1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
|
/* C++ Parser.
Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Written by Mark Mitchell <mark@codesourcery.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "dyn-string.h"
#include "varray.h"
#include "cpplib.h"
#include "tree.h"
#include "cp-tree.h"
#include "c-pragma.h"
#include "decl.h"
#include "flags.h"
#include "diagnostic.h"
#include "toplev.h"
#include "output.h"
/* The lexer. */
/* Overview
--------
A cp_lexer represents a stream of cp_tokens. It allows arbitrary
look-ahead.
Methodology
-----------
We use a circular buffer to store incoming tokens.
Some artifacts of the C++ language (such as the
expression/declaration ambiguity) require arbitrary look-ahead.
The strategy we adopt for dealing with these problems is to attempt
to parse one construct (e.g., the declaration) and fall back to the
other (e.g., the expression) if that attempt does not succeed.
Therefore, we must sometimes store an arbitrary number of tokens.
The parser routinely peeks at the next token, and then consumes it
later. That also requires a buffer in which to store the tokens.
In order to easily permit adding tokens to the end of the buffer,
while removing them from the beginning of the buffer, we use a
circular buffer. */
/* A C++ token. */
typedef struct cp_token GTY (())
{
/* The kind of token. */
enum cpp_ttype type : 8;
/* If this token is a keyword, this value indicates which keyword.
Otherwise, this value is RID_MAX. */
enum rid keyword : 8;
/* The value associated with this token, if any. */
tree value;
/* The location at which this token was found. */
location_t location;
} cp_token;
/* The number of tokens in a single token block.
Computed so that cp_token_block fits in a 512B allocation unit. */
#define CP_TOKEN_BLOCK_NUM_TOKENS ((512 - 3*sizeof (char*))/sizeof (cp_token))
/* A group of tokens. These groups are chained together to store
large numbers of tokens. (For example, a token block is created
when the body of an inline member function is first encountered;
the tokens are processed later after the class definition is
complete.)
This somewhat ungainly data structure (as opposed to, say, a
variable-length array), is used due to constraints imposed by the
current garbage-collection methodology. If it is made more
flexible, we could perhaps simplify the data structures involved. */
typedef struct cp_token_block GTY (())
{
/* The tokens. */
cp_token tokens[CP_TOKEN_BLOCK_NUM_TOKENS];
/* The number of tokens in this block. */
size_t num_tokens;
/* The next token block in the chain. */
struct cp_token_block *next;
/* The previous block in the chain. */
struct cp_token_block *prev;
} cp_token_block;
typedef struct cp_token_cache GTY (())
{
/* The first block in the cache. NULL if there are no tokens in the
cache. */
cp_token_block *first;
/* The last block in the cache. NULL If there are no tokens in the
cache. */
cp_token_block *last;
} cp_token_cache;
/* Prototypes. */
static cp_token_cache *cp_token_cache_new
(void);
static void cp_token_cache_push_token
(cp_token_cache *, cp_token *);
/* Create a new cp_token_cache. */
static cp_token_cache *
cp_token_cache_new (void)
{
return ggc_alloc_cleared (sizeof (cp_token_cache));
}
/* Add *TOKEN to *CACHE. */
static void
cp_token_cache_push_token (cp_token_cache *cache,
cp_token *token)
{
cp_token_block *b = cache->last;
/* See if we need to allocate a new token block. */
if (!b || b->num_tokens == CP_TOKEN_BLOCK_NUM_TOKENS)
{
b = ggc_alloc_cleared (sizeof (cp_token_block));
b->prev = cache->last;
if (cache->last)
{
cache->last->next = b;
cache->last = b;
}
else
cache->first = cache->last = b;
}
/* Add this token to the current token block. */
b->tokens[b->num_tokens++] = *token;
}
/* The cp_lexer structure represents the C++ lexer. It is responsible
for managing the token stream from the preprocessor and supplying
it to the parser. */
typedef struct cp_lexer GTY (())
{
/* The memory allocated for the buffer. Never NULL. */
cp_token * GTY ((length ("(%h.buffer_end - %h.buffer)"))) buffer;
/* A pointer just past the end of the memory allocated for the buffer. */
cp_token * GTY ((skip (""))) buffer_end;
/* The first valid token in the buffer, or NULL if none. */
cp_token * GTY ((skip (""))) first_token;
/* The next available token. If NEXT_TOKEN is NULL, then there are
no more available tokens. */
cp_token * GTY ((skip (""))) next_token;
/* A pointer just past the last available token. If FIRST_TOKEN is
NULL, however, there are no available tokens, and then this
location is simply the place in which the next token read will be
placed. If LAST_TOKEN == FIRST_TOKEN, then the buffer is full.
When the LAST_TOKEN == BUFFER, then the last token is at the
highest memory address in the BUFFER. */
cp_token * GTY ((skip (""))) last_token;
/* A stack indicating positions at which cp_lexer_save_tokens was
called. The top entry is the most recent position at which we
began saving tokens. The entries are differences in token
position between FIRST_TOKEN and the first saved token.
If the stack is non-empty, we are saving tokens. When a token is
consumed, the NEXT_TOKEN pointer will move, but the FIRST_TOKEN
pointer will not. The token stream will be preserved so that it
can be reexamined later.
If the stack is empty, then we are not saving tokens. Whenever a
token is consumed, the FIRST_TOKEN pointer will be moved, and the
consumed token will be gone forever. */
varray_type saved_tokens;
/* The STRING_CST tokens encountered while processing the current
string literal. */
varray_type string_tokens;
/* True if we should obtain more tokens from the preprocessor; false
if we are processing a saved token cache. */
bool main_lexer_p;
/* True if we should output debugging information. */
bool debugging_p;
/* The next lexer in a linked list of lexers. */
struct cp_lexer *next;
} cp_lexer;
/* Prototypes. */
static cp_lexer *cp_lexer_new_main
(void);
static cp_lexer *cp_lexer_new_from_tokens
(struct cp_token_cache *);
static int cp_lexer_saving_tokens
(const cp_lexer *);
static cp_token *cp_lexer_next_token
(cp_lexer *, cp_token *);
static ptrdiff_t cp_lexer_token_difference
(cp_lexer *, cp_token *, cp_token *);
static cp_token *cp_lexer_read_token
(cp_lexer *);
static void cp_lexer_maybe_grow_buffer
(cp_lexer *);
static void cp_lexer_get_preprocessor_token
(cp_lexer *, cp_token *);
static cp_token *cp_lexer_peek_token
(cp_lexer *);
static cp_token *cp_lexer_peek_nth_token
(cp_lexer *, size_t);
static inline bool cp_lexer_next_token_is
(cp_lexer *, enum cpp_ttype);
static bool cp_lexer_next_token_is_not
(cp_lexer *, enum cpp_ttype);
static bool cp_lexer_next_token_is_keyword
(cp_lexer *, enum rid);
static cp_token *cp_lexer_consume_token
(cp_lexer *);
static void cp_lexer_purge_token
(cp_lexer *);
static void cp_lexer_purge_tokens_after
(cp_lexer *, cp_token *);
static void cp_lexer_save_tokens
(cp_lexer *);
static void cp_lexer_commit_tokens
(cp_lexer *);
static void cp_lexer_rollback_tokens
(cp_lexer *);
static inline void cp_lexer_set_source_position_from_token
(cp_lexer *, const cp_token *);
static void cp_lexer_print_token
(FILE *, cp_token *);
static inline bool cp_lexer_debugging_p
(cp_lexer *);
static void cp_lexer_start_debugging
(cp_lexer *) ATTRIBUTE_UNUSED;
static void cp_lexer_stop_debugging
(cp_lexer *) ATTRIBUTE_UNUSED;
/* Manifest constants. */
#define CP_TOKEN_BUFFER_SIZE 5
#define CP_SAVED_TOKENS_SIZE 5
/* A token type for keywords, as opposed to ordinary identifiers. */
#define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
/* A token type for template-ids. If a template-id is processed while
parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
the value of the CPP_TEMPLATE_ID is whatever was returned by
cp_parser_template_id. */
#define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
/* A token type for nested-name-specifiers. If a
nested-name-specifier is processed while parsing tentatively, it is
replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
CPP_NESTED_NAME_SPECIFIER is whatever was returned by
cp_parser_nested_name_specifier_opt. */
#define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
/* A token type for tokens that are not tokens at all; these are used
to mark the end of a token block. */
#define CPP_NONE (CPP_NESTED_NAME_SPECIFIER + 1)
/* Variables. */
/* The stream to which debugging output should be written. */
static FILE *cp_lexer_debug_stream;
/* Create a new main C++ lexer, the lexer that gets tokens from the
preprocessor. */
static cp_lexer *
cp_lexer_new_main (void)
{
cp_lexer *lexer;
cp_token first_token;
/* It's possible that lexing the first token will load a PCH file,
which is a GC collection point. So we have to grab the first
token before allocating any memory. */
cp_lexer_get_preprocessor_token (NULL, &first_token);
c_common_no_more_pch ();
/* Allocate the memory. */
lexer = ggc_alloc_cleared (sizeof (cp_lexer));
/* Create the circular buffer. */
lexer->buffer = ggc_calloc (CP_TOKEN_BUFFER_SIZE, sizeof (cp_token));
lexer->buffer_end = lexer->buffer + CP_TOKEN_BUFFER_SIZE;
/* There is one token in the buffer. */
lexer->last_token = lexer->buffer + 1;
lexer->first_token = lexer->buffer;
lexer->next_token = lexer->buffer;
memcpy (lexer->buffer, &first_token, sizeof (cp_token));
/* This lexer obtains more tokens by calling c_lex. */
lexer->main_lexer_p = true;
/* Create the SAVED_TOKENS stack. */
VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
/* Create the STRINGS array. */
VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
/* Assume we are not debugging. */
lexer->debugging_p = false;
return lexer;
}
/* Create a new lexer whose token stream is primed with the TOKENS.
When these tokens are exhausted, no new tokens will be read. */
static cp_lexer *
cp_lexer_new_from_tokens (cp_token_cache *tokens)
{
cp_lexer *lexer;
cp_token *token;
cp_token_block *block;
ptrdiff_t num_tokens;
/* Allocate the memory. */
lexer = ggc_alloc_cleared (sizeof (cp_lexer));
/* Create a new buffer, appropriately sized. */
num_tokens = 0;
for (block = tokens->first; block != NULL; block = block->next)
num_tokens += block->num_tokens;
lexer->buffer = ggc_alloc (num_tokens * sizeof (cp_token));
lexer->buffer_end = lexer->buffer + num_tokens;
/* Install the tokens. */
token = lexer->buffer;
for (block = tokens->first; block != NULL; block = block->next)
{
memcpy (token, block->tokens, block->num_tokens * sizeof (cp_token));
token += block->num_tokens;
}
/* The FIRST_TOKEN is the beginning of the buffer. */
lexer->first_token = lexer->buffer;
/* The next available token is also at the beginning of the buffer. */
lexer->next_token = lexer->buffer;
/* The buffer is full. */
lexer->last_token = lexer->first_token;
/* This lexer doesn't obtain more tokens. */
lexer->main_lexer_p = false;
/* Create the SAVED_TOKENS stack. */
VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
/* Create the STRINGS array. */
VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
/* Assume we are not debugging. */
lexer->debugging_p = false;
return lexer;
}
/* Returns nonzero if debugging information should be output. */
static inline bool
cp_lexer_debugging_p (cp_lexer *lexer)
{
return lexer->debugging_p;
}
/* Set the current source position from the information stored in
TOKEN. */
static inline void
cp_lexer_set_source_position_from_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
const cp_token *token)
{
/* Ideally, the source position information would not be a global
variable, but it is. */
/* Update the line number. */
if (token->type != CPP_EOF)
input_location = token->location;
}
/* TOKEN points into the circular token buffer. Return a pointer to
the next token in the buffer. */
static inline cp_token *
cp_lexer_next_token (cp_lexer* lexer, cp_token* token)
{
token++;
if (token == lexer->buffer_end)
token = lexer->buffer;
return token;
}
/* nonzero if we are presently saving tokens. */
static int
cp_lexer_saving_tokens (const cp_lexer* lexer)
{
return VARRAY_ACTIVE_SIZE (lexer->saved_tokens) != 0;
}
/* Return a pointer to the token that is N tokens beyond TOKEN in the
buffer. */
static cp_token *
cp_lexer_advance_token (cp_lexer *lexer, cp_token *token, ptrdiff_t n)
{
token += n;
if (token >= lexer->buffer_end)
token = lexer->buffer + (token - lexer->buffer_end);
return token;
}
/* Returns the number of times that START would have to be incremented
to reach FINISH. If START and FINISH are the same, returns zero. */
static ptrdiff_t
cp_lexer_token_difference (cp_lexer* lexer, cp_token* start, cp_token* finish)
{
if (finish >= start)
return finish - start;
else
return ((lexer->buffer_end - lexer->buffer)
- (start - finish));
}
/* Obtain another token from the C preprocessor and add it to the
token buffer. Returns the newly read token. */
static cp_token *
cp_lexer_read_token (cp_lexer* lexer)
{
cp_token *token;
/* Make sure there is room in the buffer. */
cp_lexer_maybe_grow_buffer (lexer);
/* If there weren't any tokens, then this one will be the first. */
if (!lexer->first_token)
lexer->first_token = lexer->last_token;
/* Similarly, if there were no available tokens, there is one now. */
if (!lexer->next_token)
lexer->next_token = lexer->last_token;
/* Figure out where we're going to store the new token. */
token = lexer->last_token;
/* Get a new token from the preprocessor. */
cp_lexer_get_preprocessor_token (lexer, token);
/* Increment LAST_TOKEN. */
lexer->last_token = cp_lexer_next_token (lexer, token);
/* Strings should have type `const char []'. Right now, we will
have an ARRAY_TYPE that is constant rather than an array of
constant elements.
FIXME: Make fix_string_type get this right in the first place. */
if ((token->type == CPP_STRING || token->type == CPP_WSTRING)
&& flag_const_strings)
{
tree type;
/* Get the current type. It will be an ARRAY_TYPE. */
type = TREE_TYPE (token->value);
/* Use build_cplus_array_type to rebuild the array, thereby
getting the right type. */
type = build_cplus_array_type (TREE_TYPE (type), TYPE_DOMAIN (type));
/* Reset the type of the token. */
TREE_TYPE (token->value) = type;
}
return token;
}
/* If the circular buffer is full, make it bigger. */
static void
cp_lexer_maybe_grow_buffer (cp_lexer* lexer)
{
/* If the buffer is full, enlarge it. */
if (lexer->last_token == lexer->first_token)
{
cp_token *new_buffer;
cp_token *old_buffer;
cp_token *new_first_token;
ptrdiff_t buffer_length;
size_t num_tokens_to_copy;
/* Remember the current buffer pointer. It will become invalid,
but we will need to do pointer arithmetic involving this
value. */
old_buffer = lexer->buffer;
/* Compute the current buffer size. */
buffer_length = lexer->buffer_end - lexer->buffer;
/* Allocate a buffer twice as big. */
new_buffer = ggc_realloc (lexer->buffer,
2 * buffer_length * sizeof (cp_token));
/* Because the buffer is circular, logically consecutive tokens
are not necessarily placed consecutively in memory.
Therefore, we must keep move the tokens that were before
FIRST_TOKEN to the second half of the newly allocated
buffer. */
num_tokens_to_copy = (lexer->first_token - old_buffer);
memcpy (new_buffer + buffer_length,
new_buffer,
num_tokens_to_copy * sizeof (cp_token));
/* Clear the rest of the buffer. We never look at this storage,
but the garbage collector may. */
memset (new_buffer + buffer_length + num_tokens_to_copy, 0,
(buffer_length - num_tokens_to_copy) * sizeof (cp_token));
/* Now recompute all of the buffer pointers. */
new_first_token
= new_buffer + (lexer->first_token - old_buffer);
if (lexer->next_token != NULL)
{
ptrdiff_t next_token_delta;
if (lexer->next_token > lexer->first_token)
next_token_delta = lexer->next_token - lexer->first_token;
else
next_token_delta =
buffer_length - (lexer->first_token - lexer->next_token);
lexer->next_token = new_first_token + next_token_delta;
}
lexer->last_token = new_first_token + buffer_length;
lexer->buffer = new_buffer;
lexer->buffer_end = new_buffer + buffer_length * 2;
lexer->first_token = new_first_token;
}
}
/* Store the next token from the preprocessor in *TOKEN. */
static void
cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
cp_token *token)
{
bool done;
/* If this not the main lexer, return a terminating CPP_EOF token. */
if (lexer != NULL && !lexer->main_lexer_p)
{
token->type = CPP_EOF;
token->location.line = 0;
token->location.file = NULL;
token->value = NULL_TREE;
token->keyword = RID_MAX;
return;
}
done = false;
/* Keep going until we get a token we like. */
while (!done)
{
/* Get a new token from the preprocessor. */
token->type = c_lex (&token->value);
/* Issue messages about tokens we cannot process. */
switch (token->type)
{
case CPP_ATSIGN:
case CPP_HASH:
case CPP_PASTE:
error ("invalid token");
break;
default:
/* This is a good token, so we exit the loop. */
done = true;
break;
}
}
/* Now we've got our token. */
token->location = input_location;
/* Check to see if this token is a keyword. */
if (token->type == CPP_NAME
&& C_IS_RESERVED_WORD (token->value))
{
/* Mark this token as a keyword. */
token->type = CPP_KEYWORD;
/* Record which keyword. */
token->keyword = C_RID_CODE (token->value);
/* Update the value. Some keywords are mapped to particular
entities, rather than simply having the value of the
corresponding IDENTIFIER_NODE. For example, `__const' is
mapped to `const'. */
token->value = ridpointers[token->keyword];
}
else
token->keyword = RID_MAX;
}
/* Return a pointer to the next token in the token stream, but do not
consume it. */
static cp_token *
cp_lexer_peek_token (cp_lexer* lexer)
{
cp_token *token;
/* If there are no tokens, read one now. */
if (!lexer->next_token)
cp_lexer_read_token (lexer);
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
{
fprintf (cp_lexer_debug_stream, "cp_lexer: peeking at token: ");
cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
fprintf (cp_lexer_debug_stream, "\n");
}
token = lexer->next_token;
cp_lexer_set_source_position_from_token (lexer, token);
return token;
}
/* Return true if the next token has the indicated TYPE. */
static bool
cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (lexer);
/* Check to see if it has the indicated TYPE. */
return token->type == type;
}
/* Return true if the next token does not have the indicated TYPE. */
static bool
cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
{
return !cp_lexer_next_token_is (lexer, type);
}
/* Return true if the next token is the indicated KEYWORD. */
static bool
cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (lexer);
/* Check to see if it is the indicated keyword. */
return token->keyword == keyword;
}
/* Return a pointer to the Nth token in the token stream. If N is 1,
then this is precisely equivalent to cp_lexer_peek_token. */
static cp_token *
cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
{
cp_token *token;
/* N is 1-based, not zero-based. */
my_friendly_assert (n > 0, 20000224);
/* Skip ahead from NEXT_TOKEN, reading more tokens as necessary. */
token = lexer->next_token;
/* If there are no tokens in the buffer, get one now. */
if (!token)
{
cp_lexer_read_token (lexer);
token = lexer->next_token;
}
/* Now, read tokens until we have enough. */
while (--n > 0)
{
/* Advance to the next token. */
token = cp_lexer_next_token (lexer, token);
/* If that's all the tokens we have, read a new one. */
if (token == lexer->last_token)
token = cp_lexer_read_token (lexer);
}
return token;
}
/* Consume the next token. The pointer returned is valid only until
another token is read. Callers should preserve copy the token
explicitly if they will need its value for a longer period of
time. */
static cp_token *
cp_lexer_consume_token (cp_lexer* lexer)
{
cp_token *token;
/* If there are no tokens, read one now. */
if (!lexer->next_token)
cp_lexer_read_token (lexer);
/* Remember the token we'll be returning. */
token = lexer->next_token;
/* Increment NEXT_TOKEN. */
lexer->next_token = cp_lexer_next_token (lexer,
lexer->next_token);
/* Check to see if we're all out of tokens. */
if (lexer->next_token == lexer->last_token)
lexer->next_token = NULL;
/* If we're not saving tokens, then move FIRST_TOKEN too. */
if (!cp_lexer_saving_tokens (lexer))
{
/* If there are no tokens available, set FIRST_TOKEN to NULL. */
if (!lexer->next_token)
lexer->first_token = NULL;
else
lexer->first_token = lexer->next_token;
}
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
{
fprintf (cp_lexer_debug_stream, "cp_lexer: consuming token: ");
cp_lexer_print_token (cp_lexer_debug_stream, token);
fprintf (cp_lexer_debug_stream, "\n");
}
return token;
}
/* Permanently remove the next token from the token stream. There
must be a valid next token already; this token never reads
additional tokens from the preprocessor. */
static void
cp_lexer_purge_token (cp_lexer *lexer)
{
cp_token *token;
cp_token *next_token;
token = lexer->next_token;
while (true)
{
next_token = cp_lexer_next_token (lexer, token);
if (next_token == lexer->last_token)
break;
*token = *next_token;
token = next_token;
}
lexer->last_token = token;
/* The token purged may have been the only token remaining; if so,
clear NEXT_TOKEN. */
if (lexer->next_token == token)
lexer->next_token = NULL;
}
/* Permanently remove all tokens after TOKEN, up to, but not
including, the token that will be returned next by
cp_lexer_peek_token. */
static void
cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *token)
{
cp_token *peek;
cp_token *t1;
cp_token *t2;
if (lexer->next_token)
{
/* Copy the tokens that have not yet been read to the location
immediately following TOKEN. */
t1 = cp_lexer_next_token (lexer, token);
t2 = peek = cp_lexer_peek_token (lexer);
/* Move tokens into the vacant area between TOKEN and PEEK. */
while (t2 != lexer->last_token)
{
*t1 = *t2;
t1 = cp_lexer_next_token (lexer, t1);
t2 = cp_lexer_next_token (lexer, t2);
}
/* Now, the next available token is right after TOKEN. */
lexer->next_token = cp_lexer_next_token (lexer, token);
/* And the last token is wherever we ended up. */
lexer->last_token = t1;
}
else
{
/* There are no tokens in the buffer, so there is nothing to
copy. The last token in the buffer is TOKEN itself. */
lexer->last_token = cp_lexer_next_token (lexer, token);
}
}
/* Begin saving tokens. All tokens consumed after this point will be
preserved. */
static void
cp_lexer_save_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
/* Make sure that LEXER->NEXT_TOKEN is non-NULL so that we can
restore the tokens if required. */
if (!lexer->next_token)
cp_lexer_read_token (lexer);
VARRAY_PUSH_INT (lexer->saved_tokens,
cp_lexer_token_difference (lexer,
lexer->first_token,
lexer->next_token));
}
/* Commit to the portion of the token stream most recently saved. */
static void
cp_lexer_commit_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
VARRAY_POP (lexer->saved_tokens);
}
/* Return all tokens saved since the last call to cp_lexer_save_tokens
to the token stream. Stop saving tokens. */
static void
cp_lexer_rollback_tokens (cp_lexer* lexer)
{
size_t delta;
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
/* Find the token that was the NEXT_TOKEN when we started saving
tokens. */
delta = VARRAY_TOP_INT(lexer->saved_tokens);
/* Make it the next token again now. */
lexer->next_token = cp_lexer_advance_token (lexer,
lexer->first_token,
delta);
/* It might be the case that there were no tokens when we started
saving tokens, but that there are some tokens now. */
if (!lexer->next_token && lexer->first_token)
lexer->next_token = lexer->first_token;
/* Stop saving tokens. */
VARRAY_POP (lexer->saved_tokens);
}
/* Print a representation of the TOKEN on the STREAM. */
static void
cp_lexer_print_token (FILE * stream, cp_token* token)
{
const char *token_type = NULL;
/* Figure out what kind of token this is. */
switch (token->type)
{
case CPP_EQ:
token_type = "EQ";
break;
case CPP_COMMA:
token_type = "COMMA";
break;
case CPP_OPEN_PAREN:
token_type = "OPEN_PAREN";
break;
case CPP_CLOSE_PAREN:
token_type = "CLOSE_PAREN";
break;
case CPP_OPEN_BRACE:
token_type = "OPEN_BRACE";
break;
case CPP_CLOSE_BRACE:
token_type = "CLOSE_BRACE";
break;
case CPP_SEMICOLON:
token_type = "SEMICOLON";
break;
case CPP_NAME:
token_type = "NAME";
break;
case CPP_EOF:
token_type = "EOF";
break;
case CPP_KEYWORD:
token_type = "keyword";
break;
/* This is not a token that we know how to handle yet. */
default:
break;
}
/* If we have a name for the token, print it out. Otherwise, we
simply give the numeric code. */
if (token_type)
fprintf (stream, "%s", token_type);
else
fprintf (stream, "%d", token->type);
/* And, for an identifier, print the identifier name. */
if (token->type == CPP_NAME
/* Some keywords have a value that is not an IDENTIFIER_NODE.
For example, `struct' is mapped to an INTEGER_CST. */
|| (token->type == CPP_KEYWORD
&& TREE_CODE (token->value) == IDENTIFIER_NODE))
fprintf (stream, " %s", IDENTIFIER_POINTER (token->value));
}
/* Start emitting debugging information. */
static void
cp_lexer_start_debugging (cp_lexer* lexer)
{
++lexer->debugging_p;
}
/* Stop emitting debugging information. */
static void
cp_lexer_stop_debugging (cp_lexer* lexer)
{
--lexer->debugging_p;
}
/* The parser. */
/* Overview
--------
A cp_parser parses the token stream as specified by the C++
grammar. Its job is purely parsing, not semantic analysis. For
example, the parser breaks the token stream into declarators,
expressions, statements, and other similar syntactic constructs.
It does not check that the types of the expressions on either side
of an assignment-statement are compatible, or that a function is
not declared with a parameter of type `void'.
The parser invokes routines elsewhere in the compiler to perform
semantic analysis and to build up the abstract syntax tree for the
code processed.
The parser (and the template instantiation code, which is, in a
way, a close relative of parsing) are the only parts of the
compiler that should be calling push_scope and pop_scope, or
related functions. The parser (and template instantiation code)
keeps track of what scope is presently active; everything else
should simply honor that. (The code that generates static
initializers may also need to set the scope, in order to check
access control correctly when emitting the initializers.)
Methodology
-----------
The parser is of the standard recursive-descent variety. Upcoming
tokens in the token stream are examined in order to determine which
production to use when parsing a non-terminal. Some C++ constructs
require arbitrary look ahead to disambiguate. For example, it is
impossible, in the general case, to tell whether a statement is an
expression or declaration without scanning the entire statement.
Therefore, the parser is capable of "parsing tentatively." When the
parser is not sure what construct comes next, it enters this mode.
Then, while we attempt to parse the construct, the parser queues up
error messages, rather than issuing them immediately, and saves the
tokens it consumes. If the construct is parsed successfully, the
parser "commits", i.e., it issues any queued error messages and
the tokens that were being preserved are permanently discarded.
If, however, the construct is not parsed successfully, the parser
rolls back its state completely so that it can resume parsing using
a different alternative.
Future Improvements
-------------------
The performance of the parser could probably be improved
substantially. Some possible improvements include:
- The expression parser recurses through the various levels of
precedence as specified in the grammar, rather than using an
operator-precedence technique. Therefore, parsing a simple
identifier requires multiple recursive calls.
- We could often eliminate the need to parse tentatively by
looking ahead a little bit. In some places, this approach
might not entirely eliminate the need to parse tentatively, but
it might still speed up the average case. */
/* Flags that are passed to some parsing functions. These values can
be bitwise-ored together. */
typedef enum cp_parser_flags
{
/* No flags. */
CP_PARSER_FLAGS_NONE = 0x0,
/* The construct is optional. If it is not present, then no error
should be issued. */
CP_PARSER_FLAGS_OPTIONAL = 0x1,
/* When parsing a type-specifier, do not allow user-defined types. */
CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
} cp_parser_flags;
/* The different kinds of declarators we want to parse. */
typedef enum cp_parser_declarator_kind
{
/* We want an abstract declartor. */
CP_PARSER_DECLARATOR_ABSTRACT,
/* We want a named declarator. */
CP_PARSER_DECLARATOR_NAMED,
/* We don't mind, but the name must be an unqualified-id */
CP_PARSER_DECLARATOR_EITHER
} cp_parser_declarator_kind;
/* A mapping from a token type to a corresponding tree node type. */
typedef struct cp_parser_token_tree_map_node
{
/* The token type. */
enum cpp_ttype token_type : 8;
/* The corresponding tree code. */
enum tree_code tree_type : 8;
} cp_parser_token_tree_map_node;
/* A complete map consists of several ordinary entries, followed by a
terminator. The terminating entry has a token_type of CPP_EOF. */
typedef cp_parser_token_tree_map_node cp_parser_token_tree_map[];
/* The status of a tentative parse. */
typedef enum cp_parser_status_kind
{
/* No errors have occurred. */
CP_PARSER_STATUS_KIND_NO_ERROR,
/* An error has occurred. */
CP_PARSER_STATUS_KIND_ERROR,
/* We are committed to this tentative parse, whether or not an error
has occurred. */
CP_PARSER_STATUS_KIND_COMMITTED
} cp_parser_status_kind;
/* Context that is saved and restored when parsing tentatively. */
typedef struct cp_parser_context GTY (())
{
/* If this is a tentative parsing context, the status of the
tentative parse. */
enum cp_parser_status_kind status;
/* If non-NULL, we have just seen a `x->' or `x.' expression. Names
that are looked up in this context must be looked up both in the
scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
the context of the containing expression. */
tree object_type;
/* The next parsing context in the stack. */
struct cp_parser_context *next;
} cp_parser_context;
/* Prototypes. */
/* Constructors and destructors. */
static cp_parser_context *cp_parser_context_new
(cp_parser_context *);
/* Class variables. */
static GTY((deletable (""))) cp_parser_context* cp_parser_context_free_list;
/* Constructors and destructors. */
/* Construct a new context. The context below this one on the stack
is given by NEXT. */
static cp_parser_context *
cp_parser_context_new (cp_parser_context* next)
{
cp_parser_context *context;
/* Allocate the storage. */
if (cp_parser_context_free_list != NULL)
{
/* Pull the first entry from the free list. */
context = cp_parser_context_free_list;
cp_parser_context_free_list = context->next;
memset (context, 0, sizeof (*context));
}
else
context = ggc_alloc_cleared (sizeof (cp_parser_context));
/* No errors have occurred yet in this context. */
context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
/* If this is not the bottomost context, copy information that we
need from the previous context. */
if (next)
{
/* If, in the NEXT context, we are parsing an `x->' or `x.'
expression, then we are parsing one in this context, too. */
context->object_type = next->object_type;
/* Thread the stack. */
context->next = next;
}
return context;
}
/* The cp_parser structure represents the C++ parser. */
typedef struct cp_parser GTY(())
{
/* The lexer from which we are obtaining tokens. */
cp_lexer *lexer;
/* The scope in which names should be looked up. If NULL_TREE, then
we look up names in the scope that is currently open in the
source program. If non-NULL, this is either a TYPE or
NAMESPACE_DECL for the scope in which we should look.
This value is not cleared automatically after a name is looked
up, so we must be careful to clear it before starting a new look
up sequence. (If it is not cleared, then `X::Y' followed by `Z'
will look up `Z' in the scope of `X', rather than the current
scope.) Unfortunately, it is difficult to tell when name lookup
is complete, because we sometimes peek at a token, look it up,
and then decide not to consume it. */
tree scope;
/* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
last lookup took place. OBJECT_SCOPE is used if an expression
like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
respectively. QUALIFYING_SCOPE is used for an expression of the
form "X::Y"; it refers to X. */
tree object_scope;
tree qualifying_scope;
/* A stack of parsing contexts. All but the bottom entry on the
stack will be tentative contexts.
We parse tentatively in order to determine which construct is in
use in some situations. For example, in order to determine
whether a statement is an expression-statement or a
declaration-statement we parse it tentatively as a
declaration-statement. If that fails, we then reparse the same
token stream as an expression-statement. */
cp_parser_context *context;
/* True if we are parsing GNU C++. If this flag is not set, then
GNU extensions are not recognized. */
bool allow_gnu_extensions_p;
/* TRUE if the `>' token should be interpreted as the greater-than
operator. FALSE if it is the end of a template-id or
template-parameter-list. */
bool greater_than_is_operator_p;
/* TRUE if default arguments are allowed within a parameter list
that starts at this point. FALSE if only a gnu extension makes
them permissible. */
bool default_arg_ok_p;
/* TRUE if we are parsing an integral constant-expression. See
[expr.const] for a precise definition. */
bool constant_expression_p;
/* TRUE if we are parsing an integral constant-expression -- but a
non-constant expression should be permitted as well. This flag
is used when parsing an array bound so that GNU variable-length
arrays are tolerated. */
bool allow_non_constant_expression_p;
/* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
been seen that makes the expression non-constant. */
bool non_constant_expression_p;
/* TRUE if local variable names and `this' are forbidden in the
current context. */
bool local_variables_forbidden_p;
/* TRUE if the declaration we are parsing is part of a
linkage-specification of the form `extern string-literal
declaration'. */
bool in_unbraced_linkage_specification_p;
/* TRUE if we are presently parsing a declarator, after the
direct-declarator. */
bool in_declarator_p;
/* If non-NULL, then we are parsing a construct where new type
definitions are not permitted. The string stored here will be
issued as an error message if a type is defined. */
const char *type_definition_forbidden_message;
/* A list of lists. The outer list is a stack, used for member
functions of local classes. At each level there are two sub-list,
one on TREE_VALUE and one on TREE_PURPOSE. Each of those
sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
TREE_VALUE's. The functions are chained in reverse declaration
order.
The TREE_PURPOSE sublist contains those functions with default
arguments that need post processing, and the TREE_VALUE sublist
contains those functions with definitions that need post
processing.
These lists can only be processed once the outermost class being
defined is complete. */
tree unparsed_functions_queues;
/* The number of classes whose definitions are currently in
progress. */
unsigned num_classes_being_defined;
/* The number of template parameter lists that apply directly to the
current declaration. */
unsigned num_template_parameter_lists;
} cp_parser;
/* The type of a function that parses some kind of expression */
typedef tree (*cp_parser_expression_fn) (cp_parser *);
/* Prototypes. */
/* Constructors and destructors. */
static cp_parser *cp_parser_new
(void);
/* Routines to parse various constructs.
Those that return `tree' will return the error_mark_node (rather
than NULL_TREE) if a parse error occurs, unless otherwise noted.
