_spilled)
			colorize_one_web (try, 0);
		      else
			colorize_one_web (try, hard - 1);
		    }
		}
	    }
	  else
	    /* No more chances to get a color, so give up hope and
	       spill us.  */
	    put_web (web, SPILLED);
	}
      else
        put_web (web, SPILLED);
    }
  else
    {
      put_web (web, COLORED);
      web->color = c;
      if (flag_ra_biased)
	{
	  int nregs = hard_regno_nregs[c][GET_MODE (web->orig_x)];
	  for (wl = web->conflict_list; wl; wl = wl->next)
	    {
	      struct web *ptarget = alias (wl->t);
	      int i;
	      for (i = 0; i < nregs; i++)
		SET_HARD_REG_BIT (ptarget->bias_colors, c + i);
	    }
	}
    }
  if (web->regno >= max_normal_pseudo && web->type == SPILLED)
    {
      web->color = an_unusable_color;
      remove_list (web->dlink, &WEBS(SPILLED));
      put_web (web, COLORED);
    }
  if (web->type == SPILLED && flag_ra_optimistic_coalescing
      && web->is_coalesced)
    {
      ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
      restore_conflicts_from_coalesce (web);
      break_aliases_to_web (web);
      insert_coalesced_conflicts ();
      ra_debug_msg (DUMP_COLORIZE, "\n");
      remove_list (web->dlink, &WEBS(SPILLED));
      put_web (web, SELECT);
      web->color = -1;
    }
}

/* Assign the colors to all nodes on the select stack.  And update the
   colors of coalesced webs.  */

static void
assign_colors (void)
{
  struct dlist *d;

  while (WEBS(SELECT))
    {
      d = pop_list (&WEBS(SELECT));
      colorize_one_web (DLIST_WEB (d), 1);
    }

  for (d = WEBS(COALESCED); d; d = d->next)
    {
      struct web *a = alias (DLIST_WEB (d));
      DLIST_WEB (d)->color = a->color;
    }
}

/* WEB is a spilled web.  Look if we can improve the cost of the graph,
   by coloring WEB, even if we then need to spill some of it's neighbors.
   For this we calculate the cost for each color C, that results when we
   _would_ give WEB color C (i.e. the cost of the then spilled neighbors).
   If the lowest cost among them is smaller than the spillcost of WEB, we
   do that recoloring, and instead spill the neighbors.

   This can sometime help, when due to irregularities in register file,
   and due to multi word pseudos, the colorization is suboptimal.  But
   be aware, that currently this pass is quite slow.  */

