summaryrefslogtreecommitdiffstats
path: root/gcc/lambda-mat.c
blob: 8aa3c12a70a0f01f77885a35c4a0aefe522a0f62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/* Integer matrix math routines
   Copyright (C) 2003, 2004 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "varray.h"
#include "tree.h"
#include "lambda.h"

static void lambda_matrix_get_column (lambda_matrix, int, int, 
				      lambda_vector);

/* Allocate a matrix of M rows x  N cols.  */

lambda_matrix
lambda_matrix_new (int m, int n)
{
  lambda_matrix mat;
  int i;

  mat = ggc_alloc (m * sizeof (lambda_vector));
  
  for (i = 0; i < m; i++)
    mat[i] = lambda_vector_new (n);

  return mat;
}

/* Copy the elements of M x N matrix MAT1 to MAT2.  */

void
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
		    int m, int n)
{
  int i;

  for (i = 0; i < m; i++)
    lambda_vector_copy (mat1[i], mat2[i], n);
}

/* Store the N x N identity matrix in MAT.  */

void
lambda_matrix_id (lambda_matrix mat, int size)
{
  int i, j;

  for (i = 0; i < size; i++)
    for (j = 0; j < size; j++)
      mat[i][j] = (i == j) ? 1 : 0;
}

/* Return true if MAT is the identity matrix of SIZE */

bool
lambda_matrix_id_p (lambda_matrix mat, int size)
{
  int i, j;
  for (i = 0; i < size; i++)
    for (j = 0; j < size; j++)
      {
	if (i == j)
	  {
	    if (mat[i][j] != 1)
	      return false;
	  }
	else
	  {
	    if (mat[i][j] != 0)
	      return false;
	  }
      }
  return true;
}

/* Negate the elements of the M x N matrix MAT1 and store it in MAT2.  */

void
lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
{
  int i;

  for (i = 0; i < m; i++)
    lambda_vector_negate (mat1[i], mat2[i], n);
}

/* Take the transpose of matrix MAT1 and store it in MAT2.
   MAT1 is an M x N matrix, so MAT2 must be N x M.  */

void
lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
{
  int i, j;

  for (i = 0; i < n; i++)
    for (j = 0; j < m; j++)
      mat2[i][j] = mat1[j][i];
}


/* Add two M x N matrices together: MAT3 = MAT1+MAT2.  */

void
lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2,
		   lambda_matrix mat3, int m, int n)
{
  int i;

  for (i = 0; i < m; i++)
    lambda_vector_add (mat1[i], mat2[i], mat3[i], n);
}

/* MAT3 = CONST1 * MAT1 + CONST2 * MAT2.  All matrices are M x N.  */

void
lambda_matrix_add_mc (lambda_matrix mat1, int const1,
		      lambda_matrix mat2, int const2,
		      lambda_matrix mat3, int m, int n)
{
  int i;

  for (i = 0; i < m; i++)
    lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n);
}

/* Multiply two matrices: MAT3 = MAT1 * MAT2.
   MAT1 is an M x R matrix, and MAT2 is R x N.  The resulting MAT2
   must therefore be M x N.  */

void
lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
		    lambda_matrix mat3, int m, int r, int n)
{

  int i, j, k;

  for (i = 0; i < m; i++)
    {
      for (j = 0; j < n; j++)
	{
	  mat3[i][j] = 0;
	  for (k = 0; k < r; k++)
	    mat3[i][j] += mat1[i][k] * mat2[k][j];
	}
    }
}

/* Get column COL from the matrix MAT and store it in VEC.  MAT has
   N rows, so the length of VEC must be N.  */

static void
lambda_matrix_get_column (lambda_matrix mat, int n, int col,
			  lambda_vector vec)
{
  int i;

  for (i = 0; i < n; i++)
    vec[i] = mat[i][col];
}

/* Delete rows r1 to r2 (not including r2).  */

void
lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to)
{
  int i;
  int dist;
  dist = to - from;

  for (i = to; i < rows; i++)
    mat[i - dist] = mat[i];

  for (i = rows - dist; i < rows; i++)
    mat[i] = NULL;
}

/* Swap rows R1 and R2 in matrix MAT.  */

void
lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
{
  lambda_vector row;

  row = mat[r1];
  mat[r1] = mat[r2];
  mat[r2] = row;
}

/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
   R2 = R2 + CONST1 * R1.  */

void
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
{
  int i;

  if (const1 == 0)
    return;

  for (i = 0; i < n; i++)
    mat[r2][i] += const1 * mat[r1][i];
}

/* Negate row R1 of matrix MAT which has N columns.  */

void
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
{
  lambda_vector_negate (mat[r1], mat[r1], n);
}