Sometimes, they will return an ordinary node if error-recovery was
attempted, even though a parse error occurred. So, to check
whether or not a parse error occurred, you should always use
cp_parser_error_occurred. If the construct is optional (indicated
either by an `_opt' in the name of the function that does the
parsing or via a FLAGS parameter), then NULL_TREE is returned if
the construct is not present. */
/* Lexical conventions [gram.lex] */
static tree cp_parser_identifier
(cp_parser *);
/* Basic concepts [gram.basic] */
static bool cp_parser_translation_unit
(cp_parser *);
/* Expressions [gram.expr] */
static tree cp_parser_primary_expression
(cp_parser *, cp_id_kind *, tree *);
static tree cp_parser_id_expression
(cp_parser *, bool, bool, bool *, bool);
static tree cp_parser_unqualified_id
(cp_parser *, bool, bool, bool);
static tree cp_parser_nested_name_specifier_opt
(cp_parser *, bool, bool, bool);
static tree cp_parser_nested_name_specifier
(cp_parser *, bool, bool, bool);
static tree cp_parser_class_or_namespace_name
(cp_parser *, bool, bool, bool, bool);
static tree cp_parser_postfix_expression
(cp_parser *, bool);
static tree cp_parser_parenthesized_expression_list
(cp_parser *, bool, bool *);
static void cp_parser_pseudo_destructor_name
(cp_parser *, tree *, tree *);
static tree cp_parser_unary_expression
(cp_parser *, bool);
static enum tree_code cp_parser_unary_operator
(cp_token *);
static tree cp_parser_new_expression
(cp_parser *);
static tree cp_parser_new_placement
(cp_parser *);
static tree cp_parser_new_type_id
(cp_parser *);
static tree cp_parser_new_declarator_opt
(cp_parser *);
static tree cp_parser_direct_new_declarator
(cp_parser *);
static tree cp_parser_new_initializer
(cp_parser *);
static tree cp_parser_delete_expression
(cp_parser *);
static tree cp_parser_cast_expression
(cp_parser *, bool);
static tree cp_parser_pm_expression
(cp_parser *);
static tree cp_parser_multiplicative_expression
(cp_parser *);
static tree cp_parser_additive_expression
(cp_parser *);
static tree cp_parser_shift_expression
(cp_parser *);
static tree cp_parser_relational_expression
(cp_parser *);
static tree cp_parser_equality_expression
(cp_parser *);
static tree cp_parser_and_expression
(cp_parser *);
static tree cp_parser_exclusive_or_expression
(cp_parser *);
static tree cp_parser_inclusive_or_expression
(cp_parser *);
static tree cp_parser_logical_and_expression
(cp_parser *);
static tree cp_parser_logical_or_expression
(cp_parser *);
static tree cp_parser_question_colon_clause
(cp_parser *, tree);
static tree cp_parser_assignment_expression
(cp_parser *);
static enum tree_code cp_parser_assignment_operator_opt
(cp_parser *);
static tree cp_parser_expression
(cp_parser *);
static tree cp_parser_constant_expression
(cp_parser *, bool, bool *);
/* Statements [gram.stmt.stmt] */
static void cp_parser_statement
(cp_parser *, bool);
static tree cp_parser_labeled_statement
(cp_parser *, bool);
static tree cp_parser_expression_statement
(cp_parser *, bool);
static tree cp_parser_compound_statement
(cp_parser *, bool);
static void cp_parser_statement_seq_opt
(cp_parser *, bool);
static tree cp_parser_selection_statement
(cp_parser *);
static tree cp_parser_condition
(cp_parser *);
static tree cp_parser_iteration_statement
(cp_parser *);
static void cp_parser_for_init_statement
(cp_parser *);
static tree cp_parser_jump_statement
(cp_parser *);
static void cp_parser_declaration_statement
(cp_parser *);
static tree cp_parser_implicitly_scoped_statement
(cp_parser *);
static void cp_parser_already_scoped_statement
(cp_parser *);
/* Declarations [gram.dcl.dcl] */
static void cp_parser_declaration_seq_opt
(cp_parser *);
static void cp_parser_declaration
(cp_parser *);
static void cp_parser_block_declaration
(cp_parser *, bool);
static void cp_parser_simple_declaration
(cp_parser *, bool);
static tree cp_parser_decl_specifier_seq
(cp_parser *, cp_parser_flags, tree *, int *);
static tree cp_parser_storage_class_specifier_opt
(cp_parser *);
static tree cp_parser_function_specifier_opt
(cp_parser *);
static tree cp_parser_type_specifier
(cp_parser *, cp_parser_flags, bool, bool, int *, bool *);
static tree cp_parser_simple_type_specifier
(cp_parser *, cp_parser_flags, bool);
static tree cp_parser_type_name
(cp_parser *);
static tree cp_parser_elaborated_type_specifier
(cp_parser *, bool, bool);
static tree cp_parser_enum_specifier
(cp_parser *);
static void cp_parser_enumerator_list
(cp_parser *, tree);
static void cp_parser_enumerator_definition
(cp_parser *, tree);
static tree cp_parser_namespace_name
(cp_parser *);
static void cp_parser_namespace_definition
(cp_parser *);
static void cp_parser_namespace_body
(cp_parser *);
static tree cp_parser_qualified_namespace_specifier
(cp_parser *);
static void cp_parser_namespace_alias_definition
(cp_parser *);
static void cp_parser_using_declaration
(cp_parser *);
static void cp_parser_using_directive
(cp_parser *);
static void cp_parser_asm_definition
(cp_parser *);
static void cp_parser_linkage_specification
(cp_parser *);
/* Declarators [gram.dcl.decl] */
static tree cp_parser_init_declarator
(cp_parser *, tree, tree, bool, bool, int, bool *);
static tree cp_parser_declarator
(cp_parser *, cp_parser_declarator_kind, int *);
static tree cp_parser_direct_declarator
(cp_parser *, cp_parser_declarator_kind, int *);
static enum tree_code cp_parser_ptr_operator
(cp_parser *, tree *, tree *);
static tree cp_parser_cv_qualifier_seq_opt
(cp_parser *);
static tree cp_parser_cv_qualifier_opt
(cp_parser *);
static tree cp_parser_declarator_id
(cp_parser *);
static tree cp_parser_type_id
(cp_parser *);
static tree cp_parser_type_specifier_seq
(cp_parser *);
static tree cp_parser_parameter_declaration_clause
(cp_parser *);
static tree cp_parser_parameter_declaration_list
(cp_parser *);
static tree cp_parser_parameter_declaration
(cp_parser *, bool);
static tree cp_parser_function_definition
(cp_parser *, bool *);
static void cp_parser_function_body
(cp_parser *);
static tree cp_parser_initializer
(cp_parser *, bool *, bool *);
static tree cp_parser_initializer_clause
(cp_parser *, bool *);
static tree cp_parser_initializer_list
(cp_parser *, bool *);
static bool cp_parser_ctor_initializer_opt_and_function_body
(cp_parser *);
/* Classes [gram.class] */
static tree cp_parser_class_name
(cp_parser *, bool, bool, bool, bool, bool);
static tree cp_parser_class_specifier
(cp_parser *);
static tree cp_parser_class_head
(cp_parser *, bool *);
static enum tag_types cp_parser_class_key
(cp_parser *);
static void cp_parser_member_specification_opt
(cp_parser *);
static void cp_parser_member_declaration
(cp_parser *);
static tree cp_parser_pure_specifier
(cp_parser *);
static tree cp_parser_constant_initializer
(cp_parser *);
/* Derived classes [gram.class.derived] */
static tree cp_parser_base_clause
(cp_parser *);
static tree cp_parser_base_specifier
(cp_parser *);
/* Special member functions [gram.special] */
static tree cp_parser_conversion_function_id
(cp_parser *);
static tree cp_parser_conversion_type_id
(cp_parser *);
static tree cp_parser_conversion_declarator_opt
(cp_parser *);
static bool cp_parser_ctor_initializer_opt
(cp_parser *);
static void cp_parser_mem_initializer_list
(cp_parser *);
static tree cp_parser_mem_initializer
(cp_parser *);
static tree cp_parser_mem_initializer_id
(cp_parser *);
/* Overloading [gram.over] */
static tree cp_parser_operator_function_id
(cp_parser *);
static tree cp_parser_operator
(cp_parser *);
/* Templates [gram.temp] */
static void cp_parser_template_declaration
(cp_parser *, bool);
static tree cp_parser_template_parameter_list
(cp_parser *);
static tree cp_parser_template_parameter
(cp_parser *);
static tree cp_parser_type_parameter
(cp_parser *);
static tree cp_parser_template_id
(cp_parser *, bool, bool);
static tree cp_parser_template_name
(cp_parser *, bool, bool);
static tree cp_parser_template_argument_list
(cp_parser *);
static tree cp_parser_template_argument
(cp_parser *);
static void cp_parser_explicit_instantiation
(cp_parser *);
static void cp_parser_explicit_specialization
(cp_parser *);
/* Exception handling [gram.exception] */
static tree cp_parser_try_block
(cp_parser *);
static bool cp_parser_function_try_block
(cp_parser *);
static void cp_parser_handler_seq
(cp_parser *);
static void cp_parser_handler
(cp_parser *);
static tree cp_parser_exception_declaration
(cp_parser *);
static tree cp_parser_throw_expression
(cp_parser *);
static tree cp_parser_exception_specification_opt
(cp_parser *);
static tree cp_parser_type_id_list
(cp_parser *);
/* GNU Extensions */
static tree cp_parser_asm_specification_opt
(cp_parser *);
static tree cp_parser_asm_operand_list
(cp_parser *);
static tree cp_parser_asm_clobber_list
(cp_parser *);
static tree cp_parser_attributes_opt
(cp_parser *);
static tree cp_parser_attribute_list
(cp_parser *);
static bool cp_parser_extension_opt
(cp_parser *, int *);
static void cp_parser_label_declaration
(cp_parser *);
/* Utility Routines */
static tree cp_parser_lookup_name
(cp_parser *, tree, bool, bool, bool);
static tree cp_parser_lookup_name_simple
(cp_parser *, tree);
static tree cp_parser_maybe_treat_template_as_class
(tree, bool);
static bool cp_parser_check_declarator_template_parameters
(cp_parser *, tree);
static bool cp_parser_check_template_parameters
(cp_parser *, unsigned);
static tree cp_parser_simple_cast_expression
(cp_parser *);
static tree cp_parser_binary_expression
(cp_parser *, const cp_parser_token_tree_map, cp_parser_expression_fn);
static tree cp_parser_global_scope_opt
(cp_parser *, bool);
static bool cp_parser_constructor_declarator_p
(cp_parser *, bool);
static tree cp_parser_function_definition_from_specifiers_and_declarator
(cp_parser *, tree, tree, tree);
static tree cp_parser_function_definition_after_declarator
(cp_parser *, bool);
static void cp_parser_template_declaration_after_export
(cp_parser *, bool);
static tree cp_parser_single_declaration
(cp_parser *, bool, bool *);
static tree cp_parser_functional_cast
(cp_parser *, tree);
static void cp_parser_save_default_args
(cp_parser *, tree);
static void cp_parser_late_parsing_for_member
(cp_parser *, tree);
static void cp_parser_late_parsing_default_args
(cp_parser *, tree);
static tree cp_parser_sizeof_operand
(cp_parser *, enum rid);
static bool cp_parser_declares_only_class_p
(cp_parser *);
static tree cp_parser_fold_non_dependent_expr
(tree);
static bool cp_parser_friend_p
(tree);
static cp_token *cp_parser_require
(cp_parser *, enum cpp_ttype, const char *);
static cp_token *cp_parser_require_keyword
(cp_parser *, enum rid, const char *);
static bool cp_parser_token_starts_function_definition_p
(cp_token *);
static bool cp_parser_next_token_starts_class_definition_p
(cp_parser *);
static bool cp_parser_next_token_ends_template_argument_p
(cp_parser *);
static enum tag_types cp_parser_token_is_class_key
(cp_token *);
static void cp_parser_check_class_key
(enum tag_types, tree type);
static void cp_parser_check_access_in_redeclaration
(tree type);
static bool cp_parser_optional_template_keyword
(cp_parser *);
static void cp_parser_pre_parsed_nested_name_specifier
(cp_parser *);
static void cp_parser_cache_group
(cp_parser *, cp_token_cache *, enum cpp_ttype, unsigned);
static void cp_parser_parse_tentatively
(cp_parser *);
static void cp_parser_commit_to_tentative_parse
(cp_parser *);
static void cp_parser_abort_tentative_parse
(cp_parser *);
static bool cp_parser_parse_definitely
(cp_parser *);
static inline bool cp_parser_parsing_tentatively
(cp_parser *);
static bool cp_parser_committed_to_tentative_parse
(cp_parser *);
static void cp_parser_error
(cp_parser *, const char *);
static bool cp_parser_simulate_error
(cp_parser *);
static void cp_parser_check_type_definition
(cp_parser *);
static void cp_parser_check_for_definition_in_return_type
(tree, int);
static tree cp_parser_non_constant_expression
(const char *);
static bool cp_parser_diagnose_invalid_type_name
(cp_parser *);
static int cp_parser_skip_to_closing_parenthesis
(cp_parser *, bool, bool);
static void cp_parser_skip_to_end_of_statement
(cp_parser *);
static void cp_parser_consume_semicolon_at_end_of_statement
(cp_parser *);
static void cp_parser_skip_to_end_of_block_or_statement
(cp_parser *);
static void cp_parser_skip_to_closing_brace
(cp_parser *);
static void cp_parser_skip_until_found
(cp_parser *, enum cpp_ttype, const char *);
static bool cp_parser_error_occurred
(cp_parser *);
static bool cp_parser_allow_gnu_extensions_p
(cp_parser *);
static bool cp_parser_is_string_literal
(cp_token *);
static bool cp_parser_is_keyword
(cp_token *, enum rid);
/* Returns nonzero if we are parsing tentatively. */
static inline bool
cp_parser_parsing_tentatively (cp_parser* parser)
{
return parser->context->next != NULL;
}
/* Returns nonzero if TOKEN is a string literal. */
static bool
cp_parser_is_string_literal (cp_token* token)
{
return (token->type == CPP_STRING || token->type == CPP_WSTRING);
}
/* Returns nonzero if TOKEN is the indicated KEYWORD. */
static bool
cp_parser_is_keyword (cp_token* token, enum rid keyword)
{
return token->keyword == keyword;
}
/* Issue the indicated error MESSAGE. */
static void
cp_parser_error (cp_parser* parser, const char* message)
{
/* Output the MESSAGE -- unless we're parsing tentatively. */
if (!cp_parser_simulate_error (parser))
error (message);
}
/* If we are parsing tentatively, remember that an error has occurred
during this tentative parse. Returns true if the error was
simulated; false if a messgae should be issued by the caller. */
static bool
cp_parser_simulate_error (cp_parser* parser)
{
if (cp_parser_parsing_tentatively (parser)
&& !cp_parser_committed_to_tentative_parse (parser))
{
parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
return true;
}
return false;
}
/* This function is called when a type is defined. If type
definitions are forbidden at this point, an error message is
issued. */
static void
cp_parser_check_type_definition (cp_parser* parser)
{
/* If types are forbidden here, issue a message. */
if (parser->type_definition_forbidden_message)
/* Use `%s' to print the string in case there are any escape
characters in the message. */
error ("%s", parser->type_definition_forbidden_message);
}
/* This function is called when a declaration is parsed. If
DECLARATOR is a function declarator and DECLARES_CLASS_OR_ENUM
indicates that a type was defined in the decl-specifiers for DECL,
then an error is issued. */
static void
cp_parser_check_for_definition_in_return_type (tree declarator,
int declares_class_or_enum)
{
/* [dcl.fct] forbids type definitions in return types.
Unfortunately, it's not easy to know whether or not we are
processing a return type until after the fact. */
while (declarator
&& (TREE_CODE (declarator) == INDIRECT_REF
|| TREE_CODE (declarator) == ADDR_EXPR))
declarator = TREE_OPERAND (declarator, 0);
if (declarator
&& TREE_CODE (declarator) == CALL_EXPR
&& declares_class_or_enum & 2)
error ("new types may not be defined in a return type");
}
/* Issue an error message about the fact that THING appeared in a
constant-expression. Returns ERROR_MARK_NODE. */
static tree
cp_parser_non_constant_expression (const char *thing)
{
error ("%s cannot appear in a constant-expression", thing);
return error_mark_node;
}
/* Check for a common situation where a type-name should be present,
but is not, and issue a sensible error message. Returns true if an
invalid type-name was detected. */
static bool
cp_parser_diagnose_invalid_type_name (cp_parser *parser)
{
/* If the next two tokens are both identifiers, the code is
erroneous. The usual cause of this situation is code like:
T t;
where "T" should name a type -- but does not. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME)
{
tree name;
/* If parsing tentatively, we should commit; we really are
looking at a declaration. */
/* Consume the first identifier. */
name = cp_lexer_consume_token (parser->lexer)->value;
/* Issue an error message. */
error ("`%s' does not name a type", IDENTIFIER_POINTER (name));
/* If we're in a template class, it's possible that the user was
referring to a type from a base class. For example:
template <typename T> struct A { typedef T X; };
template <typename T> struct B : public A<T> { X x; };
The user should have said "typename A<T>::X". */
if (processing_template_decl && current_class_type)
{
tree b;
for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
b;
b = TREE_CHAIN (b))
{
tree base_type = BINFO_TYPE (b);
if (CLASS_TYPE_P (base_type)
&& dependent_type_p (base_type))
{
tree field;
/* Go from a particular instantiation of the
template (which will have an empty TYPE_FIELDs),
to the main version. */
base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
for (field = TYPE_FIELDS (base_type);
field;
field = TREE_CHAIN (field))
if (TREE_CODE (field) == TYPE_DECL
&& DECL_NAME (field) == name)
{
error ("(perhaps `typename %T::%s' was intended)",
BINFO_TYPE (b), IDENTIFIER_POINTER (name));
break;
}
if (field)
break;
}
}
}
/* Skip to the end of the declaration; there's no point in
trying to process it. */
cp_parser_skip_to_end_of_statement (parser);
return true;
}
return false;
}
/* Consume tokens up to, and including, the next non-nested closing `)'.
Returns 1 iff we found a closing `)'. RECOVERING is true, if we
are doing error recovery. Returns -1 if OR_COMMA is true and we
found an unnested comma. */
static int
cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
bool recovering, bool or_comma)
{
unsigned paren_depth = 0;
unsigned brace_depth = 0;
if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
&& !cp_parser_committed_to_tentative_parse (parser))
return 0;
while (true)
{
cp_token *token;
/* If we've run out of tokens, then there is no closing `)'. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
return 0;
if (recovering)
{
token = cp_lexer_peek_token (parser->lexer);
/* This matches the processing in skip_to_end_of_statement */
if (token->type == CPP_SEMICOLON && !brace_depth)
return 0;
if (token->type == CPP_OPEN_BRACE)
++brace_depth;
if (token->type == CPP_CLOSE_BRACE)
{
if (!brace_depth--)
return 0;
}
if (or_comma && token->type == CPP_COMMA
&& !brace_depth && !paren_depth)
return -1;
}
/* Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
if (!brace_depth)
{
/* If it is an `(', we have entered another level of nesting. */
if (token->type == CPP_OPEN_PAREN)
++paren_depth;
/* If it is a `)', then we might be done. */
else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
return 1;
}
}
}
/* Consume tokens until we reach the end of the current statement.
Normally, that will be just before consuming a `;'. However, if a
non-nested `}' comes first, then we stop before consuming that. */
static void
cp_parser_skip_to_end_of_statement (cp_parser* parser)
{
unsigned nesting_depth = 0;
while (true)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
break;
/* If the next token is a `;', we have reached the end of the
statement. */
if (token->type == CPP_SEMICOLON && !nesting_depth)
break;
/* If the next token is a non-nested `}', then we have reached
the end of the current block. */
if (token->type == CPP_CLOSE_BRACE)
{
/* If this is a non-nested `}', stop before consuming it.
That way, when confronted with something like:
{ 3 + }
we stop before consuming the closing `}', even though we
have not yet reached a `;'. */
if (nesting_depth == 0)
break;
/* If it is the closing `}' for a block that we have
scanned, stop -- but only after consuming the token.
That way given:
void f g () { ... }
typedef int I;
we will stop after the body of the erroneously declared
function, but before consuming the following `typedef'
declaration. */
if (--nesting_depth == 0)
{
cp_lexer_consume_token (parser->lexer);
break;
}
}
/* If it the next token is a `{', then we are entering a new
block. Consume the entire block. */
else if (token->type == CPP_OPEN_BRACE)
++nesting_depth;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* This function is called at the end of a statement or declaration.
If the next token is a semicolon, it is consumed; otherwise, error
recovery is attempted. */
static void
cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
{
/* Look for the trailing `;'. */
if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
{
/* If there is additional (erroneous) input, skip to the end of
the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
}
}
/* Skip tokens until we have consumed an entire block, or until we
have consumed a non-nested `;'. */
static void
cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
{
unsigned nesting_depth = 0;
while (true)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
break;
/* If the next token is a `;', we have reached the end of the
statement. */
if (token->type == CPP_SEMICOLON && !nesting_depth)
{
/* Consume the `;'. */
cp_lexer_consume_token (parser->lexer);
break;
}
/* Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
/* If the next token is a non-nested `}', then we have reached
the end of the current block. */
if (token->type == CPP_CLOSE_BRACE
&& (nesting_depth == 0 || --nesting_depth == 0))
break;
/* If it the next token is a `{', then we are entering a new
block. Consume the entire block. */
if (token->type == CPP_OPEN_BRACE)
++nesting_depth;
}
}
/* Skip tokens until a non-nested closing curly brace is the next
token. */
static void
cp_parser_skip_to_closing_brace (cp_parser *parser)
{
unsigned nesting_depth = 0;
while (true)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
break;
/* If the next token is a non-nested `}', then we have reached
the end of the current block. */
if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
break;
/* If it the next token is a `{', then we are entering a new
block. Consume the entire block. */
else if (token->type == CPP_OPEN_BRACE)
++nesting_depth;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Create a new C++ parser. */
static cp_parser *
cp_parser_new (void)
{
cp_parser *parser;
cp_lexer *lexer;
/* cp_lexer_new_main is called before calling ggc_alloc because
cp_lexer_new_main might load a PCH file. */
lexer = cp_lexer_new_main ();
parser = ggc_alloc_cleared (sizeof (cp_parser));
parser->lexer = lexer;
parser->context = cp_parser_context_new (NULL);
/* For now, we always accept GNU extensions. */
parser->allow_gnu_extensions_p = 1;
/* The `>' token is a greater-than operator, not the end of a
template-id. */
parser->greater_than_is_operator_p = true;
parser->default_arg_ok_p = true;
/* We are not parsing a constant-expression. */
parser->constant_expression_p = false;
parser->allow_non_constant_expression_p = false;
parser->non_constant_expression_p = false;
/* Local variable names are not forbidden. */
parser->local_variables_forbidden_p = false;
/* We are not processing an `extern "C"' declaration. */
parser->in_unbraced_linkage_specification_p = false;
/* We are not processing a declarator. */
parser->in_declarator_p = false;
/* The unparsed function queue is empty. */
parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
/* There are no classes being defined. */
parser->num_classes_being_defined = 0;
/* No template parameters apply. */
parser->num_template_parameter_lists = 0;
return parser;
}
/* Lexical conventions [gram.lex] */
/* Parse an identifier. Returns an IDENTIFIER_NODE representing the
identifier. */
static tree
cp_parser_identifier (cp_parser* parser)
{
cp_token *token;
/* Look for the identifier. */
token = cp_parser_require (parser, CPP_NAME, "identifier");
/* Return the value. */
return token ? token->value : error_mark_node;
}
/* Basic concepts [gram.basic] */
/* Parse a translation-unit.
translation-unit:
declaration-seq [opt]
Returns TRUE if all went well. */
static bool
cp_parser_translation_unit (cp_parser* parser)
{
while (true)
{
cp_parser_declaration_seq_opt (parser);
/* If there are no tokens left then all went well. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
break;
/* Otherwise, issue an error message. */
cp_parser_error (parser, "expected declaration");
return false;
}
/* Consume the EOF token. */
cp_parser_require (parser, CPP_EOF, "end-of-file");
/* Finish up. */
finish_translation_unit ();
/* All went well. */
return true;
}
/* Expressions [gram.expr] */
/* Parse a primary-expression.
primary-expression:
literal
this
( expression )
id-expression
GNU Extensions:
primary-expression:
( compound-statement )
__builtin_va_arg ( assignment-expression , type-id )
literal:
__null
Returns a representation of the expression.
*IDK indicates what kind of id-expression (if any) was present.
*QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
used as the operand of a pointer-to-member. In that case,
*QUALIFYING_CLASS gives the class that is used as the qualifying
class in the pointer-to-member. */
static tree
cp_parser_primary_expression (cp_parser *parser,
cp_id_kind *idk,
tree *qualifying_class)
{
cp_token *token;
/* Assume the primary expression is not an id-expression. */
*idk = CP_ID_KIND_NONE;
/* And that it cannot be used as pointer-to-member. */
*qualifying_class = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
/* literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal */
case CPP_CHAR:
case CPP_WCHAR:
case CPP_STRING:
case CPP_WSTRING:
case CPP_NUMBER:
token = cp_lexer_consume_token (parser->lexer);
return token->value;
case CPP_OPEN_PAREN:
{
tree expr;
bool saved_greater_than_is_operator_p;
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Within a parenthesized expression, a `>' token is always
the greater-than operator. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
/* If we see `( { ' then we are looking at the beginning of
a GNU statement-expression. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
/* Statement-expressions are not allowed by the standard. */
if (pedantic)
pedwarn ("ISO C++ forbids braced-groups within expressions");
/* And they're not allowed outside of a function-body; you
cannot, for example, write:
int i = ({ int j = 3; j + 1; });
at class or namespace scope. */
if (!at_function_scope_p ())
error ("statement-expressions are allowed only inside functions");
/* Start the statement-expression. */
expr = begin_stmt_expr ();
/* Parse the compound-statement. */
cp_parser_compound_statement (parser, true);
/* Finish up. */
expr = finish_stmt_expr (expr, false);
}
else
{
/* Parse the parenthesized expression. */
expr = cp_parser_expression (parser);
/* Let the front end know that this expression was
enclosed in parentheses. This matters in case, for
example, the expression is of the form `A::B', since
`&A::B' might be a pointer-to-member, but `&(A::B)' is
not. */
finish_parenthesized_expr (expr);
}
/* The `>' token might be the end of a template-id or
template-parameter-list now. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Consume the `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_end_of_statement (parser);
return expr;
}
case CPP_KEYWORD:
switch (token->keyword)
{
/* These two are the boolean literals. */
case RID_TRUE:
cp_lexer_consume_token (parser->lexer);
return boolean_true_node;
case RID_FALSE:
cp_lexer_consume_token (parser->lexer);
return boolean_false_node;
/* The `__null' literal. */
case RID_NULL:
cp_lexer_consume_token (parser->lexer);
return null_node;
/* Recognize the `this' keyword. */
case RID_THIS:
cp_lexer_consume_token (parser->lexer);
if (parser->local_variables_forbidden_p)
{
error ("`this' may not be used in this context");
return error_mark_node;
}
/* Pointers cannot appear in constant-expressions. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression ("`this'");
parser->non_constant_expression_p = true;
}
return finish_this_expr ();
/* The `operator' keyword can be the beginning of an
id-expression. */
case RID_OPERATOR:
goto id_expression;
case RID_FUNCTION_NAME:
case RID_PRETTY_FUNCTION_NAME:
case RID_C99_FUNCTION_NAME:
/* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
__func__ are the names of variables -- but they are
treated specially. Therefore, they are handled here,
rather than relying on the generic id-expression logic
below. Grammatically, these names are id-expressions.
Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
/* Look up the name. */
return finish_fname (token->value);
case RID_VA_ARG:
{
tree expression;
tree type;
/* The `__builtin_va_arg' construct is used to handle
`va_arg'. Consume the `__builtin_va_arg' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the opening `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Now, parse the assignment-expression. */
expression = cp_parser_assignment_expression (parser);
/* Look for the `,'. */
cp_parser_require (parser, CPP_COMMA, "`,'");
/* Parse the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Using `va_arg' in a constant-expression is not
allowed. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression ("`va_arg'");
parser->non_constant_expression_p = true;
}
return build_x_va_arg (expression, type);
}
default:
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
}
/* An id-expression can start with either an identifier, a
`::' as the beginning of a qualified-id, or the "operator"
keyword. */
case CPP_NAME:
case CPP_SCOPE:
case CPP_TEMPLATE_ID:
case CPP_NESTED_NAME_SPECIFIER:
{
tree id_expression;
tree decl;
const char *error_msg;
id_expression:
/* Parse the id-expression. */
id_expression
= cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/false);
if (id_expression == error_mark_node)
return error_mark_node;
/* If we have a template-id, then no further lookup is
required. If the template-id was for a template-class, we
will sometimes have a TYPE_DECL at this point. */
else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
|| TREE_CODE (id_expression) == TYPE_DECL)
decl = id_expression;
/* Look up the name. */
else
{
decl = cp_parser_lookup_name_simple (parser, id_expression);
/* If name lookup gives us a SCOPE_REF, then the
qualifying scope was dependent. Just propagate the
name. */
if (TREE_CODE (decl) == SCOPE_REF)
{
if (TYPE_P (TREE_OPERAND (decl, 0)))
*qualifying_class = TREE_OPERAND (decl, 0);
return decl;
}
/* Check to see if DECL is a local variable in a context
where that is forbidden. */
if (parser->local_variables_forbidden_p
&& local_variable_p (decl))
{
/* It might be that we only found DECL because we are
trying to be generous with pre-ISO scoping rules.
For example, consider:
int i;
void g() {
for (int i = 0; i < 10; ++i) {}
extern void f(int j = i);
}
Here, name look up will originally find the out
of scope `i'. We need to issue a warning message,
but then use the global `i'. */
decl = check_for_out_of_scope_variable (decl);
if (local_variable_p (decl))
{
error ("local variable `%D' may not appear in this context",
decl);
return error_mark_node;
}
}
}
decl = finish_id_expression (id_expression, decl, parser->scope,
idk, qualifying_class,
parser->constant_expression_p,
parser->allow_non_constant_expression_p,
&parser->non_constant_expression_p,
&error_msg);
if (error_msg)
cp_parser_error (parser, error_msg);
return decl;
}
/* Anything else is an error. */
default:
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
}
}
/* Parse an id-expression.
id-expression:
unqualified-id
qualified-id
qualified-id:
:: [opt] nested-name-specifier template [opt] unqualified-id
:: identifier
:: operator-function-id
:: template-id
Return a representation of the unqualified portion of the
identifier. Sets PARSER->SCOPE to the qualifying scope if there is
a `::' or nested-name-specifier.
Often, if the id-expression was a qualified-id, the caller will
want to make a SCOPE_REF to represent the qualified-id. This
function does not do this in order to avoid wastefully creating
SCOPE_REFs when they are not required.
If TEMPLATE_KEYWORD_P is true, then we have just seen the
`template' keyword.
If CHECK_DEPENDENCY_P is false, then names are looked up inside
uninstantiated templates.
If *TEMPLATE_P is non-NULL, it is set to true iff the
`template' keyword is used to explicitly indicate that the entity
named is a template.
If DECLARATOR_P is true, the id-expression is appearing as part of
a declarator, rather than as part of an expression. */
static tree
cp_parser_id_expression (cp_parser *parser,
bool template_keyword_p,
bool check_dependency_p,
bool *template_p,
bool declarator_p)
{
bool global_scope_p;
bool nested_name_specifier_p;
/* Assume the `template' keyword was not used. */
if (template_p)
*template_p = false;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the optional nested-name-specifier. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
check_dependency_p,
/*type_p=*/false)
!= NULL_TREE);
/* If there is a nested-name-specifier, then we are looking at
the first qualified-id production. */
if (nested_name_specifier_p)
{
tree saved_scope;
tree saved_object_scope;
tree saved_qualifying_scope;
tree unqualified_id;
bool is_template;
/* See if the next token is the `template' keyword. */
if (!template_p)
template_p = &is_template;
*template_p = cp_parser_optional_template_keyword (parser);
/* Name lookup we do during the processing of the
unqualified-id might obliterate SCOPE. */
saved_scope = parser->scope;
saved_object_scope = parser->object_scope;
saved_qualifying_scope = parser->qualifying_scope;
/* Process the final unqualified-id. */
unqualified_id = cp_parser_unqualified_id (parser, *template_p,
check_dependency_p,
declarator_p);
/* Restore the SAVED_SCOPE for our caller. */
parser->scope = saved_scope;
parser->object_scope = saved_object_scope;
parser->qualifying_scope = saved_qualifying_scope;
return unqualified_id;
}
/* Otherwise, if we are in global scope, then we are looking at one
of the other qualified-id productions. */
else if (global_scope_p)
{
cp_token *token;
tree id;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's an identifier, and the next token is not a "<", then
we can avoid the template-id case. This is an optimization
for this common case. */
if (token->type == CPP_NAME
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_LESS)
return cp_parser_identifier (parser);
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Peek at the next token. (Changes in the token buffer may
have invalidated the pointer obtained above.) */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_NAME:
return cp_parser_identifier (parser);
case CPP_KEYWORD:
if (token->keyword == RID_OPERATOR)
return cp_parser_operator_function_id (parser);
/* Fall through. */
default:
cp_parser_error (parser, "expected id-expression");
return error_mark_node;
}
}
else
return cp_parser_unqualified_id (parser, template_keyword_p,
/*check_dependency_p=*/true,
declarator_p);
}
/* Parse an unqualified-id.
unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id
If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
keyword, in a construct like `A::template ...'.
Returns a representation of unqualified-id. For the `identifier'
production, an IDENTIFIER_NODE is returned. For the `~ class-name'
production a BIT_NOT_EXPR is returned; the operand of the
BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
other productions, see the documentation accompanying the
corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
names are looked up in uninstantiated templates. If DECLARATOR_P
is true, the unqualified-id is appearing as part of a declarator,
rather than as part of an expression. */
static tree
cp_parser_unqualified_id (cp_parser* parser,
bool template_keyword_p,
bool check_dependency_p,
bool declarator_p)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_NAME:
{
tree id;
/* We don't know yet whether or not this will be a
template-id. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_keyword_p,
check_dependency_p);
/* If it worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Otherwise, it's an ordinary identifier. */
return cp_parser_identifier (parser);
}
case CPP_TEMPLATE_ID:
return cp_parser_template_id (parser, template_keyword_p,
check_dependency_p);
case CPP_COMPL:
{
tree type_decl;
tree qualifying_scope;
tree object_scope;
tree scope;
/* Consume the `~' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the class-name. The standard, as written, seems to
say that:
template <typename T> struct S { ~S (); };
template <typename T> S<T>::~S() {}
is invalid, since `~' must be followed by a class-name, but
`S<T>' is dependent, and so not known to be a class.
That's not right; we need to look in uninstantiated
templates. A further complication arises from:
template <typename T> void f(T t) {
t.T::~T();
}
Here, it is not possible to look up `T' in the scope of `T'
itself. We must look in both the current scope, and the
scope of the containing complete expression.
Yet another issue is:
struct S {
int S;
~S();
};
S::~S() {}
The standard does not seem to say that the `S' in `~S'
should refer to the type `S' and not the data member
`S::S'. */
/* DR 244 says that we look up the name after the "~" in the
same scope as we looked up the qualifying name. That idea
isn't fully worked out; it's more complicated than that. */
scope = parser->scope;
object_scope = parser->object_scope;
qualifying_scope = parser->qualifying_scope;
/* If the name is of the form "X::~X" it's OK. */
if (scope && TYPE_P (scope)
&& cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_OPEN_PAREN)
&& (cp_lexer_peek_token (parser->lexer)->value
== TYPE_IDENTIFIER (scope)))
{
cp_lexer_consume_token (parser->lexer);
return build_nt (BIT_NOT_EXPR, scope);
}
/* If there was an explicit qualification (S::~T), first look
in the scope given by the qualification (i.e., S). */
if (scope)
{
cp_parser_parse_tentatively (parser);
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency=*/false,
/*class_head_p=*/false);
if (cp_parser_parse_definitely (parser))
return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
}
/* In "N::S::~S", look in "N" as well. */
if (scope && qualifying_scope)
{
cp_parser_parse_tentatively (parser);
parser->scope = qualifying_scope;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency=*/false,
/*class_head_p=*/false);
if (cp_parser_parse_definitely (parser))
return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
}
/* In "p->S::~T", look in the scope given by "*p" as well. */
else if (object_scope)
{
cp_parser_parse_tentatively (parser);
parser->scope = object_scope;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency=*/false,
/*class_head_p=*/false);
if (cp_parser_parse_definitely (parser))
return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
}
/* Look in the surrounding context. */
parser->scope = NULL_TREE;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency=*/false,
/*class_head_p=*/false);
/* If an error occurred, assume that the name of the
destructor is the same as the name of the qualifying
class. That allows us to keep parsing after running
into ill-formed destructor names. */
if (type_decl == error_mark_node && scope && TYPE_P (scope))
return build_nt (BIT_NOT_EXPR, scope);
else if (type_decl == error_mark_node)
return error_mark_node;
/* [class.dtor]
A typedef-name that names a class shall not be used as the
identifier in the declarator for a destructor declaration. */
if (declarator_p
&& !DECL_IMPLICIT_TYPEDEF_P (type_decl)
&& !DECL_SELF_REFERENCE_P (type_decl))
error ("typedef-name `%D' used as destructor declarator",
type_decl);
return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
}
case CPP_KEYWORD:
if (token->keyword == RID_OPERATOR)
{
tree id;
/* This could be a template-id, so we try that first. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_keyword_p,
/*check_dependency_p=*/true);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* We still don't know whether we're looking at an
operator-function-id or a conversion-function-id. */
cp_parser_parse_tentatively (parser);
/* Try an operator-function-id. */
id = cp_parser_operator_function_id (parser);
/* If that didn't work, try a conversion-function-id. */
if (!cp_parser_parse_definitely (parser))
id = cp_parser_conversion_function_id (parser);
return id;
}
/* Fall through. */
default:
cp_parser_error (parser, "expected unqualified-id");
return error_mark_node;
}
}
/* Parse an (optional) nested-name-specifier.
nested-name-specifier:
class-or-namespace-name :: nested-name-specifier [opt]
class-or-namespace-name :: template nested-name-specifier [opt]
PARSER->SCOPE should be set appropriately before this function is
called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
effect. TYPE_P is TRUE if we non-type bindings should be ignored
in name lookups.