static void
try_recolor_web (struct web *web)
{
  struct conflict_link *wl;
  unsigned HOST_WIDE_INT *cost_neighbors;
  unsigned int *min_color;
  int newcol, c;
  HARD_REG_SET precolored_neighbors, spill_temps;
  HARD_REG_SET possible_begin, wide_seen;
  cost_neighbors = xcalloc (FIRST_PSEUDO_REGISTER, sizeof (cost_neighbors[0]));
  /* For each hard-regs count the number of preceding hardregs, which
     would overlap this color, if used in WEB's mode.  */
  min_color = xcalloc (FIRST_PSEUDO_REGISTER, sizeof (int));
  CLEAR_HARD_REG_SET (possible_begin);
  for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
    {
      int i, nregs;
      if (!HARD_REGNO_MODE_OK (c, GET_MODE (web->orig_x)))
	continue;
      nregs = hard_regno_nregs[c][GET_MODE (web->orig_x)];
      for (i = 0; i < nregs; i++)
	if (!TEST_HARD_REG_BIT (web->usable_regs, c + i))
	  break;
      if (i < nregs || nregs == 0)
	continue;
      SET_HARD_REG_BIT (possible_begin, c);
      for (; nregs--;)
	if (!min_color[c + nregs])
	  min_color[c + nregs] = 1 + c;
    }
  CLEAR_HARD_REG_SET (precolored_neighbors);
  CLEAR_HARD_REG_SET (spill_temps);
  CLEAR_HARD_REG_SET (wide_seen);
  for (wl = web->conflict_list; wl; wl = wl->next)
    {
      HARD_REG_SET dont_begin;
      struct web *web2 = alias (wl->t);
      struct conflict_link *nn;
      int c1, c2;
      int wide_p = 0;
      if (wl->t->type == COALESCED || web2->type != COLORED)
	{
	  if (web2->type == PRECOLORED)
	    {
	      c1 = min_color[web2->color];
	      c1 = (c1 == 0) ? web2->color : (c1 - 1);
	      c2 = web2->color;
	      for (; c1 <= c2; c1++)
	        SET_HARD_REG_BIT (precolored_neighbors, c1);
	    }
	  continue;
	}
      /* Mark colors for which some wide webs are involved.  For
	 those the independent sets are not simply one-node graphs, so
	 they can't be recolored independent from their neighborhood.  This
	 means, that our cost calculation can be incorrect (assuming it
	 can avoid spilling a web because it thinks some colors are available,
	 although it's neighbors which itself need recoloring might take
	 away exactly those colors).  */
      if (web2->add_hardregs)
	wide_p = 1;
      for (nn = web2->conflict_list; nn && !wide_p; nn = nn->next)
	if (alias (nn->t)->add_hardregs)
	  wide_p = 1;
      calculate_dont_begin (web2, &dont_begin);
      c1 = min_color[web2->color];
      /* Note that min_color[] contains 1-based values (zero means
	 undef).  */
      c1 = c1 == 0 ? web2->color : (c1 - 1);
      c2 = web2->color + hard_regno_nregs[web2->color][GET_MODE
					  (web2->orig_x)] - 1;
      for (; c1 <= c2; c1++)
	if (TEST_HARD_REG_BIT (possible_begin, c1))
	  {
	    int nregs;
	    HARD_REG_SET colors;
	    nregs = hard_regno_nregs[c1][GET_MODE (web->orig_x)];
	    COPY_HARD_REG_SET (colors, web2->usable_regs);
	    for (; nregs--;)
	      CLEAR_HARD_REG_BIT (colors, c1 + nregs);
	    if (wide_p)
	      SET_HARD_REG_BIT (wide_seen, c1);
	    if (get_free_reg (dont_begin, colors,
			      GET_MODE (web2->orig_x)) < 0)
	      {
		if (web2->spill_temp)
		  SET_HARD_REG_BIT (spill_temps, c1);
		else
		  cost_neighbors[c1] += web2->spill_cost;
	      }
	  }
    }
  newcol = -1;
  for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
    if (TEST_HARD_REG_BIT (possible_begin, c)
	&& !TEST_HARD_REG_BIT (precolored_neighbors, c)
	&& !TEST_HARD_REG_BIT (spill_temps, c)
	&& (newcol == -1
	    || cost_neighbors[c] < cost_neighbors[newcol]))
      newcol = c;
  if (newcol >= 0 && cost_neighbors[newcol] < web->spill_cost)
    {
      int nregs = hard_regno_nregs[newcol][GET_MODE (web->orig_x)];
      unsigned HOST_WIDE_INT cost = 0;
      int *old_colors;
      struct conflict_link *wl_next;
      ra_debug_msg (DUMP_COLORIZE, "try to set web %d to color %d\n", web->id,
		 newcol);
      remove_list (web->dlink, &WEBS(SPILLED));
      put_web (web, COLORED);
      web->color = newcol;
      old_colors = xcalloc (num_webs, sizeof (int));
      for (wl = web->conflict_list; wl; wl = wl_next)
	{
	  struct web *web2 = alias (wl->t);
	  /* If web2 is a coalesce-target, and will become spilled
	     below in colorize_one_web(), and the current conflict wl
	     between web and web2 was only the result of that coalescing
	     this conflict will be deleted, making wl invalid.  So save
	     the next conflict right now.  Note that if web2 has indeed
	     such state, then wl->next can not be deleted in this
	     iteration.  */
	  wl_next = wl->next;
	  if (web2->type == COLORED)
	    {
	      int nregs2 = hard_regno_nregs[web2->color][GET_MODE
					    (web2->orig_x)];
	      if (web->color >= web2->color + nregs2
		  || web2->color >= web->color + nregs)
		continue;
	      old_colors[web2->id] = web2->color + 1;
	      web2->color = -1;
	      remove_list (web2->dlink, &WEBS(COLORED));
	      web2->type = SELECT;
	      /* Allow webs to be spilled.  */
	      if (web2->spill_temp == 0 || web2->spill_temp == 2)
		web2->was_spilled = 1;
	      colorize_one_web (web2, 1);
	      if (web2->type == SPILLED)
		cost += web2->spill_cost;
	    }
	}
      /* The actual cost may be smaller than the guessed one, because
	 partial conflicts could result in some conflicting webs getting
	 a color, where we assumed it must be spilled.  See the comment
         above what happens, when wide webs are involved, and why in that
         case there might actually be some webs spilled although thought to
         be colorable.  */
      if (cost > cost_neighbors[newcol]
	  && nregs == 1 && !TEST_HARD_REG_BIT (wide_seen, newcol))
	abort ();
      /* But if the new spill-cost is higher than our own, then really loose.
	 Respill us and recolor neighbors as before.  */
      if (cost > web->spill_cost)
	{
	  ra_debug_msg (DUMP_COLORIZE,
		     "reset coloring of web %d, too expensive\n", web->id);
	  remove_list (web->dlink, &WEBS(COLORED));
	  web->color = -1;
	  put_web (web, SPILLED);
	  for (wl = web->conflict_list; wl; wl = wl->next)
	    {
	      struct web *web2 = alias (wl->t);
	      if (old_colors[web2->id])
		{
		  if (web2->type == SPILLED)
		    {
		      remove_list (web2->dlink, &WEBS(SPILLED));
		      web2->color = old_colors[web2->id] - 1;
		      put_web (web2, COLORED);
		    }
		  else if (web2->type == COLORED)
		    web2->color = old_colors[web2->id] - 1;
		  else if (web2->type == SELECT)
		    /* This means, that WEB2 once was a part of a coalesced
		       web, which got spilled in the above colorize_one_web()
		       call, and whose parts then got split and put back
		       onto the SELECT stack.  As the cause for that splitting
		       (the coloring of WEB) was worthless, we should again
		       coalesce the parts, as they were before.  For now we
		       simply leave them SELECTed, for our caller to take
		       care.  */
		    ;
		  else
		    abort ();
		}
	    }
	}
      free (old_colors);
    }
  free (min_color);
  free (cost_neighbors);
}