/* Multiply row R1 of matrix MAT with N columns by CONST1.  */

void
lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1)
{
  int i;

  for (i = 0; i < n; i++)
    mat[r1][i] *= const1;
}

/* Exchange COL1 and COL2 in matrix MAT. M is the number of rows.  */

void
lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2)
{
  int i;
  int tmp;
  for (i = 0; i < m; i++)
    {
      tmp = mat[i][col1];
      mat[i][col1] = mat[i][col2];
      mat[i][col2] = tmp;
    }
}

/* Add a multiple of column C1 of matrix MAT with M rows to column C2:
   C2 = C2 + CONST1 * C1.  */

void
lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1)
{
  int i;

  if (const1 == 0)
    return;

  for (i = 0; i < m; i++)
    mat[i][c2] += const1 * mat[i][c1];
}

/* Negate column C1 of matrix MAT which has M rows.  */

void
lambda_matrix_col_negate (lambda_matrix mat, int m, int c1)
{
  int i;

  for (i = 0; i < m; i++)
    mat[i][c1] *= -1;
}

/* Multiply column C1 of matrix MAT with M rows by CONST1.  */

void
lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
{
  int i;

  for (i = 0; i < m; i++)
    mat[i][c1] *= const1;
}

/* Compute the inverse of the N x N matrix MAT and store it in INV.

   We don't _really_ compute the inverse of MAT.  Instead we compute
   det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function
   result.  This is necessary to preserve accuracy, because we are dealing
   with integer matrices here.

   The algorithm used here is a column based Gauss-Jordan elimination on MAT
   and the identity matrix in parallel.  The inverse is the result of applying
   the same operations on the identity matrix that reduce MAT to the identity
   matrix.

   When MAT is a 2 x 2 matrix, we don't go through the whole process, because
   it is easily inverted by inspection and it is a very common case.  */

static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int);

int
lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
{
  if (n == 2)
    {
      int a, b, c, d, det;
      a = mat[0][0];
      b = mat[1][0];
      c = mat[0][1];
      d = mat[1][1];      
      inv[0][0] =  d;
      inv[0][1] = -c;
      inv[1][0] = -b;
      inv[1][1] =  a;
      det = (a * d - b * c);
      if (det < 0)
	{
	  det *= -1;
	  inv[0][0] *= -1;
	  inv[1][0] *= -1;
	  inv[0][1] *= -1;
	  inv[1][1] *= -1;
	}
      return det;
    }
  else
    return lambda_matrix_inverse_hard (mat, inv, n);
}

/* If MAT is not a special case, invert it the hard way.  */

static int
lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n)
{
  lambda_vector row;
  lambda_matrix temp;
  int i, j;
  int determinant;

  temp = lambda_matrix_new (n, n);
  lambda_matrix_copy (mat, temp, n, n);
  lambda_matrix_id (inv, n);

  /* Reduce TEMP to a lower triangular form, applying the same operations on
     INV which starts as the identity matrix.  N is the number of rows and
     columns.  */
  for (j = 0; j < n; j++)
    {
      row = temp[j];

      /* Make every element in the current row positive.  */
      for (i = j; i < n; i++)
	if (row[i] < 0)
	  {
	    lambda_matrix_col_negate (temp, n, i);
	    lambda_matrix_col_negate (inv, n, i);
	  }