Sets PARSER->SCOPE to the class (TYPE) or namespace
(NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
it unchanged if there is no nested-name-specifier. Returns the new
scope iff there is a nested-name-specifier, or NULL_TREE otherwise. */
static tree
cp_parser_nested_name_specifier_opt (cp_parser *parser,
bool typename_keyword_p,
bool check_dependency_p,
bool type_p)
{
bool success = false;
tree access_check = NULL_TREE;
ptrdiff_t start;
cp_token* token;
/* If the next token corresponds to a nested name specifier, there
is no need to reparse it. However, if CHECK_DEPENDENCY_P is
false, it may have been true before, in which case something
like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
CHECK_DEPENDENCY_P is false, we have to fall through into the
main loop. */
if (check_dependency_p
&& cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
{
cp_parser_pre_parsed_nested_name_specifier (parser);
return parser->scope;
}
/* Remember where the nested-name-specifier starts. */
if (cp_parser_parsing_tentatively (parser)
&& !cp_parser_committed_to_tentative_parse (parser))
{
token = cp_lexer_peek_token (parser->lexer);
start = cp_lexer_token_difference (parser->lexer,
parser->lexer->first_token,
token);
}
else
start = -1;
push_deferring_access_checks (dk_deferred);
while (true)
{
tree new_scope;
tree old_scope;
tree saved_qualifying_scope;
bool template_keyword_p;
/* Spot cases that cannot be the beginning of a
nested-name-specifier. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
the already parsed nested-name-specifier. */
if (token->type == CPP_NESTED_NAME_SPECIFIER)
{
/* Grab the nested-name-specifier and continue the loop. */
cp_parser_pre_parsed_nested_name_specifier (parser);
success = true;
continue;
}
/* Spot cases that cannot be the beginning of a
nested-name-specifier. On the second and subsequent times
through the loop, we look for the `template' keyword. */
if (success && token->keyword == RID_TEMPLATE)
;
/* A template-id can start a nested-name-specifier. */
else if (token->type == CPP_TEMPLATE_ID)
;
else
{
/* If the next token is not an identifier, then it is
definitely not a class-or-namespace-name. */
if (token->type != CPP_NAME)
break;
/* If the following token is neither a `<' (to begin a
template-id), nor a `::', then we are not looking at a
nested-name-specifier. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token->type != CPP_LESS && token->type != CPP_SCOPE)
break;
}
/* The nested-name-specifier is optional, so we parse
tentatively. */
cp_parser_parse_tentatively (parser);
/* Look for the optional `template' keyword, if this isn't the
first time through the loop. */
if (success)
template_keyword_p = cp_parser_optional_template_keyword (parser);
else
template_keyword_p = false;
/* Save the old scope since the name lookup we are about to do
might destroy it. */
old_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
/* Parse the qualifying entity. */
new_scope
= cp_parser_class_or_namespace_name (parser,
typename_keyword_p,
template_keyword_p,
check_dependency_p,
type_p);
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, "`::'");
/* If we found what we wanted, we keep going; otherwise, we're
done. */
if (!cp_parser_parse_definitely (parser))
{
bool error_p = false;
/* Restore the OLD_SCOPE since it was valid before the
failed attempt at finding the last
class-or-namespace-name. */
parser->scope = old_scope;
parser->qualifying_scope = saved_qualifying_scope;
/* If the next token is an identifier, and the one after
that is a `::', then any valid interpretation would have
found a class-or-namespace-name. */
while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_SCOPE)
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
!= CPP_COMPL))
{
token = cp_lexer_consume_token (parser->lexer);
if (!error_p)
{
tree decl;
decl = cp_parser_lookup_name_simple (parser, token->value);
if (TREE_CODE (decl) == TEMPLATE_DECL)
error ("`%D' used without template parameters",
decl);
else if (parser->scope)
{
if (TYPE_P (parser->scope))
error ("`%T::%D' is not a class-name or "
"namespace-name",
parser->scope, token->value);
else if (parser->scope == global_namespace)
error ("`::%D' is not a class-name or "
"namespace-name",
token->value);
else
error ("`%D::%D' is not a class-name or "
"namespace-name",
parser->scope, token->value);
}
else
error ("`%D' is not a class-name or namespace-name",
token->value);
parser->scope = NULL_TREE;
error_p = true;
/* Treat this as a successful nested-name-specifier
due to:
[basic.lookup.qual]
If the name found is not a class-name (clause
_class_) or namespace-name (_namespace.def_), the
program is ill-formed. */
success = true;
}
cp_lexer_consume_token (parser->lexer);
}
break;
}
/* We've found one valid nested-name-specifier. */
success = true;
/* Make sure we look in the right scope the next time through
the loop. */
parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
? TREE_TYPE (new_scope)
: new_scope);
/* If it is a class scope, try to complete it; we are about to
be looking up names inside the class. */
if (TYPE_P (parser->scope)
/* Since checking types for dependency can be expensive,
avoid doing it if the type is already complete. */
&& !COMPLETE_TYPE_P (parser->scope)
/* Do not try to complete dependent types. */
&& !dependent_type_p (parser->scope))
complete_type (parser->scope);
}
/* Retrieve any deferred checks. Do not pop this access checks yet
so the memory will not be reclaimed during token replacing below. */
access_check = get_deferred_access_checks ();
/* If parsing tentatively, replace the sequence of tokens that makes
up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
token. That way, should we re-parse the token stream, we will
not have to repeat the effort required to do the parse, nor will
we issue duplicate error messages. */
if (success && start >= 0)
{
/* Find the token that corresponds to the start of the
template-id. */
token = cp_lexer_advance_token (parser->lexer,
parser->lexer->first_token,
start);
/* Reset the contents of the START token. */
token->type = CPP_NESTED_NAME_SPECIFIER;
token->value = build_tree_list (access_check, parser->scope);
TREE_TYPE (token->value) = parser->qualifying_scope;
token->keyword = RID_MAX;
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, token);
}
pop_deferring_access_checks ();
return success ? parser->scope : NULL_TREE;
}
/* Parse a nested-name-specifier. See
cp_parser_nested_name_specifier_opt for details. This function
behaves identically, except that it will an issue an error if no
nested-name-specifier is present, and it will return
ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
is present. */
static tree
cp_parser_nested_name_specifier (cp_parser *parser,
bool typename_keyword_p,
bool check_dependency_p,
bool type_p)
{
tree scope;
/* Look for the nested-name-specifier. */
scope = cp_parser_nested_name_specifier_opt (parser,
typename_keyword_p,
check_dependency_p,
type_p);
/* If it was not present, issue an error message. */
if (!scope)
{
cp_parser_error (parser, "expected nested-name-specifier");
parser->scope = NULL_TREE;
return error_mark_node;
}
return scope;
}
/* Parse a class-or-namespace-name.
class-or-namespace-name:
class-name
namespace-name
TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
TYPE_P is TRUE iff the next name should be taken as a class-name,
even the same name is declared to be another entity in the same
scope.
Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
specified by the class-or-namespace-name. If neither is found the
ERROR_MARK_NODE is returned. */
static tree
cp_parser_class_or_namespace_name (cp_parser *parser,
bool typename_keyword_p,
bool template_keyword_p,
bool check_dependency_p,
bool type_p)
{
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
tree scope;
bool only_class_p;
/* Before we try to parse the class-name, we must save away the
current PARSER->SCOPE since cp_parser_class_name will destroy
it. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* Try for a class-name first. If the SAVED_SCOPE is a type, then
there is no need to look for a namespace-name. */
only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
if (!only_class_p)
cp_parser_parse_tentatively (parser);
scope = cp_parser_class_name (parser,
typename_keyword_p,
template_keyword_p,
type_p,
check_dependency_p,
/*class_head_p=*/false);
/* If that didn't work, try for a namespace-name. */
if (!only_class_p && !cp_parser_parse_definitely (parser))
{
/* Restore the saved scope. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* If we are not looking at an identifier followed by the scope
resolution operator, then this is not part of a
nested-name-specifier. (Note that this function is only used
to parse the components of a nested-name-specifier.) */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
return error_mark_node;
scope = cp_parser_namespace_name (parser);
}
return scope;
}
/* Parse a postfix-expression.
postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( expression-list [opt] )
simple-type-specifier ( expression-list [opt] )
typename :: [opt] nested-name-specifier identifier
( expression-list [opt] )
typename :: [opt] nested-name-specifier template [opt] template-id
( expression-list [opt] )
postfix-expression . template [opt] id-expression
postfix-expression -> template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )
GNU Extension:
postfix-expression:
( type-id ) { initializer-list , [opt] }
This extension is a GNU version of the C99 compound-literal
construct. (The C99 grammar uses `type-name' instead of `type-id',
but they are essentially the same concept.)
If ADDRESS_P is true, the postfix expression is the operand of the
`&' operator.
Returns a representation of the expression. */
static tree
cp_parser_postfix_expression (cp_parser *parser, bool address_p)
{
cp_token *token;
enum rid keyword;
cp_id_kind idk = CP_ID_KIND_NONE;
tree postfix_expression = NULL_TREE;
/* Non-NULL only if the current postfix-expression can be used to
form a pointer-to-member. In that case, QUALIFYING_CLASS is the
class used to qualify the member. */
tree qualifying_class = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Some of the productions are determined by keywords. */
keyword = token->keyword;
switch (keyword)
{
case RID_DYNCAST:
case RID_STATCAST:
case RID_REINTCAST:
case RID_CONSTCAST:
{
tree type;
tree expression;
const char *saved_message;
/* All of these can be handled in the same way from the point
of view of parsing. Begin by consuming the token
identifying the cast. */
cp_lexer_consume_token (parser->lexer);
/* New types cannot be defined in the cast. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in casts";
/* Look for the opening `<'. */
cp_parser_require (parser, CPP_LESS, "`<'");
/* Parse the type to which we are casting. */
type = cp_parser_type_id (parser);
/* Look for the closing `>'. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* Restore the old message. */
parser->type_definition_forbidden_message = saved_message;
/* And the expression which is being cast. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
expression = cp_parser_expression (parser);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Only type conversions to integral or enumeration types
can be used in constant-expressions. */
if (parser->constant_expression_p
&& !dependent_type_p (type)
&& !INTEGRAL_OR_ENUMERATION_TYPE_P (type))
{
if (!parser->allow_non_constant_expression_p)
return (cp_parser_non_constant_expression
("a cast to a type other than an integral or "
"enumeration type"));
parser->non_constant_expression_p = true;
}
switch (keyword)
{
case RID_DYNCAST:
postfix_expression
= build_dynamic_cast (type, expression);
break;
case RID_STATCAST:
postfix_expression
= build_static_cast (type, expression);
break;
case RID_REINTCAST:
postfix_expression
= build_reinterpret_cast (type, expression);
break;
case RID_CONSTCAST:
postfix_expression
= build_const_cast (type, expression);
break;
default:
abort ();
}
}
break;
case RID_TYPEID:
{
tree type;
const char *saved_message;
/* Consume the `typeid' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `(' token. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Types cannot be defined in a `typeid' expression. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in a `typeid\' expression";
/* We can't be sure yet whether we're looking at a type-id or an
expression. */
cp_parser_parse_tentatively (parser);
/* Try a type-id first. */
type = cp_parser_type_id (parser);
/* Look for the `)' token. Otherwise, we can't be sure that
we're not looking at an expression: consider `typeid (int
(3))', for example. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* If all went well, simply lookup the type-id. */
if (cp_parser_parse_definitely (parser))
postfix_expression = get_typeid (type);
/* Otherwise, fall back to the expression variant. */
else
{
tree expression;
/* Look for an expression. */
expression = cp_parser_expression (parser);
/* Compute its typeid. */
postfix_expression = build_typeid (expression);
/* Look for the `)' token. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
}
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
}
break;
case RID_TYPENAME:
{
bool template_p = false;
tree id;
tree type;
/* Consume the `typename' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. */
cp_parser_nested_name_specifier (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true);
/* Look for the optional `template' keyword. */
template_p = cp_parser_optional_template_keyword (parser);
/* We don't know whether we're looking at a template-id or an
identifier. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_p,
/*check_dependency_p=*/true);
/* If that didn't work, try an identifier. */
if (!cp_parser_parse_definitely (parser))
id = cp_parser_identifier (parser);
/* Create a TYPENAME_TYPE to represent the type to which the
functional cast is being performed. */
type = make_typename_type (parser->scope, id,
/*complain=*/1);
postfix_expression = cp_parser_functional_cast (parser, type);
}
break;
default:
{
tree type;
/* If the next thing is a simple-type-specifier, we may be
looking at a functional cast. We could also be looking at
an id-expression. So, we try the functional cast, and if
that doesn't work we fall back to the primary-expression. */
cp_parser_parse_tentatively (parser);
/* Look for the simple-type-specifier. */
type = cp_parser_simple_type_specifier (parser,
CP_PARSER_FLAGS_NONE,
/*identifier_p=*/false);
/* Parse the cast itself. */
if (!cp_parser_error_occurred (parser))
postfix_expression
= cp_parser_functional_cast (parser, type);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
break;
/* If the functional-cast didn't work out, try a
compound-literal. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree initializer_list = NULL_TREE;
cp_parser_parse_tentatively (parser);
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the type. */
type = cp_parser_type_id (parser);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Look for the `{'. */
cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
/* If things aren't going well, there's no need to
keep going. */
if (!cp_parser_error_occurred (parser))
{
bool non_constant_p;
/* Parse the initializer-list. */
initializer_list
= cp_parser_initializer_list (parser, &non_constant_p);
/* Allow a trailing `,'. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
cp_lexer_consume_token (parser->lexer);
/* Look for the final `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
/* If that worked, we're definitely looking at a
compound-literal expression. */
if (cp_parser_parse_definitely (parser))
{
/* Warn the user that a compound literal is not
allowed in standard C++. */
if (pedantic)
pedwarn ("ISO C++ forbids compound-literals");
/* Form the representation of the compound-literal. */
postfix_expression
= finish_compound_literal (type, initializer_list);
break;
}
}
/* It must be a primary-expression. */
postfix_expression = cp_parser_primary_expression (parser,
&idk,
&qualifying_class);
}
break;
}
/* If we were avoiding committing to the processing of a
qualified-id until we knew whether or not we had a
pointer-to-member, we now know. */
if (qualifying_class)
{
bool done;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
done = (token->type != CPP_OPEN_SQUARE
&& token->type != CPP_OPEN_PAREN
&& token->type != CPP_DOT
&& token->type != CPP_DEREF
&& token->type != CPP_PLUS_PLUS
&& token->type != CPP_MINUS_MINUS);
postfix_expression = finish_qualified_id_expr (qualifying_class,
postfix_expression,
done,
address_p);
if (done)
return postfix_expression;
}
/* Keep looping until the postfix-expression is complete. */
while (true)
{
if (idk == CP_ID_KIND_UNQUALIFIED
&& TREE_CODE (postfix_expression) == IDENTIFIER_NODE
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
/* It is not a Koenig lookup function call. */
postfix_expression
= unqualified_name_lookup_error (postfix_expression);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_OPEN_SQUARE:
/* postfix-expression [ expression ] */
{
tree index;
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the index expression. */
index = cp_parser_expression (parser);
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
/* Build the ARRAY_REF. */
postfix_expression
= grok_array_decl (postfix_expression, index);
idk = CP_ID_KIND_NONE;
}
break;
case CPP_OPEN_PAREN:
/* postfix-expression ( expression-list [opt] ) */
{
bool koenig_p;
tree args = (cp_parser_parenthesized_expression_list
(parser, false, /*non_constant_p=*/NULL));
if (args == error_mark_node)
{
postfix_expression = error_mark_node;
break;
}
/* Function calls are not permitted in
constant-expressions. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression ("a function call");
parser->non_constant_expression_p = true;
}
koenig_p = false;
if (idk == CP_ID_KIND_UNQUALIFIED)
{
if (args
&& (is_overloaded_fn (postfix_expression)
|| DECL_P (postfix_expression)
|| TREE_CODE (postfix_expression) == IDENTIFIER_NODE))
{
koenig_p = true;
postfix_expression
= perform_koenig_lookup (postfix_expression, args);
}
else if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
postfix_expression
= unqualified_fn_lookup_error (postfix_expression);
}
if (TREE_CODE (postfix_expression) == COMPONENT_REF)
{
tree instance = TREE_OPERAND (postfix_expression, 0);
tree fn = TREE_OPERAND (postfix_expression, 1);
if (processing_template_decl
&& (type_dependent_expression_p (instance)
|| (!BASELINK_P (fn)
&& TREE_CODE (fn) != FIELD_DECL)
|| type_dependent_expression_p (fn)
|| any_type_dependent_arguments_p (args)))
{
postfix_expression
= build_min_nt (CALL_EXPR, postfix_expression, args);
break;
}
postfix_expression
= (build_new_method_call
(instance, fn, args, NULL_TREE,
(idk == CP_ID_KIND_QUALIFIED
? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
}
else if (TREE_CODE (postfix_expression) == OFFSET_REF
|| TREE_CODE (postfix_expression) == MEMBER_REF
|| TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
postfix_expression = (build_offset_ref_call_from_tree
(postfix_expression, args));
else if (idk == CP_ID_KIND_QUALIFIED)
/* A call to a static class member, or a namespace-scope
function. */
postfix_expression
= finish_call_expr (postfix_expression, args,
/*disallow_virtual=*/true,
koenig_p);
else
/* All other function calls. */
postfix_expression
= finish_call_expr (postfix_expression, args,
/*disallow_virtual=*/false,
koenig_p);
/* The POSTFIX_EXPRESSION is certainly no longer an id. */
idk = CP_ID_KIND_NONE;
}
break;
case CPP_DOT:
case CPP_DEREF:
/* postfix-expression . template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> template [opt] id-expression
postfix-expression -> pseudo-destructor-name */
{
tree name;
bool dependent_p;
bool template_p;
tree scope = NULL_TREE;
/* If this is a `->' operator, dereference the pointer. */
if (token->type == CPP_DEREF)
postfix_expression = build_x_arrow (postfix_expression);
/* Check to see whether or not the expression is
type-dependent. */
dependent_p = type_dependent_expression_p (postfix_expression);
/* The identifier following the `->' or `.' is not
qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
idk = CP_ID_KIND_NONE;
/* Enter the scope corresponding to the type of the object
given by the POSTFIX_EXPRESSION. */
if (!dependent_p
&& TREE_TYPE (postfix_expression) != NULL_TREE)
{
scope = TREE_TYPE (postfix_expression);
/* According to the standard, no expression should
ever have reference type. Unfortunately, we do not
currently match the standard in this respect in
that our internal representation of an expression
may have reference type even when the standard says
it does not. Therefore, we have to manually obtain
the underlying type here. */
scope = non_reference (scope);
/* The type of the POSTFIX_EXPRESSION must be
complete. */
scope = complete_type_or_else (scope, NULL_TREE);
/* Let the name lookup machinery know that we are
processing a class member access expression. */
parser->context->object_type = scope;
/* If something went wrong, we want to be able to
discern that case, as opposed to the case where
there was no SCOPE due to the type of expression
being dependent. */
if (!scope)
scope = error_mark_node;
}
/* Consume the `.' or `->' operator. */
cp_lexer_consume_token (parser->lexer);
/* If the SCOPE is not a scalar type, we are looking at an
ordinary class member access expression, rather than a
pseudo-destructor-name. */
if (!scope || !SCALAR_TYPE_P (scope))
{
template_p = cp_parser_optional_template_keyword (parser);
/* Parse the id-expression. */
name = cp_parser_id_expression (parser,
template_p,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/false);
/* In general, build a SCOPE_REF if the member name is
qualified. However, if the name was not dependent
and has already been resolved; there is no need to
build the SCOPE_REF. For example;
struct X { void f(); };
template <typename T> void f(T* t) { t->X::f(); }
Even though "t" is dependent, "X::f" is not and has
been resolved to a BASELINK; there is no need to
include scope information. */
/* But we do need to remember that there was an explicit
scope for virtual function calls. */
if (parser->scope)
idk = CP_ID_KIND_QUALIFIED;
if (name != error_mark_node
&& !BASELINK_P (name)
&& parser->scope)
{
name = build_nt (SCOPE_REF, parser->scope, name);
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
postfix_expression
= finish_class_member_access_expr (postfix_expression, name);
}
/* Otherwise, try the pseudo-destructor-name production. */
else
{
tree s;
tree type;
/* Parse the pseudo-destructor-name. */
cp_parser_pseudo_destructor_name (parser, &s, &type);
/* Form the call. */
postfix_expression
= finish_pseudo_destructor_expr (postfix_expression,
s, TREE_TYPE (type));
}
/* We no longer need to look up names in the scope of the
object on the left-hand side of the `.' or `->'
operator. */
parser->context->object_type = NULL_TREE;
}
break;
case CPP_PLUS_PLUS:
/* postfix-expression ++ */
/* Consume the `++' token. */
cp_lexer_consume_token (parser->lexer);
/* Increments may not appear in constant-expressions. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression ("an increment");
parser->non_constant_expression_p = true;
}
/* Generate a representation for the complete expression. */
postfix_expression
= finish_increment_expr (postfix_expression,
POSTINCREMENT_EXPR);
idk = CP_ID_KIND_NONE;
break;
case CPP_MINUS_MINUS:
/* postfix-expression -- */
/* Consume the `--' token. */
cp_lexer_consume_token (parser->lexer);
/* Decrements may not appear in constant-expressions. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression ("a decrement");
parser->non_constant_expression_p = true;
}
/* Generate a representation for the complete expression. */
postfix_expression
= finish_increment_expr (postfix_expression,
POSTDECREMENT_EXPR);
idk = CP_ID_KIND_NONE;
break;
default:
return postfix_expression;
}
}
/* We should never get here. */
abort ();
return error_mark_node;
}
/* Parse a parenthesized expression-list.
expression-list:
assignment-expression
expression-list, assignment-expression
attribute-list:
expression-list
identifier
identifier, expression-list
Returns a TREE_LIST. The TREE_VALUE of each node is a
representation of an assignment-expression. Note that a TREE_LIST
is returned even if there is only a single expression in the list.
error_mark_node is returned if the ( and or ) are
missing. NULL_TREE is returned on no expressions. The parentheses
are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
indicates whether or not all of the expressions in the list were
constant. */
static tree
cp_parser_parenthesized_expression_list (cp_parser* parser,
bool is_attribute_list,
bool *non_constant_p)
{
tree expression_list = NULL_TREE;
tree identifier = NULL_TREE;
/* Assume all the expressions will be constant. */
if (non_constant_p)
*non_constant_p = false;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return error_mark_node;
/* Consume expressions until there are no more. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
while (true)
{
tree expr;
/* At the beginning of attribute lists, check to see if the
next token is an identifier. */
if (is_attribute_list
&& cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
{
cp_token *token;
/* Consume the identifier. */
token = cp_lexer_consume_token (parser->lexer);
/* Save the identifier. */
identifier = token->value;
}
else
{
/* Parse the next assignment-expression. */
if (non_constant_p)
{
bool expr_non_constant_p;
expr = (cp_parser_constant_expression
(parser, /*allow_non_constant_p=*/true,
&expr_non_constant_p));
if (expr_non_constant_p)
*non_constant_p = true;
}
else
expr = cp_parser_assignment_expression (parser);
/* Add it to the list. We add error_mark_node
expressions to the list, so that we can still tell if
the correct form for a parenthesized expression-list
is found. That gives better errors. */
expression_list = tree_cons (NULL_TREE, expr, expression_list);
if (expr == error_mark_node)
goto skip_comma;
}
/* After the first item, attribute lists look the same as
expression lists. */
is_attribute_list = false;
get_comma:;
/* If the next token isn't a `,', then we are done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Otherwise, consume the `,' and keep going. */
cp_lexer_consume_token (parser->lexer);
}
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
{
int ending;
skip_comma:;
/* We try and resync to an unnested comma, as that will give the
user better diagnostics. */
ending = cp_parser_skip_to_closing_parenthesis (parser, true, true);
if (ending < 0)
goto get_comma;
if (!ending)
return error_mark_node;
}
/* We built up the list in reverse order so we must reverse it now. */
expression_list = nreverse (expression_list);
if (identifier)
expression_list = tree_cons (NULL_TREE, identifier, expression_list);
return expression_list;
}
/* Parse a pseudo-destructor-name.
pseudo-destructor-name:
:: [opt] nested-name-specifier [opt] type-name :: ~ type-name
:: [opt] nested-name-specifier template template-id :: ~ type-name
:: [opt] nested-name-specifier [opt] ~ type-name
If either of the first two productions is used, sets *SCOPE to the
TYPE specified before the final `::'. Otherwise, *SCOPE is set to
NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
or ERROR_MARK_NODE if no type-name is present. */
static void
cp_parser_pseudo_destructor_name (cp_parser* parser,
tree* scope,
tree* type)
{
bool nested_name_specifier_p;
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
/* Look for the optional nested-name-specifier. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false)
!= NULL_TREE);
/* Now, if we saw a nested-name-specifier, we might be doing the
second production. */
if (nested_name_specifier_p
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* Consume the `template' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Parse the template-id. */
cp_parser_template_id (parser,
/*template_keyword_p=*/true,
/*check_dependency_p=*/false);
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, "`::'");
}
/* If the next token is not a `~', then there might be some
additional qualification. */
else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
{
/* Look for the type-name. */
*scope = TREE_TYPE (cp_parser_type_name (parser));
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, "`::'");
}
else
*scope = NULL_TREE;
/* Look for the `~'. */
cp_parser_require (parser, CPP_COMPL, "`~'");
/* Look for the type-name again. We are not responsible for
checking that it matches the first type-name. */
*type = cp_parser_type_name (parser);
}
/* Parse a unary-expression.
unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
new-expression
delete-expression
GNU Extensions:
unary-expression:
__extension__ cast-expression
__alignof__ unary-expression
__alignof__ ( type-id )
__real__ cast-expression
__imag__ cast-expression
&& identifier
ADDRESS_P is true iff the unary-expression is appearing as the
operand of the `&' operator.
Returns a representation of the expression. */
static tree
cp_parser_unary_expression (cp_parser *parser, bool address_p)
{
cp_token *token;
enum tree_code unary_operator;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Some keywords give away the kind of expression. */
if (token->type == CPP_KEYWORD)
{
enum rid keyword = token->keyword;
switch (keyword)
{
case RID_ALIGNOF:
case RID_SIZEOF:
{
tree operand;
enum tree_code op;
op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the operand. */
operand = cp_parser_sizeof_operand (parser, keyword);
if (TYPE_P (operand))
return cxx_sizeof_or_alignof_type (operand, op, true);
else
return cxx_sizeof_or_alignof_expr (operand, op);
}
case RID_NEW:
return cp_parser_new_expression (parser);
case RID_DELETE:
return cp_parser_delete_expression (parser);
case RID_EXTENSION:
{
/* The saved value of the PEDANTIC flag. */
int saved_pedantic;
tree expr;
/* Save away the PEDANTIC flag. */
cp_parser_extension_opt (parser, &saved_pedantic);
/* Parse the cast-expression. */
expr = cp_parser_simple_cast_expression (parser);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return expr;
}
case RID_REALPART:
case RID_IMAGPART:
{
tree expression;
/* Consume the `__real__' or `__imag__' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the cast-expression. */
expression = cp_parser_simple_cast_expression (parser);
/* Create the complete representation. */
return build_x_unary_op ((keyword == RID_REALPART
? REALPART_EXPR : IMAGPART_EXPR),
expression);
}
break;
default:
break;
}
}
/* Look for the `:: new' and `:: delete', which also signal the
beginning of a new-expression, or delete-expression,
respectively. If the next token is `::', then it might be one of
these. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
{
enum rid keyword;
/* See if the token after the `::' is one of the keywords in
which we're interested. */
keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
/* If it's `new', we have a new-expression. */
if (keyword == RID_NEW)
return cp_parser_new_expression (parser);
/* Similarly, for `delete'. */
else if (keyword == RID_DELETE)
return cp_parser_delete_expression (parser);
}
/* Look for a unary operator. */
unary_operator = cp_parser_unary_operator (token);
/* The `++' and `--' operators can be handled similarly, even though
they are not technically unary-operators in the grammar. */
if (unary_operator == ERROR_MARK)
{
if (token->type == CPP_PLUS_PLUS)
unary_operator = PREINCREMENT_EXPR;
else if (token->type == CPP_MINUS_MINUS)
unary_operator = PREDECREMENT_EXPR;
/* Handle the GNU address-of-label extension. */
else if (cp_parser_allow_gnu_extensions_p (parser)
&& token->type == CPP_AND_AND)
{
tree identifier;
/* Consume the '&&' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
/* Create an expression representing the address. */
return finish_label_address_expr (identifier);
}
}
if (unary_operator != ERROR_MARK)
{
tree cast_expression;
/* Consume the operator token. */
token = cp_lexer_consume_token (parser->lexer);
/* Parse the cast-expression. */
cast_expression
= cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
/* Now, build an appropriate representation. */
switch (unary_operator)
{
case INDIRECT_REF:
return build_x_indirect_ref (cast_expression, "unary *");
case ADDR_EXPR:
case BIT_NOT_EXPR:
return build_x_unary_op (unary_operator, cast_expression);
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression (PREINCREMENT_EXPR
? "an increment"
: "a decrement");
parser->non_constant_expression_p = true;
}
/* Fall through. */
case CONVERT_EXPR:
case NEGATE_EXPR:
case TRUTH_NOT_EXPR:
return finish_unary_op_expr (unary_operator, cast_expression);
default:
abort ();
return error_mark_node;
}
}
return cp_parser_postfix_expression (parser, address_p);
}
/* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
unary-operator, the corresponding tree code is returned. */
static enum tree_code
cp_parser_unary_operator (cp_token* token)
{
switch (token->type)
{
case CPP_MULT:
return INDIRECT_REF;
case CPP_AND:
return ADDR_EXPR;
case CPP_PLUS:
return CONVERT_EXPR;
case CPP_MINUS:
return NEGATE_EXPR;
case CPP_NOT:
return TRUTH_NOT_EXPR;
case CPP_COMPL:
return BIT_NOT_EXPR;
default:
return ERROR_MARK;
}
}
/* Parse a new-expression.
new-expression:
:: [opt] new new-placement [opt] new-type-id new-initializer [opt]
:: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
Returns a representation of the expression. */
static tree
cp_parser_new_expression (cp_parser* parser)
{
bool global_scope_p;
tree placement;
tree type;
tree initializer;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the `new' operator. */
cp_parser_require_keyword (parser, RID_NEW, "`new'");
/* There's no easy way to tell a new-placement from the
`( type-id )' construct. */
cp_parser_parse_tentatively (parser);
/* Look for a new-placement. */
placement = cp_parser_new_placement (parser);
/* If that didn't work out, there's no new-placement. */
if (!cp_parser_parse_definitely (parser))
placement = NULL_TREE;
/* If the next token is a `(', then we have a parenthesized
type-id. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
}
/* Otherwise, there must be a new-type-id. */
else
type = cp_parser_new_type_id (parser);
/* If the next token is a `(', then we have a new-initializer. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
initializer = cp_parser_new_initializer (parser);
else
initializer = NULL_TREE;
/* Create a representation of the new-expression. */
return build_new (placement, type, initializer, global_scope_p);
}
/* Parse a new-placement.
new-placement:
( expression-list )
Returns the same representation as for an expression-list. */
static tree
cp_parser_new_placement (cp_parser* parser)
{
tree expression_list;
/* Parse the expression-list. */
expression_list = (cp_parser_parenthesized_expression_list
(parser, false, /*non_constant_p=*/NULL));
return expression_list;
}
/* Parse a new-type-id.
new-type-id:
type-specifier-seq new-declarator [opt]
Returns a TREE_LIST whose TREE_PURPOSE is the type-specifier-seq,
and whose TREE_VALUE is the new-declarator. */
static tree
cp_parser_new_type_id (cp_parser* parser)
{
tree type_specifier_seq;
tree declarator;
const char *saved_message;
/* The type-specifier sequence must not contain type definitions.
(It cannot contain declarations of new types either, but if they
are not definitions we will catch that because they are not
complete.) */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in a new-type-id";
/* Parse the type-specifier-seq. */
type_specifier_seq = cp_parser_type_specifier_seq (parser);
/* Restore the old message. */
parser->type_definition_forbidden_message = saved_message;
/* Parse the new-declarator. */
declarator = cp_parser_new_declarator_opt (parser);
return build_tree_list (type_specifier_seq, declarator);
}
/* Parse an (optional) new-declarator.
new-declarator:
ptr-operator new-declarator [opt]
direct-new-declarator
Returns a representation of the declarator. See
cp_parser_declarator for the representations used. */
static tree
cp_parser_new_declarator_opt (cp_parser* parser)
{
enum tree_code code;
tree type;
tree cv_qualifier_seq;
/* We don't know if there's a ptr-operator next, or not. */
cp_parser_parse_tentatively (parser);
/* Look for a ptr-operator. */
code = cp_parser_ptr_operator (parser, &type, &cv_qualifier_seq);
/* If that worked, look for more new-declarators. */
if (cp_parser_parse_definitely (parser))
{
tree declarator;
/* Parse another optional declarator. */
declarator = cp_parser_new_declarator_opt (parser);
/* Create the representation of the declarator. */
if (code == INDIRECT_REF)
declarator = make_pointer_declarator (cv_qualifier_seq,
declarator);
else
declarator = make_reference_declarator (cv_qualifier_seq,
declarator);
/* Handle the pointer-to-member case. */
if (type)
declarator = build_nt (SCOPE_REF, type, declarator);
return declarator;
}
/* If the next token is a `[', there is a direct-new-declarator. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
return cp_parser_direct_new_declarator (parser);
return NULL_TREE;
}
/* Parse a direct-new-declarator.
direct-new-declarator:
[ expression ]
direct-new-declarator [constant-expression]
Returns an ARRAY_REF, following the same conventions as are
documented for cp_parser_direct_declarator. */
static tree
cp_parser_direct_new_declarator (cp_parser* parser)
{
tree declarator = NULL_TREE;
while (true)
{
tree expression;
/* Look for the opening `['. */
cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
/* The first expression is not required to be constant. */
if (!declarator)
{
expression = cp_parser_expression (parser);
/* The standard requires that the expression have integral
type. DR 74 adds enumeration types. We believe that the
real intent is that these expressions be handled like the
expression in a `switch' condition, which also allows
classes with a single conversion to integral or
enumeration type. */
if (!processing_template_decl)
{
expression
= build_expr_type_conversion (WANT_INT | WANT_ENUM,
expression,
/*complain=*/true);
if (!expression)
{
error ("expression in new-declarator must have integral or enumeration type");
expression = error_mark_node;
}
}
}
/* But all the other expressions must be. */
else
expression
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
/* Add this bound to the declarator. */
declarator = build_nt (ARRAY_REF, declarator, expression);
/* If the next token is not a `[', then there are no more
bounds. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
break;
}
return declarator;
}
/* Parse a new-initializer.
new-initializer:
( expression-list [opt] )
Returns a representation of the expression-list. If there is no
expression-list, VOID_ZERO_NODE is returned. */
static tree
cp_parser_new_initializer (cp_parser* parser)
{
tree expression_list;
expression_list = (cp_parser_parenthesized_expression_list
(parser, false, /*non_constant_p=*/NULL));
if (!expression_list)
expression_list = void_zero_node;
return expression_list;
}
/* Parse a delete-expression.
delete-expression:
:: [opt] delete cast-expression
:: [opt] delete [ ] cast-expression
Returns a representation of the expression. */
static tree
cp_parser_delete_expression (cp_parser* parser)
{
bool global_scope_p;
bool array_p;
tree expression;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the `delete' keyword. */
cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
/* See if the array syntax is in use. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `]' token. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
/* Remember that this is the `[]' construct. */
array_p = true;
}
else
array_p = false;
/* Parse the cast-expression. */
expression = cp_parser_simple_cast_expression (parser);
return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
}
/* Parse a cast-expression.
cast-expression:
unary-expression
( type-id ) cast-expression
Returns a representation of the expression. */
static tree
cp_parser_cast_expression (cp_parser *parser, bool address_p)
{
/* If it's a `(', then we might be looking at a cast. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree type = NULL_TREE;
tree expr = NULL_TREE;
bool compound_literal_p;
const char *saved_message;
/* There's no way to know yet whether or not this is a cast.
For example, `(int (3))' is a unary-expression, while `(int)
3' is a cast. So, we resort to parsing tentatively. */
cp_parser_parse_tentatively (parser);
/* Types may not be defined in a cast. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in casts";
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* A very tricky bit is that `(struct S) { 3 }' is a
compound-literal (which we permit in C++ as an extension).
But, that construct is not a cast-expression -- it is a
postfix-expression. (The reason is that `(struct S) { 3 }.i'
is legal; if the compound-literal were a cast-expression,
you'd need an extra set of parentheses.) But, if we parse
the type-id, and it happens to be a class-specifier, then we
will commit to the parse at that point, because we cannot
undo the action that is done when creating a new class. So,
then we cannot back up and do a postfix-expression.
Therefore, we scan ahead to the closing `)', and check to see
if the token after the `)' is a `{'. If so, we are not
looking at a cast-expression.
Save tokens so that we can put them back. */
cp_lexer_save_tokens (parser->lexer);
/* Skip tokens until the next token is a closing parenthesis.
