1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
/* params.def - Run-time parameters.
Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
Written by Mark Mitchell <mark@codesourcery.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
*/
/* This file contains definitions for language-independent
parameters. The DEFPARAM macro takes 4 arguments:
- The enumeral corresponding to this parameter.
- The name that can be used to set this parameter using the
command-line option `--param <name>=<value>'.
- A help string explaining how the parameter is used.
- A default value for the parameter.
Be sure to add an entry to invoke.texi summarizing the parameter. */
/* The single function inlining limit. This is the maximum size
of a function counted in internal gcc instructions (not in
real machine instructions) that is eligible for inlining
by the tree inliner.
The default value is 500.
Only functions marked inline (or methods defined in the class
definition for C++) are affected by this, unless you set the
-finline-functions (included in -O3) compiler option.
There are more restrictions to inlining: If inlined functions
call other functions, the already inlined instructions are
counted and once the recursive inline limit (see
"max-inline-insns" parameter) is exceeded, the acceptable size
gets decreased. */
DEFPARAM (PARAM_MAX_INLINE_INSNS_SINGLE,
"max-inline-insns-single",
"The maximum number of instructions in a single function eligible for inlining",
500)
/* The single function inlining limit for functions that are
inlined by virtue of -finline-functions (-O3).
This limit should be chosen to be below or equal to the limit
that is applied to functions marked inlined (or defined in the
class declaration in C++) given by the "max-inline-insns-single"
parameter.
The default value is 150. */
DEFPARAM (PARAM_MAX_INLINE_INSNS_AUTO,
"max-inline-insns-auto",
"The maximum number of instructions when automatically inlining",
120)
DEFPARAM (PARAM_MAX_INLINE_INSNS_RECURSIVE,
"max-inline-insns-recursive",
"The maximum number of instructions inline function can grow to via recursive inlining",
500)
DEFPARAM (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO,
"max-inline-insns-recursive-auto",
"The maximum number of instructions non-inline function can grow to via recursive inlining",
500)
DEFPARAM (PARAM_MAX_INLINE_RECURSIVE_DEPTH,
"max-inline-recursive-depth",
"The maximum depth of recursive inlining for inline functions",
8)
DEFPARAM (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO,
"max-inline-recursive-depth-auto",
"The maximum depth of recursive inlining for non-inline functions",
8)
/* For languages that (still) use the RTL inliner, we can specify
limits for the RTL inliner separately.
The parameter here defines the maximum number of RTL instructions
a function may have to be eligible for inlining in the RTL inliner.
The default value is 600. */
DEFPARAM (PARAM_MAX_INLINE_INSNS_RTL,
"max-inline-insns-rtl",
"The maximum number of instructions for the RTL inliner",
600)
/* The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary
number of instructions is searched, the time savings from filling
the delay slot will be minimal so stop searching. Increasing
values mean more aggressive optimization, making the compile time
increase with probably small improvement in executable run time. */
DEFPARAM (PARAM_MAX_DELAY_SLOT_INSN_SEARCH,
"max-delay-slot-insn-search",
"The maximum number of instructions to consider to fill a delay slot",
100)
/* When trying to fill delay slots, the maximum number of instructions
to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time. This
parameter should be removed when the delay slot code is rewritten
to maintain the control-flow graph. */
DEFPARAM(PARAM_MAX_DELAY_SLOT_LIVE_SEARCH,
"max-delay-slot-live-search",
"The maximum number of instructions to consider to find accurate live register information",
333)
/* This parameter limits the number of branch elements that the
scheduler will track anti-dependencies through without resetting
the tracking mechanism. Large functions with few calls or barriers
can generate lists containing many 1000's of dependencies. Generally
the compiler either uses all available memory, or runs for far too long. */
DEFPARAM(PARAM_MAX_PENDING_LIST_LENGTH,
"max-pending-list-length",
"The maximum length of scheduling's pending operations list",
32)
DEFPARAM(PARAM_LARGE_FUNCTION_INSNS,
"large-function-insns",
"The size of function body to be considered large",
3000)
DEFPARAM(PARAM_LARGE_FUNCTION_GROWTH,
"large-function-growth",
"Maximal growth due to inlining of large function (in percent)",
100)
DEFPARAM(PARAM_INLINE_UNIT_GROWTH,
"inline-unit-growth",
"how much can given compilation unit grow because of the inlining (in percent)",
50)
/* The GCSE optimization will be disabled if it would require
significantly more memory than this value. */
DEFPARAM(PARAM_MAX_GCSE_MEMORY,
"max-gcse-memory",
"The maximum amount of memory to be allocated by GCSE",
50 * 1024 * 1024)
/* The number of repetitions of copy/const prop and PRE to run. */
DEFPARAM(PARAM_MAX_GCSE_PASSES,
"max-gcse-passes",
"The maximum number of passes to make when doing GCSE",
1)
/* This is the threshold ratio when to perform partial redundancy
elimination after reload. We perform partial redundancy elimination
when the following holds:
(Redundant load execution count)
------------------------------- >= GCSE_AFTER_RELOAD_PARTIAL_FRACTION
(Added loads execution count) */
DEFPARAM(PARAM_GCSE_AFTER_RELOAD_PARTIAL_FRACTION,
"gcse-after-reload-partial-fraction",
"The threshold ratio for performing partial redundancy elimination \
after reload.",
3)
/* This is the threshold ratio of the critical edges execution count compared to
the redundant loads execution count that permits performing the load
redundancy elimination in gcse after reload. */
DEFPARAM(PARAM_GCSE_AFTER_RELOAD_CRITICAL_FRACTION,
"gcse-after-reload-critical-fraction",
"The threshold ratio of critical edges execution count that permit \
performing redundancy elimination after reload.",
10)
/* This parameter limits the number of insns in a loop that will be unrolled,
and by how much the loop is unrolled.