      /* Sweep the upper triangle.  Stop when only the diagonal element in the
	 current row is nonzero.  */
      while (lambda_vector_first_nz (row, n, j + 1) < n)
	{
	  int min_col = lambda_vector_min_nz (row, n, j);
	  lambda_matrix_col_exchange (temp, n, j, min_col);
	  lambda_matrix_col_exchange (inv, n, j, min_col);

	  for (i = j + 1; i < n; i++)
	    {
	      int factor;

	      factor = -1 * row[i];
	      if (row[j] != 1)
		factor /= row[j];

	      lambda_matrix_col_add (temp, n, j, i, factor);
	      lambda_matrix_col_add (inv, n, j, i, factor);
	    }
	}
    }

  /* Reduce TEMP from a lower triangular to the identity matrix.  Also compute
     the determinant, which now is simply the product of the elements on the
     diagonal of TEMP.  If one of these elements is 0, the matrix has 0 as an
     eigenvalue so it is singular and hence not invertible.  */
  determinant = 1;
  for (j = n - 1; j >= 0; j--)
    {
      int diagonal;

      row = temp[j];
      diagonal = row[j];

      /* If the matrix is singular, abort.  */
      if (diagonal == 0)
	abort ();

      determinant = determinant * diagonal;

      /* If the diagonal is not 1, then multiply the each row by the
         diagonal so that the middle number is now 1, rather than a
         rational.  */
      if (diagonal != 1)
	{
	  for (i = 0; i < j; i++)
	    lambda_matrix_col_mc (inv, n, i, diagonal);
	  for (i = j + 1; i < n; i++)
	    lambda_matrix_col_mc (inv, n, i, diagonal);

	  row[j] = diagonal = 1;
	}

      /* Sweep the lower triangle column wise.  */
      for (i = j - 1; i >= 0; i--)
	{
	  if (row[i])
	    {
	      int factor = -row[i];
	      lambda_matrix_col_add (temp, n, j, i, factor);
	      lambda_matrix_col_add (inv, n, j, i, factor);
	    }

	}
    }

  return determinant;
}

/* Decompose a N x N matrix MAT to a product of a lower triangular H
   and a unimodular U matrix such that MAT = H.U.  N is the size of
   the rows of MAT.  */

void
lambda_matrix_hermite (lambda_matrix mat, int n,
		       lambda_matrix H, lambda_matrix U)
{
  lambda_vector row;
  int i, j, factor, minimum_col;

  lambda_matrix_copy (mat, H, n, n);
  lambda_matrix_id (U, n);

  for (j = 0; j < n; j++)
    {
      row = H[j];

      /* Make every element of H[j][j..n] positive.  */
      for (i = j; i < n; i++)
	{
	  if (row[i] < 0)
	    {
	      lambda_matrix_col_negate (H, n, i);
	      lambda_vector_negate (U[i], U[i], n);
	    }
	}

      /* Stop when only the diagonal element is nonzero.  */
      while (lambda_vector_first_nz (row, n, j + 1) < n)
	{
	  minimum_col = lambda_vector_min_nz (row, n, j);
	  lambda_matrix_col_exchange (H, n, j, minimum_col);
	  lambda_matrix_row_exchange (U, j, minimum_col);

	  for (i = j + 1; i < n; i++)
	    {
	      factor = row[i] / row[j];
	      lambda_matrix_col_add (H, n, j, i, -1 * factor);
	      lambda_matrix_row_add (U, n, i, j, factor);
	    }
	}
    }
}

/* Given an M x N integer matrix A, this function determines an M x
   M unimodular matrix U, and an M x N echelon matrix S such that
   "U.A = S".  This decomposition is also known as "right Hermite".
   
   Ref: Algorithm 2.1 page 33 in "Loop Transformations for
   Restructuring Compilers" Utpal Banerjee.  */

void
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
			     lambda_matrix S, lambda_matrix U)
{
  int i, j, i0 = 0;

  lambda_matrix_copy (A, S, m, n);
  lambda_matrix_id (U, m);

  for (j = 0; j < n; j++)
    {
      if (lambda_vector_first_nz (S[j], m, i0) < m)
	{
	  ++i0;
	  for (i = m - 1; i >= i0; i--)
	    {
	      while (S[i][j] != 0)
		{
		  int sigma, factor, a, b;

		  a = S[i-1][j];
		  b = S[i][j];
		  sigma = (a * b < 0) ? -1: 1;
		  a = abs (a);
		  b = abs (b);
		  factor = sigma * (a / b);

		  lambda_matrix_row_add (S, n, i, i-1, -factor);
		  lambda_matrix_row_exchange (S, i, i-1);

		  lambda_matrix_row_add (U, m, i, i-1, -factor);
		  lambda_matrix_row_exchange (U, i, i-1);
		}
	    }
	}
    }
}