If we find the closing `)', and the next token is a `{', then
we are looking at a compound-literal. */
compound_literal_p
= (cp_parser_skip_to_closing_parenthesis (parser, false, false)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
/* Roll back the tokens we skipped. */
cp_lexer_rollback_tokens (parser->lexer);
/* If we were looking at a compound-literal, simulate an error
so that the call to cp_parser_parse_definitely below will
fail. */
if (compound_literal_p)
cp_parser_simulate_error (parser);
else
{
/* Look for the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
}
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* If ok so far, parse the dependent expression. We cannot be
sure it is a cast. Consider `(T ())'. It is a parenthesized
ctor of T, but looks like a cast to function returning T
without a dependent expression. */
if (!cp_parser_error_occurred (parser))
expr = cp_parser_simple_cast_expression (parser);
if (cp_parser_parse_definitely (parser))
{
/* Warn about old-style casts, if so requested. */
if (warn_old_style_cast
&& !in_system_header
&& !VOID_TYPE_P (type)
&& current_lang_name != lang_name_c)
warning ("use of old-style cast");
/* Only type conversions to integral or enumeration types
can be used in constant-expressions. */
if (parser->constant_expression_p
&& !dependent_type_p (type)
&& !INTEGRAL_OR_ENUMERATION_TYPE_P (type))
{
if (!parser->allow_non_constant_expression_p)
return (cp_parser_non_constant_expression
("a casts to a type other than an integral or "
"enumeration type"));
parser->non_constant_expression_p = true;
}
/* Perform the cast. */
expr = build_c_cast (type, expr);
return expr;
}
}
/* If we get here, then it's not a cast, so it must be a
unary-expression. */
return cp_parser_unary_expression (parser, address_p);
}
/* Parse a pm-expression.
pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression
Returns a representation of the expression. */
static tree
cp_parser_pm_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_DEREF_STAR, MEMBER_REF },
{ CPP_DOT_STAR, DOTSTAR_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser, map,
cp_parser_simple_cast_expression);
}
/* Parse a multiplicative-expression.
mulitplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression
Returns a representation of the expression. */
static tree
cp_parser_multiplicative_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_MULT, MULT_EXPR },
{ CPP_DIV, TRUNC_DIV_EXPR },
{ CPP_MOD, TRUNC_MOD_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_pm_expression);
}
/* Parse an additive-expression.
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
Returns a representation of the expression. */
static tree
cp_parser_additive_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_PLUS, PLUS_EXPR },
{ CPP_MINUS, MINUS_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_multiplicative_expression);
}
/* Parse a shift-expression.
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
Returns a representation of the expression. */
static tree
cp_parser_shift_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_LSHIFT, LSHIFT_EXPR },
{ CPP_RSHIFT, RSHIFT_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_additive_expression);
}
/* Parse a relational-expression.
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
GNU Extension:
relational-expression:
relational-expression <? shift-expression
relational-expression >? shift-expression
Returns a representation of the expression. */
static tree
cp_parser_relational_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_LESS, LT_EXPR },
{ CPP_GREATER, GT_EXPR },
{ CPP_LESS_EQ, LE_EXPR },
{ CPP_GREATER_EQ, GE_EXPR },
{ CPP_MIN, MIN_EXPR },
{ CPP_MAX, MAX_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_shift_expression);
}
/* Parse an equality-expression.
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
Returns a representation of the expression. */
static tree
cp_parser_equality_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_EQ_EQ, EQ_EXPR },
{ CPP_NOT_EQ, NE_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_relational_expression);
}
/* Parse an and-expression.
and-expression:
equality-expression
and-expression & equality-expression
Returns a representation of the expression. */
static tree
cp_parser_and_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_AND, BIT_AND_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_equality_expression);
}
/* Parse an exclusive-or-expression.
exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression
Returns a representation of the expression. */
static tree
cp_parser_exclusive_or_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_XOR, BIT_XOR_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_and_expression);
}
/* Parse an inclusive-or-expression.
inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression
Returns a representation of the expression. */
static tree
cp_parser_inclusive_or_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_OR, BIT_IOR_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_exclusive_or_expression);
}
/* Parse a logical-and-expression.
logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression
Returns a representation of the expression. */
static tree
cp_parser_logical_and_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_AND_AND, TRUTH_ANDIF_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_inclusive_or_expression);
}
/* Parse a logical-or-expression.
logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
Returns a representation of the expression. */
static tree
cp_parser_logical_or_expression (cp_parser* parser)
{
static const cp_parser_token_tree_map map = {
{ CPP_OR_OR, TRUTH_ORIF_EXPR },
{ CPP_EOF, ERROR_MARK }
};
return cp_parser_binary_expression (parser,
map,
cp_parser_logical_and_expression);
}
/* Parse the `? expression : assignment-expression' part of a
conditional-expression. The LOGICAL_OR_EXPR is the
logical-or-expression that started the conditional-expression.
Returns a representation of the entire conditional-expression.
This routine is used by cp_parser_assignment_expression.
? expression : assignment-expression
GNU Extensions:
? : assignment-expression */
static tree
cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
{
tree expr;
tree assignment_expr;
/* Consume the `?' token. */
cp_lexer_consume_token (parser->lexer);
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_COLON))
/* Implicit true clause. */
expr = NULL_TREE;
else
/* Parse the expression. */
expr = cp_parser_expression (parser);
/* The next token should be a `:'. */
cp_parser_require (parser, CPP_COLON, "`:'");
/* Parse the assignment-expression. */
assignment_expr = cp_parser_assignment_expression (parser);
/* Build the conditional-expression. */
return build_x_conditional_expr (logical_or_expr,
expr,
assignment_expr);
}
/* Parse an assignment-expression.
assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment_expression
throw-expression
Returns a representation for the expression. */
static tree
cp_parser_assignment_expression (cp_parser* parser)
{
tree expr;
/* If the next token is the `throw' keyword, then we're looking at
a throw-expression. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
expr = cp_parser_throw_expression (parser);
/* Otherwise, it must be that we are looking at a
logical-or-expression. */
else
{
/* Parse the logical-or-expression. */
expr = cp_parser_logical_or_expression (parser);
/* If the next token is a `?' then we're actually looking at a
conditional-expression. */
if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
return cp_parser_question_colon_clause (parser, expr);
else
{
enum tree_code assignment_operator;
/* If it's an assignment-operator, we're using the second
production. */
assignment_operator
= cp_parser_assignment_operator_opt (parser);
if (assignment_operator != ERROR_MARK)
{
tree rhs;
/* Parse the right-hand side of the assignment. */
rhs = cp_parser_assignment_expression (parser);
/* An assignment may not appear in a
constant-expression. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
return cp_parser_non_constant_expression ("an assignment");
parser->non_constant_expression_p = true;
}
/* Build the assignment expression. */
expr = build_x_modify_expr (expr,
assignment_operator,
rhs);
}
}
}
return expr;
}
/* Parse an (optional) assignment-operator.
assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=
GNU Extension:
assignment-operator: one of
<?= >?=
If the next token is an assignment operator, the corresponding tree
code is returned, and the token is consumed. For example, for
`+=', PLUS_EXPR is returned. For `=' itself, the code returned is
NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
operator, ERROR_MARK is returned. */
static enum tree_code
cp_parser_assignment_operator_opt (cp_parser* parser)
{
enum tree_code op;
cp_token *token;
/* Peek at the next toen. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EQ:
op = NOP_EXPR;
break;
case CPP_MULT_EQ:
op = MULT_EXPR;
break;
case CPP_DIV_EQ:
op = TRUNC_DIV_EXPR;
break;
case CPP_MOD_EQ:
op = TRUNC_MOD_EXPR;
break;
case CPP_PLUS_EQ:
op = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
op = MINUS_EXPR;
break;
case CPP_RSHIFT_EQ:
op = RSHIFT_EXPR;
break;
case CPP_LSHIFT_EQ:
op = LSHIFT_EXPR;
break;
case CPP_AND_EQ:
op = BIT_AND_EXPR;
break;
case CPP_XOR_EQ:
op = BIT_XOR_EXPR;
break;
case CPP_OR_EQ:
op = BIT_IOR_EXPR;
break;
case CPP_MIN_EQ:
op = MIN_EXPR;
break;
case CPP_MAX_EQ:
op = MAX_EXPR;
break;
default:
/* Nothing else is an assignment operator. */
op = ERROR_MARK;
}
/* If it was an assignment operator, consume it. */
if (op != ERROR_MARK)
cp_lexer_consume_token (parser->lexer);
return op;
}
/* Parse an expression.
expression:
assignment-expression
expression , assignment-expression
Returns a representation of the expression. */
static tree
cp_parser_expression (cp_parser* parser)
{
tree expression = NULL_TREE;
while (true)
{
tree assignment_expression;
/* Parse the next assignment-expression. */
assignment_expression
= cp_parser_assignment_expression (parser);
/* If this is the first assignment-expression, we can just
save it away. */
if (!expression)
expression = assignment_expression;
else
expression = build_x_compound_expr (expression,
assignment_expression);
/* If the next token is not a comma, then we are done with the
expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
/* A comma operator cannot appear in a constant-expression. */
if (parser->constant_expression_p)
{
if (!parser->allow_non_constant_expression_p)
expression
= cp_parser_non_constant_expression ("a comma operator");
parser->non_constant_expression_p = true;
}
}
return expression;
}
/* Parse a constant-expression.
constant-expression:
conditional-expression
If ALLOW_NON_CONSTANT_P a non-constant expression is silently
accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
is false, NON_CONSTANT_P should be NULL. */
static tree
cp_parser_constant_expression (cp_parser* parser,
bool allow_non_constant_p,
bool *non_constant_p)
{
bool saved_constant_expression_p;
bool saved_allow_non_constant_expression_p;
bool saved_non_constant_expression_p;
tree expression;
/* It might seem that we could simply parse the
conditional-expression, and then check to see if it were
TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
one that the compiler can figure out is constant, possibly after
doing some simplifications or optimizations. The standard has a
precise definition of constant-expression, and we must honor
that, even though it is somewhat more restrictive.
For example:
int i[(2, 3)];
is not a legal declaration, because `(2, 3)' is not a
constant-expression. The `,' operator is forbidden in a
constant-expression. However, GCC's constant-folding machinery
will fold this operation to an INTEGER_CST for `3'. */
/* Save the old settings. */
saved_constant_expression_p = parser->constant_expression_p;
saved_allow_non_constant_expression_p
= parser->allow_non_constant_expression_p;
saved_non_constant_expression_p = parser->non_constant_expression_p;
/* We are now parsing a constant-expression. */
parser->constant_expression_p = true;
parser->allow_non_constant_expression_p = allow_non_constant_p;
parser->non_constant_expression_p = false;
/* Although the grammar says "conditional-expression", we parse an
"assignment-expression", which also permits "throw-expression"
and the use of assignment operators. In the case that
ALLOW_NON_CONSTANT_P is false, we get better errors than we would
otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
actually essential that we look for an assignment-expression.
For example, cp_parser_initializer_clauses uses this function to
determine whether a particular assignment-expression is in fact
constant. */
expression = cp_parser_assignment_expression (parser);
/* Restore the old settings. */
parser->constant_expression_p = saved_constant_expression_p;
parser->allow_non_constant_expression_p
= saved_allow_non_constant_expression_p;
if (allow_non_constant_p)
*non_constant_p = parser->non_constant_expression_p;
parser->non_constant_expression_p = saved_non_constant_expression_p;
return expression;
}
/* Statements [gram.stmt.stmt] */
/* Parse a statement.
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block */
static void
cp_parser_statement (cp_parser* parser, bool in_statement_expr_p)
{
tree statement;
cp_token *token;
int statement_line_number;
/* There is no statement yet. */
statement = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Remember the line number of the first token in the statement. */
statement_line_number = token->location.line;
/* If this is a keyword, then that will often determine what kind of
statement we have. */
if (token->type == CPP_KEYWORD)
{
enum rid keyword = token->keyword;
switch (keyword)
{
case RID_CASE:
case RID_DEFAULT:
statement = cp_parser_labeled_statement (parser,
in_statement_expr_p);
break;
case RID_IF:
case RID_SWITCH:
statement = cp_parser_selection_statement (parser);
break;
case RID_WHILE:
case RID_DO:
case RID_FOR:
statement = cp_parser_iteration_statement (parser);
break;
case RID_BREAK:
case RID_CONTINUE:
case RID_RETURN:
case RID_GOTO:
statement = cp_parser_jump_statement (parser);
break;
case RID_TRY:
statement = cp_parser_try_block (parser);
break;
default:
/* It might be a keyword like `int' that can start a
declaration-statement. */
break;
}
}
else if (token->type == CPP_NAME)
{
/* If the next token is a `:', then we are looking at a
labeled-statement. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token->type == CPP_COLON)
statement = cp_parser_labeled_statement (parser, in_statement_expr_p);
}
/* Anything that starts with a `{' must be a compound-statement. */
else if (token->type == CPP_OPEN_BRACE)
statement = cp_parser_compound_statement (parser, false);
/* Everything else must be a declaration-statement or an
expression-statement. Try for the declaration-statement
first, unless we are looking at a `;', in which case we know that
we have an expression-statement. */
if (!statement)
{
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
cp_parser_parse_tentatively (parser);
/* Try to parse the declaration-statement. */
cp_parser_declaration_statement (parser);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return;
}
/* Look for an expression-statement instead. */
statement = cp_parser_expression_statement (parser, in_statement_expr_p);
}
/* Set the line number for the statement. */
if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
STMT_LINENO (statement) = statement_line_number;
}
/* Parse a labeled-statement.
labeled-statement:
identifier : statement
case constant-expression : statement
default : statement
Returns the new CASE_LABEL, for a `case' or `default' label. For
an ordinary label, returns a LABEL_STMT. */
static tree
cp_parser_labeled_statement (cp_parser* parser, bool in_statement_expr_p)
{
cp_token *token;
tree statement = NULL_TREE;
/* The next token should be an identifier. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_NAME
&& token->type != CPP_KEYWORD)
{
cp_parser_error (parser, "expected labeled-statement");
return error_mark_node;
}
switch (token->keyword)
{
case RID_CASE:
{
tree expr;
/* Consume the `case' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the constant-expression. */
expr = cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
NULL);
/* Create the label. */
statement = finish_case_label (expr, NULL_TREE);
}
break;
case RID_DEFAULT:
/* Consume the `default' token. */
cp_lexer_consume_token (parser->lexer);
/* Create the label. */
statement = finish_case_label (NULL_TREE, NULL_TREE);
break;
default:
/* Anything else must be an ordinary label. */
statement = finish_label_stmt (cp_parser_identifier (parser));
break;
}
/* Require the `:' token. */
cp_parser_require (parser, CPP_COLON, "`:'");
/* Parse the labeled statement. */
cp_parser_statement (parser, in_statement_expr_p);
/* Return the label, in the case of a `case' or `default' label. */
return statement;
}
/* Parse an expression-statement.
expression-statement:
expression [opt] ;
Returns the new EXPR_STMT -- or NULL_TREE if the expression
statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
indicates whether this expression-statement is part of an
expression statement. */
static tree
cp_parser_expression_statement (cp_parser* parser, bool in_statement_expr_p)
{
tree statement = NULL_TREE;
/* If the next token is a ';', then there is no expression
statement. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
statement = cp_parser_expression (parser);
/* Consume the final `;'. */
cp_parser_consume_semicolon_at_end_of_statement (parser);
if (in_statement_expr_p
&& cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
{
/* This is the final expression statement of a statement
expression. */
statement = finish_stmt_expr_expr (statement);
}
else if (statement)
statement = finish_expr_stmt (statement);
else
finish_stmt ();
return statement;
}
/* Parse a compound-statement.
compound-statement:
{ statement-seq [opt] }
Returns a COMPOUND_STMT representing the statement. */
static tree
cp_parser_compound_statement (cp_parser *parser, bool in_statement_expr_p)
{
tree compound_stmt;
/* Consume the `{'. */
if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
return error_mark_node;
/* Begin the compound-statement. */
compound_stmt = begin_compound_stmt (/*has_no_scope=*/false);
/* Parse an (optional) statement-seq. */
cp_parser_statement_seq_opt (parser, in_statement_expr_p);
/* Finish the compound-statement. */
finish_compound_stmt (compound_stmt);
/* Consume the `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
return compound_stmt;
}
/* Parse an (optional) statement-seq.
statement-seq:
statement
statement-seq [opt] statement */
static void
cp_parser_statement_seq_opt (cp_parser* parser, bool in_statement_expr_p)
{
/* Scan statements until there aren't any more. */
while (true)
{
/* If we're looking at a `}', then we've run out of statements. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
|| cp_lexer_next_token_is (parser->lexer, CPP_EOF))
break;
/* Parse the statement. */
cp_parser_statement (parser, in_statement_expr_p);
}
}
/* Parse a selection-statement.
selection-statement:
if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement
Returns the new IF_STMT or SWITCH_STMT. */
static tree
cp_parser_selection_statement (cp_parser* parser)
{
cp_token *token;
enum rid keyword;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_IF:
case RID_SWITCH:
{
tree statement;
tree condition;
/* Look for the `('. */
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
{
cp_parser_skip_to_end_of_statement (parser);
return error_mark_node;
}
/* Begin the selection-statement. */
if (keyword == RID_IF)
statement = begin_if_stmt ();
else
statement = begin_switch_stmt ();
/* Parse the condition. */
condition = cp_parser_condition (parser);
/* Look for the `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, true, false);
if (keyword == RID_IF)
{
tree then_stmt;
/* Add the condition. */
finish_if_stmt_cond (condition, statement);
/* Parse the then-clause. */
then_stmt = cp_parser_implicitly_scoped_statement (parser);
finish_then_clause (statement);
/* If the next token is `else', parse the else-clause. */
if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_ELSE))
{
tree else_stmt;
/* Consume the `else' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Parse the else-clause. */
else_stmt
= cp_parser_implicitly_scoped_statement (parser);
finish_else_clause (statement);
}
/* Now we're all done with the if-statement. */
finish_if_stmt ();
}
else
{
tree body;
/* Add the condition. */
finish_switch_cond (condition, statement);
/* Parse the body of the switch-statement. */
body = cp_parser_implicitly_scoped_statement (parser);
/* Now we're all done with the switch-statement. */
finish_switch_stmt (statement);
}
return statement;
}
break;
default:
cp_parser_error (parser, "expected selection-statement");
return error_mark_node;
}
}
/* Parse a condition.
condition:
expression
type-specifier-seq declarator = assignment-expression
GNU Extension:
condition:
type-specifier-seq declarator asm-specification [opt]
attributes [opt] = assignment-expression
Returns the expression that should be tested. */
static tree
cp_parser_condition (cp_parser* parser)
{
tree type_specifiers;
const char *saved_message;
/* Try the declaration first. */
cp_parser_parse_tentatively (parser);
/* New types are not allowed in the type-specifier-seq for a
condition. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in conditions";
/* Parse the type-specifier-seq. */
type_specifiers = cp_parser_type_specifier_seq (parser);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* If all is well, we might be looking at a declaration. */
if (!cp_parser_error_occurred (parser))
{
tree decl;
tree asm_specification;
tree attributes;
tree declarator;
tree initializer = NULL_TREE;
/* Parse the declarator. */
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
/*ctor_dtor_or_conv_p=*/NULL);
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* Parse the asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* If the next token is not an `=', then we might still be
looking at an expression. For example:
if (A(a).x)
looks like a decl-specifier-seq and a declarator -- but then
there is no `=', so this is an expression. */
cp_parser_require (parser, CPP_EQ, "`='");
/* If we did see an `=', then we are looking at a declaration
for sure. */
if (cp_parser_parse_definitely (parser))
{
/* Create the declaration. */
decl = start_decl (declarator, type_specifiers,
/*initialized_p=*/true,
attributes, /*prefix_attributes=*/NULL_TREE);
/* Parse the assignment-expression. */
initializer = cp_parser_assignment_expression (parser);
/* Process the initializer. */
cp_finish_decl (decl,
initializer,
asm_specification,
LOOKUP_ONLYCONVERTING);
return convert_from_reference (decl);
}
}
/* If we didn't even get past the declarator successfully, we are
definitely not looking at a declaration. */
else
cp_parser_abort_tentative_parse (parser);
/* Otherwise, we are looking at an expression. */
return cp_parser_expression (parser);
}
/* Parse an iteration-statement.
iteration-statement:
while ( condition ) statement
do statement while ( expression ) ;
for ( for-init-statement condition [opt] ; expression [opt] )
statement
Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
static tree
cp_parser_iteration_statement (cp_parser* parser)
{
cp_token *token;
enum rid keyword;
tree statement;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
if (!token)
return error_mark_node;
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_WHILE:
{
tree condition;
/* Begin the while-statement. */
statement = begin_while_stmt ();
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the condition. */
condition = cp_parser_condition (parser);
finish_while_stmt_cond (condition, statement);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Parse the dependent statement. */
cp_parser_already_scoped_statement (parser);
/* We're done with the while-statement. */
finish_while_stmt (statement);
}
break;
case RID_DO:
{
tree expression;
/* Begin the do-statement. */
statement = begin_do_stmt ();
/* Parse the body of the do-statement. */
cp_parser_implicitly_scoped_statement (parser);
finish_do_body (statement);
/* Look for the `while' keyword. */
cp_parser_require_keyword (parser, RID_WHILE, "`while'");
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the expression. */
expression = cp_parser_expression (parser);
/* We're done with the do-statement. */
finish_do_stmt (expression, statement);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Look for the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
break;
case RID_FOR:
{
tree condition = NULL_TREE;
tree expression = NULL_TREE;
/* Begin the for-statement. */
statement = begin_for_stmt ();
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the initialization. */
cp_parser_for_init_statement (parser);
finish_for_init_stmt (statement);
/* If there's a condition, process it. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
condition = cp_parser_condition (parser);
finish_for_cond (condition, statement);
/* Look for the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
/* If there's an expression, process it. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
expression = cp_parser_expression (parser);
finish_for_expr (expression, statement);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`;'");
/* Parse the body of the for-statement. */
cp_parser_already_scoped_statement (parser);
/* We're done with the for-statement. */
finish_for_stmt (statement);
}
break;
default:
cp_parser_error (parser, "expected iteration-statement");
statement = error_mark_node;
break;
}
return statement;
}
/* Parse a for-init-statement.
for-init-statement:
expression-statement
simple-declaration */
static void
cp_parser_for_init_statement (cp_parser* parser)
{
/* If the next token is a `;', then we have an empty
expression-statement. Grammatically, this is also a
simple-declaration, but an invalid one, because it does not
declare anything. Therefore, if we did not handle this case
specially, we would issue an error message about an invalid
declaration. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
/* We're going to speculatively look for a declaration, falling back
to an expression, if necessary. */
cp_parser_parse_tentatively (parser);
/* Parse the declaration. */
cp_parser_simple_declaration (parser,
/*function_definition_allowed_p=*/false);
/* If the tentative parse failed, then we shall need to look for an
expression-statement. */
if (cp_parser_parse_definitely (parser))
return;
}
cp_parser_expression_statement (parser, false);
}
/* Parse a jump-statement.
jump-statement:
break ;
continue ;
return expression [opt] ;
goto identifier ;
GNU extension:
jump-statement:
goto * expression ;
Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_STMT, or
GOTO_STMT. */
static tree
cp_parser_jump_statement (cp_parser* parser)
{
tree statement = error_mark_node;
cp_token *token;
enum rid keyword;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
if (!token)
return error_mark_node;
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_BREAK:
statement = finish_break_stmt ();
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
break;
case RID_CONTINUE:
statement = finish_continue_stmt ();
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
break;
case RID_RETURN:
{
tree expr;
/* If the next token is a `;', then there is no
expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
expr = cp_parser_expression (parser);
else
expr = NULL_TREE;
/* Build the return-statement. */
statement = finish_return_stmt (expr);
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
break;
case RID_GOTO:
/* Create the goto-statement. */
if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
{
/* Issue a warning about this use of a GNU extension. */
if (pedantic)
pedwarn ("ISO C++ forbids computed gotos");
/* Consume the '*' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the dependent expression. */
finish_goto_stmt (cp_parser_expression (parser));
}
else
finish_goto_stmt (cp_parser_identifier (parser));
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
break;
default:
cp_parser_error (parser, "expected jump-statement");
break;
}
return statement;
}
/* Parse a declaration-statement.
declaration-statement:
block-declaration */
static void
cp_parser_declaration_statement (cp_parser* parser)
{
/* Parse the block-declaration. */
cp_parser_block_declaration (parser, /*statement_p=*/true);
/* Finish off the statement. */
finish_stmt ();
}
/* Some dependent statements (like `if (cond) statement'), are
implicitly in their own scope. In other words, if the statement is
a single statement (as opposed to a compound-statement), it is
none-the-less treated as if it were enclosed in braces. Any
declarations appearing in the dependent statement are out of scope
after control passes that point. This function parses a statement,
but ensures that is in its own scope, even if it is not a
compound-statement.
Returns the new statement. */
static tree
cp_parser_implicitly_scoped_statement (cp_parser* parser)
{
tree statement;
/* If the token is not a `{', then we must take special action. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
{
/* Create a compound-statement. */
statement = begin_compound_stmt (/*has_no_scope=*/false);
/* Parse the dependent-statement. */
cp_parser_statement (parser, false);
/* Finish the dummy compound-statement. */
finish_compound_stmt (statement);
}
/* Otherwise, we simply parse the statement directly. */
else
statement = cp_parser_compound_statement (parser, false);
/* Return the statement. */
return statement;
}
/* For some dependent statements (like `while (cond) statement'), we
have already created a scope. Therefore, even if the dependent
statement is a compound-statement, we do not want to create another
scope. */
static void
cp_parser_already_scoped_statement (cp_parser* parser)
{
/* If the token is not a `{', then we must take special action. */
if (cp_lexer_next_token_is_not(parser->lexer, CPP_OPEN_BRACE))
{
tree statement;
/* Create a compound-statement. */
statement = begin_compound_stmt (/*has_no_scope=*/true);
/* Parse the dependent-statement. */
cp_parser_statement (parser, false);
/* Finish the dummy compound-statement. */
finish_compound_stmt (statement);
}
/* Otherwise, we simply parse the statement directly. */
else
cp_parser_statement (parser, false);
}
/* Declarations [gram.dcl.dcl] */
/* Parse an optional declaration-sequence.
declaration-seq:
declaration
declaration-seq declaration */
static void
cp_parser_declaration_seq_opt (cp_parser* parser)
{
while (true)
{
cp_token *token;
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_EOF)
break;
if (token->type == CPP_SEMICOLON)
{
/* A declaration consisting of a single semicolon is
invalid. Allow it unless we're being pedantic. */
if (pedantic)
pedwarn ("extra `;'");
cp_lexer_consume_token (parser->lexer);
continue;
}
/* The C lexer modifies PENDING_LANG_CHANGE when it wants the
parser to enter or exit implicit `extern "C"' blocks. */
while (pending_lang_change > 0)
{
push_lang_context (lang_name_c);
--pending_lang_change;
}
while (pending_lang_change < 0)
{
pop_lang_context ();
++pending_lang_change;
}
/* Parse the declaration itself. */
cp_parser_declaration (parser);
}
}
/* Parse a declaration.
declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
GNU extension:
declaration:
__extension__ declaration */
static void
cp_parser_declaration (cp_parser* parser)
{
cp_token token1;
cp_token token2;
int saved_pedantic;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the qualified declaration. */
cp_parser_declaration (parser);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Try to figure out what kind of declaration is present. */
token1 = *cp_lexer_peek_token (parser->lexer);
if (token1.type != CPP_EOF)
token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
/* If the next token is `extern' and the following token is a string
literal, then we have a linkage specification. */
if (token1.keyword == RID_EXTERN
&& cp_parser_is_string_literal (&token2))
cp_parser_linkage_specification (parser);
/* If the next token is `template', then we have either a template
declaration, an explicit instantiation, or an explicit
specialization. */
else if (token1.keyword == RID_TEMPLATE)
{
/* `template <>' indicates a template specialization. */
if (token2.type == CPP_LESS
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
cp_parser_explicit_specialization (parser);
/* `template <' indicates a template declaration. */
else if (token2.type == CPP_LESS)
cp_parser_template_declaration (parser, /*member_p=*/false);
/* Anything else must be an explicit instantiation. */
else
cp_parser_explicit_instantiation (parser);
}
/* If the next token is `export', then we have a template
declaration. */
else if (token1.keyword == RID_EXPORT)
cp_parser_template_declaration (parser, /*member_p=*/false);
/* If the next token is `extern', 'static' or 'inline' and the one
after that is `template', we have a GNU extended explicit
instantiation directive. */
else if (cp_parser_allow_gnu_extensions_p (parser)
&& (token1.keyword == RID_EXTERN
|| token1.keyword == RID_STATIC
|| token1.keyword == RID_INLINE)
&& token2.keyword == RID_TEMPLATE)
cp_parser_explicit_instantiation (parser);
/* If the next token is `namespace', check for a named or unnamed
namespace definition. */
else if (token1.keyword == RID_NAMESPACE
&& (/* A named namespace definition. */
(token2.type == CPP_NAME
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
== CPP_OPEN_BRACE))
/* An unnamed namespace definition. */
|| token2.type == CPP_OPEN_BRACE))
cp_parser_namespace_definition (parser);
/* We must have either a block declaration or a function
definition. */
else
/* Try to parse a block-declaration, or a function-definition. */
cp_parser_block_declaration (parser, /*statement_p=*/false);
}
/* Parse a block-declaration.
block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
GNU Extension:
block-declaration:
__extension__ block-declaration
label-declaration
If STATEMENT_P is TRUE, then this block-declaration is occurring as
part of a declaration-statement. */
static void
cp_parser_block_declaration (cp_parser *parser,
bool statement_p)
{
cp_token *token1;
int saved_pedantic;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the qualified declaration. */
cp_parser_block_declaration (parser, statement_p);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Peek at the next token to figure out which kind of declaration is
present. */
token1 = cp_lexer_peek_token (parser->lexer);
/* If the next keyword is `asm', we have an asm-definition. */
if (token1->keyword == RID_ASM)
{
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
cp_parser_asm_definition (parser);
}
/* If the next keyword is `namespace', we have a
namespace-alias-definition. */
else if (token1->keyword == RID_NAMESPACE)
cp_parser_namespace_alias_definition (parser);
/* If the next keyword is `using', we have either a
using-declaration or a using-directive. */
else if (token1->keyword == RID_USING)
{
cp_token *token2;
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
/* If the token after `using' is `namespace', then we have a
using-directive. */
token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token2->keyword == RID_NAMESPACE)
cp_parser_using_directive (parser);
/* Otherwise, it's a using-declaration. */
else
cp_parser_using_declaration (parser);
}
/* If the next keyword is `__label__' we have a label declaration. */
else if (token1->keyword == RID_LABEL)
{
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
cp_parser_label_declaration (parser);
}
/* Anything else must be a simple-declaration. */
else
cp_parser_simple_declaration (parser, !statement_p);
}
/* Parse a simple-declaration.
simple-declaration:
decl-specifier-seq [opt] init-declarator-list [opt] ;
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
function-definition as a simple-declaration. */
static void
cp_parser_simple_declaration (cp_parser* parser,
bool function_definition_allowed_p)
{
tree decl_specifiers;
tree attributes;
int declares_class_or_enum;
bool saw_declarator;
/* Defer access checks until we know what is being declared; the
checks for names appearing in the decl-specifier-seq should be
done as if we were in the scope of the thing being declared. */
push_deferring_access_checks (dk_deferred);
/* Parse the decl-specifier-seq. We have to keep track of whether
or not the decl-specifier-seq declares a named class or
enumeration type, since that is the only case in which the
init-declarator-list is allowed to be empty.
[dcl.dcl]
In a simple-declaration, the optional init-declarator-list can be
omitted only when declaring a class or enumeration, that is when
the decl-specifier-seq contains either a class-specifier, an
elaborated-type-specifier, or an enum-specifier. */
decl_specifiers
= cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&attributes,
&declares_class_or_enum);
/* We no longer need to defer access checks. */
stop_deferring_access_checks ();
/* In a block scope, a valid declaration must always have a
decl-specifier-seq. By not trying to parse declarators, we can
resolve the declaration/expression ambiguity more quickly. */
if (!function_definition_allowed_p && !decl_specifiers)
{
cp_parser_error (parser, "expected declaration");
goto done;
}
/* If the next two tokens are both identifiers, the code is
erroneous. The usual cause of this situation is code like:
T t;
where "T" should name a type -- but does not. */
if (cp_parser_diagnose_invalid_type_name (parser))
{
/* If parsing tentatively, we should commit; we really are
looking at a declaration. */
cp_parser_commit_to_tentative_parse (parser);
/* Give up. */
goto done;
}
/* Keep going until we hit the `;' at the end of the simple
declaration. */
saw_declarator = false;
while (cp_lexer_next_token_is_not (parser->lexer,
CPP_SEMICOLON))
{
cp_token *token;
bool function_definition_p;
tree decl;
saw_declarator = true;
/* Parse the init-declarator. */
decl = cp_parser_init_declarator (parser, decl_specifiers, attributes,
function_definition_allowed_p,
/*member_p=*/false,
declares_class_or_enum,
&function_definition_p);
/* If an error occurred while parsing tentatively, exit quickly.
(That usually happens when in the body of a function; each
statement is treated as a declaration-statement until proven
otherwise.) */
if (cp_parser_error_occurred (parser))
goto done;
/* Handle function definitions specially. */
if (function_definition_p)
{
/* If the next token is a `,', then we are probably
processing something like:
void f() {}, *p;
which is erroneous. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
error ("mixing declarations and function-definitions is forbidden");
/* Otherwise, we're done with the list of declarators. */
else
{
pop_deferring_access_checks ();
return;
}
}
/* The next token should be either a `,' or a `;'. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `,', there are more declarators to come. */
if (token->type == CPP_COMMA)
cp_lexer_consume_token (parser->lexer);
/* If it's a `;', we are done. */
else if (token->type == CPP_SEMICOLON)
break;
/* Anything else is an error. */
else
{
cp_parser_error (parser, "expected `,' or `;'");
/* Skip tokens until we reach the end of the statement. */
cp_parser_skip_to_end_of_statement (parser);
goto done;
}
/* After the first time around, a function-definition is not
allowed -- even if it was OK at first. For example:
int i, f() {}
is not valid. */
function_definition_allowed_p = false;
}
/* Issue an error message if no declarators are present, and the
decl-specifier-seq does not itself declare a class or
enumeration. */
if (!saw_declarator)
{
if (cp_parser_declares_only_class_p (parser))
shadow_tag (decl_specifiers);
/* Perform any deferred access checks. */
perform_deferred_access_checks ();
}
/* Consume the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
done:
pop_deferring_access_checks ();
}
/* Parse a decl-specifier-seq.
decl-specifier-seq:
decl-specifier-seq [opt] decl-specifier
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
GNU Extension:
decl-specifier-seq:
decl-specifier-seq [opt] attributes
Returns a TREE_LIST, giving the decl-specifiers in the order they
appear in the source code. The TREE_VALUE of each node is the
decl-specifier. For a keyword (such as `auto' or `friend'), the
TREE_VALUE is simply the corresponding TREE_IDENTIFIER. For the
representation of a type-specifier, see cp_parser_type_specifier.
If there are attributes, they will be stored in *ATTRIBUTES,
represented as described above cp_parser_attributes.
If FRIEND_IS_NOT_CLASS_P is non-NULL, and the `friend' specifier
appears, and the entity that will be a friend is not going to be a
class, then *FRIEND_IS_NOT_CLASS_P will be set to TRUE. Note that
even if *FRIEND_IS_NOT_CLASS_P is FALSE, the entity to which
friendship is granted might not be a class.
*DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
*flags:
1: one of the decl-specifiers is an elaborated-type-specifier
2: one of the decl-specifiers is an enum-specifier or a
class-specifier
*/
static tree
cp_parser_decl_specifier_seq (cp_parser* parser,
cp_parser_flags flags,
tree* attributes,
int* declares_class_or_enum)
{
tree decl_specs = NULL_TREE;
bool friend_p = false;
bool constructor_possible_p = !parser->in_declarator_p;
/* Assume no class or enumeration type is declared. */
*declares_class_or_enum = 0;
/* Assume there are no attributes. */
*attributes = NULL_TREE;
/* Keep reading specifiers until there are no more to read. */
while (true)
{
tree decl_spec = NULL_TREE;
bool constructor_p;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Handle attributes. */
if (token->keyword == RID_ATTRIBUTE)
{
/* Parse the attributes. */
decl_spec = cp_parser_attributes_opt (parser);
/* Add them to the list. */
*attributes = chainon (*attributes, decl_spec);
continue;
}
/* If the next token is an appropriate keyword, we can simply
add it to the list. */
switch (token->keyword)
{
case RID_FRIEND:
/* decl-specifier:
friend */
if (friend_p)
error ("duplicate `friend'");
else
friend_p = true;
/* The representation of the specifier is simply the
appropriate TREE_IDENTIFIER node. */
decl_spec = token->value;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
break;
/* function-specifier:
inline
virtual
explicit */
case RID_INLINE:
case RID_VIRTUAL:
case RID_EXPLICIT:
decl_spec = cp_parser_function_specifier_opt (parser);
break;
/* decl-specifier:
typedef */
case RID_TYPEDEF:
/* The representation of the specifier is simply the
appropriate TREE_IDENTIFIER node. */
decl_spec = token->value;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* A constructor declarator cannot appear in a typedef. */
constructor_possible_p = false;
/* The "typedef" keyword can only occur in a declaration; we
may as well commit at this point. */
cp_parser_commit_to_tentative_parse (parser);
break;
/* storage-class-specifier:
auto
register
static
extern
mutable
GNU Extension:
thread */
case RID_AUTO:
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
case RID_THREAD:
decl_spec = cp_parser_storage_class_specifier_opt (parser);
break;
default:
break;
}
/* Constructors are a special case. The `S' in `S()' is not a
decl-specifier; it is the beginning of the declarator. */
constructor_p = (!decl_spec
&& constructor_possible_p
&& cp_parser_constructor_declarator_p (parser,
friend_p));
/* If we don't have a DECL_SPEC yet, then we must be looking at
a type-specifier. */
if (!decl_spec && !constructor_p)
{
int decl_spec_declares_class_or_enum;
bool is_cv_qualifier;
decl_spec
= cp_parser_type_specifier (parser, flags,
friend_p,
/*is_declaration=*/true,
&decl_spec_declares_class_or_enum,
&is_cv_qualifier);
*declares_class_or_enum |= decl_spec_declares_class_or_enum;
/* If this type-specifier referenced a user-defined type
(a typedef, class-name, etc.), then we can't allow any
more such type-specifiers henceforth.
[dcl.spec]
The longest sequence of decl-specifiers that could
possibly be a type name is taken as the
decl-specifier-seq of a declaration. The sequence shall
be self-consistent as described below.
[dcl.type]
As a general rule, at most one type-specifier is allowed
in the complete decl-specifier-seq of a declaration. The
only exceptions are the following:
-- const or volatile can be combined with any other
type-specifier.
-- signed or unsigned can be combined with char, long,
short, or int.
-- ..
Example:
typedef char* Pc;
void g (const int Pc);
Here, Pc is *not* part of the decl-specifier seq; it's
the declarator. Therefore, once we see a type-specifier
(other than a cv-qualifier), we forbid any additional
user-defined types. We *do* still allow things like `int
int' to be considered a decl-specifier-seq, and issue the
error message later. */
if (decl_spec && !is_cv_qualifier)
flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
/* A constructor declarator cannot follow a type-specifier. */
if (decl_spec)
constructor_possible_p = false;
}
/* If we still do not have a DECL_SPEC, then there are no more
decl-specifiers. */
if (!decl_spec)
{
/* Issue an error message, unless the entire construct was
optional. */
if (!(flags & CP_PARSER_FLAGS_OPTIONAL))
{
cp_parser_error (parser, "expected decl specifier");
return error_mark_node;
}
break;
}
/* Add the DECL_SPEC to the list of specifiers. */
decl_specs = tree_cons (NULL_TREE, decl_spec, decl_specs);
/* After we see one decl-specifier, further decl-specifiers are
always optional. */
flags |= CP_PARSER_FLAGS_OPTIONAL;
}
/* We have built up the DECL_SPECS in reverse order. Return them in
the correct order. */
return nreverse (decl_specs);
}
/* Parse an (optional) storage-class-specifier.
storage-class-specifier:
auto
register
static
extern
mutable
GNU Extension:
storage-class-specifier:
thread
Returns an IDENTIFIER_NODE corresponding to the keyword used. */
static tree
cp_parser_storage_class_specifier_opt (cp_parser* parser)
{
switch (cp_lexer_peek_token (parser->lexer)->keyword)
{
case RID_AUTO:
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
case RID_THREAD:
/* Consume the token. */
return cp_lexer_consume_token (parser->lexer)->value;
default:
return NULL_TREE;
}
}
/* Parse an (optional) function-specifier.
function-specifier:
inline
virtual
explicit
Returns an IDENTIFIER_NODE corresponding to the keyword used. */
static tree
cp_parser_function_specifier_opt (cp_parser* parser)
{
switch (cp_lexer_peek_token (parser->lexer)->keyword)
{
case RID_INLINE:
case RID_VIRTUAL:
case RID_EXPLICIT:
/* Consume the token. */
return cp_lexer_consume_token (parser->lexer)->value;
default:
return NULL_TREE;
}
}
/* Parse a linkage-specification.
linkage-specification:
extern string-literal { declaration-seq [opt] }
extern string-literal declaration */
static void
cp_parser_linkage_specification (cp_parser* parser)
{
cp_token *token;
tree linkage;
/* Look for the `extern' keyword. */
cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a string-literal, then there's a problem. */
if (!cp_parser_is_string_literal (token))
{
cp_parser_error (parser, "expected language-name");
return;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* Transform the literal into an identifier. If the literal is a
wide-character string, or contains embedded NULs, then we can't
handle it as the user wants. */
if (token->type == CPP_WSTRING
|| (strlen (TREE_STRING_POINTER (token->value))
!= (size_t) (TREE_STRING_LENGTH (token->value) - 1)))
{
cp_parser_error (parser, "invalid linkage-specification");
/* Assume C++ linkage. */
linkage = get_identifier ("c++");
}
/* If it's a simple string constant, things are easier. */
else
linkage = get_identifier (TREE_STRING_POINTER (token->value));
/* We're now using the new linkage. */
push_lang_context (linkage);
/* If the next token is a `{', then we're using the first
production. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
/* Consume the `{' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the declarations. */
cp_parser_declaration_seq_opt (parser);
/* Look for the closing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
/* Otherwise, there's just one declaration. */
else
{
bool saved_in_unbraced_linkage_specification_p;
saved_in_unbraced_linkage_specification_p
= parser->in_unbraced_linkage_specification_p;
parser->in_unbraced_linkage_specification_p = true;
have_extern_spec = true;
cp_parser_declaration (parser);
have_extern_spec = false;
parser->in_unbraced_linkage_specification_p
= saved_in_unbraced_linkage_specification_p;
}
/* We're done with the linkage-specification. */
pop_lang_context ();
}
/* Special member functions [gram.special] */
/* Parse a conversion-function-id.
conversion-function-id:
operator conversion-type-id
Returns an IDENTIFIER_NODE representing the operator. */
static tree
cp_parser_conversion_function_id (cp_parser* parser)
{
tree type;
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
/* Look for the `operator' token. */
if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
return error_mark_node;
/* When we parse the conversion-type-id, the current scope will be
reset. However, we need that information in able to look up the
conversion function later, so we save it here. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* We must enter the scope of the class so that the names of
entities declared within the class are available in the
conversion-type-id. For example, consider:
struct S {
typedef int I;
operator I();
};
S::operator I() { ... }
In order to see that `I' is a type-name in the definition, we
must be in the scope of `S'. */
if (saved_scope)
push_scope (saved_scope);
/* Parse the conversion-type-id. */
type = cp_parser_conversion_type_id (parser);
/* Leave the scope of the class, if any. */
if (saved_scope)
pop_scope (saved_scope);
/* Restore the saved scope. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* If the TYPE is invalid, indicate failure. */
if (type == error_mark_node)
return error_mark_node;
return mangle_conv_op_name_for_type (type);
}
/* Parse a conversion-type-id:
conversion-type-id:
type-specifier-seq conversion-declarator [opt]
Returns the TYPE specified. */
static tree
cp_parser_conversion_type_id (cp_parser* parser)
{
tree attributes;
tree type_specifiers;
tree declarator;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* Parse the type-specifiers. */
type_specifiers = cp_parser_type_specifier_seq (parser);
/* If that didn't work, stop. */
if (type_specifiers == error_mark_node)
return error_mark_node;
/* Parse the conversion-declarator. */
declarator = cp_parser_conversion_declarator_opt (parser);
return grokdeclarator (declarator, type_specifiers, TYPENAME,
/*initialized=*/0, &attributes);
}
/* Parse an (optional) conversion-declarator.
conversion-declarator:
ptr-operator conversion-declarator [opt]
Returns a representation of the declarator. See
cp_parser_declarator for details. */
static tree
cp_parser_conversion_declarator_opt (cp_parser* parser)
{
enum tree_code code;
tree class_type;
tree cv_qualifier_seq;
/* We don't know if there's a ptr-operator next, or not. */
cp_parser_parse_tentatively (parser);
/* Try the ptr-operator. */
code = cp_parser_ptr_operator (parser, &class_type,
&cv_qualifier_seq);
/* If it worked, look for more conversion-declarators. */
if (cp_parser_parse_definitely (parser))
{
tree declarator;
/* Parse another optional declarator. */
declarator = cp_parser_conversion_declarator_opt (parser);
/* Create the representation of the declarator. */
if (code == INDIRECT_REF)
declarator = make_pointer_declarator (cv_qualifier_seq,
declarator);
else
declarator = make_reference_declarator (cv_qualifier_seq,
declarator);
/* Handle the pointer-to-member case. */
if (class_type)
declarator = build_nt (SCOPE_REF, class_type, declarator);
return declarator;
}
return NULL_TREE;
}
/* Parse an (optional) ctor-initializer.
ctor-initializer:
: mem-initializer-list
Returns TRUE iff the ctor-initializer was actually present. */
static bool
cp_parser_ctor_initializer_opt (cp_parser* parser)
{
/* If the next token is not a `:', then there is no
ctor-initializer. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
{
/* Do default initialization of any bases and members. */
if (DECL_CONSTRUCTOR_P (current_function_decl))
finish_mem_initializers (NULL_TREE);
return false;
}
/* Consume the `:' token. */
cp_lexer_consume_token (parser->lexer);
/* And the mem-initializer-list. */
cp_parser_mem_initializer_list (parser);
return true;
}
/* Parse a mem-initializer-list.
mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list */
static void
cp_parser_mem_initializer_list (cp_parser* parser)
{
tree mem_initializer_list = NULL_TREE;
/* Let the semantic analysis code know that we are starting the
mem-initializer-list. */
if (!DECL_CONSTRUCTOR_P (current_function_decl))
error ("only constructors take base initializers");
/* Loop through the list. */
while (true)
{
tree mem_initializer;
/* Parse the mem-initializer. */
mem_initializer = cp_parser_mem_initializer (parser);
/* Add it to the list, unless it was erroneous. */
if (mem_initializer)
{
TREE_CHAIN (mem_initializer) = mem_initializer_list;
mem_initializer_list = mem_initializer;
}
/* If the next token is not a `,', we're done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
/* Perform semantic analysis. */
if (DECL_CONSTRUCTOR_P (current_function_decl))
finish_mem_initializers (mem_initializer_list);
}
/* Parse a mem-initializer.
mem-initializer:
mem-initializer-id ( expression-list [opt] )
GNU extension:
mem-initializer:
( expression-list [opt] )
Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
class) or FIELD_DECL (for a non-static data member) to initialize;
the TREE_VALUE is the expression-list. */
static tree
cp_parser_mem_initializer (cp_parser* parser)
{
tree mem_initializer_id;
tree expression_list;
tree member;
/* Find out what is being initialized. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
pedwarn ("anachronistic old-style base class initializer");
mem_initializer_id = NULL_TREE;
}
else
mem_initializer_id = cp_parser_mem_initializer_id (parser);
member = expand_member_init (mem_initializer_id);
if (member && !DECL_P (member))
in_base_initializer = 1;
expression_list
= cp_parser_parenthesized_expression_list (parser, false,
/*non_constant_p=*/NULL);
if (!expression_list)
expression_list = void_type_node;
in_base_initializer = 0;
return member ? build_tree_list (member, expression_list) : NULL_TREE;
}
/* Parse a mem-initializer-id.
mem-initializer-id:
:: [opt] nested-name-specifier [opt] class-name
identifier
Returns a TYPE indicating the class to be initializer for the first
production. Returns an IDENTIFIER_NODE indicating the data member
to be initialized for the second production. */
static tree
cp_parser_mem_initializer_id (cp_parser* parser)
{
bool global_scope_p;
bool nested_name_specifier_p;
tree id;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the optional nested-name-specifier. The simplest way to
implement:
[temp.res]
The keyword `typename' is not permitted in a base-specifier or
mem-initializer; in these contexts a qualified name that
depends on a template-parameter is implicitly assumed to be a
type name.
is to assume that we have seen the `typename' keyword at this
point. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true)
!= NULL_TREE);
/* If there is a `::' operator or a nested-name-specifier, then we
are definitely looking for a class-name. */
if (global_scope_p || nested_name_specifier_p)
return cp_parser_class_name (parser,
/*typename_keyword_p=*/true,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency_p=*/true,
/*class_head_p=*/false);
/* Otherwise, we could also be looking for an ordinary identifier. */
cp_parser_parse_tentatively (parser);
/* Try a class-name. */
id = cp_parser_class_name (parser,
/*typename_keyword_p=*/true,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency_p=*/true,
/*class_head_p=*/false);
/* If we found one, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Otherwise, look for an ordinary identifier. */
return cp_parser_identifier (parser);
}
/* Overloading [gram.over] */
/* Parse an operator-function-id.
operator-function-id:
operator operator
Returns an IDENTIFIER_NODE for the operator which is a
human-readable spelling of the identifier, e.g., `operator +'. */
static tree
cp_parser_operator_function_id (cp_parser* parser)
{
/* Look for the `operator' keyword. */
if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
return error_mark_node;
/* And then the name of the operator itself. */
return cp_parser_operator (parser);
}
/* Parse an operator.
operator:
new delete new[] delete[] + - * / % ^ & | ~ ! = < >
+= -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
|| ++ -- , ->* -> () []
GNU Extensions:
operator:
<? >? <?= >?=
Returns an IDENTIFIER_NODE for the operator which is a
human-readable spelling of the identifier, e.g., `operator +'. */
static tree
cp_parser_operator (cp_parser* parser)
{
tree id = NULL_TREE;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Figure out which operator we have. */
switch (token->type)
{
case CPP_KEYWORD:
{
enum tree_code op;
/* The keyword should be either `new' or `delete'. */
if (token->keyword == RID_NEW)
op = NEW_EXPR;
else if (token->keyword == RID_DELETE)
op = DELETE_EXPR;
else
break;
/* Consume the `new' or `delete' token. */
cp_lexer_consume_token (parser->lexer);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `[' token then this is the array variant of the
operator. */
if (token->type == CPP_OPEN_SQUARE)
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `]' token. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
id = ansi_opname (op == NEW_EXPR
? VEC_NEW_EXPR : VEC_DELETE_EXPR);
}
/* Otherwise, we have the non-array variant. */
else
id = ansi_opname (op);
return id;
}
case CPP_PLUS:
id = ansi_opname (PLUS_EXPR);
break;
case CPP_MINUS:
id = ansi_opname (MINUS_EXPR);
break;
case CPP_MULT:
id = ansi_opname (MULT_EXPR);
break;
case CPP_DIV:
id = ansi_opname (TRUNC_DIV_EXPR);
break;
case CPP_MOD:
id = ansi_opname (TRUNC_MOD_EXPR);
break;
case CPP_XOR:
id = ansi_opname (BIT_XOR_EXPR);
break;
case CPP_AND:
id = ansi_opname (BIT_AND_EXPR);
break;
case CPP_OR:
id = ansi_opname (BIT_IOR_EXPR);
break;
case CPP_COMPL:
id = ansi_opname (BIT_NOT_EXPR);
break;
case CPP_NOT:
id = ansi_opname (TRUTH_NOT_EXPR);
break;
case CPP_EQ:
id = ansi_assopname (NOP_EXPR);
break;
case CPP_LESS:
id = ansi_opname (LT_EXPR);
break;
case CPP_GREATER:
id = ansi_opname (GT_EXPR);
break;
case CPP_PLUS_EQ:
id = ansi_assopname (PLUS_EXPR);
break;
case CPP_MINUS_EQ:
id = ansi_assopname (MINUS_EXPR);
break;
case CPP_MULT_EQ:
id = ansi_assopname (MULT_EXPR);
break;
case CPP_DIV_EQ:
id = ansi_assopname (TRUNC_DIV_EXPR);
break;
case CPP_MOD_EQ:
id = ansi_assopname (TRUNC_MOD_EXPR);
break;
case CPP_XOR_EQ:
id = ansi_assopname (BIT_XOR_EXPR);
break;
case CPP_AND_EQ:
id = ansi_assopname (BIT_AND_EXPR);
break;
case CPP_OR_EQ:
id = ansi_assopname (BIT_IOR_EXPR);
break;
case CPP_LSHIFT:
id = ansi_opname (LSHIFT_EXPR);
break;
case CPP_RSHIFT:
id = ansi_opname (RSHIFT_EXPR);
break;
case CPP_LSHIFT_EQ:
id = ansi_assopname (LSHIFT_EXPR);
break;
case CPP_RSHIFT_EQ:
id = ansi_assopname (RSHIFT_EXPR);
break;
case CPP_EQ_EQ:
id = ansi_opname (EQ_EXPR);
break;
case CPP_NOT_EQ:
id = ansi_opname (NE_EXPR);
break;
case CPP_LESS_EQ:
id = ansi_opname (LE_EXPR);
break;
case CPP_GREATER_EQ:
id = ansi_opname (GE_EXPR);
break;
case CPP_AND_AND:
id = ansi_opname (TRUTH_ANDIF_EXPR);
break;
case CPP_OR_OR:
id = ansi_opname (TRUTH_ORIF_EXPR);
break;
case CPP_PLUS_PLUS:
id = ansi_opname (POSTINCREMENT_EXPR);
break;
case CPP_MINUS_MINUS:
id = ansi_opname (PREDECREMENT_EXPR);
break;
case CPP_COMMA:
id = ansi_opname (COMPOUND_EXPR);
break;
case CPP_DEREF_STAR:
id = ansi_opname (MEMBER_REF);
break;
case CPP_DEREF:
id = ansi_opname (COMPONENT_REF);
break;
case CPP_OPEN_PAREN:
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Look for the matching `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return ansi_opname (CALL_EXPR);
case CPP_OPEN_SQUARE:
/* Consume the `['. */
cp_lexer_consume_token (parser->lexer);
/* Look for the matching `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
return ansi_opname (ARRAY_REF);
/* Extensions. */
case CPP_MIN:
id = ansi_opname (MIN_EXPR);
break;
case CPP_MAX:
id = ansi_opname (MAX_EXPR);
break;
case CPP_MIN_EQ:
id = ansi_assopname (MIN_EXPR);
break;
case CPP_MAX_EQ:
id = ansi_assopname (MAX_EXPR);
break;
default:
/* Anything else is an error. */
break;
}
/* If we have selected an identifier, we need to consume the
operator token. */
if (id)
cp_lexer_consume_token (parser->lexer);
/* Otherwise, no valid operator name was present. */
else
{
cp_parser_error (parser, "expected operator");
id = error_mark_node;
}
return id;
}
/* Parse a template-declaration.
template-declaration:
export [opt] template < template-parameter-list > declaration
If MEMBER_P is TRUE, this template-declaration occurs within a
class-specifier.
The grammar rule given by the standard isn't correct. What
is really meant is:
template-declaration:
export [opt] template-parameter-list-seq
decl-specifier-seq [opt] init-declarator [opt] ;
export [opt] template-parameter-list-seq
function-definition
template-parameter-list-seq:
template-parameter-list-seq [opt]
template < template-parameter-list > */
static void
cp_parser_template_declaration (cp_parser* parser, bool member_p)
{
/* Check for `export'. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
{
/* Consume the `export' token. */
cp_lexer_consume_token (parser->lexer);
/* Warn that we do not support `export'. */
warning ("keyword `export' not implemented, and will be ignored");
}
cp_parser_template_declaration_after_export (parser, member_p);
}
/* Parse a template-parameter-list.
template-parameter-list:
template-parameter
template-parameter-list , template-parameter
Returns a TREE_LIST. Each node represents a template parameter.
The nodes are connected via their TREE_CHAINs. */
static tree
cp_parser_template_parameter_list (cp_parser* parser)
{
tree parameter_list = NULL_TREE;
while (true)
{
tree parameter;
cp_token *token;
/* Parse the template-parameter. */
parameter = cp_parser_template_parameter (parser);
/* Add it to the list. */
parameter_list = process_template_parm (parameter_list,
parameter);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a `,', we're done. */
if (token->type != CPP_COMMA)
break;
/* Otherwise, consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
return parameter_list;
}
/* Parse a template-parameter.
template-parameter:
type-parameter
parameter-declaration
Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
TREE_PURPOSE is the default value, if any. */
static tree
cp_parser_template_parameter (cp_parser* parser)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it is `class' or `template', we have a type-parameter. */
if (token->keyword == RID_TEMPLATE)
return cp_parser_type_parameter (parser);
/* If it is `class' or `typename' we do not know yet whether it is a
type parameter or a non-type parameter. Consider:
template <typename T, typename T::X X> ...
or:
template <class C, class D*> ...
Here, the first parameter is a type parameter, and the second is
a non-type parameter. We can tell by looking at the token after
the identifier -- if it is a `,', `=', or `>' then we have a type
parameter. */
if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
{
/* Peek at the token after `class' or `typename'. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If it's an identifier, skip it. */
if (token->type == CPP_NAME)
token = cp_lexer_peek_nth_token (parser->lexer, 3);
/* Now, see if the token looks like the end of a template
parameter. */
if (token->type == CPP_COMMA
|| token->type == CPP_EQ
|| token->type == CPP_GREATER)
return cp_parser_type_parameter (parser);
}
/* Otherwise, it is a non-type parameter.
[temp.param]
When parsing a default template-argument for a non-type
template-parameter, the first non-nested `>' is taken as the end
of the template parameter-list rather than a greater-than
operator. */
return
cp_parser_parameter_declaration (parser, /*template_parm_p=*/true);
}
/* Parse a type-parameter.
type-parameter:
class identifier [opt]
class identifier [opt] = type-id
typename identifier [opt]
typename identifier [opt] = type-id
template < template-parameter-list > class identifier [opt]
template < template-parameter-list > class identifier [opt]
= id-expression
Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
the declaration of the parameter. */
static tree
cp_parser_type_parameter (cp_parser* parser)
{
cp_token *token;
tree parameter;
/* Look for a keyword to tell us what kind of parameter this is. */
token = cp_parser_require (parser, CPP_KEYWORD,
"`class', `typename', or `template'");
if (!token)
return error_mark_node;
switch (token->keyword)
{
case RID_CLASS:
case RID_TYPENAME:
{
tree identifier;
tree default_argument;
/* If the next token is an identifier, then it names the
parameter. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Create the parameter. */
parameter = finish_template_type_parm (class_type_node, identifier);
/* If the next token is an `=', we have a default argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* Consume the `=' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the default-argument. */
default_argument = cp_parser_type_id (parser);
}
else
default_argument = NULL_TREE;
/* Create the combined representation of the parameter and the
default argument. */
parameter = build_tree_list (default_argument, parameter);
}
break;
case RID_TEMPLATE:
{
tree parameter_list;
tree identifier;
tree default_argument;
/* Look for the `<'. */
cp_parser_require (parser, CPP_LESS, "`<'");
/* Parse the template-parameter-list. */
begin_template_parm_list ();
parameter_list
= cp_parser_template_parameter_list (parser);
parameter_list = end_template_parm_list (parameter_list);
/* Look for the `>'. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* Look for the `class' keyword. */
cp_parser_require_keyword (parser, RID_CLASS, "`class'");
/* If the next token is an `=', then there is a
default-argument. If the next token is a `>', we are at
the end of the parameter-list. If the next token is a `,',
then we are at the end of this parameter. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Create the template parameter. */
parameter = finish_template_template_parm (class_type_node,
identifier);
/* If the next token is an `=', then there is a
default-argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* Parse the id-expression. */
default_argument
= cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/false);
/* Look up the name. */
default_argument
= cp_parser_lookup_name_simple (parser, default_argument);
/* See if the default argument is valid. */
default_argument
= check_template_template_default_arg (default_argument);
}
else
default_argument = NULL_TREE;
/* Create the combined representation of the parameter and the
default argument. */
parameter = build_tree_list (default_argument, parameter);
}
break;
default:
/* Anything else is an error. */
cp_parser_error (parser,
"expected `class', `typename', or `template'");
parameter = error_mark_node;
}
return parameter;
}
/* Parse a template-id.
template-id:
template-name < template-argument-list [opt] >
If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
`template' keyword. In this case, a TEMPLATE_ID_EXPR will be
returned. Otherwise, if the template-name names a function, or set
of functions, returns a TEMPLATE_ID_EXPR. If the template-name
names a class, returns a TYPE_DECL for the specialization.
If CHECK_DEPENDENCY_P is FALSE, names are looked up in
uninstantiated templates. */
static tree
cp_parser_template_id (cp_parser *parser,
bool template_keyword_p,
bool check_dependency_p)
{
tree template;
tree arguments;
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
tree template_id;
bool saved_greater_than_is_operator_p;
ptrdiff_t start_of_id;
tree access_check = NULL_TREE;
cp_token *next_token;
/* If the next token corresponds to a template-id, there is no need
to reparse it. */
next_token = cp_lexer_peek_token (parser->lexer);
if (next_token->type == CPP_TEMPLATE_ID)
{
tree value;
tree check;
/* Get the stored value. */
value = cp_lexer_consume_token (parser->lexer)->value;
/* Perform any access checks that were deferred. */
for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
perform_or_defer_access_check (TREE_PURPOSE (check),
TREE_VALUE (check));
/* Return the stored value. */
return TREE_VALUE (value);
}
/* Avoid performing name lookup if there is no possibility of
finding a template-id. */
if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
|| (next_token->type == CPP_NAME
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_LESS))
{
cp_parser_error (parser, "expected template-id");
return error_mark_node;
}
/* Remember where the template-id starts. */
if (cp_parser_parsing_tentatively (parser)
&& !cp_parser_committed_to_tentative_parse (parser))
{
next_token = cp_lexer_peek_token (parser->lexer);
start_of_id = cp_lexer_token_difference (parser->lexer,
parser->lexer->first_token,
next_token);
}
else
start_of_id = -1;
push_deferring_access_checks (dk_deferred);
/* Parse the template-name. */
template = cp_parser_template_name (parser, template_keyword_p,
check_dependency_p);
if (template == error_mark_node)
{
pop_deferring_access_checks ();
return error_mark_node;
}
/* Look for the `<' that starts the template-argument-list. */
if (!cp_parser_require (parser, CPP_LESS, "`<'"))
{
pop_deferring_access_checks ();
return error_mark_node;
}
/* [temp.names]
When parsing a template-id, the first non-nested `>' is taken as
the end of the template-argument-list rather than a greater-than
operator. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = false;
/* Parsing the argument list may modify SCOPE, so we save it
here. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* Parse the template-argument-list itself. */
if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
arguments = NULL_TREE;
else
arguments = cp_parser_template_argument_list (parser);
/* Look for the `>' that ends the template-argument-list. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* The `>' token might be a greater-than operator again now. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Restore the SAVED_SCOPE. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* Build a representation of the specialization. */
if (TREE_CODE (template) == IDENTIFIER_NODE)
template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
else if (DECL_CLASS_TEMPLATE_P (template)
|| DECL_TEMPLATE_TEMPLATE_PARM_P (template))
template_id
= finish_template_type (template, arguments,
cp_lexer_next_token_is (parser->lexer,
CPP_SCOPE));
else
{
/* If it's not a class-template or a template-template, it should be
a function-template. */
my_friendly_assert ((DECL_FUNCTION_TEMPLATE_P (template)
|| TREE_CODE (template) == OVERLOAD
|| BASELINK_P (template)),
20010716);
template_id = lookup_template_function (template, arguments);
}
/* Retrieve any deferred checks. Do not pop this access checks yet
so the memory will not be reclaimed during token replacing below. */
access_check = get_deferred_access_checks ();
/* If parsing tentatively, replace the sequence of tokens that makes
up the template-id with a CPP_TEMPLATE_ID token. That way,
should we re-parse the token stream, we will not have to repeat
the effort required to do the parse, nor will we issue duplicate
error messages about problems during instantiation of the
template. */
if (start_of_id >= 0)
{
cp_token *token;
/* Find the token that corresponds to the start of the
template-id. */
token = cp_lexer_advance_token (parser->lexer,
parser->lexer->first_token,
start_of_id);
/* Reset the contents of the START_OF_ID token. */
token->type = CPP_TEMPLATE_ID;
token->value = build_tree_list (access_check, template_id);
token->keyword = RID_MAX;
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, token);
}
pop_deferring_access_checks ();
return template_id;
}
/* Parse a template-name.
template-name:
identifier
The standard should actually say:
template-name:
identifier
operator-function-id
conversion-function-id
A defect report has been filed about this issue.
If TEMPLATE_KEYWORD_P is true, then we have just seen the
`template' keyword, in a construction like:
T::template f<3>()
In that case `f' is taken to be a template-name, even though there
is no way of knowing for sure.
Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
name refers to a set of overloaded functions, at least one of which
is a template, or an IDENTIFIER_NODE with the name of the template,
if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
names are looked up inside uninstantiated templates. */
static tree
cp_parser_template_name (cp_parser* parser,
bool template_keyword_p,
bool check_dependency_p)
{
tree identifier;
tree decl;
tree fns;
/* If the next token is `operator', then we have either an
operator-function-id or a conversion-function-id. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
{
/* We don't know whether we're looking at an
operator-function-id or a conversion-function-id. */
cp_parser_parse_tentatively (parser);
/* Try an operator-function-id. */
identifier = cp_parser_operator_function_id (parser);
/* If that didn't work, try a conversion-function-id. */
if (!cp_parser_parse_definitely (parser))
identifier = cp_parser_conversion_function_id (parser);
}
/* Look for the identifier. */
else
identifier = cp_parser_identifier (parser);
/* If we didn't find an identifier, we don't have a template-id. */
if (identifier == error_mark_node)
return error_mark_node;
/* If the name immediately followed the `template' keyword, then it
is a template-name. However, if the next token is not `<', then
we do not treat it as a template-name, since it is not being used
as part of a template-id. This enables us to handle constructs
like:
template <typename T> struct S { S(); };
template <typename T> S<T>::S();
correctly. We would treat `S' as a template -- if it were `S<T>'
-- but we do not if there is no `<'. */
if (template_keyword_p && processing_template_decl
&& cp_lexer_next_token_is (parser->lexer, CPP_LESS))
return identifier;
/* Look up the name. */
decl = cp_parser_lookup_name (parser, identifier,
/*is_type=*/false,
/*is_namespace=*/false,
check_dependency_p);
decl = maybe_get_template_decl_from_type_decl (decl);
/* If DECL is a template, then the name was a template-name. */
if (TREE_CODE (decl) == TEMPLATE_DECL)
;
else
{
/* The standard does not explicitly indicate whether a name that
names a set of overloaded declarations, some of which are
templates, is a template-name. However, such a name should
be a template-name; otherwise, there is no way to form a
template-id for the overloaded templates. */
fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
if (TREE_CODE (fns) == OVERLOAD)
{
tree fn;
for (fn = fns; fn; fn = OVL_NEXT (fn))
if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
break;
}
else
{
/* Otherwise, the name does not name a template. */
cp_parser_error (parser, "expected template-name");
return error_mark_node;
}
}
/* If DECL is dependent, and refers to a function, then just return
its name; we will look it up again during template instantiation. */
if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
{
tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
if (TYPE_P (scope) && dependent_type_p (scope))
return identifier;
}
return decl;
}
/* Parse a template-argument-list.
template-argument-list:
template-argument
template-argument-list , template-argument
Returns a TREE_VEC containing the arguments. */
static tree
cp_parser_template_argument_list (cp_parser* parser)
{
tree fixed_args[10];
unsigned n_args = 0;
unsigned alloced = 10;
tree *arg_ary = fixed_args;
tree vec;
do
{
tree argument;
if (n_args)
/* Consume the comma. */
cp_lexer_consume_token (parser->lexer);
/* Parse the template-argument. */
argument = cp_parser_template_argument (parser);
if (n_args == alloced)
{
alloced *= 2;
if (arg_ary == fixed_args)
{
arg_ary = xmalloc (sizeof (tree) * alloced);
memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
}
else
arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
}
arg_ary[n_args++] = argument;
}
while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
vec = make_tree_vec (n_args);
while (n_args--)
TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
if (arg_ary != fixed_args)
free (arg_ary);
return vec;
}
/* Parse a template-argument.
template-argument:
assignment-expression
type-id
id-expression
The representation is that of an assignment-expression, type-id, or
id-expression -- except that the qualified id-expression is
evaluated, so that the value returned is either a DECL or an
OVERLOAD.
Although the standard says "assignment-expression", it forbids
throw-expressions or assignments in the template argument.
Therefore, we use "conditional-expression" instead. */
static tree
cp_parser_template_argument (cp_parser* parser)
{
tree argument;
bool template_p;
bool address_p;
cp_token *token;
cp_id_kind idk;
tree qualifying_class;
/* There's really no way to know what we're looking at, so we just
try each alternative in order.
[temp.arg]
In a template-argument, an ambiguity between a type-id and an
expression is resolved to a type-id, regardless of the form of
the corresponding template-parameter.
Therefore, we try a type-id first. */
cp_parser_parse_tentatively (parser);
argument = cp_parser_type_id (parser);
/* If the next token isn't a `,' or a `>', then this argument wasn't
really finished. */
if (!cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_error (parser, "expected template-argument");
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return argument;
/* We're still not sure what the argument will be. */
cp_parser_parse_tentatively (parser);
/* Try a template. */
argument = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
&template_p,
/*declarator_p=*/false);
/* If the next token isn't a `,' or a `>', then this argument wasn't
really finished. */
if (!cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_error (parser, "expected template-argument");
if (!cp_parser_error_occurred (parser))
{
/* Figure out what is being referred to. */
argument = cp_parser_lookup_name_simple (parser, argument);
if (template_p)
argument = make_unbound_class_template (TREE_OPERAND (argument, 0),
TREE_OPERAND (argument, 1),
tf_error);
else if (TREE_CODE (argument) != TEMPLATE_DECL)
cp_parser_error (parser, "expected template-name");
}
if (cp_parser_parse_definitely (parser))
return argument;
/* It must be a non-type argument. There permitted cases are given
in [temp.arg.nontype]:
-- an integral constant-expression of integral or enumeration
type; or
-- the name of a non-type template-parameter; or
-- the name of an object or function with external linkage...
-- the address of an object or function with external linkage...
-- a pointer to member... */
/* Look for a non-type template parameter. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
{
cp_parser_parse_tentatively (parser);
argument = cp_parser_primary_expression (parser,
&idk,
&qualifying_class);
if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
|| !cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_simulate_error (parser);
if (cp_parser_parse_definitely (parser))
return argument;
}
/* If the next token is "&", the argument must be the address of an
object or function with external linkage. */
address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
if (address_p)
cp_lexer_consume_token (parser->lexer);
/* See if we might have an id-expression. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_NAME
|| token->keyword == RID_OPERATOR
|| token->type == CPP_SCOPE
|| token->type == CPP_TEMPLATE_ID
|| token->type == CPP_NESTED_NAME_SPECIFIER)
{
cp_parser_parse_tentatively (parser);
argument = cp_parser_primary_expression (parser,
&idk,
&qualifying_class);
if (cp_parser_error_occurred (parser)
|| !cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_abort_tentative_parse (parser);
else
{
if (qualifying_class)
argument = finish_qualified_id_expr (qualifying_class,
argument,
/*done=*/true,
address_p);
if (TREE_CODE (argument) == VAR_DECL)
{
/* A variable without external linkage might still be a
valid constant-expression, so no error is issued here
if the external-linkage check fails. */
if (!DECL_EXTERNAL_LINKAGE_P (argument))
cp_parser_simulate_error (parser);
}
else if (is_overloaded_fn (argument))
/* All overloaded functions are allowed; if the external
linkage test does not pass, an error will be issued
later. */
;
else if (address_p
&& (TREE_CODE (argument) == OFFSET_REF
|| TREE_CODE (argument) == SCOPE_REF))
/* A pointer-to-member. */
;
else
cp_parser_simulate_error (parser);
if (cp_parser_parse_definitely (parser))
{
if (address_p)
argument = build_x_unary_op (ADDR_EXPR, argument);
return argument;
}
}
}
/* If the argument started with "&", there are no other valid
alternatives at this point. */
if (address_p)
{
cp_parser_error (parser, "invalid non-type template argument");
return error_mark_node;
}
/* The argument must be a constant-expression. */
argument = cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
/*non_constant_p=*/NULL);
/* If it's non-dependent, simplify it. */
return cp_parser_fold_non_dependent_expr (argument);
}
/* Parse an explicit-instantiation.
explicit-instantiation:
template declaration
Although the standard says `declaration', what it really means is:
explicit-instantiation:
template decl-specifier-seq [opt] declarator [opt] ;
Things like `template int S<int>::i = 5, int S<double>::j;' are not
supposed to be allowed. A defect report has been filed about this
issue.