This limit should be at most half of the peeling limits: loop unroller
decides to not unroll loops that iterate fewer than 2*number of allowed
unrollings and thus we would have loops that are neither peeled or unrolled
otherwise. */
DEFPARAM(PARAM_MAX_UNROLLED_INSNS,
"max-unrolled-insns",
"The maximum number of instructions to consider to unroll in a loop",
200)
/* This parameter limits how many times the loop is unrolled depending
on number of insns really executed in each iteration. */
DEFPARAM(PARAM_MAX_AVERAGE_UNROLLED_INSNS,
"max-average-unrolled-insns",
"The maximum number of instructions to consider to unroll in a loop on average",
80)
/* The maximum number of unrollings of a single loop. */
DEFPARAM(PARAM_MAX_UNROLL_TIMES,
"max-unroll-times",
"The maximum number of unrollings of a single loop",
8)
/* The maximum number of insns of a peeled loop. */
DEFPARAM(PARAM_MAX_PEELED_INSNS,
"max-peeled-insns",
"The maximum number of insns of a peeled loop",
400)
/* The maximum number of peelings of a single loop. */
DEFPARAM(PARAM_MAX_PEEL_TIMES,
"max-peel-times",
"The maximum number of peelings of a single loop",
16)
/* The maximum number of insns of a peeled loop. */
DEFPARAM(PARAM_MAX_COMPLETELY_PEELED_INSNS,
"max-completely-peeled-insns",
"The maximum number of insns of a completely peeled loop",
400)
/* The maximum number of peelings of a single loop that is peeled completely. */
DEFPARAM(PARAM_MAX_COMPLETELY_PEEL_TIMES,
"max-completely-peel-times",
"The maximum number of peelings of a single loop that is peeled completely",
16)
/* The maximum number of insns of a peeled loop that rolls only once. */
DEFPARAM(PARAM_MAX_ONCE_PEELED_INSNS,
"max-once-peeled-insns",
"The maximum number of insns of a peeled loop that rolls only once",
400)
/* The maximum number of insns of an unswitched loop. */
DEFPARAM(PARAM_MAX_UNSWITCH_INSNS,
"max-unswitch-insns",
"The maximum number of insns of an unswitched loop",
50)
/* The maximum level of recursion in unswitch_single_loop. */
DEFPARAM(PARAM_MAX_UNSWITCH_LEVEL,
"max-unswitch-level",
"The maximum number of unswitchings in a single loop",
3)
/* The maximum number of iterations of a loop the brute force algorithm
for analysis of # of iterations of the loop tries to evaluate. */
DEFPARAM(PARAM_MAX_ITERATIONS_TO_TRACK,
"max-iterations-to-track",
"Bound on the number of iterations the brute force # of iterations \
analysis algorithm evaluates",
1000)
DEFPARAM(PARAM_MAX_SMS_LOOP_NUMBER,
"max-sms-loop-number",
"Maximum number of loops to perform swing modulo scheduling on \
(mainly for debugging)",
-1)
/* This parameter is used to tune SMS MAX II calculations. */
DEFPARAM(PARAM_SMS_MAX_II_FACTOR,
"sms-max-ii-factor",
"A factor for tuning the upper bound that swing modulo scheduler uses \
for scheduling a loop",
100)
DEFPARAM(PARAM_SMS_DFA_HISTORY,
"sms-dfa-history",
"The number of cycles the swing modulo scheduler considers when \
checking conflicts using DFA",
0)
DEFPARAM(PARAM_SMS_LOOP_AVERAGE_COUNT_THRESHOLD,
"sms-loop-average-count-threshold",
"A threshold on the average loop count considered by the swing modulo \
scheduler",
0)
DEFPARAM(HOT_BB_COUNT_FRACTION,
"hot-bb-count-fraction",
"Select fraction of the maximal count of repetitions of basic block in \
program given basic block needs to have to be considered hot",
10000)
DEFPARAM(HOT_BB_FREQUENCY_FRACTION,
"hot-bb-frequency-fraction",
"Select fraction of the maximal frequency of executions of basic \
block in function given basic block needs to have to be considered hot",
1000)
DEFPARAM(TRACER_DYNAMIC_COVERAGE_FEEDBACK,
"tracer-dynamic-coverage-feedback",
"The percentage of function, weighted by execution frequency, that \
must be covered by trace formation. Used when profile feedback is available",
95)
DEFPARAM(TRACER_DYNAMIC_COVERAGE,
"tracer-dynamic-coverage",
"The percentage of function, weighted by execution frequency, that \
must be covered by trace formation. Used when profile feedback is not available",
75)
DEFPARAM(TRACER_MAX_CODE_GROWTH,