/* This ensures that all conflicts of coalesced webs are seen from
   the webs coalesced into.  combine() only adds the conflicts which
   at the time of combining were not already SELECTed or COALESCED
   to not destroy num_conflicts.  Here we add all remaining conflicts
   and thereby destroy num_conflicts.  This should be used when num_conflicts
   isn't used anymore, e.g. on a completely colored graph.  */

static void
insert_coalesced_conflicts (void)
{
  struct dlist *d;
  for (d = WEBS(COALESCED); 0 && d; d = d->next)
    {
      struct web *web = DLIST_WEB (d);
      struct web *aweb = alias (web);
      struct conflict_link *wl;
      for (wl = web->conflict_list; wl; wl = wl->next)
	{
	  struct web *tweb = aweb;
	  int i;
	  int nregs = 1 + web->add_hardregs;
	  if (aweb->type == PRECOLORED)
	    nregs = hard_regno_nregs[aweb->color][GET_MODE (web->orig_x)];
	  for (i = 0; i < nregs; i++)
	    {
	      if (aweb->type == PRECOLORED)
		tweb = hardreg2web[i + aweb->color];
	      /* There might be some conflict edges laying around
		 where the usable_regs don't intersect.  This can happen
		 when first some webs were coalesced and conflicts
		 propagated, then some combining narrowed usable_regs and
		 further coalescing ignored those conflicts.  Now there are
		 some edges to COALESCED webs but not to it's alias.
		 So abort only when they really should conflict.  */
	      if ((!(tweb->type == PRECOLORED
		     || TEST_BIT (sup_igraph, tweb->id * num_webs + wl->t->id))
		   || !(wl->t->type == PRECOLORED
		        || TEST_BIT (sup_igraph,
				     wl->t->id * num_webs + tweb->id)))
		  && hard_regs_intersect_p (&tweb->usable_regs,
					    &wl->t->usable_regs))
		abort ();
	      /*if (wl->sub == NULL)
		record_conflict (tweb, wl->t);
	      else
		{
		  struct sub_conflict *sl;
		  for (sl = wl->sub; sl; sl = sl->next)
		    record_conflict (tweb, sl->t);
		}*/
	      if (aweb->type != PRECOLORED)
		break;
	    }
	}
    }
}

/* A function suitable to pass to qsort().  Compare the spill costs
   of webs W1 and W2.  When used by qsort, this would order webs with
   largest cost first.  */

static int
comp_webs_maxcost (const void *w1, const void *w2)
{
  struct web *web1 = *(struct web **)w1;
  struct web *web2 = *(struct web **)w2;
  if (web1->spill_cost > web2->spill_cost)
    return -1;
  else if (web1->spill_cost < web2->spill_cost)
    return 1;
  else
    return 0;
}

/* This tries to recolor all spilled webs.  See try_recolor_web()
   how this is done.  This just calls it for each spilled web.  */

static void
recolor_spills (void)
{
  unsigned int i, num;
  struct web **order2web;
  num = num_webs - num_subwebs;
  order2web = xmalloc (num * sizeof (order2web[0]));
  for (i = 0; i < num; i++)
    {
      order2web[i] = id2web[i];
      /* If we aren't breaking aliases, combine() wasn't merging the
         spill_costs.  So do that here to have sane measures.  */
      if (!flag_ra_merge_spill_costs && id2web[i]->type == COALESCED)
	alias (id2web[i])->spill_cost += id2web[i]->spill_cost;
    }
  qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
  insert_coalesced_conflicts ();
  dump_graph_cost (DUMP_COSTS, "before spill-recolor");
  for (i = 0; i < num; i++)
    {
      struct web *web = order2web[i];
      if (web->type == SPILLED)
	try_recolor_web (web);
    }
  /* It might have been decided in try_recolor_web() (in colorize_one_web())
     that a coalesced web should be spilled, so it was put on the
     select stack.  Those webs need recoloring again, and all remaining
     coalesced webs might need their color updated, so simply call
     assign_colors() again.  */
  assign_colors ();
  free (order2web);
}