GNU Extension:
explicit-instantiation:
storage-class-specifier template
decl-specifier-seq [opt] declarator [opt] ;
function-specifier template
decl-specifier-seq [opt] declarator [opt] ; */
static void
cp_parser_explicit_instantiation (cp_parser* parser)
{
int declares_class_or_enum;
tree decl_specifiers;
tree attributes;
tree extension_specifier = NULL_TREE;
/* Look for an (optional) storage-class-specifier or
function-specifier. */
if (cp_parser_allow_gnu_extensions_p (parser))
{
extension_specifier
= cp_parser_storage_class_specifier_opt (parser);
if (!extension_specifier)
extension_specifier = cp_parser_function_specifier_opt (parser);
}
/* Look for the `template' keyword. */
cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
/* Let the front end know that we are processing an explicit
instantiation. */
begin_explicit_instantiation ();
/* [temp.explicit] says that we are supposed to ignore access
control while processing explicit instantiation directives. */
push_deferring_access_checks (dk_no_check);
/* Parse a decl-specifier-seq. */
decl_specifiers
= cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&attributes,
&declares_class_or_enum);
/* If there was exactly one decl-specifier, and it declared a class,
and there's no declarator, then we have an explicit type
instantiation. */
if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
{
tree type;
type = check_tag_decl (decl_specifiers);
/* Turn access control back on for names used during
template instantiation. */
pop_deferring_access_checks ();
if (type)
do_type_instantiation (type, extension_specifier, /*complain=*/1);
}
else
{
tree declarator;
tree decl;
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
/*ctor_dtor_or_conv_p=*/NULL);
cp_parser_check_for_definition_in_return_type (declarator,
declares_class_or_enum);
decl = grokdeclarator (declarator, decl_specifiers,
NORMAL, 0, NULL);
/* Turn access control back on for names used during
template instantiation. */
pop_deferring_access_checks ();
/* Do the explicit instantiation. */
do_decl_instantiation (decl, extension_specifier);
}
/* We're done with the instantiation. */
end_explicit_instantiation ();
cp_parser_consume_semicolon_at_end_of_statement (parser);
}
/* Parse an explicit-specialization.
explicit-specialization:
template < > declaration
Although the standard says `declaration', what it really means is:
explicit-specialization:
template <> decl-specifier [opt] init-declarator [opt] ;
template <> function-definition
template <> explicit-specialization
template <> template-declaration */
static void
cp_parser_explicit_specialization (cp_parser* parser)
{
/* Look for the `template' keyword. */
cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
/* Look for the `<'. */
cp_parser_require (parser, CPP_LESS, "`<'");
/* Look for the `>'. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* We have processed another parameter list. */
++parser->num_template_parameter_lists;
/* Let the front end know that we are beginning a specialization. */
begin_specialization ();
/* If the next keyword is `template', we need to figure out whether
or not we're looking a template-declaration. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
cp_parser_template_declaration_after_export (parser,
/*member_p=*/false);
else
cp_parser_explicit_specialization (parser);
}
else
/* Parse the dependent declaration. */
cp_parser_single_declaration (parser,
/*member_p=*/false,
/*friend_p=*/NULL);
/* We're done with the specialization. */
end_specialization ();
/* We're done with this parameter list. */
--parser->num_template_parameter_lists;
}
/* Parse a type-specifier.
type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier
GNU Extension:
type-specifier:
__complex__
Returns a representation of the type-specifier. If the
type-specifier is a keyword (like `int' or `const', or
`__complex__') then the corresponding IDENTIFIER_NODE is returned.
For a class-specifier, enum-specifier, or elaborated-type-specifier
a TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
If IS_FRIEND is TRUE then this type-specifier is being declared a
`friend'. If IS_DECLARATION is TRUE, then this type-specifier is
appearing in a decl-specifier-seq.
If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
class-specifier, enum-specifier, or elaborated-type-specifier, then
*DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
if a type is declared; 2 if it is defined. Otherwise, it is set to
zero.
If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
is set to FALSE. */
static tree
cp_parser_type_specifier (cp_parser* parser,
cp_parser_flags flags,
bool is_friend,
bool is_declaration,
int* declares_class_or_enum,
bool* is_cv_qualifier)
{
tree type_spec = NULL_TREE;
cp_token *token;
enum rid keyword;
/* Assume this type-specifier does not declare a new type. */
if (declares_class_or_enum)
*declares_class_or_enum = false;
/* And that it does not specify a cv-qualifier. */
if (is_cv_qualifier)
*is_cv_qualifier = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a keyword, we can use that to guide the
production we choose. */
keyword = token->keyword;
switch (keyword)
{
/* Any of these indicate either a class-specifier, or an
elaborated-type-specifier. */
case RID_CLASS:
case RID_STRUCT:
case RID_UNION:
case RID_ENUM:
/* Parse tentatively so that we can back up if we don't find a
class-specifier or enum-specifier. */
cp_parser_parse_tentatively (parser);
/* Look for the class-specifier or enum-specifier. */
if (keyword == RID_ENUM)
type_spec = cp_parser_enum_specifier (parser);
else
type_spec = cp_parser_class_specifier (parser);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
{
if (declares_class_or_enum)
*declares_class_or_enum = 2;
return type_spec;
}
/* Fall through. */
case RID_TYPENAME:
/* Look for an elaborated-type-specifier. */
type_spec = cp_parser_elaborated_type_specifier (parser,
is_friend,
is_declaration);
/* We're declaring a class or enum -- unless we're using
`typename'. */
if (declares_class_or_enum && keyword != RID_TYPENAME)
*declares_class_or_enum = 1;
return type_spec;
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
type_spec = cp_parser_cv_qualifier_opt (parser);
/* Even though we call a routine that looks for an optional
qualifier, we know that there should be one. */
my_friendly_assert (type_spec != NULL, 20000328);
/* This type-specifier was a cv-qualified. */
if (is_cv_qualifier)
*is_cv_qualifier = true;
return type_spec;
case RID_COMPLEX:
/* The `__complex__' keyword is a GNU extension. */
return cp_lexer_consume_token (parser->lexer)->value;
default:
break;
}
/* If we do not already have a type-specifier, assume we are looking
at a simple-type-specifier. */
type_spec = cp_parser_simple_type_specifier (parser, flags,
/*identifier_p=*/true);
/* If we didn't find a type-specifier, and a type-specifier was not
optional in this context, issue an error message. */
if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
{
cp_parser_error (parser, "expected type specifier");
return error_mark_node;
}
return type_spec;
}
/* Parse a simple-type-specifier.
simple-type-specifier:
:: [opt] nested-name-specifier [opt] type-name
:: [opt] nested-name-specifier template template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void
GNU Extension:
simple-type-specifier:
__typeof__ unary-expression
__typeof__ ( type-id )
For the various keywords, the value returned is simply the
TREE_IDENTIFIER representing the keyword if IDENTIFIER_P is true.
For the first two productions, and if IDENTIFIER_P is false, the
value returned is the indicated TYPE_DECL. */
static tree
cp_parser_simple_type_specifier (cp_parser* parser, cp_parser_flags flags,
bool identifier_p)
{
tree type = NULL_TREE;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a keyword, things are easy. */
switch (token->keyword)
{
case RID_CHAR:
type = char_type_node;
break;
case RID_WCHAR:
type = wchar_type_node;
break;
case RID_BOOL:
type = boolean_type_node;
break;
case RID_SHORT:
type = short_integer_type_node;
break;
case RID_INT:
type = integer_type_node;
break;
case RID_LONG:
type = long_integer_type_node;
break;
case RID_SIGNED:
type = integer_type_node;
break;
case RID_UNSIGNED:
type = unsigned_type_node;
break;
case RID_FLOAT:
type = float_type_node;
break;
case RID_DOUBLE:
type = double_type_node;
break;
case RID_VOID:
type = void_type_node;
break;
case RID_TYPEOF:
{
tree operand;
/* Consume the `typeof' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the operand to `typeof' */
operand = cp_parser_sizeof_operand (parser, RID_TYPEOF);
/* If it is not already a TYPE, take its type. */
if (!TYPE_P (operand))
operand = finish_typeof (operand);
return operand;
}
default:
break;
}
/* If the type-specifier was for a built-in type, we're done. */
if (type)
{
tree id;
/* Consume the token. */
id = cp_lexer_consume_token (parser->lexer)->value;
return identifier_p ? id : TYPE_NAME (type);
}
/* The type-specifier must be a user-defined type. */
if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
{
/* Don't gobble tokens or issue error messages if this is an
optional type-specifier. */
if (flags & CP_PARSER_FLAGS_OPTIONAL)
cp_parser_parse_tentatively (parser);
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name specifier. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false);
/* If we have seen a nested-name-specifier, and the next token
is `template', then we are using the template-id production. */
if (parser->scope
&& cp_parser_optional_template_keyword (parser))
{
/* Look for the template-id. */
type = cp_parser_template_id (parser,
/*template_keyword_p=*/true,
/*check_dependency_p=*/true);
/* If the template-id did not name a type, we are out of
luck. */
if (TREE_CODE (type) != TYPE_DECL)
{
cp_parser_error (parser, "expected template-id for type");
type = NULL_TREE;
}
}
/* Otherwise, look for a type-name. */
else
{
type = cp_parser_type_name (parser);
if (type == error_mark_node)
type = NULL_TREE;
}
/* If it didn't work out, we don't have a TYPE. */
if ((flags & CP_PARSER_FLAGS_OPTIONAL)
&& !cp_parser_parse_definitely (parser))
type = NULL_TREE;
}
/* If we didn't get a type-name, issue an error message. */
if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
{
cp_parser_error (parser, "expected type-name");
return error_mark_node;
}
return type;
}
/* Parse a type-name.
type-name:
class-name
enum-name
typedef-name
enum-name:
identifier
typedef-name:
identifier
Returns a TYPE_DECL for the the type. */
static tree
cp_parser_type_name (cp_parser* parser)
{
tree type_decl;
tree identifier;
/* We can't know yet whether it is a class-name or not. */
cp_parser_parse_tentatively (parser);
/* Try a class-name. */
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency_p=*/true,
/*class_head_p=*/false);
/* If it's not a class-name, keep looking. */
if (!cp_parser_parse_definitely (parser))
{
/* It must be a typedef-name or an enum-name. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return error_mark_node;
/* Look up the type-name. */
type_decl = cp_parser_lookup_name_simple (parser, identifier);
/* Issue an error if we did not find a type-name. */
if (TREE_CODE (type_decl) != TYPE_DECL)
{
cp_parser_error (parser, "expected type-name");
type_decl = error_mark_node;
}
/* Remember that the name was used in the definition of the
current class so that we can check later to see if the
meaning would have been different after the class was
entirely defined. */
else if (type_decl != error_mark_node
&& !parser->scope)
maybe_note_name_used_in_class (identifier, type_decl);
}
return type_decl;
}
/* Parse an elaborated-type-specifier. Note that the grammar given
here incorporates the resolution to DR68.
elaborated-type-specifier:
class-key :: [opt] nested-name-specifier [opt] identifier
class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
enum :: [opt] nested-name-specifier [opt] identifier
typename :: [opt] nested-name-specifier identifier
typename :: [opt] nested-name-specifier template [opt]
template-id
If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
declared `friend'. If IS_DECLARATION is TRUE, then this
elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
something is being declared.
Returns the TYPE specified. */
static tree
cp_parser_elaborated_type_specifier (cp_parser* parser,
bool is_friend,
bool is_declaration)
{
enum tag_types tag_type;
tree identifier;
tree type = NULL_TREE;
/* See if we're looking at the `enum' keyword. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
{
/* Consume the `enum' token. */
cp_lexer_consume_token (parser->lexer);
/* Remember that it's an enumeration type. */
tag_type = enum_type;
}
/* Or, it might be `typename'. */
else if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_TYPENAME))
{
/* Consume the `typename' token. */
cp_lexer_consume_token (parser->lexer);
/* Remember that it's a `typename' type. */
tag_type = typename_type;
/* The `typename' keyword is only allowed in templates. */
if (!processing_template_decl)
pedwarn ("using `typename' outside of template");
}
/* Otherwise it must be a class-key. */
else
{
tag_type = cp_parser_class_key (parser);
if (tag_type == none_type)
return error_mark_node;
}
/* Look for the `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. */
if (tag_type == typename_type)
{
if (cp_parser_nested_name_specifier (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true)
== error_mark_node)
return error_mark_node;
}
else
/* Even though `typename' is not present, the proposed resolution
to Core Issue 180 says that in `class A<T>::B', `B' should be
considered a type-name, even if `A<T>' is dependent. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true);
/* For everything but enumeration types, consider a template-id. */
if (tag_type != enum_type)
{
bool template_p = false;
tree decl;
/* Allow the `template' keyword. */
template_p = cp_parser_optional_template_keyword (parser);
/* If we didn't see `template', we don't know if there's a
template-id or not. */
if (!template_p)
cp_parser_parse_tentatively (parser);
/* Parse the template-id. */
decl = cp_parser_template_id (parser, template_p,
/*check_dependency_p=*/true);
/* If we didn't find a template-id, look for an ordinary
identifier. */
if (!template_p && !cp_parser_parse_definitely (parser))
;
/* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
in effect, then we must assume that, upon instantiation, the
template will correspond to a class. */
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
&& tag_type == typename_type)
type = make_typename_type (parser->scope, decl,
/*complain=*/1);
else
type = TREE_TYPE (decl);
}
/* For an enumeration type, consider only a plain identifier. */
if (!type)
{
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
{
parser->scope = NULL_TREE;
return error_mark_node;
}
/* For a `typename', we needn't call xref_tag. */
if (tag_type == typename_type)
return make_typename_type (parser->scope, identifier,
/*complain=*/1);
/* Look up a qualified name in the usual way. */
if (parser->scope)
{
tree decl;
/* In an elaborated-type-specifier, names are assumed to name
types, so we set IS_TYPE to TRUE when calling
cp_parser_lookup_name. */
decl = cp_parser_lookup_name (parser, identifier,
/*is_type=*/true,
/*is_namespace=*/false,
/*check_dependency=*/true);
/* If we are parsing friend declaration, DECL may be a
TEMPLATE_DECL tree node here. However, we need to check
whether this TEMPLATE_DECL results in valid code. Consider
the following example:
namespace N {
template <class T> class C {};
}
class X {
template <class T> friend class N::C; // #1, valid code
};
template <class T> class Y {
friend class N::C; // #2, invalid code
};
For both case #1 and #2, we arrive at a TEMPLATE_DECL after
name lookup of `N::C'. We see that friend declaration must
be template for the code to be valid. Note that
processing_template_decl does not work here since it is
always 1 for the above two cases. */
decl = (cp_parser_maybe_treat_template_as_class
(decl, /*tag_name_p=*/is_friend
&& parser->num_template_parameter_lists));
if (TREE_CODE (decl) != TYPE_DECL)
{
error ("expected type-name");
return error_mark_node;
}
if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
check_elaborated_type_specifier
(tag_type, decl,
(parser->num_template_parameter_lists
|| DECL_SELF_REFERENCE_P (decl)));
type = TREE_TYPE (decl);
}
else
{
/* An elaborated-type-specifier sometimes introduces a new type and
sometimes names an existing type. Normally, the rule is that it
introduces a new type only if there is not an existing type of
the same name already in scope. For example, given:
struct S {};
void f() { struct S s; }
the `struct S' in the body of `f' is the same `struct S' as in
the global scope; the existing definition is used. However, if
there were no global declaration, this would introduce a new
local class named `S'.
An exception to this rule applies to the following code:
namespace N { struct S; }
Here, the elaborated-type-specifier names a new type
unconditionally; even if there is already an `S' in the
containing scope this declaration names a new type.
This exception only applies if the elaborated-type-specifier
forms the complete declaration:
[class.name]
A declaration consisting solely of `class-key identifier ;' is
either a redeclaration of the name in the current scope or a
forward declaration of the identifier as a class name. It
introduces the name into the current scope.
We are in this situation precisely when the next token is a `;'.
An exception to the exception is that a `friend' declaration does
*not* name a new type; i.e., given:
struct S { friend struct T; };
`T' is not a new type in the scope of `S'.
Also, `new struct S' or `sizeof (struct S)' never results in the
definition of a new type; a new type can only be declared in a
declaration context. */
type = xref_tag (tag_type, identifier,
/*attributes=*/NULL_TREE,
(is_friend
|| !is_declaration
|| cp_lexer_next_token_is_not (parser->lexer,
CPP_SEMICOLON)),
parser->num_template_parameter_lists);
}
}
if (tag_type != enum_type)
cp_parser_check_class_key (tag_type, type);
return type;
}
/* Parse an enum-specifier.
enum-specifier:
enum identifier [opt] { enumerator-list [opt] }
Returns an ENUM_TYPE representing the enumeration. */
static tree
cp_parser_enum_specifier (cp_parser* parser)
{
cp_token *token;
tree identifier = NULL_TREE;
tree type;
/* Look for the `enum' keyword. */
if (!cp_parser_require_keyword (parser, RID_ENUM, "`enum'"))
return error_mark_node;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* See if it is an identifier. */
if (token->type == CPP_NAME)
identifier = cp_parser_identifier (parser);
/* Look for the `{'. */
if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
return error_mark_node;
/* At this point, we're going ahead with the enum-specifier, even
if some other problem occurs. */
cp_parser_commit_to_tentative_parse (parser);
/* Issue an error message if type-definitions are forbidden here. */
cp_parser_check_type_definition (parser);
/* Create the new type. */
type = start_enum (identifier ? identifier : make_anon_name ());
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a `}', then there are some enumerators. */
if (token->type != CPP_CLOSE_BRACE)
cp_parser_enumerator_list (parser, type);
/* Look for the `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
/* Finish up the enumeration. */
finish_enum (type);
return type;
}
/* Parse an enumerator-list. The enumerators all have the indicated
TYPE.
enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition */
static void
cp_parser_enumerator_list (cp_parser* parser, tree type)
{
while (true)
{
cp_token *token;
/* Parse an enumerator-definition. */
cp_parser_enumerator_definition (parser, type);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a `,', then we've reached the end of the
list. */
if (token->type != CPP_COMMA)
break;
/* Otherwise, consume the `,' and keep going. */
cp_lexer_consume_token (parser->lexer);
/* If the next token is a `}', there is a trailing comma. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
{
if (pedantic && !in_system_header)
pedwarn ("comma at end of enumerator list");
break;
}
}
}
/* Parse an enumerator-definition. The enumerator has the indicated
TYPE.
enumerator-definition:
enumerator
enumerator = constant-expression
enumerator:
identifier */
static void
cp_parser_enumerator_definition (cp_parser* parser, tree type)
{
cp_token *token;
tree identifier;
tree value;
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's an `=', then there's an explicit value. */
if (token->type == CPP_EQ)
{
/* Consume the `=' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the value. */
value = cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
NULL);
}
else
value = NULL_TREE;
/* Create the enumerator. */
build_enumerator (identifier, value, type);
}
/* Parse a namespace-name.
namespace-name:
original-namespace-name
namespace-alias
Returns the NAMESPACE_DECL for the namespace. */
static tree
cp_parser_namespace_name (cp_parser* parser)
{
tree identifier;
tree namespace_decl;
/* Get the name of the namespace. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return error_mark_node;
/* Look up the identifier in the currently active scope. Look only
for namespaces, due to:
[basic.lookup.udir]
When looking up a namespace-name in a using-directive or alias
definition, only namespace names are considered.
And:
[basic.lookup.qual]
During the lookup of a name preceding the :: scope resolution
operator, object, function, and enumerator names are ignored.
(Note that cp_parser_class_or_namespace_name only calls this
function if the token after the name is the scope resolution
operator.) */
namespace_decl = cp_parser_lookup_name (parser, identifier,
/*is_type=*/false,
/*is_namespace=*/true,
/*check_dependency=*/true);
/* If it's not a namespace, issue an error. */
if (namespace_decl == error_mark_node
|| TREE_CODE (namespace_decl) != NAMESPACE_DECL)
{
cp_parser_error (parser, "expected namespace-name");
namespace_decl = error_mark_node;
}
return namespace_decl;
}
/* Parse a namespace-definition.
namespace-definition:
named-namespace-definition
unnamed-namespace-definition
named-namespace-definition:
original-namespace-definition
extension-namespace-definition
original-namespace-definition:
namespace identifier { namespace-body }
extension-namespace-definition:
namespace original-namespace-name { namespace-body }
unnamed-namespace-definition:
namespace { namespace-body } */
static void
cp_parser_namespace_definition (cp_parser* parser)
{
tree identifier;
/* Look for the `namespace' keyword. */
cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
/* Get the name of the namespace. We do not attempt to distinguish
between an original-namespace-definition and an
extension-namespace-definition at this point. The semantic
analysis routines are responsible for that. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Look for the `{' to start the namespace. */
cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
/* Start the namespace. */
push_namespace (identifier);
/* Parse the body of the namespace. */
cp_parser_namespace_body (parser);
/* Finish the namespace. */
pop_namespace ();
/* Look for the final `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
/* Parse a namespace-body.
namespace-body:
declaration-seq [opt] */
static void
cp_parser_namespace_body (cp_parser* parser)
{
cp_parser_declaration_seq_opt (parser);
}
/* Parse a namespace-alias-definition.
namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ; */
static void
cp_parser_namespace_alias_definition (cp_parser* parser)
{
tree identifier;
tree namespace_specifier;
/* Look for the `namespace' keyword. */
cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return;
/* Look for the `=' token. */
cp_parser_require (parser, CPP_EQ, "`='");
/* Look for the qualified-namespace-specifier. */
namespace_specifier
= cp_parser_qualified_namespace_specifier (parser);
/* Look for the `;' token. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
/* Register the alias in the symbol table. */
do_namespace_alias (identifier, namespace_specifier);
}
/* Parse a qualified-namespace-specifier.
qualified-namespace-specifier:
:: [opt] nested-name-specifier [opt] namespace-name
Returns a NAMESPACE_DECL corresponding to the specified
namespace. */
static tree
cp_parser_qualified_namespace_specifier (cp_parser* parser)
{
/* Look for the optional `::'. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the optional nested-name-specifier. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false);
return cp_parser_namespace_name (parser);
}
/* Parse a using-declaration.
using-declaration:
using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
using :: unqualified-id ; */
static void
cp_parser_using_declaration (cp_parser* parser)
{
cp_token *token;
bool typename_p = false;
bool global_scope_p;
tree decl;
tree identifier;
tree scope;
/* Look for the `using' keyword. */
cp_parser_require_keyword (parser, RID_USING, "`using'");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* See if it's `typename'. */
if (token->keyword == RID_TYPENAME)
{
/* Remember that we've seen it. */
typename_p = true;
/* Consume the `typename' token. */
cp_lexer_consume_token (parser->lexer);
}
/* Look for the optional global scope qualification. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* If we saw `typename', or didn't see `::', then there must be a
nested-name-specifier present. */
if (typename_p || !global_scope_p)
cp_parser_nested_name_specifier (parser, typename_p,
/*check_dependency_p=*/true,
/*type_p=*/false);
/* Otherwise, we could be in either of the two productions. In that
case, treat the nested-name-specifier as optional. */
else
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false);
/* Parse the unqualified-id. */
identifier = cp_parser_unqualified_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*declarator_p=*/true);
/* The function we call to handle a using-declaration is different
depending on what scope we are in. */
if (identifier == error_mark_node)
;
else if (TREE_CODE (identifier) != IDENTIFIER_NODE
&& TREE_CODE (identifier) != BIT_NOT_EXPR)
/* [namespace.udecl]
A using declaration shall not name a template-id. */
error ("a template-id may not appear in a using-declaration");
else
{
scope = current_scope ();
if (scope && TYPE_P (scope))
{
/* Create the USING_DECL. */
decl = do_class_using_decl (build_nt (SCOPE_REF,
parser->scope,
identifier));
/* Add it to the list of members in this class. */
finish_member_declaration (decl);
}
else
{
decl = cp_parser_lookup_name_simple (parser, identifier);
if (decl == error_mark_node)
{
if (parser->scope && parser->scope != global_namespace)
error ("`%D::%D' has not been declared",
parser->scope, identifier);
else
error ("`::%D' has not been declared", identifier);
}
else if (scope)
do_local_using_decl (decl);
else
do_toplevel_using_decl (decl);
}
}
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
/* Parse a using-directive.
using-directive:
using namespace :: [opt] nested-name-specifier [opt]
namespace-name ; */
static void
cp_parser_using_directive (cp_parser* parser)
{
tree namespace_decl;
/* Look for the `using' keyword. */
cp_parser_require_keyword (parser, RID_USING, "`using'");
/* And the `namespace' keyword. */
cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
/* And the optional nested-name-specifier. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false);
/* Get the namespace being used. */
namespace_decl = cp_parser_namespace_name (parser);
/* Update the symbol table. */
do_using_directive (namespace_decl);
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
/* Parse an asm-definition.
asm-definition:
asm ( string-literal ) ;
GNU Extension:
asm-definition:
asm volatile [opt] ( string-literal ) ;
asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
asm volatile [opt] ( string-literal : asm-operand-list [opt]
: asm-operand-list [opt] ) ;
asm volatile [opt] ( string-literal : asm-operand-list [opt]
: asm-operand-list [opt]
: asm-operand-list [opt] ) ; */
static void
cp_parser_asm_definition (cp_parser* parser)
{
cp_token *token;
tree string;
tree outputs = NULL_TREE;
tree inputs = NULL_TREE;
tree clobbers = NULL_TREE;
tree asm_stmt;
bool volatile_p = false;
bool extended_p = false;
/* Look for the `asm' keyword. */
cp_parser_require_keyword (parser, RID_ASM, "`asm'");
/* See if the next token is `volatile'. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
{
/* Remember that we saw the `volatile' keyword. */
volatile_p = true;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
/* Look for the opening `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Look for the string. */
token = cp_parser_require (parser, CPP_STRING, "asm body");
if (!token)
return;
string = token->value;
/* If we're allowing GNU extensions, check for the extended assembly
syntax. Unfortunately, the `:' tokens need not be separated by
a space in C, and so, for compatibility, we tolerate that here
too. Doing that means that we have to treat the `::' operator as
two `:' tokens. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& at_function_scope_p ()
&& (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
|| cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
{
bool inputs_p = false;
bool clobbers_p = false;
/* The extended syntax was used. */
extended_p = true;
/* Look for outputs. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
/* Consume the `:'. */
cp_lexer_consume_token (parser->lexer);
/* Parse the output-operands. */
if (cp_lexer_next_token_is_not (parser->lexer,
CPP_COLON)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_SCOPE)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_CLOSE_PAREN))
outputs = cp_parser_asm_operand_list (parser);
}
/* If the next token is `::', there are no outputs, and the
next token is the beginning of the inputs. */
else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
{
/* Consume the `::' token. */
cp_lexer_consume_token (parser->lexer);
/* The inputs are coming next. */
inputs_p = true;
}
/* Look for inputs. */
if (inputs_p
|| cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
if (!inputs_p)
/* Consume the `:'. */
cp_lexer_consume_token (parser->lexer);
/* Parse the output-operands. */
if (cp_lexer_next_token_is_not (parser->lexer,
CPP_COLON)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_SCOPE)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_CLOSE_PAREN))
inputs = cp_parser_asm_operand_list (parser);
}
else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
/* The clobbers are coming next. */
clobbers_p = true;
/* Look for clobbers. */
if (clobbers_p
|| cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
if (!clobbers_p)
/* Consume the `:'. */
cp_lexer_consume_token (parser->lexer);
/* Parse the clobbers. */
if (cp_lexer_next_token_is_not (parser->lexer,
CPP_CLOSE_PAREN))
clobbers = cp_parser_asm_clobber_list (parser);
}
}
/* Look for the closing `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, true, false);
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
/* Create the ASM_STMT. */
if (at_function_scope_p ())
{
asm_stmt =
finish_asm_stmt (volatile_p
? ridpointers[(int) RID_VOLATILE] : NULL_TREE,
string, outputs, inputs, clobbers);
/* If the extended syntax was not used, mark the ASM_STMT. */
if (!extended_p)
ASM_INPUT_P (asm_stmt) = 1;
}
else
assemble_asm (string);
}
/* Declarators [gram.dcl.decl] */
/* Parse an init-declarator.
init-declarator:
declarator initializer [opt]
GNU Extension:
init-declarator:
declarator asm-specification [opt] attributes [opt] initializer [opt]
The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
Returns a representation of the entity declared. If MEMBER_P is TRUE,
then this declarator appears in a class scope. The new DECL created
by this declarator is returned.
If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
for a function-definition here as well. If the declarator is a
declarator for a function-definition, *FUNCTION_DEFINITION_P will
be TRUE upon return. By that point, the function-definition will
have been completely parsed.
FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
is FALSE. */
static tree
cp_parser_init_declarator (cp_parser* parser,
tree decl_specifiers,
tree prefix_attributes,
bool function_definition_allowed_p,
bool member_p,
int declares_class_or_enum,
bool* function_definition_p)
{
cp_token *token;
tree declarator;
tree attributes;
tree asm_specification;
tree initializer;
tree decl = NULL_TREE;
tree scope;
bool is_initialized;
bool is_parenthesized_init;
bool is_non_constant_init;
int ctor_dtor_or_conv_p;
bool friend_p;
/* Assume that this is not the declarator for a function
definition. */
if (function_definition_p)
*function_definition_p = false;
/* Defer access checks while parsing the declarator; we cannot know
what names are accessible until we know what is being
declared. */
resume_deferring_access_checks ();
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
&ctor_dtor_or_conv_p);
/* Gather up the deferred checks. */
stop_deferring_access_checks ();
/* If the DECLARATOR was erroneous, there's no need to go
further. */
if (declarator == error_mark_node)
return error_mark_node;
cp_parser_check_for_definition_in_return_type (declarator,
declares_class_or_enum);
/* Figure out what scope the entity declared by the DECLARATOR is
located in. `grokdeclarator' sometimes changes the scope, so
we compute it now. */
scope = get_scope_of_declarator (declarator);
/* If we're allowing GNU extensions, look for an asm-specification
and attributes. */
if (cp_parser_allow_gnu_extensions_p (parser))
{
/* Look for an asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* And attributes. */
attributes = cp_parser_attributes_opt (parser);
}
else
{
asm_specification = NULL_TREE;
attributes = NULL_TREE;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check to see if the token indicates the start of a
function-definition. */
if (cp_parser_token_starts_function_definition_p (token))
{
if (!function_definition_allowed_p)
{
/* If a function-definition should not appear here, issue an
error message. */
cp_parser_error (parser,
"a function-definition is not allowed here");
return error_mark_node;
}
else
{
/* Neither attributes nor an asm-specification are allowed
on a function-definition. */
if (asm_specification)
error ("an asm-specification is not allowed on a function-definition");
if (attributes)
error ("attributes are not allowed on a function-definition");
/* This is a function-definition. */
*function_definition_p = true;
/* Parse the function definition. */
decl = (cp_parser_function_definition_from_specifiers_and_declarator
(parser, decl_specifiers, prefix_attributes, declarator));
return decl;
}
}
/* [dcl.dcl]
Only in function declarations for constructors, destructors, and
type conversions can the decl-specifier-seq be omitted.
We explicitly postpone this check past the point where we handle
function-definitions because we tolerate function-definitions
that are missing their return types in some modes. */
if (!decl_specifiers && ctor_dtor_or_conv_p <= 0)
{
cp_parser_error (parser,
"expected constructor, destructor, or type conversion");
return error_mark_node;
}
/* An `=' or an `(' indicates an initializer. */
is_initialized = (token->type == CPP_EQ
|| token->type == CPP_OPEN_PAREN);
/* If the init-declarator isn't initialized and isn't followed by a
`,' or `;', it's not a valid init-declarator. */
if (!is_initialized
&& token->type != CPP_COMMA
&& token->type != CPP_SEMICOLON)
{
cp_parser_error (parser, "expected init-declarator");
return error_mark_node;
}
/* Because start_decl has side-effects, we should only call it if we
know we're going ahead. By this point, we know that we cannot
possibly be looking at any other construct. */
cp_parser_commit_to_tentative_parse (parser);
/* Check to see whether or not this declaration is a friend. */
friend_p = cp_parser_friend_p (decl_specifiers);
/* Check that the number of template-parameter-lists is OK. */
if (!cp_parser_check_declarator_template_parameters (parser, declarator))
return error_mark_node;
/* Enter the newly declared entry in the symbol table. If we're
processing a declaration in a class-specifier, we wait until
after processing the initializer. */
if (!member_p)
{
if (parser->in_unbraced_linkage_specification_p)
{
decl_specifiers = tree_cons (error_mark_node,
get_identifier ("extern"),
decl_specifiers);
have_extern_spec = false;
}
decl = start_decl (declarator, decl_specifiers,
is_initialized, attributes, prefix_attributes);
}
/* Enter the SCOPE. That way unqualified names appearing in the
initializer will be looked up in SCOPE. */
if (scope)
push_scope (scope);
/* Perform deferred access control checks, now that we know in which
SCOPE the declared entity resides. */
if (!member_p && decl)
{
tree saved_current_function_decl = NULL_TREE;
/* If the entity being declared is a function, pretend that we
are in its scope. If it is a `friend', it may have access to
things that would not otherwise be accessible. */
if (TREE_CODE (decl) == FUNCTION_DECL)
{
saved_current_function_decl = current_function_decl;
current_function_decl = decl;
}
/* Perform the access control checks for the declarator and the
the decl-specifiers. */
perform_deferred_access_checks ();
/* Restore the saved value. */
if (TREE_CODE (decl) == FUNCTION_DECL)
current_function_decl = saved_current_function_decl;
}
/* Parse the initializer. */
if (is_initialized)
initializer = cp_parser_initializer (parser,
&is_parenthesized_init,
&is_non_constant_init);
else
{
initializer = NULL_TREE;
is_parenthesized_init = false;
is_non_constant_init = true;
}
/* The old parser allows attributes to appear after a parenthesized
initializer. Mark Mitchell proposed removing this functionality
on the GCC mailing lists on 2002-08-13. This parser accepts the
attributes -- but ignores them. */
if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
if (cp_parser_attributes_opt (parser))
warning ("attributes after parenthesized initializer ignored");
/* Leave the SCOPE, now that we have processed the initializer. It
is important to do this before calling cp_finish_decl because it
makes decisions about whether to create DECL_STMTs or not based
on the current scope. */
if (scope)
pop_scope (scope);
/* For an in-class declaration, use `grokfield' to create the
declaration. */
if (member_p)
{
decl = grokfield (declarator, decl_specifiers,
initializer, /*asmspec=*/NULL_TREE,
/*attributes=*/NULL_TREE);
if (decl && TREE_CODE (decl) == FUNCTION_DECL)
cp_parser_save_default_args (parser, decl);
}
/* Finish processing the declaration. But, skip friend
declarations. */
if (!friend_p && decl)
cp_finish_decl (decl,
initializer,
asm_specification,
/* If the initializer is in parentheses, then this is
a direct-initialization, which means that an
`explicit' constructor is OK. Otherwise, an
`explicit' constructor cannot be used. */
((is_parenthesized_init || !is_initialized)
? 0 : LOOKUP_ONLYCONVERTING));
/* Remember whether or not variables were initialized by
constant-expressions. */
if (decl && TREE_CODE (decl) == VAR_DECL
&& is_initialized && !is_non_constant_init)
DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
return decl;
}
/* Parse a declarator.
declarator:
direct-declarator
ptr-operator declarator
abstract-declarator:
ptr-operator abstract-declarator [opt]
direct-abstract-declarator
GNU Extensions:
declarator:
attributes [opt] direct-declarator
attributes [opt] ptr-operator declarator
abstract-declarator:
attributes [opt] ptr-operator abstract-declarator [opt]
attributes [opt] direct-abstract-declarator
Returns a representation of the declarator. If the declarator has
the form `* declarator', then an INDIRECT_REF is returned, whose
only operand is the sub-declarator. Analogously, `& declarator' is
represented as an ADDR_EXPR. For `X::* declarator', a SCOPE_REF is
used. The first operand is the TYPE for `X'. The second operand
is an INDIRECT_REF whose operand is the sub-declarator.
Otherwise, the representation is as for a direct-declarator.
(It would be better to define a structure type to represent
declarators, rather than abusing `tree' nodes to represent
declarators. That would be much clearer and save some memory.
There is no reason for declarators to be garbage-collected, for
example; they are created during parser and no longer needed after
`grokdeclarator' has been called.)