"tracer-max-code-growth",
"Maximal code growth caused by tail duplication (in percent)",
100)
DEFPARAM(TRACER_MIN_BRANCH_RATIO,
"tracer-min-branch-ratio",
"Stop reverse growth if the reverse probability of best edge is less \
than this threshold (in percent)",
10)
DEFPARAM(TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK,
"tracer-min-branch-probability-feedback",
"Stop forward growth if the probability of best edge is less than \
this threshold (in percent). Used when profile feedback is available",
80)
DEFPARAM(TRACER_MIN_BRANCH_PROBABILITY,
"tracer-min-branch-probability",
"Stop forward growth if the probability of best edge is less than \
this threshold (in percent). Used when profile feedback is not available",
50)
/* The maximum number of incoming edges to consider for crossjumping. */
DEFPARAM(PARAM_MAX_CROSSJUMP_EDGES,
"max-crossjump-edges",
"The maximum number of incoming edges to consider for crossjumping",
100)
/* The minimum number of matching instructions to consider for crossjumping. */
DEFPARAM(PARAM_MIN_CROSSJUMP_INSNS,
"min-crossjump-insns",
"The minimum number of matching instructions to consider for crossjumping",
5)
/* The maximum length of path considered in cse. */
DEFPARAM(PARAM_MAX_CSE_PATH_LENGTH,
"max-cse-path-length",
"The maximum length of path considered in cse",
10)
/* The cost of expression in loop invariant motion that is considered
expensive. */
DEFPARAM(PARAM_LIM_EXPENSIVE,
"lim-expensive",
"The minimum cost of an expensive expression in the loop invariant motion",
20)
/* Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable
optimizations. */
DEFPARAM(PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND,
"iv-consider-all-candidates-bound",
"Bound on number of candidates below that all candidates are considered in iv optimizations",
30)
/* The induction variable optimizations give up on loops that contain more
induction variable uses. */
DEFPARAM(PARAM_IV_MAX_CONSIDERED_USES,
"iv-max-considered-uses",
"Bound on number of iv uses in loop optimized in iv optimizations",
250)
/* The product of the next two is used to decide whether or not to
use .GLOBAL_VAR. See tree-dfa.c. */
DEFPARAM(PARAM_GLOBAL_VAR_THRESHOLD,
"global-var-threshold",
"Given N calls and V call-clobbered vars in a function. Use .GLOBAL_VAR if NxV is larger than this limit",
500000)
DEFPARAM(PARAM_MAX_CSELIB_MEMORY_LOCATIONS,
"max-cselib-memory-locations",
"The maximum memory locations recorded by cselib",
500)
#ifdef ENABLE_GC_ALWAYS_COLLECT
# define GGC_MIN_EXPAND_DEFAULT 0
# define GGC_MIN_HEAPSIZE_DEFAULT 0
#else
# define GGC_MIN_EXPAND_DEFAULT 30
# define GGC_MIN_HEAPSIZE_DEFAULT 4096
#endif
DEFPARAM(GGC_MIN_EXPAND,
"ggc-min-expand",
"Minimum heap expansion to trigger garbage collection, as \
a percentage of the total size of the heap",
GGC_MIN_EXPAND_DEFAULT)
DEFPARAM(GGC_MIN_HEAPSIZE,
"ggc-min-heapsize",
"Minimum heap size before we start collecting garbage, in kilobytes",
GGC_MIN_HEAPSIZE_DEFAULT)
#undef GGC_MIN_EXPAND_DEFAULT
#undef GGC_MIN_HEAPSIZE_DEFAULT
DEFPARAM(PARAM_MAX_RELOAD_SEARCH_INSNS,
"max-reload-search-insns",
"The maximum number of instructions to search backward when looking for equivalent reload",
100)
DEFPARAM(PARAM_MAX_ALIASED_VOPS,
"max-aliased-vops",
"The maximum number of virtual operands allowed to represent aliases before triggering alias grouping.",
500)
DEFPARAM(PARAM_MAX_SCHED_REGION_BLOCKS,
"max-sched-region-blocks",
"The maximum number of blocks in a region to be considered for interblock scheduling",
10)
DEFPARAM(PARAM_MAX_SCHED_REGION_INSNS,
"max-sched-region-insns",
"The maximum number of insns in a region to be considered for interblock scheduling",
100)
/* INTEGER_CST nodes are shared for values [{-1,0} .. N) for
{signed,unsigned} integral types. This determines N.
Experimentation shows 256 to be a good value. */
DEFPARAM (PARAM_INTEGER_SHARE_LIMIT,
"integer-share-limit",
"The upper bound for sharing integer constants",
256)
/*
Local variables:
mode:c
End: */
|