/* This checks the current color assignment for obvious errors,
   like two conflicting webs overlapping in colors, or the used colors
   not being in usable regs.  */

static void
check_colors (void)
{
  unsigned int i;
  for (i = 0; i < num_webs - num_subwebs; i++)
    {
      struct web *web = id2web[i];
      struct web *aweb = alias (web);
      struct conflict_link *wl;
      int nregs, c;
      if (aweb->type == SPILLED || web->regno >= max_normal_pseudo)
	continue;
      else if (aweb->type == COLORED)
	nregs = hard_regno_nregs[aweb->color][GET_MODE (web->orig_x)];
      else if (aweb->type == PRECOLORED)
	nregs = 1;
      else
	abort ();
      /* The color must be valid for the original usable_regs.  */
      for (c = 0; c < nregs; c++)
	if (!TEST_HARD_REG_BIT (web->usable_regs, aweb->color + c))
	  abort ();
      /* Search the original (pre-coalesce) conflict list.  In the current
	 one some imprecise conflicts may be noted (due to combine() or
	 insert_coalesced_conflicts() relocating partial conflicts) making
	 it look like some wide webs are in conflict and having the same
	 color.  */
      wl = (web->have_orig_conflicts ? web->orig_conflict_list
	    : web->conflict_list);
      for (; wl; wl = wl->next)
	if (wl->t->regno >= max_normal_pseudo)
	  continue;
	else if (!wl->sub)
	  {
	    struct web *web2 = alias (wl->t);
	    int nregs2;
	    if (web2->type == COLORED)
	      nregs2 = hard_regno_nregs[web2->color][GET_MODE (web2->orig_x)];
	    else if (web2->type == PRECOLORED)
	      nregs2 = 1;
	    else
	      continue;
	    if (aweb->color >= web2->color + nregs2
	        || web2->color >= aweb->color + nregs)
	      continue;
	    abort ();
	  }
	else
	  {
	    struct sub_conflict *sl;
	    int scol = aweb->color;
	    int tcol = alias (wl->t)->color;
	    if (alias (wl->t)->type == SPILLED)
	      continue;
	    for (sl = wl->sub; sl; sl = sl->next)
	      {
		int ssize = hard_regno_nregs[scol][GET_MODE (sl->s->orig_x)];
		int tsize = hard_regno_nregs[tcol][GET_MODE (sl->t->orig_x)];
		int sofs = 0, tofs = 0;
	        if (SUBWEB_P (sl->t)
		    && GET_MODE_SIZE (GET_MODE (sl->t->orig_x)) >= UNITS_PER_WORD)
		  tofs = (SUBREG_BYTE (sl->t->orig_x) / UNITS_PER_WORD);
	        if (SUBWEB_P (sl->s)
		    && GET_MODE_SIZE (GET_MODE (sl->s->orig_x))
		       >= UNITS_PER_WORD)
		  sofs = (SUBREG_BYTE (sl->s->orig_x) / UNITS_PER_WORD);
		if ((tcol + tofs >= scol + sofs + ssize)
		    || (scol + sofs >= tcol + tofs + tsize))
		  continue;
		abort ();
	      }
	  }
    }
}

/* WEB was a coalesced web.  Make it unaliased again, and put it
   back onto SELECT stack.  */

static void
unalias_web (struct web *web)
{
  web->alias = NULL;
  web->is_coalesced = 0;
  web->color = -1;
  /* Well, initially everything was spilled, so it isn't incorrect,
     that also the individual parts can be spilled.
     XXX this isn't entirely correct, as we also relaxed the
     spill_temp flag in combine(), which might have made components
     spill, although they were a short or spilltemp web.  */
  web->was_spilled = 1;
  remove_list (web->dlink, &WEBS(COALESCED));
  /* Spilltemps must be colored right now (i.e. as early as possible),
     other webs can be deferred to the end (the code building the
     stack assumed that in this stage only one web was colored).  */
  if (web->spill_temp && web->spill_temp != 2)
    put_web (web, SELECT);
  else
    put_web_at_end (web, SELECT);
}

/* WEB is a _target_ for coalescing which got spilled.
   Break all aliases to WEB, and restore some of its member to the state
   they were before coalescing.  Due to the suboptimal structure of
   the interference graph we need to go through all coalesced webs.
   Somewhen we'll change this to be more sane.  */

static void
break_aliases_to_web (struct web *web)
{
  struct dlist *d, *d_next;
  if (web->type != SPILLED)
    abort ();
  for (d = WEBS(COALESCED); d; d = d_next)
    {
      struct web *other = DLIST_WEB (d);
      d_next = d->next;
      /* Beware: Don't use alias() here.  We really want to check only
	 one level of aliasing, i.e. only break up webs directly
	 aliased to WEB, not also those aliased through other webs.  */
      if (other->alias == web)
	{
	  unalias_web (other);
	  ra_debug_msg (DUMP_COLORIZE, " %d", other->id);
	}
    }
  web->spill_temp = web->orig_spill_temp;
  web->spill_cost = web->orig_spill_cost;
  /* Beware: The following possibly widens usable_regs again.  While
     it was narrower there might have been some conflicts added which got
     ignored because of non-intersecting hardregsets.  All those conflicts
     would now matter again.  Fortunately we only add conflicts when
     coalescing, which is also the time of narrowing.  And we remove all
     those added conflicts again now that we unalias this web.
     Therefore this is safe to do.  */
  COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
  web->is_coalesced = 0;
  web->num_aliased = 0;
  web->was_spilled = 1;
  /* Reset is_coalesced flag for webs which itself are target of coalescing.
     It was cleared above if it was coalesced to WEB.  */
  for (d = WEBS(COALESCED); d; d = d->next)
    DLIST_WEB (d)->alias->is_coalesced = 1;
}