For a ptr-operator that has the optional cv-qualifier-seq,
cv-qualifiers will be stored in the TREE_TYPE of the INDIRECT_REF
node.
If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
detect constructor, destructor or conversion operators. It is set
to -1 if the declarator is a name, and +1 if it is a
function. Otherwise it is set to zero. Usually you just want to
test for >0, but internally the negative value is used.
(The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
a decl-specifier-seq unless it declares a constructor, destructor,
or conversion. It might seem that we could check this condition in
semantic analysis, rather than parsing, but that makes it difficult
to handle something like `f()'. We want to notice that there are
no decl-specifiers, and therefore realize that this is an
expression, not a declaration.) */
static tree
cp_parser_declarator (cp_parser* parser,
cp_parser_declarator_kind dcl_kind,
int* ctor_dtor_or_conv_p)
{
cp_token *token;
tree declarator;
enum tree_code code;
tree cv_qualifier_seq;
tree class_type;
tree attributes = NULL_TREE;
/* Assume this is not a constructor, destructor, or type-conversion
operator. */
if (ctor_dtor_or_conv_p)
*ctor_dtor_or_conv_p = 0;
if (cp_parser_allow_gnu_extensions_p (parser))
attributes = cp_parser_attributes_opt (parser);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check for the ptr-operator production. */
cp_parser_parse_tentatively (parser);
/* Parse the ptr-operator. */
code = cp_parser_ptr_operator (parser,
&class_type,
&cv_qualifier_seq);
/* If that worked, then we have a ptr-operator. */
if (cp_parser_parse_definitely (parser))
{
/* The dependent declarator is optional if we are parsing an
abstract-declarator. */
if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
cp_parser_parse_tentatively (parser);
/* Parse the dependent declarator. */
declarator = cp_parser_declarator (parser, dcl_kind,
/*ctor_dtor_or_conv_p=*/NULL);
/* If we are parsing an abstract-declarator, we must handle the
case where the dependent declarator is absent. */
if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
&& !cp_parser_parse_definitely (parser))
declarator = NULL_TREE;
/* Build the representation of the ptr-operator. */
if (code == INDIRECT_REF)
declarator = make_pointer_declarator (cv_qualifier_seq,
declarator);
else
declarator = make_reference_declarator (cv_qualifier_seq,
declarator);
/* Handle the pointer-to-member case. */
if (class_type)
declarator = build_nt (SCOPE_REF, class_type, declarator);
}
/* Everything else is a direct-declarator. */
else
declarator = cp_parser_direct_declarator (parser, dcl_kind,
ctor_dtor_or_conv_p);
if (attributes && declarator != error_mark_node)
declarator = tree_cons (attributes, declarator, NULL_TREE);
return declarator;
}
/* Parse a direct-declarator or direct-abstract-declarator.
direct-declarator:
declarator-id
direct-declarator ( parameter-declaration-clause )
cv-qualifier-seq [opt]
exception-specification [opt]
direct-declarator [ constant-expression [opt] ]
( declarator )
direct-abstract-declarator:
direct-abstract-declarator [opt]
( parameter-declaration-clause )
cv-qualifier-seq [opt]
exception-specification [opt]
direct-abstract-declarator [opt] [ constant-expression [opt] ]
( abstract-declarator )
Returns a representation of the declarator. DCL_KIND is
CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
we are parsing a direct-declarator. It is
CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
of ambiguity we prefer an abstract declarator, as per
[dcl.ambig.res]. CTOR_DTOR_OR_CONV_P is as for
cp_parser_declarator.
For the declarator-id production, the representation is as for an
id-expression, except that a qualified name is represented as a
SCOPE_REF. A function-declarator is represented as a CALL_EXPR;
see the documentation of the FUNCTION_DECLARATOR_* macros for
information about how to find the various declarator components.
An array-declarator is represented as an ARRAY_REF. The
direct-declarator is the first operand; the constant-expression
indicating the size of the array is the second operand. */
static tree
cp_parser_direct_declarator (cp_parser* parser,
cp_parser_declarator_kind dcl_kind,
int* ctor_dtor_or_conv_p)
{
cp_token *token;
tree declarator = NULL_TREE;
tree scope = NULL_TREE;
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
bool saved_in_declarator_p = parser->in_declarator_p;
bool first = true;
while (true)
{
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_OPEN_PAREN)
{
/* This is either a parameter-declaration-clause, or a
parenthesized declarator. When we know we are parsing a
named declarator, it must be a parenthesized declarator
if FIRST is true. For instance, `(int)' is a
parameter-declaration-clause, with an omitted
direct-abstract-declarator. But `((*))', is a
parenthesized abstract declarator. Finally, when T is a
template parameter `(T)' is a
parameter-declaration-clause, and not a parenthesized
named declarator.
We first try and parse a parameter-declaration-clause,
and then try a nested declarator (if FIRST is true).
It is not an error for it not to be a
parameter-declaration-clause, even when FIRST is
false. Consider,
int i (int);
int i (3);
The first is the declaration of a function while the
second is a the definition of a variable, including its
initializer.
Having seen only the parenthesis, we cannot know which of
these two alternatives should be selected. Even more
complex are examples like:
int i (int (a));
int i (int (3));
The former is a function-declaration; the latter is a
variable initialization.
Thus again, we try a parameter-declaration-clause, and if
that fails, we back out and return. */
if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
{
tree params;
unsigned saved_num_template_parameter_lists;
cp_parser_parse_tentatively (parser);
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
if (first)
{
/* If this is going to be an abstract declarator, we're
in a declarator and we can't have default args. */
parser->default_arg_ok_p = false;
parser->in_declarator_p = true;
}
/* Inside the function parameter list, surrounding
template-parameter-lists do not apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* Parse the parameter-declaration-clause. */
params = cp_parser_parameter_declaration_clause (parser);
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
/* If all went well, parse the cv-qualifier-seq and the
exception-specification. */
if (cp_parser_parse_definitely (parser))
{
tree cv_qualifiers;
tree exception_specification;
if (ctor_dtor_or_conv_p)
*ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
first = false;
/* Consume the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Parse the cv-qualifier-seq. */
cv_qualifiers = cp_parser_cv_qualifier_seq_opt (parser);
/* And the exception-specification. */
exception_specification
= cp_parser_exception_specification_opt (parser);
/* Create the function-declarator. */
declarator = make_call_declarator (declarator,
params,
cv_qualifiers,
exception_specification);
/* Any subsequent parameter lists are to do with
return type, so are not those of the declared
function. */
parser->default_arg_ok_p = false;
/* Repeat the main loop. */
continue;
}
}
/* If this is the first, we can try a parenthesized
declarator. */
if (first)
{
parser->default_arg_ok_p = saved_default_arg_ok_p;
parser->in_declarator_p = saved_in_declarator_p;
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the nested declarator. */
declarator
= cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p);
first = false;
/* Expect a `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
declarator = error_mark_node;
if (declarator == error_mark_node)
break;
goto handle_declarator;
}
/* Otherwise, we must be done. */
else
break;
}
else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
&& token->type == CPP_OPEN_SQUARE)
{
/* Parse an array-declarator. */
tree bounds;
if (ctor_dtor_or_conv_p)
*ctor_dtor_or_conv_p = 0;
first = false;
parser->default_arg_ok_p = false;
parser->in_declarator_p = true;
/* Consume the `['. */
cp_lexer_consume_token (parser->lexer);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is `]', then there is no
constant-expression. */
if (token->type != CPP_CLOSE_SQUARE)
{
bool non_constant_p;
bounds
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/true,
&non_constant_p);
if (!non_constant_p)
bounds = cp_parser_fold_non_dependent_expr (bounds);
}
else
bounds = NULL_TREE;
/* Look for the closing `]'. */
if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
{
declarator = error_mark_node;
break;
}
declarator = build_nt (ARRAY_REF, declarator, bounds);
}
else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
{
/* Parse a declarator_id */
if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
cp_parser_parse_tentatively (parser);
declarator = cp_parser_declarator_id (parser);
if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
{
if (!cp_parser_parse_definitely (parser))
declarator = error_mark_node;
else if (TREE_CODE (declarator) != IDENTIFIER_NODE)
{
cp_parser_error (parser, "expected unqualified-id");
declarator = error_mark_node;
}
}
if (declarator == error_mark_node)
break;
if (TREE_CODE (declarator) == SCOPE_REF)
{
tree scope = TREE_OPERAND (declarator, 0);
/* In the declaration of a member of a template class
outside of the class itself, the SCOPE will sometimes
be a TYPENAME_TYPE. For example, given:
template <typename T>
int S<T>::R::i = 3;
the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
this context, we must resolve S<T>::R to an ordinary
type, rather than a typename type.
The reason we normally avoid resolving TYPENAME_TYPEs
is that a specialization of `S' might render
`S<T>::R' not a type. However, if `S' is
specialized, then this `i' will not be used, so there
is no harm in resolving the types here. */
if (TREE_CODE (scope) == TYPENAME_TYPE)
{
tree type;
/* Resolve the TYPENAME_TYPE. */
type = resolve_typename_type (scope,
/*only_current_p=*/false);
/* If that failed, the declarator is invalid. */
if (type != error_mark_node)
scope = type;
/* Build a new DECLARATOR. */
declarator = build_nt (SCOPE_REF,
scope,
TREE_OPERAND (declarator, 1));
}
}
/* Check to see whether the declarator-id names a constructor,
destructor, or conversion. */
if (declarator && ctor_dtor_or_conv_p
&& ((TREE_CODE (declarator) == SCOPE_REF
&& CLASS_TYPE_P (TREE_OPERAND (declarator, 0)))
|| (TREE_CODE (declarator) != SCOPE_REF
&& at_class_scope_p ())))
{
tree unqualified_name;
tree class_type;
/* Get the unqualified part of the name. */
if (TREE_CODE (declarator) == SCOPE_REF)
{
class_type = TREE_OPERAND (declarator, 0);
unqualified_name = TREE_OPERAND (declarator, 1);
}
else
{
class_type = current_class_type;
unqualified_name = declarator;
}
/* See if it names ctor, dtor or conv. */
if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR
|| IDENTIFIER_TYPENAME_P (unqualified_name)
|| constructor_name_p (unqualified_name, class_type))
*ctor_dtor_or_conv_p = -1;
}
handle_declarator:;
scope = get_scope_of_declarator (declarator);
if (scope)
/* Any names that appear after the declarator-id for a member
are looked up in the containing scope. */
push_scope (scope);
parser->in_declarator_p = true;
if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
|| (declarator
&& (TREE_CODE (declarator) == SCOPE_REF
|| TREE_CODE (declarator) == IDENTIFIER_NODE)))
/* Default args are only allowed on function
declarations. */
parser->default_arg_ok_p = saved_default_arg_ok_p;
else
parser->default_arg_ok_p = false;
first = false;
}
/* We're done. */
else
break;
}
/* For an abstract declarator, we might wind up with nothing at this
point. That's an error; the declarator is not optional. */
if (!declarator)
cp_parser_error (parser, "expected declarator");
/* If we entered a scope, we must exit it now. */
if (scope)
pop_scope (scope);
parser->default_arg_ok_p = saved_default_arg_ok_p;
parser->in_declarator_p = saved_in_declarator_p;
return declarator;
}
/* Parse a ptr-operator.
ptr-operator:
* cv-qualifier-seq [opt]
&
:: [opt] nested-name-specifier * cv-qualifier-seq [opt]
GNU Extension:
ptr-operator:
& cv-qualifier-seq [opt]
Returns INDIRECT_REF if a pointer, or pointer-to-member, was
used. Returns ADDR_EXPR if a reference was used. In the
case of a pointer-to-member, *TYPE is filled in with the
TYPE containing the member. *CV_QUALIFIER_SEQ is filled in
with the cv-qualifier-seq, or NULL_TREE, if there are no
cv-qualifiers. Returns ERROR_MARK if an error occurred. */
static enum tree_code
cp_parser_ptr_operator (cp_parser* parser,
tree* type,
tree* cv_qualifier_seq)
{
enum tree_code code = ERROR_MARK;
cp_token *token;
/* Assume that it's not a pointer-to-member. */
*type = NULL_TREE;
/* And that there are no cv-qualifiers. */
*cv_qualifier_seq = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `*' or `&' we have a pointer or reference. */
if (token->type == CPP_MULT || token->type == CPP_AND)
{
/* Remember which ptr-operator we were processing. */
code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
/* Consume the `*' or `&'. */
cp_lexer_consume_token (parser->lexer);
/* A `*' can be followed by a cv-qualifier-seq, and so can a
`&', if we are allowing GNU extensions. (The only qualifier
that can legally appear after `&' is `restrict', but that is
enforced during semantic analysis. */
if (code == INDIRECT_REF
|| cp_parser_allow_gnu_extensions_p (parser))
*cv_qualifier_seq = cp_parser_cv_qualifier_seq_opt (parser);
}
else
{
/* Try the pointer-to-member case. */
cp_parser_parse_tentatively (parser);
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name specifier. */
cp_parser_nested_name_specifier (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false);
/* If we found it, and the next token is a `*', then we are
indeed looking at a pointer-to-member operator. */
if (!cp_parser_error_occurred (parser)
&& cp_parser_require (parser, CPP_MULT, "`*'"))
{
/* The type of which the member is a member is given by the
current SCOPE. */
*type = parser->scope;
/* The next name will not be qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
/* Indicate that the `*' operator was used. */
code = INDIRECT_REF;
/* Look for the optional cv-qualifier-seq. */
*cv_qualifier_seq = cp_parser_cv_qualifier_seq_opt (parser);
}
/* If that didn't work we don't have a ptr-operator. */
if (!cp_parser_parse_definitely (parser))
cp_parser_error (parser, "expected ptr-operator");
}
return code;
}
/* Parse an (optional) cv-qualifier-seq.
cv-qualifier-seq:
cv-qualifier cv-qualifier-seq [opt]
Returns a TREE_LIST. The TREE_VALUE of each node is the
representation of a cv-qualifier. */
static tree
cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
{
tree cv_qualifiers = NULL_TREE;
while (true)
{
tree cv_qualifier;
/* Look for the next cv-qualifier. */
cv_qualifier = cp_parser_cv_qualifier_opt (parser);
/* If we didn't find one, we're done. */
if (!cv_qualifier)
break;
/* Add this cv-qualifier to the list. */
cv_qualifiers
= tree_cons (NULL_TREE, cv_qualifier, cv_qualifiers);
}
/* We built up the list in reverse order. */
return nreverse (cv_qualifiers);
}
/* Parse an (optional) cv-qualifier.
cv-qualifier:
const
volatile
GNU Extension:
cv-qualifier:
__restrict__ */
static tree
cp_parser_cv_qualifier_opt (cp_parser* parser)
{
cp_token *token;
tree cv_qualifier = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* See if it's a cv-qualifier. */
switch (token->keyword)
{
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
/* Save the value of the token. */
cv_qualifier = token->value;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
break;
default:
break;
}
return cv_qualifier;
}
/* Parse a declarator-id.
declarator-id:
id-expression
:: [opt] nested-name-specifier [opt] type-name
In the `id-expression' case, the value returned is as for
cp_parser_id_expression if the id-expression was an unqualified-id.
If the id-expression was a qualified-id, then a SCOPE_REF is
returned. The first operand is the scope (either a NAMESPACE_DECL
or TREE_TYPE), but the second is still just a representation of an
unqualified-id. */
static tree
cp_parser_declarator_id (cp_parser* parser)
{
tree id_expression;
/* The expression must be an id-expression. Assume that qualified
names are the names of types so that:
template <class T>
int S<T>::R::i = 3;
will work; we must treat `S<T>::R' as the name of a type.
Similarly, assume that qualified names are templates, where
required, so that:
template <class T>
int S<T>::R<T>::i = 3;
will work, too. */
id_expression = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/false,
/*template_p=*/NULL,
/*declarator_p=*/true);
/* If the name was qualified, create a SCOPE_REF to represent
that. */
if (parser->scope)
{
id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
parser->scope = NULL_TREE;
}
return id_expression;
}
/* Parse a type-id.
type-id:
type-specifier-seq abstract-declarator [opt]
Returns the TYPE specified. */
static tree
cp_parser_type_id (cp_parser* parser)
{
tree type_specifier_seq;
tree abstract_declarator;
/* Parse the type-specifier-seq. */
type_specifier_seq
= cp_parser_type_specifier_seq (parser);
if (type_specifier_seq == error_mark_node)
return error_mark_node;
/* There might or might not be an abstract declarator. */
cp_parser_parse_tentatively (parser);
/* Look for the declarator. */
abstract_declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL);
/* Check to see if there really was a declarator. */
if (!cp_parser_parse_definitely (parser))
abstract_declarator = NULL_TREE;
return groktypename (build_tree_list (type_specifier_seq,
abstract_declarator));
}
/* Parse a type-specifier-seq.
type-specifier-seq:
type-specifier type-specifier-seq [opt]
GNU extension:
type-specifier-seq:
attributes type-specifier-seq [opt]
Returns a TREE_LIST. Either the TREE_VALUE of each node is a
type-specifier, or the TREE_PURPOSE is a list of attributes. */
static tree
cp_parser_type_specifier_seq (cp_parser* parser)
{
bool seen_type_specifier = false;
tree type_specifier_seq = NULL_TREE;
/* Parse the type-specifiers and attributes. */
while (true)
{
tree type_specifier;
/* Check for attributes first. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
{
type_specifier_seq = tree_cons (cp_parser_attributes_opt (parser),
NULL_TREE,
type_specifier_seq);
continue;
}
/* After the first type-specifier, others are optional. */
if (seen_type_specifier)
cp_parser_parse_tentatively (parser);
/* Look for the type-specifier. */
type_specifier = cp_parser_type_specifier (parser,
CP_PARSER_FLAGS_NONE,
/*is_friend=*/false,
/*is_declaration=*/false,
NULL,
NULL);
/* If the first type-specifier could not be found, this is not a
type-specifier-seq at all. */
if (!seen_type_specifier && type_specifier == error_mark_node)
return error_mark_node;
/* If subsequent type-specifiers could not be found, the
type-specifier-seq is complete. */
else if (seen_type_specifier && !cp_parser_parse_definitely (parser))
break;
/* Add the new type-specifier to the list. */
type_specifier_seq
= tree_cons (NULL_TREE, type_specifier, type_specifier_seq);
seen_type_specifier = true;
}
/* We built up the list in reverse order. */
return nreverse (type_specifier_seq);
}
/* Parse a parameter-declaration-clause.
parameter-declaration-clause:
parameter-declaration-list [opt] ... [opt]
parameter-declaration-list , ...
Returns a representation for the parameter declarations. Each node
is a TREE_LIST. (See cp_parser_parameter_declaration for the exact
representation.) If the parameter-declaration-clause ends with an
ellipsis, PARMLIST_ELLIPSIS_P will hold of the first node in the
list. A return value of NULL_TREE indicates a
parameter-declaration-clause consisting only of an ellipsis. */
static tree
cp_parser_parameter_declaration_clause (cp_parser* parser)
{
tree parameters;
cp_token *token;
bool ellipsis_p;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check for trivial parameter-declaration-clauses. */
if (token->type == CPP_ELLIPSIS)
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
return NULL_TREE;
}
else if (token->type == CPP_CLOSE_PAREN)
/* There are no parameters. */
{
#ifndef NO_IMPLICIT_EXTERN_C
if (in_system_header && current_class_type == NULL
&& current_lang_name == lang_name_c)
return NULL_TREE;
else
#endif
return void_list_node;
}
/* Check for `(void)', too, which is a special case. */
else if (token->keyword == RID_VOID
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_CLOSE_PAREN))
{
/* Consume the `void' token. */
cp_lexer_consume_token (parser->lexer);
/* There are no parameters. */
return void_list_node;
}
/* Parse the parameter-declaration-list. */
parameters = cp_parser_parameter_declaration_list (parser);
/* If a parse error occurred while parsing the
parameter-declaration-list, then the entire
parameter-declaration-clause is erroneous. */
if (parameters == error_mark_node)
return error_mark_node;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `,', the clause should terminate with an ellipsis. */
if (token->type == CPP_COMMA)
{
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
/* Expect an ellipsis. */
ellipsis_p
= (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
}
/* It might also be `...' if the optional trailing `,' was
omitted. */
else if (token->type == CPP_ELLIPSIS)
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
/* And remember that we saw it. */
ellipsis_p = true;
}
else
ellipsis_p = false;
/* Finish the parameter list. */
return finish_parmlist (parameters, ellipsis_p);
}
/* Parse a parameter-declaration-list.
parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration
Returns a representation of the parameter-declaration-list, as for
cp_parser_parameter_declaration_clause. However, the
`void_list_node' is never appended to the list. */
static tree
cp_parser_parameter_declaration_list (cp_parser* parser)
{
tree parameters = NULL_TREE;
/* Look for more parameters. */
while (true)
{
tree parameter;
/* Parse the parameter. */
parameter
= cp_parser_parameter_declaration (parser, /*template_parm_p=*/false);
/* If a parse error occurred parsing the parameter declaration,
then the entire parameter-declaration-list is erroneous. */
if (parameter == error_mark_node)
{
parameters = error_mark_node;
break;
}
/* Add the new parameter to the list. */
TREE_CHAIN (parameter) = parameters;
parameters = parameter;
/* Peek at the next token. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
|| cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
/* The parameter-declaration-list is complete. */
break;
else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If it's an ellipsis, then the list is complete. */
if (token->type == CPP_ELLIPSIS)
break;
/* Otherwise, there must be more parameters. Consume the
`,'. */
cp_lexer_consume_token (parser->lexer);
}
else
{
cp_parser_error (parser, "expected `,' or `...'");
break;
}
}
/* We built up the list in reverse order; straighten it out now. */
return nreverse (parameters);
}
/* Parse a parameter declaration.
parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression
decl-specifier-seq abstract-declarator [opt]
decl-specifier-seq abstract-declarator [opt] = assignment-expression
If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
declares a template parameter. (In that case, a non-nested `>'
token encountered during the parsing of the assignment-expression
is not interpreted as a greater-than operator.)
Returns a TREE_LIST representing the parameter-declaration. The
TREE_VALUE is a representation of the decl-specifier-seq and
declarator. In particular, the TREE_VALUE will be a TREE_LIST
whose TREE_PURPOSE represents the decl-specifier-seq and whose
TREE_VALUE represents the declarator. */
static tree
cp_parser_parameter_declaration (cp_parser *parser,
bool template_parm_p)
{
int declares_class_or_enum;
bool greater_than_is_operator_p;
tree decl_specifiers;
tree attributes;
tree declarator;
tree default_argument;
tree parameter;
cp_token *token;
const char *saved_message;
/* In a template parameter, `>' is not an operator.
[temp.param]
When parsing a default template-argument for a non-type
template-parameter, the first non-nested `>' is taken as the end
of the template parameter-list rather than a greater-than
operator. */
greater_than_is_operator_p = !template_parm_p;
/* Type definitions may not appear in parameter types. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in parameter types";
/* Parse the declaration-specifiers. */
decl_specifiers
= cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_NONE,
&attributes,
&declares_class_or_enum);
/* If an error occurred, there's no reason to attempt to parse the
rest of the declaration. */
if (cp_parser_error_occurred (parser))
{
parser->type_definition_forbidden_message = saved_message;
return error_mark_node;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is a `)', `,', `=', `>', or `...', then there
is no declarator. */
if (token->type == CPP_CLOSE_PAREN
|| token->type == CPP_COMMA
|| token->type == CPP_EQ
|| token->type == CPP_ELLIPSIS
|| token->type == CPP_GREATER)
declarator = NULL_TREE;
/* Otherwise, there should be a declarator. */
else
{
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
parser->default_arg_ok_p = false;
declarator = cp_parser_declarator (parser,
CP_PARSER_DECLARATOR_EITHER,
/*ctor_dtor_or_conv_p=*/NULL);
parser->default_arg_ok_p = saved_default_arg_ok_p;
/* After the declarator, allow more attributes. */
attributes = chainon (attributes, cp_parser_attributes_opt (parser));
}
/* The restriction on defining new types applies only to the type
of the parameter, not to the default argument. */
parser->type_definition_forbidden_message = saved_message;
/* If the next token is `=', then process a default argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
bool saved_greater_than_is_operator_p;
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* If we are defining a class, then the tokens that make up the
default argument must be saved and processed later. */
if (!template_parm_p && at_class_scope_p ()
&& TYPE_BEING_DEFINED (current_class_type))
{
unsigned depth = 0;
/* Create a DEFAULT_ARG to represented the unparsed default
argument. */
default_argument = make_node (DEFAULT_ARG);
DEFARG_TOKENS (default_argument) = cp_token_cache_new ();
/* Add tokens until we have processed the entire default
argument. */
while (true)
{
bool done = false;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* What we do depends on what token we have. */
switch (token->type)
{
/* In valid code, a default argument must be
immediately followed by a `,' `)', or `...'. */
case CPP_COMMA:
case CPP_CLOSE_PAREN:
case CPP_ELLIPSIS:
/* If we run into a non-nested `;', `}', or `]',
then the code is invalid -- but the default
argument is certainly over. */
case CPP_SEMICOLON:
case CPP_CLOSE_BRACE:
case CPP_CLOSE_SQUARE:
if (depth == 0)
done = true;
/* Update DEPTH, if necessary. */
else if (token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_SQUARE)
--depth;
break;
case CPP_OPEN_PAREN:
case CPP_OPEN_SQUARE:
case CPP_OPEN_BRACE:
++depth;
break;
case CPP_GREATER:
/* If we see a non-nested `>', and `>' is not an
operator, then it marks the end of the default
argument. */
if (!depth && !greater_than_is_operator_p)
done = true;
break;
/* If we run out of tokens, issue an error message. */
case CPP_EOF:
error ("file ends in default argument");
done = true;
break;
case CPP_NAME:
case CPP_SCOPE:
/* In these cases, we should look for template-ids.
For example, if the default argument is
`X<int, double>()', we need to do name lookup to
figure out whether or not `X' is a template; if
so, the `,' does not end the default argument.
That is not yet done. */
break;
default:
break;
}
/* If we've reached the end, stop. */
if (done)
break;
/* Add the token to the token block. */
token = cp_lexer_consume_token (parser->lexer);
cp_token_cache_push_token (DEFARG_TOKENS (default_argument),
token);
}
}
/* Outside of a class definition, we can just parse the
assignment-expression. */
else
{
bool saved_local_variables_forbidden_p;
/* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
set correctly. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = greater_than_is_operator_p;
/* Local variable names (and the `this' keyword) may not
appear in a default argument. */
saved_local_variables_forbidden_p
= parser->local_variables_forbidden_p;
parser->local_variables_forbidden_p = true;
/* Parse the assignment-expression. */
default_argument = cp_parser_assignment_expression (parser);
/* Restore saved state. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
parser->local_variables_forbidden_p
= saved_local_variables_forbidden_p;
}
if (!parser->default_arg_ok_p)
{
if (!flag_pedantic_errors)
warning ("deprecated use of default argument for parameter of non-function");
else
{
error ("default arguments are only permitted for function parameters");
default_argument = NULL_TREE;
}
}
}
else
default_argument = NULL_TREE;
/* Create the representation of the parameter. */
if (attributes)
decl_specifiers = tree_cons (attributes, NULL_TREE, decl_specifiers);
parameter = build_tree_list (default_argument,
build_tree_list (decl_specifiers,
declarator));
return parameter;
}
/* Parse a function-definition.
function-definition:
decl-specifier-seq [opt] declarator ctor-initializer [opt]
function-body
decl-specifier-seq [opt] declarator function-try-block
GNU Extension:
function-definition:
__extension__ function-definition
Returns the FUNCTION_DECL for the function. If FRIEND_P is
non-NULL, *FRIEND_P is set to TRUE iff the function was declared to
be a `friend'. */
static tree
cp_parser_function_definition (cp_parser* parser, bool* friend_p)
{
tree decl_specifiers;
tree attributes;
tree declarator;
tree fn;
cp_token *token;
int declares_class_or_enum;
bool member_p;
/* The saved value of the PEDANTIC flag. */
int saved_pedantic;
/* Any pending qualification must be cleared by our caller. It is
more robust to force the callers to clear PARSER->SCOPE than to
do it here since if the qualification is in effect here, it might
also end up in effect elsewhere that it is not intended. */
my_friendly_assert (!parser->scope, 20010821);
/* Handle `__extension__'. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the function-definition. */
fn = cp_parser_function_definition (parser, friend_p);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return fn;
}
/* Check to see if this definition appears in a class-specifier. */
member_p = (at_class_scope_p ()
&& TYPE_BEING_DEFINED (current_class_type));
/* Defer access checks in the decl-specifier-seq until we know what
function is being defined. There is no need to do this for the
definition of member functions; we cannot be defining a member
from another class. */
push_deferring_access_checks (member_p ? dk_no_check: dk_deferred);
/* Parse the decl-specifier-seq. */
decl_specifiers
= cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&attributes,
&declares_class_or_enum);
/* Figure out whether this declaration is a `friend'. */
if (friend_p)
*friend_p = cp_parser_friend_p (decl_specifiers);
/* Parse the declarator. */
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
/*ctor_dtor_or_conv_p=*/NULL);
/* Gather up any access checks that occurred. */
stop_deferring_access_checks ();
/* If something has already gone wrong, we may as well stop now. */
if (declarator == error_mark_node)
{
/* Skip to the end of the function, or if this wasn't anything
like a function-definition, to a `;' in the hopes of finding
a sensible place from which to continue parsing. */
cp_parser_skip_to_end_of_block_or_statement (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
/* The next character should be a `{' (for a simple function
definition), a `:' (for a ctor-initializer), or `try' (for a
function-try block). */
token = cp_lexer_peek_token (parser->lexer);
if (!cp_parser_token_starts_function_definition_p (token))
{
/* Issue the error-message. */
cp_parser_error (parser, "expected function-definition");
/* Skip to the next `;'. */
cp_parser_skip_to_end_of_block_or_statement (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
cp_parser_check_for_definition_in_return_type (declarator,
declares_class_or_enum);
/* If we are in a class scope, then we must handle
function-definitions specially. In particular, we save away the
tokens that make up the function body, and parse them again
later, in order to handle code like:
struct S {
int f () { return i; }
int i;
};
Here, we cannot parse the body of `f' until after we have seen
the declaration of `i'. */
if (member_p)
{
cp_token_cache *cache;
/* Create the function-declaration. */
fn = start_method (decl_specifiers, declarator, attributes);
/* If something went badly wrong, bail out now. */
if (fn == error_mark_node)
{
/* If there's a function-body, skip it. */
if (cp_parser_token_starts_function_definition_p
(cp_lexer_peek_token (parser->lexer)))
cp_parser_skip_to_end_of_block_or_statement (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
/* Remember it, if there default args to post process. */
cp_parser_save_default_args (parser, fn);
/* Create a token cache. */
cache = cp_token_cache_new ();
/* Save away the tokens that make up the body of the
function. */
cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
/* Handle function try blocks. */
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
/* Save away the inline definition; we will process it when the
class is complete. */
DECL_PENDING_INLINE_INFO (fn) = cache;
DECL_PENDING_INLINE_P (fn) = 1;
/* We need to know that this was defined in the class, so that
friend templates are handled correctly. */
DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
/* We're done with the inline definition. */
finish_method (fn);
/* Add FN to the queue of functions to be parsed later. */
TREE_VALUE (parser->unparsed_functions_queues)
= tree_cons (NULL_TREE, fn,
TREE_VALUE (parser->unparsed_functions_queues));
pop_deferring_access_checks ();
return fn;
}
/* Check that the number of template-parameter-lists is OK. */
if (!cp_parser_check_declarator_template_parameters (parser,
declarator))
{
cp_parser_skip_to_end_of_block_or_statement (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
fn = cp_parser_function_definition_from_specifiers_and_declarator
(parser, decl_specifiers, attributes, declarator);
pop_deferring_access_checks ();
return fn;
}
/* Parse a function-body.
function-body:
compound_statement */
static void
cp_parser_function_body (cp_parser *parser)
{
cp_parser_compound_statement (parser, false);
}
/* Parse a ctor-initializer-opt followed by a function-body. Return
true if a ctor-initializer was present. */
static bool
cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
{
tree body;
bool ctor_initializer_p;
/* Begin the function body. */
body = begin_function_body ();
/* Parse the optional ctor-initializer. */
ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
/* Parse the function-body. */
cp_parser_function_body (parser);
/* Finish the function body. */
finish_function_body (body);
return ctor_initializer_p;
}
/* Parse an initializer.
initializer:
= initializer-clause
( expression-list )
Returns a expression representing the initializer. If no
initializer is present, NULL_TREE is returned.
*IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
set to FALSE if there is no initializer present. If there is an
initializer, and it is not a constant-expression, *NON_CONSTANT_P
is set to true; otherwise it is set to false. */
static tree
cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
bool* non_constant_p)
{
cp_token *token;
tree init;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Let our caller know whether or not this initializer was
parenthesized. */
*is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
/* Assume that the initializer is constant. */
*non_constant_p = false;
if (token->type == CPP_EQ)
{
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* Parse the initializer-clause. */
init = cp_parser_initializer_clause (parser, non_constant_p);
}
else if (token->type == CPP_OPEN_PAREN)
init = cp_parser_parenthesized_expression_list (parser, false,
non_constant_p);
else
{
/* Anything else is an error. */
cp_parser_error (parser, "expected initializer");
init = error_mark_node;
}
return init;
}
/* Parse an initializer-clause.
initializer-clause:
assignment-expression
{ initializer-list , [opt] }
{ }
Returns an expression representing the initializer.
If the `assignment-expression' production is used the value
returned is simply a representation for the expression.
Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
the elements of the initializer-list (or NULL_TREE, if the last
production is used). The TREE_TYPE for the CONSTRUCTOR will be
NULL_TREE. There is no way to detect whether or not the optional
trailing `,' was provided. NON_CONSTANT_P is as for
cp_parser_initializer. */
static tree
cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
{
tree initializer;
/* If it is not a `{', then we are looking at an
assignment-expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
initializer
= cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/true,
non_constant_p);
else
{
/* Consume the `{' token. */
cp_lexer_consume_token (parser->lexer);
/* Create a CONSTRUCTOR to represent the braced-initializer. */
initializer = make_node (CONSTRUCTOR);
/* Mark it with TREE_HAS_CONSTRUCTOR. This should not be
necessary, but check_initializer depends upon it, for
now. */
TREE_HAS_CONSTRUCTOR (initializer) = 1;
/* If it's not a `}', then there is a non-trivial initializer. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
{
/* Parse the initializer list. */
CONSTRUCTOR_ELTS (initializer)
= cp_parser_initializer_list (parser, non_constant_p);
/* A trailing `,' token is allowed. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
cp_lexer_consume_token (parser->lexer);
}
/* Now, there should be a trailing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
return initializer;
}
/* Parse an initializer-list.
initializer-list:
initializer-clause
initializer-list , initializer-clause
GNU Extension:
initializer-list:
identifier : initializer-clause
initializer-list, identifier : initializer-clause
Returns a TREE_LIST. The TREE_VALUE of each node is an expression
for the initializer. If the TREE_PURPOSE is non-NULL, it is the
IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
as for cp_parser_initializer. */
static tree
cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
{
tree initializers = NULL_TREE;
/* Assume all of the expressions are constant. */
*non_constant_p = false;
/* Parse the rest of the list. */
while (true)
{
cp_token *token;
tree identifier;
tree initializer;
bool clause_non_constant_p;
/* If the next token is an identifier and the following one is a
colon, we are looking at the GNU designated-initializer
syntax. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
{
/* Consume the identifier. */
identifier = cp_lexer_consume_token (parser->lexer)->value;
/* Consume the `:'. */
cp_lexer_consume_token (parser->lexer);
}
else
identifier = NULL_TREE;
/* Parse the initializer. */
initializer = cp_parser_initializer_clause (parser,
&clause_non_constant_p);
/* If any clause is non-constant, so is the entire initializer. */
if (clause_non_constant_p)
*non_constant_p = true;
/* Add it to the list. */
initializers = tree_cons (identifier, initializer, initializers);
/* If the next token is not a comma, we have reached the end of
the list. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Peek at the next token. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If the next token is a `}', then we're still done. An
initializer-clause can have a trailing `,' after the
initializer-list and before the closing `}'. */
if (token->type == CPP_CLOSE_BRACE)
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
/* The initializers were built up in reverse order, so we need to
reverse them now. */
return nreverse (initializers);
}
/* Classes [gram.class] */
/* Parse a class-name.
class-name:
identifier
template-id
TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
to indicate that names looked up in dependent types should be
assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
keyword has been used to indicate that the name that appears next
is a template. TYPE_P is true iff the next name should be treated
as class-name, even if it is declared to be some other kind of name
as well. If CHECK_DEPENDENCY_P is FALSE, names are looked up in
dependent scopes. If CLASS_HEAD_P is TRUE, this class is the class
being defined in a class-head.