/* Given an M x N integer matrix A, this function determines an M x M
   unimodular matrix V, and an M x N echelon matrix S such that "A =
   V.S".  This decomposition is also known as "left Hermite".
   
   Ref: Algorithm 2.2 page 36 in "Loop Transformations for
   Restructuring Compilers" Utpal Banerjee.  */

void
lambda_matrix_left_hermite (lambda_matrix A, int m, int n,
			     lambda_matrix S, lambda_matrix V)
{
  int i, j, i0 = 0;

  lambda_matrix_copy (A, S, m, n);
  lambda_matrix_id (V, m);

  for (j = 0; j < n; j++)
    {
      if (lambda_vector_first_nz (S[j], m, i0) < m)
	{
	  ++i0;
	  for (i = m - 1; i >= i0; i--)
	    {
	      while (S[i][j] != 0)
		{
		  int sigma, factor, a, b;

		  a = S[i-1][j];
		  b = S[i][j];
		  sigma = (a * b < 0) ? -1: 1;
		  a = abs (a);
      b = abs (b);
		  factor = sigma * (a / b);

		  lambda_matrix_row_add (S, n, i, i-1, -factor);
		  lambda_matrix_row_exchange (S, i, i-1);

		  lambda_matrix_col_add (V, m, i-1, i, factor);
		  lambda_matrix_col_exchange (V, m, i, i-1);
		}
	    }
	}
    }
}

/* When it exists, return the first nonzero row in MAT after row
   STARTROW.  Otherwise return rowsize.  */

int
lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
			    int startrow)
{
  int j;
  bool found = false;

  for (j = startrow; (j < rowsize) && !found; j++)
    {
      if ((mat[j] != NULL)
	  && (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize))
	found = true;
    }

  if (found)
    return j - 1;
  return rowsize;
}

/* Calculate the projection of E sub k to the null space of B.  */

void
lambda_matrix_project_to_null (lambda_matrix B, int rowsize,
			       int colsize, int k, lambda_vector x)
{
  lambda_matrix M1, M2, M3, I;
  int determinant;

  /* Compute c(I-B^T inv(B B^T) B) e sub k.  */

  /* M1 is the transpose of B.  */
  M1 = lambda_matrix_new (colsize, colsize);
  lambda_matrix_transpose (B, M1, rowsize, colsize);

  /* M2 = B * B^T */
  M2 = lambda_matrix_new (colsize, colsize);
  lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize);

  /* M3 = inv(M2) */
  M3 = lambda_matrix_new (colsize, colsize);
  determinant = lambda_matrix_inverse (M2, M3, rowsize);

  /* M2 = B^T (inv(B B^T)) */
  lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize);

  /* M1 = B^T (inv(B B^T)) B */
  lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize);
  lambda_matrix_negate (M1, M1, colsize, colsize);

  I = lambda_matrix_new (colsize, colsize);
  lambda_matrix_id (I, colsize);

  lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize);

  lambda_matrix_get_column (M2, colsize, k - 1, x);

}

/* Multiply a vector VEC by a matrix MAT.
   MAT is an M*N matrix, and VEC is a vector with length N.  The result
   is stored in DEST which must be a vector of length M.  */

void
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
			   lambda_vector vec, lambda_vector dest)
{
  int i, j;

  lambda_vector_clear (dest, m);
  for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
      dest[i] += matrix[i][j] * vec[j];
}

/* Print out an M x N matrix MAT to OUTFILE.  */

void
print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n)
{
  int i;

  for (i = 0; i < m; i++)
    print_lambda_vector (outfile, matrix[i], n);
  fprintf (outfile, "\n");
}

OpenPOWER on IntegriCloud