/* WEB is a web coalesced into a precolored one.  Break that alias,
   making WEB SELECTed again.  Also restores the conflicts which resulted
   from initially coalescing both.  */

static void
break_precolored_alias (struct web *web)
{
  struct web *pre = web->alias;
  struct conflict_link *wl;
  unsigned int c = pre->color;
  unsigned int nregs = hard_regno_nregs[c][GET_MODE (web->orig_x)];
  if (pre->type != PRECOLORED)
    abort ();
  unalias_web (web);
  /* Now we need to look at each conflict X of WEB, if it conflicts
     with [PRE, PRE+nregs), and remove such conflicts, of X has not other
     conflicts, which are coalesced into those precolored webs.  */
  for (wl = web->conflict_list; wl; wl = wl->next)
    {
      struct web *x = wl->t;
      struct web *y;
      unsigned int i;
      struct conflict_link *wl2;
      struct conflict_link **pcl;
      HARD_REG_SET regs;
      if (!x->have_orig_conflicts)
	continue;
      /* First look at which colors can not go away, due to other coalesces
	 still existing.  */
      CLEAR_HARD_REG_SET (regs);
      for (i = 0; i < nregs; i++)
	SET_HARD_REG_BIT (regs, c + i);
      for (wl2 = x->conflict_list; wl2; wl2 = wl2->next)
	if (wl2->t->type == COALESCED && alias (wl2->t)->type == PRECOLORED)
	  CLEAR_HARD_REG_BIT (regs, alias (wl2->t)->color);
      /* Now also remove the colors of those conflicts which already
	 were there before coalescing at all.  */
      for (wl2 = x->orig_conflict_list; wl2; wl2 = wl2->next)
	if (wl2->t->type == PRECOLORED)
	  CLEAR_HARD_REG_BIT (regs, wl2->t->color);
      /* The colors now still set are those for which WEB was the last
	 cause, i.e. those which can be removed.  */
      y = NULL;
      for (i = 0; i < nregs; i++)
	if (TEST_HARD_REG_BIT (regs, c + i))
	  {
	    struct web *sub;
	    y = hardreg2web[c + i];
	    RESET_BIT (sup_igraph, x->id * num_webs + y->id);
	    RESET_BIT (sup_igraph, y->id * num_webs + x->id);
	    RESET_BIT (igraph, igraph_index (x->id, y->id));
	    for (sub = x->subreg_next; sub; sub = sub->subreg_next)
	      RESET_BIT (igraph, igraph_index (sub->id, y->id));
	  }
      if (!y)
	continue;
      pcl = &(x->conflict_list);
      while (*pcl)
	{
	  struct web *y = (*pcl)->t;
	  if (y->type != PRECOLORED || !TEST_HARD_REG_BIT (regs, y->color))
	    pcl = &((*pcl)->next);
	  else
	    *pcl = (*pcl)->next;
	}
    }
}

/* WEB is a spilled web which was target for coalescing.
   Delete all interference edges which were added due to that coalescing,
   and break up the coalescing.  */

static void
restore_conflicts_from_coalesce (struct web *web)
{
  struct conflict_link **pcl;
  struct conflict_link *wl;
  pcl = &(web->conflict_list);
  /* No original conflict list means no conflict was added at all
     after building the graph.  So neither we nor any neighbors have
     conflicts due to this coalescing.  */
  if (!web->have_orig_conflicts)
    return;
  while (*pcl)
    {
      struct web *other = (*pcl)->t;
      for (wl = web->orig_conflict_list; wl; wl = wl->next)
	if (wl->t == other)
	  break;
      if (wl)
	{
	  /* We found this conflict also in the original list, so this
	     was no new conflict.  */
	  pcl = &((*pcl)->next);
	}
      else
	{
	  /* This is a new conflict, so delete it from us and
	     the neighbor.  */
	  struct conflict_link **opcl;
	  struct conflict_link *owl;
	  struct sub_conflict *sl;
	  wl = *pcl;
	  *pcl = wl->next;
	  if (!other->have_orig_conflicts && other->type != PRECOLORED)
	    abort ();
	  for (owl = other->orig_conflict_list; owl; owl = owl->next)
	    if (owl->t == web)
	      break;
	  if (owl)
	    abort ();
	  opcl = &(other->conflict_list);
	  while (*opcl)
	    {
	      if ((*opcl)->t == web)
		{
		  owl = *opcl;
		  *opcl = owl->next;
		  break;
		}
	      else
		{
		  opcl = &((*opcl)->next);
		}
	    }
	  if (!owl && other->type != PRECOLORED)
	    abort ();
	  /* wl and owl contain the edge data to be deleted.  */
	  RESET_BIT (sup_igraph, web->id * num_webs + other->id);
	  RESET_BIT (sup_igraph, other->id * num_webs + web->id);
	  RESET_BIT (igraph, igraph_index (web->id, other->id));
	  for (sl = wl->sub; sl; sl = sl->next)
	    RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
	  if (other->type != PRECOLORED)
	    {
	      for (sl = owl->sub; sl; sl = sl->next)
		RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
	    }
	}
    }

  /* We must restore usable_regs because record_conflict will use it.  */
  COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
  /* We might have deleted some conflicts above, which really are still
     there (diamond pattern coalescing).  This is because we don't reference
     count interference edges but some of them were the result of different
     coalesces.  */
  for (wl = web->conflict_list; wl; wl = wl->next)
    if (wl->t->type == COALESCED)
      {
	struct web *tweb;
	for (tweb = wl->t->alias; tweb; tweb = tweb->alias)
	  {
	    if (wl->sub == NULL)
	      record_conflict (web, tweb);
	    else
	      {
		struct sub_conflict *sl;
		for (sl = wl->sub; sl; sl = sl->next)
		  {
		    struct web *sweb = NULL;
		    if (SUBWEB_P (sl->t))
		      sweb = find_subweb (tweb, sl->t->orig_x);
		    if (!sweb)
		      sweb = tweb;
		    record_conflict (sl->s, sweb);
		  }
	      }
	    if (tweb->type != COALESCED)
	      break;
	  }
      }
}

/* Repeatedly break aliases for spilled webs, which were target for
   coalescing, and recolorize the resulting parts.  Do this as long as
   there are any spilled coalesce targets.  */

static void
break_coalesced_spills (void)
{
  int changed = 0;
  while (1)
    {
      struct dlist *d;
      struct web *web;
      for (d = WEBS(SPILLED); d; d = d->next)
	if (DLIST_WEB (d)->is_coalesced)
	  break;
      if (!d)
	break;
      changed = 1;
      web = DLIST_WEB (d);
      ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
      restore_conflicts_from_coalesce (web);
      break_aliases_to_web (web);
      /* WEB was a spilled web and isn't anymore.  Everything coalesced
	 to WEB is now SELECTed and might potentially get a color.
	 If those other webs were itself targets of coalescing it might be
	 that there are still some conflicts from aliased webs missing,
	 because they were added in combine() right into the now
	 SELECTed web.  So we need to add those missing conflicts here.  */
      insert_coalesced_conflicts ();
      ra_debug_msg (DUMP_COLORIZE, "\n");
      remove_list (d, &WEBS(SPILLED));
      put_web (web, SELECT);
      web->color = -1;
      while (WEBS(SELECT))
	{
	  d = pop_list (&WEBS(SELECT));
	  colorize_one_web (DLIST_WEB (d), 1);
	}
    }
  if (changed)
    {
      struct dlist *d;
      for (d = WEBS(COALESCED); d; d = d->next)
	{
	  struct web *a = alias (DLIST_WEB (d));
	  DLIST_WEB (d)->color = a->color;
	}
    }
  dump_graph_cost (DUMP_COSTS, "after alias-breaking");
}

/* A structure for fast hashing of a pair of webs.
   Used to cumulate savings (from removing copy insns) for coalesced webs.
   All the pairs are also put into a single linked list.  */
struct web_pair
{
  struct web_pair *next_hash;
  struct web_pair *next_list;
  struct web *smaller;
  struct web *larger;
  unsigned int conflicts;
  unsigned HOST_WIDE_INT cost;
};

/* The actual hash table.  */
#define WEB_PAIR_HASH_SIZE 8192
static struct web_pair *web_pair_hash[WEB_PAIR_HASH_SIZE];
static struct web_pair *web_pair_list;
static unsigned int num_web_pairs;

/* Clear the hash table of web pairs.  */

static void
init_web_pairs (void)
{
  memset (web_pair_hash, 0, sizeof web_pair_hash);
  num_web_pairs = 0;
  web_pair_list = NULL;
}

/* Given two webs connected by a move with cost COST which together
   have CONFLICTS conflicts, add that pair to the hash table, or if
   already in, cumulate the costs and conflict number.  */

static void
add_web_pair_cost (struct web *web1, struct web *web2,
		   unsigned HOST_WIDE_INT cost, unsigned int conflicts)
{
  unsigned int hash;
  struct web_pair *p;
  if (web1->id > web2->id)
    {
      struct web *h = web1;
      web1 = web2;
      web2 = h;
    }
  hash = (web1->id * num_webs + web2->id) % WEB_PAIR_HASH_SIZE;
  for (p = web_pair_hash[hash]; p; p = p->next_hash)
    if (p->smaller == web1 && p->larger == web2)
      {
	p->cost += cost;
	p->conflicts += conflicts;
	return;
      }
  p = ra_alloc (sizeof *p);
  p->next_hash = web_pair_hash[hash];
  p->next_list = web_pair_list;
  p->smaller = web1;
  p->larger = web2;
  p->conflicts = conflicts;
  p->cost = cost;
  web_pair_hash[hash] = p;
  web_pair_list = p;
  num_web_pairs++;
}

/* Suitable to be passed to qsort().  Sort web pairs so, that those
   with more conflicts and higher cost (which actually is a saving
   when the moves are removed) come first.  */

static int
comp_web_pairs (const void *w1, const void *w2)
{
  struct web_pair *p1 = *(struct web_pair **)w1;
  struct web_pair *p2 = *(struct web_pair **)w2;
  if (p1->conflicts > p2->conflicts)
    return -1;
  else if (p1->conflicts < p2->conflicts)
    return 1;
  else if (p1->cost > p2->cost)
    return -1;
  else if (p1->cost < p2->cost)
    return 1;
  else
    return 0;
}

/* Given the list of web pairs, begin to combine them from the one
   with the most savings.  */

static void
sort_and_combine_web_pairs (int for_move)
{
  unsigned int i;
  struct web_pair **sorted;
  struct web_pair *p;
  if (!num_web_pairs)
    return;
  sorted = xmalloc (num_web_pairs * sizeof (sorted[0]));
  for (p = web_pair_list, i = 0; p; p = p->next_list)
    sorted[i++] = p;
  if (i != num_web_pairs)
    abort ();
  qsort (sorted, num_web_pairs, sizeof (sorted[0]), comp_web_pairs);

  /* After combining one pair, we actually should adjust the savings
     of the other pairs, if they are connected to one of the just coalesced
     pair.  Later.  */
  for (i = 0; i < num_web_pairs; i++)
    {
      struct web *w1, *w2;
      p = sorted[i];
      w1 = alias (p->smaller);
      w2 = alias (p->larger);
      if (!for_move && (w1->type == PRECOLORED || w2->type == PRECOLORED))
	continue;
      else if (w2->type == PRECOLORED)
	{
	  struct web *h = w1;
	  w1 = w2;
	  w2 = h;
	}
      if (w1 != w2
	  && !TEST_BIT (sup_igraph, w1->id * num_webs + w2->id)
	  && !TEST_BIT (sup_igraph, w2->id * num_webs + w1->id)
	  && w2->type != PRECOLORED
	  && hard_regs_intersect_p (&w1->usable_regs, &w2->usable_regs))
	  {
	    if (w1->type != PRECOLORED
		|| (w1->type == PRECOLORED && ok (w2, w1)))
	      combine (w1, w2);
	    else if (w1->type == PRECOLORED)
	      SET_HARD_REG_BIT (w2->prefer_colors, w1->color);
	  }
    }
  free (sorted);
}

/* Greedily coalesce all moves possible.  Begin with the web pair
   giving the most saving if coalesced.  */

static void
aggressive_coalesce (void)
{
  struct dlist *d;
  struct move *m;
  init_web_pairs ();
  while ((d = pop_list (&mv_worklist)) != NULL)
    if ((m = DLIST_MOVE (d)))
      {
	struct web *s = alias (m->source_web);
	struct web *t = alias (m->target_web);
	if (t->type == PRECOLORED)
	  {
	    struct web *h = s;
	    s = t;
	    t = h;
	  }
	if (s != t
	    && t->type != PRECOLORED
	    && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
	    && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
	  {
	    if ((s->type == PRECOLORED && ok (t, s))
		|| s->type != PRECOLORED)
	      {
	        put_move (m, MV_COALESCED);
		add_web_pair_cost (s, t, BLOCK_FOR_INSN (m->insn)->frequency,
				   0);
	      }
	    else if (s->type == PRECOLORED)
	      /* It is !ok(t, s).  But later when coloring the graph it might
		 be possible to take that color.  So we remember the preferred
		 color to try that first.  */
	      {
		put_move (m, CONSTRAINED);
		SET_HARD_REG_BIT (t->prefer_colors, s->color);
	      }
	  }
	else
	  {
	    put_move (m, CONSTRAINED);
	  }
      }
  sort_and_combine_web_pairs (1);
}

/* This is the difference between optimistic coalescing and
   optimistic coalescing+.  Extended coalesce tries to coalesce also
   non-conflicting nodes, not related by a move.  The criteria here is,
   the one web must be a source, the other a destination of the same insn.
   This actually makes sense, as (because they are in the same insn) they
   share many of their neighbors, and if they are coalesced, reduce the
   number of conflicts of those neighbors by one.  For this we sort the
   candidate pairs again according to savings (and this time also conflict
   number).

   This is also a comparatively slow operation, as we need to go through
   all insns, and for each insn, through all defs and uses.  */

static void
extended_coalesce_2 (void)
{
  rtx insn;
  struct ra_insn_info info;
  unsigned int n;
  init_web_pairs ();
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && (info = insn_df[INSN_UID (insn)]).num_defs)
      for (n = 0; n < info.num_defs; n++)
	{
	  struct web *dest = def2web[DF_REF_ID (info.defs[n])];
	  dest = alias (find_web_for_subweb (dest));
	  if (dest->type != PRECOLORED && dest->regno < max_normal_pseudo)
	    {
	      unsigned int n2;
	      for (n2 = 0; n2 < info.num_uses; n2++)
		{
		  struct web *source = use2web[DF_REF_ID (info.uses[n2])];
		  source = alias (find_web_for_subweb (source));
		  if (source->type != PRECOLORED
		      && source != dest
		      && source->regno < max_normal_pseudo
		      /* Coalesced webs end up using the same REG rtx in
			 emit_colors().  So we can only coalesce something
			 of equal modes.  */
		      && GET_MODE (source->orig_x) == GET_MODE (dest->orig_x)
		      && !TEST_BIT (sup_igraph,
				    dest->id * num_webs + source->id)
		      && !TEST_BIT (sup_igraph,
				    source->id * num_webs + dest->id)
		      && hard_regs_intersect_p (&source->usable_regs,
						&dest->usable_regs))
		    add_web_pair_cost (dest, source,
				       BLOCK_FOR_INSN (insn)->frequency,
				       dest->num_conflicts
				       + source->num_conflicts);
		}
	    }
	}
  sort_and_combine_web_pairs (0);
}

/* Check if we forgot to coalesce some moves.  */

static void
check_uncoalesced_moves (void)
{
  struct move_list *ml;
  struct move *m;
  for (ml = wl_moves; ml; ml = ml->next)
    if ((m = ml->move))
      {
	struct web *s = alias (m->source_web);
	struct web *t = alias (m->target_web);
	if (t->type == PRECOLORED)
	  {
	    struct web *h = s;
	    s = t;
	    t = h;
	  }
	if (s != t
	    && m->type != CONSTRAINED
	    /* Following can happen when a move was coalesced, but later
	       broken up again.  Then s!=t, but m is still MV_COALESCED.  */
	    && m->type != MV_COALESCED
	    && t->type != PRECOLORED
	    && ((s->type == PRECOLORED && ok (t, s))
		|| s->type != PRECOLORED)
	    && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
	    && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
	  abort ();
      }
}

/* The toplevel function in this file.  Precondition is, that
   the interference graph is built completely by ra-build.c.  This
   produces a list of spilled, colored and coalesced nodes.  */

void
ra_colorize_graph (struct df *df)
{
  if (dump_file)
    dump_igraph (df);
  build_worklists (df);

  /* With optimistic coalescing we coalesce everything we can.  */
  if (flag_ra_optimistic_coalescing)
    {
      aggressive_coalesce ();
      extended_coalesce_2 ();
    }

  /* Now build the select stack.  */
  do
    {
      simplify ();
      if (mv_worklist)
	coalesce ();
      else if (WEBS(FREEZE))
	freeze ();
      else if (WEBS(SPILL))
	select_spill ();
    }
  while (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_FAT) || WEBS(SIMPLIFY_SPILL)
	 || mv_worklist || WEBS(FREEZE) || WEBS(SPILL));
  if (flag_ra_optimistic_coalescing)
    check_uncoalesced_moves ();

  /* Actually colorize the webs from the select stack.  */
  assign_colors ();
  check_colors ();
  dump_graph_cost (DUMP_COSTS, "initially");
  if (flag_ra_break_aliases)
    break_coalesced_spills ();
  check_colors ();

  /* And try to improve the cost by recoloring spilled webs.  */
  recolor_spills ();
  dump_graph_cost (DUMP_COSTS, "after spill-recolor");
  check_colors ();
}

/* Initialize this module.  */

void ra_colorize_init (void)
{
  /* FIXME: Choose spill heuristic for platform if we have one */
  spill_heuristic = default_spill_heuristic;
}

/* Free all memory.  (Note that we don't need to free any per pass
   memory).  */

void
ra_colorize_free_all (void)
{
  struct dlist *d;
  while ((d = pop_list (&WEBS(FREE))) != NULL)
    put_web (DLIST_WEB (d), INITIAL);
  while ((d = pop_list (&WEBS(INITIAL))) != NULL)
    {
      struct web *web = DLIST_WEB (d);
      struct web *wnext;
      web->orig_conflict_list = NULL;
      web->conflict_list = NULL;
      for (web = web->subreg_next; web; web = wnext)
	{
	  wnext = web->subreg_next;
	  free (web);
	}
      free (DLIST_WEB (d));
    }
}

/*
vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4:
*/
OpenPOWER on IntegriCloud