Returns the TYPE_DECL representing the class. */
static tree
cp_parser_class_name (cp_parser *parser,
bool typename_keyword_p,
bool template_keyword_p,
bool type_p,
bool check_dependency_p,
bool class_head_p)
{
tree decl;
tree scope;
bool typename_p;
cp_token *token;
/* All class-names start with an identifier. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
{
cp_parser_error (parser, "expected class-name");
return error_mark_node;
}
/* PARSER->SCOPE can be cleared when parsing the template-arguments
to a template-id, so we save it here. */
scope = parser->scope;
if (scope == error_mark_node)
return error_mark_node;
/* Any name names a type if we're following the `typename' keyword
in a qualified name where the enclosing scope is type-dependent. */
typename_p = (typename_keyword_p && scope && TYPE_P (scope)
&& dependent_type_p (scope));
/* Handle the common case (an identifier, but not a template-id)
efficiently. */
if (token->type == CPP_NAME
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_LESS)
{
tree identifier;
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
/* If the next token isn't an identifier, we are certainly not
looking at a class-name. */
if (identifier == error_mark_node)
decl = error_mark_node;
/* If we know this is a type-name, there's no need to look it
up. */
else if (typename_p)
decl = identifier;
else
{
/* If the next token is a `::', then the name must be a type
name.
[basic.lookup.qual]
During the lookup for a name preceding the :: scope
resolution operator, object, function, and enumerator
names are ignored. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
type_p = true;
/* Look up the name. */
decl = cp_parser_lookup_name (parser, identifier,
type_p,
/*is_namespace=*/false,
check_dependency_p);
}
}
else
{
/* Try a template-id. */
decl = cp_parser_template_id (parser, template_keyword_p,
check_dependency_p);
if (decl == error_mark_node)
return error_mark_node;
}
decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
/* If this is a typename, create a TYPENAME_TYPE. */
if (typename_p && decl != error_mark_node)
decl = TYPE_NAME (make_typename_type (scope, decl,
/*complain=*/1));
/* Check to see that it is really the name of a class. */
if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
&& TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
&& cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
/* Situations like this:
template <typename T> struct A {
typename T::template X<int>::I i;
};
are problematic. Is `T::template X<int>' a class-name? The
standard does not seem to be definitive, but there is no other
valid interpretation of the following `::'. Therefore, those
names are considered class-names. */
decl = TYPE_NAME (make_typename_type (scope, decl, tf_error));
else if (decl == error_mark_node
|| TREE_CODE (decl) != TYPE_DECL
|| !IS_AGGR_TYPE (TREE_TYPE (decl)))
{
cp_parser_error (parser, "expected class-name");
return error_mark_node;
}
return decl;
}
/* Parse a class-specifier.
class-specifier:
class-head { member-specification [opt] }
Returns the TREE_TYPE representing the class. */
static tree
cp_parser_class_specifier (cp_parser* parser)
{
cp_token *token;
tree type;
tree attributes = NULL_TREE;
int has_trailing_semicolon;
bool nested_name_specifier_p;
unsigned saved_num_template_parameter_lists;
push_deferring_access_checks (dk_no_deferred);
/* Parse the class-head. */
type = cp_parser_class_head (parser,
&nested_name_specifier_p);
/* If the class-head was a semantic disaster, skip the entire body
of the class. */
if (!type)
{
cp_parser_skip_to_end_of_block_or_statement (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
/* Look for the `{'. */
if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
{
pop_deferring_access_checks ();
return error_mark_node;
}
/* Issue an error message if type-definitions are forbidden here. */
cp_parser_check_type_definition (parser);
/* Remember that we are defining one more class. */
++parser->num_classes_being_defined;
/* Inside the class, surrounding template-parameter-lists do not
apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* Start the class. */
type = begin_class_definition (type);
if (type == error_mark_node)
/* If the type is erroneous, skip the entire body of the class. */
cp_parser_skip_to_closing_brace (parser);
else
/* Parse the member-specification. */
cp_parser_member_specification_opt (parser);
/* Look for the trailing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
/* We get better error messages by noticing a common problem: a
missing trailing `;'. */
token = cp_lexer_peek_token (parser->lexer);
has_trailing_semicolon = (token->type == CPP_SEMICOLON);
/* Look for attributes to apply to this class. */
if (cp_parser_allow_gnu_extensions_p (parser))
attributes = cp_parser_attributes_opt (parser);
/* If we got any attributes in class_head, xref_tag will stick them in
TREE_TYPE of the type. Grab them now. */
if (type != error_mark_node)
{
attributes = chainon (TYPE_ATTRIBUTES (type), attributes);
TYPE_ATTRIBUTES (type) = NULL_TREE;
type = finish_struct (type, attributes);
}
if (nested_name_specifier_p)
pop_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
/* If this class is not itself within the scope of another class,
then we need to parse the bodies of all of the queued function
definitions. Note that the queued functions defined in a class
are not always processed immediately following the
class-specifier for that class. Consider:
struct A {
struct B { void f() { sizeof (A); } };
};
If `f' were processed before the processing of `A' were
completed, there would be no way to compute the size of `A'.
Note that the nesting we are interested in here is lexical --
not the semantic nesting given by TYPE_CONTEXT. In particular,
for:
struct A { struct B; };
struct A::B { void f() { } };
there is no need to delay the parsing of `A::B::f'. */
if (--parser->num_classes_being_defined == 0)
{
tree queue_entry;
tree fn;
/* In a first pass, parse default arguments to the functions.
Then, in a second pass, parse the bodies of the functions.
This two-phased approach handles cases like:
struct S {
void f() { g(); }
void g(int i = 3);
};
*/
for (TREE_PURPOSE (parser->unparsed_functions_queues)
= nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
(queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
TREE_PURPOSE (parser->unparsed_functions_queues)
= TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
{
fn = TREE_VALUE (queue_entry);
/* Make sure that any template parameters are in scope. */
maybe_begin_member_template_processing (fn);
/* If there are default arguments that have not yet been processed,
take care of them now. */
cp_parser_late_parsing_default_args (parser, fn);
/* Remove any template parameters from the symbol table. */
maybe_end_member_template_processing ();
}
/* Now parse the body of the functions. */
for (TREE_VALUE (parser->unparsed_functions_queues)
= nreverse (TREE_VALUE (parser->unparsed_functions_queues));
(queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
TREE_VALUE (parser->unparsed_functions_queues)
= TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
{
/* Figure out which function we need to process. */
fn = TREE_VALUE (queue_entry);
/* Parse the function. */
cp_parser_late_parsing_for_member (parser, fn);
}
}
/* Put back any saved access checks. */
pop_deferring_access_checks ();
/* Restore the count of active template-parameter-lists. */
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
return type;
}
/* Parse a class-head.
class-head:
class-key identifier [opt] base-clause [opt]
class-key nested-name-specifier identifier base-clause [opt]
class-key nested-name-specifier [opt] template-id
base-clause [opt]
GNU Extensions:
class-key attributes identifier [opt] base-clause [opt]
class-key attributes nested-name-specifier identifier base-clause [opt]
class-key attributes nested-name-specifier [opt] template-id
base-clause [opt]
Returns the TYPE of the indicated class. Sets
*NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
involving a nested-name-specifier was used, and FALSE otherwise.
Returns NULL_TREE if the class-head is syntactically valid, but
semantically invalid in a way that means we should skip the entire
body of the class. */
static tree
cp_parser_class_head (cp_parser* parser,
bool* nested_name_specifier_p)
{
cp_token *token;
tree nested_name_specifier;
enum tag_types class_key;
tree id = NULL_TREE;
tree type = NULL_TREE;
tree attributes;
bool template_id_p = false;
bool qualified_p = false;
bool invalid_nested_name_p = false;
unsigned num_templates;
/* Assume no nested-name-specifier will be present. */
*nested_name_specifier_p = false;
/* Assume no template parameter lists will be used in defining the
type. */
num_templates = 0;
/* Look for the class-key. */
class_key = cp_parser_class_key (parser);
if (class_key == none_type)
return error_mark_node;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* If the next token is `::', that is invalid -- but sometimes
people do try to write:
struct ::S {};
Handle this gracefully by accepting the extra qualifier, and then
issuing an error about it later if this really is a
class-head. If it turns out just to be an elaborated type
specifier, remain silent. */
if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
qualified_p = true;
push_deferring_access_checks (dk_no_check);
/* Determine the name of the class. Begin by looking for an
optional nested-name-specifier. */
nested_name_specifier
= cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/false,
/*type_p=*/false);
/* If there was a nested-name-specifier, then there *must* be an
identifier. */
if (nested_name_specifier)
{
/* Although the grammar says `identifier', it really means
`class-name' or `template-name'. You are only allowed to
define a class that has already been declared with this
syntax.
The proposed resolution for Core Issue 180 says that whever
you see `class T::X' you should treat `X' as a type-name.
It is OK to define an inaccessible class; for example:
class A { class B; };
class A::B {};
We do not know if we will see a class-name, or a
template-name. We look for a class-name first, in case the
class-name is a template-id; if we looked for the
template-name first we would stop after the template-name. */
cp_parser_parse_tentatively (parser);
type = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/true,
/*check_dependency_p=*/false,
/*class_head_p=*/true);
/* If that didn't work, ignore the nested-name-specifier. */
if (!cp_parser_parse_definitely (parser))
{
invalid_nested_name_p = true;
id = cp_parser_identifier (parser);
if (id == error_mark_node)
id = NULL_TREE;
}
/* If we could not find a corresponding TYPE, treat this
declaration like an unqualified declaration. */
if (type == error_mark_node)
nested_name_specifier = NULL_TREE;
/* Otherwise, count the number of templates used in TYPE and its
containing scopes. */
else
{
tree scope;
for (scope = TREE_TYPE (type);
scope && TREE_CODE (scope) != NAMESPACE_DECL;
scope = (TYPE_P (scope)
? TYPE_CONTEXT (scope)
: DECL_CONTEXT (scope)))
if (TYPE_P (scope)
&& CLASS_TYPE_P (scope)
&& CLASSTYPE_TEMPLATE_INFO (scope)
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
++num_templates;
}
}
/* Otherwise, the identifier is optional. */
else
{
/* We don't know whether what comes next is a template-id,
an identifier, or nothing at all. */
cp_parser_parse_tentatively (parser);
/* Check for a template-id. */
id = cp_parser_template_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true);
/* If that didn't work, it could still be an identifier. */
if (!cp_parser_parse_definitely (parser))
{
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
id = cp_parser_identifier (parser);
else
id = NULL_TREE;
}
else
{
template_id_p = true;
++num_templates;
}
}
pop_deferring_access_checks ();
/* If it's not a `:' or a `{' then we can't really be looking at a
class-head, since a class-head only appears as part of a
class-specifier. We have to detect this situation before calling
xref_tag, since that has irreversible side-effects. */
if (!cp_parser_next_token_starts_class_definition_p (parser))
{
cp_parser_error (parser, "expected `{' or `:'");
return error_mark_node;
}
/* At this point, we're going ahead with the class-specifier, even
if some other problem occurs. */
cp_parser_commit_to_tentative_parse (parser);
/* Issue the error about the overly-qualified name now. */
if (qualified_p)
cp_parser_error (parser,
"global qualification of class name is invalid");
else if (invalid_nested_name_p)
cp_parser_error (parser,
"qualified name does not name a class");
/* Make sure that the right number of template parameters were
present. */
if (!cp_parser_check_template_parameters (parser, num_templates))
/* If something went wrong, there is no point in even trying to
process the class-definition. */
return NULL_TREE;
/* Look up the type. */
if (template_id_p)
{
type = TREE_TYPE (id);
maybe_process_partial_specialization (type);
}
else if (!nested_name_specifier)
{
/* If the class was unnamed, create a dummy name. */
if (!id)
id = make_anon_name ();
type = xref_tag (class_key, id, attributes, /*globalize=*/false,
parser->num_template_parameter_lists);
}
else
{
tree class_type;
tree scope;
/* Given:
template <typename T> struct S { struct T };
template <typename T> struct S<T>::T { };
we will get a TYPENAME_TYPE when processing the definition of
`S::T'. We need to resolve it to the actual type before we
try to define it. */
if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
{
class_type = resolve_typename_type (TREE_TYPE (type),
/*only_current_p=*/false);
if (class_type != error_mark_node)
type = TYPE_NAME (class_type);
else
{
cp_parser_error (parser, "could not resolve typename type");
type = error_mark_node;
}
}
/* Figure out in what scope the declaration is being placed. */
scope = current_scope ();
if (!scope)
scope = current_namespace;
/* If that scope does not contain the scope in which the
class was originally declared, the program is invalid. */
if (scope && !is_ancestor (scope, CP_DECL_CONTEXT (type)))
{
error ("declaration of `%D' in `%D' which does not "
"enclose `%D'", type, scope, nested_name_specifier);
return NULL_TREE;
}
/* [dcl.meaning]
A declarator-id shall not be qualified exception of the
definition of a ... nested class outside of its class
... [or] a the definition or explicit instantiation of a
class member of a namespace outside of its namespace. */
if (scope == CP_DECL_CONTEXT (type))
{
pedwarn ("extra qualification ignored");
nested_name_specifier = NULL_TREE;
}
maybe_process_partial_specialization (TREE_TYPE (type));
class_type = current_class_type;
/* Enter the scope indicated by the nested-name-specifier. */
if (nested_name_specifier)
push_scope (nested_name_specifier);
/* Get the canonical version of this type. */
type = TYPE_MAIN_DECL (TREE_TYPE (type));
if (PROCESSING_REAL_TEMPLATE_DECL_P ()
&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
type = push_template_decl (type);
type = TREE_TYPE (type);
if (nested_name_specifier)
*nested_name_specifier_p = true;
}
/* Indicate whether this class was declared as a `class' or as a
`struct'. */
if (TREE_CODE (type) == RECORD_TYPE)
CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
cp_parser_check_class_key (class_key, type);
/* Enter the scope containing the class; the names of base classes
should be looked up in that context. For example, given:
struct A { struct B {}; struct C; };
struct A::C : B {};
is valid. */
if (nested_name_specifier)
push_scope (nested_name_specifier);
/* Now, look for the base-clause. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_COLON)
{
tree bases;
/* Get the list of base-classes. */
bases = cp_parser_base_clause (parser);
/* Process them. */
xref_basetypes (type, bases);
}
/* Leave the scope given by the nested-name-specifier. We will
enter the class scope itself while processing the members. */
if (nested_name_specifier)
pop_scope (nested_name_specifier);
return type;
}
/* Parse a class-key.
class-key:
class
struct
union
Returns the kind of class-key specified, or none_type to indicate
error. */
static enum tag_types
cp_parser_class_key (cp_parser* parser)
{
cp_token *token;
enum tag_types tag_type;
/* Look for the class-key. */
token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
if (!token)
return none_type;
/* Check to see if the TOKEN is a class-key. */
tag_type = cp_parser_token_is_class_key (token);
if (!tag_type)
cp_parser_error (parser, "expected class-key");
return tag_type;
}
/* Parse an (optional) member-specification.
member-specification:
member-declaration member-specification [opt]
access-specifier : member-specification [opt] */
static void
cp_parser_member_specification_opt (cp_parser* parser)
{
while (true)
{
cp_token *token;
enum rid keyword;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `}', or EOF then we've seen all the members. */
if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
break;
/* See if this token is a keyword. */
keyword = token->keyword;
switch (keyword)
{
case RID_PUBLIC:
case RID_PROTECTED:
case RID_PRIVATE:
/* Consume the access-specifier. */
cp_lexer_consume_token (parser->lexer);
/* Remember which access-specifier is active. */
current_access_specifier = token->value;
/* Look for the `:'. */
cp_parser_require (parser, CPP_COLON, "`:'");
break;
default:
/* Otherwise, the next construction must be a
member-declaration. */
cp_parser_member_declaration (parser);
}
}
}
/* Parse a member-declaration.
member-declaration:
decl-specifier-seq [opt] member-declarator-list [opt] ;
function-definition ; [opt]
:: [opt] nested-name-specifier template [opt] unqualified-id ;
using-declaration
template-declaration
member-declarator-list:
member-declarator
member-declarator-list , member-declarator
member-declarator:
declarator pure-specifier [opt]
declarator constant-initializer [opt]
identifier [opt] : constant-expression
GNU Extensions:
member-declaration:
__extension__ member-declaration
member-declarator:
declarator attributes [opt] pure-specifier [opt]
declarator attributes [opt] constant-initializer [opt]
identifier [opt] attributes [opt] : constant-expression */
static void
cp_parser_member_declaration (cp_parser* parser)
{
tree decl_specifiers;
tree prefix_attributes;
tree decl;
int declares_class_or_enum;
bool friend_p;
cp_token *token;
int saved_pedantic;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Recurse. */
cp_parser_member_declaration (parser);
/* Restore the old value of the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Check for a template-declaration. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* Parse the template-declaration. */
cp_parser_template_declaration (parser, /*member_p=*/true);
return;
}
/* Check for a using-declaration. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
{
/* Parse the using-declaration. */
cp_parser_using_declaration (parser);
return;
}
/* We can't tell whether we're looking at a declaration or a
function-definition. */
cp_parser_parse_tentatively (parser);
/* Parse the decl-specifier-seq. */
decl_specifiers
= cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&prefix_attributes,
&declares_class_or_enum);
/* Check for an invalid type-name. */
if (cp_parser_diagnose_invalid_type_name (parser))
return;
/* If there is no declarator, then the decl-specifier-seq should
specify a type. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
{
/* If there was no decl-specifier-seq, and the next token is a
`;', then we have something like:
struct S { ; };
[class.mem]
Each member-declaration shall declare at least one member
name of the class. */
if (!decl_specifiers)
{
if (pedantic)
pedwarn ("extra semicolon");
}
else
{
tree type;
/* See if this declaration is a friend. */
friend_p = cp_parser_friend_p (decl_specifiers);
/* If there were decl-specifiers, check to see if there was
a class-declaration. */
type = check_tag_decl (decl_specifiers);
/* Nested classes have already been added to the class, but
a `friend' needs to be explicitly registered. */
if (friend_p)
{
/* If the `friend' keyword was present, the friend must
be introduced with a class-key. */
if (!declares_class_or_enum)
error ("a class-key must be used when declaring a friend");
/* In this case:
template <typename T> struct A {
friend struct A<T>::B;
};
A<T>::B will be represented by a TYPENAME_TYPE, and
therefore not recognized by check_tag_decl. */
if (!type)
{
tree specifier;
for (specifier = decl_specifiers;
specifier;
specifier = TREE_CHAIN (specifier))
{
tree s = TREE_VALUE (specifier);
if (TREE_CODE (s) == IDENTIFIER_NODE)
get_global_value_if_present (s, &type);
if (TREE_CODE (s) == TYPE_DECL)
s = TREE_TYPE (s);
if (TYPE_P (s))
{
type = s;
break;
}
}
}
if (!type)
error ("friend declaration does not name a class or "
"function");
else
make_friend_class (current_class_type, type,
/*complain=*/true);
}
/* If there is no TYPE, an error message will already have
been issued. */
else if (!type)
;
/* An anonymous aggregate has to be handled specially; such
a declaration really declares a data member (with a
particular type), as opposed to a nested class. */
else if (ANON_AGGR_TYPE_P (type))
{
/* Remove constructors and such from TYPE, now that we
know it is an anonymous aggregate. */
fixup_anonymous_aggr (type);
/* And make the corresponding data member. */
decl = build_decl (FIELD_DECL, NULL_TREE, type);
/* Add it to the class. */
finish_member_declaration (decl);
}
else
cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
}
}
else
{
/* See if these declarations will be friends. */
friend_p = cp_parser_friend_p (decl_specifiers);
/* Keep going until we hit the `;' at the end of the
declaration. */
while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
tree attributes = NULL_TREE;
tree first_attribute;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check for a bitfield declaration. */
if (token->type == CPP_COLON
|| (token->type == CPP_NAME
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_COLON))
{
tree identifier;
tree width;
/* Get the name of the bitfield. Note that we cannot just
check TOKEN here because it may have been invalidated by
the call to cp_lexer_peek_nth_token above. */
if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Consume the `:' token. */
cp_lexer_consume_token (parser->lexer);
/* Get the width of the bitfield. */
width
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
/* Look for attributes that apply to the bitfield. */
attributes = cp_parser_attributes_opt (parser);
/* Remember which attributes are prefix attributes and
which are not. */
first_attribute = attributes;
/* Combine the attributes. */
attributes = chainon (prefix_attributes, attributes);
/* Create the bitfield declaration. */
decl = grokbitfield (identifier,
decl_specifiers,
width);
/* Apply the attributes. */
cplus_decl_attributes (&decl, attributes, /*flags=*/0);
}
else
{
tree declarator;
tree initializer;
tree asm_specification;
int ctor_dtor_or_conv_p;
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
&ctor_dtor_or_conv_p);
/* If something went wrong parsing the declarator, make sure
that we at least consume some tokens. */
if (declarator == error_mark_node)
{
/* Skip to the end of the statement. */
cp_parser_skip_to_end_of_statement (parser);
break;
}
cp_parser_check_for_definition_in_return_type
(declarator, declares_class_or_enum);
/* Look for an asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* Look for attributes that apply to the declaration. */
attributes = cp_parser_attributes_opt (parser);
/* Remember which attributes are prefix attributes and
which are not. */
first_attribute = attributes;
/* Combine the attributes. */
attributes = chainon (prefix_attributes, attributes);
/* If it's an `=', then we have a constant-initializer or a
pure-specifier. It is not correct to parse the
initializer before registering the member declaration
since the member declaration should be in scope while
its initializer is processed. However, the rest of the
front end does not yet provide an interface that allows
us to handle this correctly. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* In [class.mem]:
A pure-specifier shall be used only in the declaration of
a virtual function.
A member-declarator can contain a constant-initializer
only if it declares a static member of integral or
enumeration type.
Therefore, if the DECLARATOR is for a function, we look
for a pure-specifier; otherwise, we look for a
constant-initializer. When we call `grokfield', it will
perform more stringent semantics checks. */
if (TREE_CODE (declarator) == CALL_EXPR)
initializer = cp_parser_pure_specifier (parser);
else
{
/* This declaration cannot be a function
definition. */
cp_parser_commit_to_tentative_parse (parser);
/* Parse the initializer. */
initializer = cp_parser_constant_initializer (parser);
}
}
/* Otherwise, there is no initializer. */
else
initializer = NULL_TREE;
/* See if we are probably looking at a function
definition. We are certainly not looking at at a
member-declarator. Calling `grokfield' has
side-effects, so we must not do it unless we are sure
that we are looking at a member-declarator. */
if (cp_parser_token_starts_function_definition_p
(cp_lexer_peek_token (parser->lexer)))
decl = error_mark_node;
else
{
/* Create the declaration. */
decl = grokfield (declarator, decl_specifiers,
initializer, asm_specification,
attributes);
/* Any initialization must have been from a
constant-expression. */
if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
}
}
/* Reset PREFIX_ATTRIBUTES. */
while (attributes && TREE_CHAIN (attributes) != first_attribute)
attributes = TREE_CHAIN (attributes);
if (attributes)
TREE_CHAIN (attributes) = NULL_TREE;
/* If there is any qualification still in effect, clear it
now; we will be starting fresh with the next declarator. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
/* If it's a `,', then there are more declarators. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
cp_lexer_consume_token (parser->lexer);
/* If the next token isn't a `;', then we have a parse error. */
else if (cp_lexer_next_token_is_not (parser->lexer,
CPP_SEMICOLON))
{
cp_parser_error (parser, "expected `;'");
/* Skip tokens until we find a `;' */
cp_parser_skip_to_end_of_statement (parser);
break;
}
if (decl)
{
/* Add DECL to the list of members. */
if (!friend_p)
finish_member_declaration (decl);
if (TREE_CODE (decl) == FUNCTION_DECL)
cp_parser_save_default_args (parser, decl);
}
}
}
/* If everything went well, look for the `;'. */
if (cp_parser_parse_definitely (parser))
{
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
return;
}
/* Parse the function-definition. */
decl = cp_parser_function_definition (parser, &friend_p);
/* If the member was not a friend, declare it here. */
if (!friend_p)
finish_member_declaration (decl);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is a semicolon, consume it. */
if (token->type == CPP_SEMICOLON)
cp_lexer_consume_token (parser->lexer);
}
/* Parse a pure-specifier.
pure-specifier:
= 0
Returns INTEGER_ZERO_NODE if a pure specifier is found.
Otherwise, ERROR_MARK_NODE is returned. */
static tree
cp_parser_pure_specifier (cp_parser* parser)
{
cp_token *token;
/* Look for the `=' token. */
if (!cp_parser_require (parser, CPP_EQ, "`='"))
return error_mark_node;
/* Look for the `0' token. */
token = cp_parser_require (parser, CPP_NUMBER, "`0'");
/* Unfortunately, this will accept `0L' and `0x00' as well. We need
to get information from the lexer about how the number was
spelled in order to fix this problem. */
if (!token || !integer_zerop (token->value))
return error_mark_node;
return integer_zero_node;
}
/* Parse a constant-initializer.
constant-initializer:
= constant-expression
Returns a representation of the constant-expression. */
static tree
cp_parser_constant_initializer (cp_parser* parser)
{
/* Look for the `=' token. */
if (!cp_parser_require (parser, CPP_EQ, "`='"))
return error_mark_node;
/* It is invalid to write:
struct S { static const int i = { 7 }; };
*/
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
cp_parser_error (parser,
"a brace-enclosed initializer is not allowed here");
/* Consume the opening brace. */
cp_lexer_consume_token (parser->lexer);
/* Skip the initializer. */
cp_parser_skip_to_closing_brace (parser);
/* Look for the trailing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
return error_mark_node;
}
return cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
}
/* Derived classes [gram.class.derived] */
/* Parse a base-clause.
base-clause:
: base-specifier-list
base-specifier-list:
base-specifier
base-specifier-list , base-specifier
Returns a TREE_LIST representing the base-classes, in the order in
which they were declared. The representation of each node is as
described by cp_parser_base_specifier.
In the case that no bases are specified, this function will return
NULL_TREE, not ERROR_MARK_NODE. */
static tree
cp_parser_base_clause (cp_parser* parser)
{
tree bases = NULL_TREE;
/* Look for the `:' that begins the list. */
cp_parser_require (parser, CPP_COLON, "`:'");
/* Scan the base-specifier-list. */
while (true)
{
cp_token *token;
tree base;
/* Look for the base-specifier. */
base = cp_parser_base_specifier (parser);
/* Add BASE to the front of the list. */
if (base != error_mark_node)
{
TREE_CHAIN (base) = bases;
bases = base;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a comma, then the list is complete. */
if (token->type != CPP_COMMA)
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
}
/* PARSER->SCOPE may still be non-NULL at this point, if the last
base class had a qualified name. However, the next name that
appears is certainly not qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
return nreverse (bases);
}
/* Parse a base-specifier.
base-specifier:
:: [opt] nested-name-specifier [opt] class-name
virtual access-specifier [opt] :: [opt] nested-name-specifier
[opt] class-name
access-specifier virtual [opt] :: [opt] nested-name-specifier
[opt] class-name
Returns a TREE_LIST. The TREE_PURPOSE will be one of
ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
indicate the specifiers provided. The TREE_VALUE will be a TYPE
(or the ERROR_MARK_NODE) indicating the type that was specified. */
static tree
cp_parser_base_specifier (cp_parser* parser)
{
cp_token *token;
bool done = false;
bool virtual_p = false;
bool duplicate_virtual_error_issued_p = false;
bool duplicate_access_error_issued_p = false;
bool class_scope_p, template_p;
tree access = access_default_node;
tree type;
/* Process the optional `virtual' and `access-specifier'. */
while (!done)
{
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Process `virtual'. */
switch (token->keyword)
{
case RID_VIRTUAL:
/* If `virtual' appears more than once, issue an error. */
if (virtual_p && !duplicate_virtual_error_issued_p)
{
cp_parser_error (parser,
"`virtual' specified more than once in base-specified");
duplicate_virtual_error_issued_p = true;
}
virtual_p = true;
/* Consume the `virtual' token. */
cp_lexer_consume_token (parser->lexer);
break;
case RID_PUBLIC:
case RID_PROTECTED:
case RID_PRIVATE:
/* If more than one access specifier appears, issue an
error. */
if (access != access_default_node
&& !duplicate_access_error_issued_p)
{
cp_parser_error (parser,
"more than one access specifier in base-specified");
duplicate_access_error_issued_p = true;
}
access = ridpointers[(int) token->keyword];
/* Consume the access-specifier. */
cp_lexer_consume_token (parser->lexer);
break;
default:
done = true;
break;
}
}
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. The simplest way to
implement:
[temp.res]
The keyword `typename' is not permitted in a base-specifier or
mem-initializer; in these contexts a qualified name that
depends on a template-parameter is implicitly assumed to be a
type name.
is to pretend that we have seen the `typename' keyword at this
point. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true);
/* If the base class is given by a qualified name, assume that names
we see are type names or templates, as appropriate. */
class_scope_p = (parser->scope && TYPE_P (parser->scope));
template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
/* Finally, look for the class-name. */
type = cp_parser_class_name (parser,
class_scope_p,
template_p,
/*type_p=*/true,
/*check_dependency_p=*/true,
/*class_head_p=*/false);
if (type == error_mark_node)
return error_mark_node;
return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
}
/* Exception handling [gram.exception] */
/* Parse an (optional) exception-specification.
exception-specification:
throw ( type-id-list [opt] )
Returns a TREE_LIST representing the exception-specification. The
TREE_VALUE of each node is a type. */
static tree
cp_parser_exception_specification_opt (cp_parser* parser)
{
cp_token *token;
tree type_id_list;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not `throw', then there's no exception-specification. */
if (!cp_parser_is_keyword (token, RID_THROW))
return NULL_TREE;
/* Consume the `throw'. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a `)', then there is a type-id-list. */
if (token->type != CPP_CLOSE_PAREN)
{
const char *saved_message;
/* Types may not be defined in an exception-specification. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in an exception-specification";
/* Parse the type-id-list. */
type_id_list = cp_parser_type_id_list (parser);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
}
else
type_id_list = empty_except_spec;
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return type_id_list;
}
/* Parse an (optional) type-id-list.
type-id-list:
type-id
type-id-list , type-id
Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
in the order that the types were presented. */
static tree
cp_parser_type_id_list (cp_parser* parser)
{
tree types = NULL_TREE;
while (true)
{
cp_token *token;
tree type;
/* Get the next type-id. */
type = cp_parser_type_id (parser);
/* Add it to the list. */
types = add_exception_specifier (types, type, /*complain=*/1);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it is not a `,', we are done. */
if (token->type != CPP_COMMA)
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
}
return nreverse (types);
}
/* Parse a try-block.
try-block:
try compound-statement handler-seq */
static tree
cp_parser_try_block (cp_parser* parser)
{
tree try_block;
cp_parser_require_keyword (parser, RID_TRY, "`try'");
try_block = begin_try_block ();
cp_parser_compound_statement (parser, false);
finish_try_block (try_block);
cp_parser_handler_seq (parser);
finish_handler_sequence (try_block);
return try_block;
}
/* Parse a function-try-block.
function-try-block:
try ctor-initializer [opt] function-body handler-seq */
static bool
cp_parser_function_try_block (cp_parser* parser)
{
tree try_block;
bool ctor_initializer_p;
/* Look for the `try' keyword. */
if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
return false;
/* Let the rest of the front-end know where we are. */
try_block = begin_function_try_block ();
/* Parse the function-body. */
ctor_initializer_p
= cp_parser_ctor_initializer_opt_and_function_body (parser);
/* We're done with the `try' part. */
finish_function_try_block (try_block);
/* Parse the handlers. */
cp_parser_handler_seq (parser);
/* We're done with the handlers. */
finish_function_handler_sequence (try_block);
return ctor_initializer_p;
}
/* Parse a handler-seq.
handler-seq:
handler handler-seq [opt] */
static void
cp_parser_handler_seq (cp_parser* parser)
{
while (true)
{
cp_token *token;
/* Parse the handler. */
cp_parser_handler (parser);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not `catch' then there are no more handlers. */
if (!cp_parser_is_keyword (token, RID_CATCH))
break;
}
}
/* Parse a handler.
handler:
catch ( exception-declaration ) compound-statement */
static void
cp_parser_handler (cp_parser* parser)
{
tree handler;
tree declaration;
cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
handler = begin_handler ();
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
declaration = cp_parser_exception_declaration (parser);
finish_handler_parms (declaration, handler);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
cp_parser_compound_statement (parser, false);
finish_handler (handler);
}
/* Parse an exception-declaration.
exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...
Returns a VAR_DECL for the declaration, or NULL_TREE if the
ellipsis variant is used. */
static tree
cp_parser_exception_declaration (cp_parser* parser)
{
tree type_specifiers;
tree declarator;
const char *saved_message;
/* If it's an ellipsis, it's easy to handle. */
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
return NULL_TREE;
}
/* Types may not be defined in exception-declarations. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in exception-declarations";
/* Parse the type-specifier-seq. */
type_specifiers = cp_parser_type_specifier_seq (parser);
/* If it's a `)', then there is no declarator. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
declarator = NULL_TREE;
else
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
/*ctor_dtor_or_conv_p=*/NULL);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
return start_handler_parms (type_specifiers, declarator);
}
/* Parse a throw-expression.
throw-expression:
throw assignment-expression [opt]
Returns a THROW_EXPR representing the throw-expression. */
static tree
cp_parser_throw_expression (cp_parser* parser)
{
tree expression;
cp_parser_require_keyword (parser, RID_THROW, "`throw'");
/* We can't be sure if there is an assignment-expression or not. */
cp_parser_parse_tentatively (parser);
/* Try it. */
expression = cp_parser_assignment_expression (parser);
/* If it didn't work, this is just a rethrow. */
if (!cp_parser_parse_definitely (parser))
expression = NULL_TREE;
return build_throw (expression);
}
/* GNU Extensions */
/* Parse an (optional) asm-specification.
asm-specification:
asm ( string-literal )
If the asm-specification is present, returns a STRING_CST
corresponding to the string-literal. Otherwise, returns
NULL_TREE. */
static tree
cp_parser_asm_specification_opt (cp_parser* parser)
{
cp_token *token;
tree asm_specification;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token isn't the `asm' keyword, then there's no
asm-specification. */
if (!cp_parser_is_keyword (token, RID_ASM))
return NULL_TREE;
/* Consume the `asm' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Look for the string-literal. */
token = cp_parser_require (parser, CPP_STRING, "string-literal");
if (token)
asm_specification = token->value;
else
asm_specification = NULL_TREE;
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
return asm_specification;
}
/* Parse an asm-operand-list.
asm-operand-list:
asm-operand
asm-operand-list , asm-operand
asm-operand:
string-literal ( expression )
[ string-literal ] string-literal ( expression )
Returns a TREE_LIST representing the operands. The TREE_VALUE of
each node is the expression. The TREE_PURPOSE is itself a
TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
string-literal (or NULL_TREE if not present) and whose TREE_VALUE
is a STRING_CST for the string literal before the parenthesis. */
static tree
cp_parser_asm_operand_list (cp_parser* parser)
{
tree asm_operands = NULL_TREE;
while (true)
{
tree string_literal;
tree expression;
tree name;
cp_token *token;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Read the operand name. */
name = cp_parser_identifier (parser);
if (name != error_mark_node)
name = build_string (IDENTIFIER_LENGTH (name),
IDENTIFIER_POINTER (name));
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
}
else
name = NULL_TREE;
/* Look for the string-literal. */
token = cp_parser_require (parser, CPP_STRING, "string-literal");
string_literal = token ? token->value : error_mark_node;
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the expression. */
expression = cp_parser_expression (parser);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Add this operand to the list. */
asm_operands = tree_cons (build_tree_list (name, string_literal),
expression,
asm_operands);
/* If the next token is not a `,', there are no more
operands. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
}
return nreverse (asm_operands);
}
/* Parse an asm-clobber-list.
asm-clobber-list:
string-literal
asm-clobber-list , string-literal
Returns a TREE_LIST, indicating the clobbers in the order that they
appeared. The TREE_VALUE of each node is a STRING_CST. */
static tree
cp_parser_asm_clobber_list (cp_parser* parser)
{
tree clobbers = NULL_TREE;
while (true)
{
cp_token *token;
tree string_literal;
/* Look for the string literal. */
token = cp_parser_require (parser, CPP_STRING, "string-literal");
string_literal = token ? token->value : error_mark_node;
/* Add it to the list. */
clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
/* If the next token is not a `,', then the list is
complete. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
return clobbers;
}
/* Parse an (optional) series of attributes.
attributes:
attributes attribute
attribute:
__attribute__ (( attribute-list [opt] ))
The return value is as for cp_parser_attribute_list. */
static tree
cp_parser_attributes_opt (cp_parser* parser)
{
tree attributes = NULL_TREE;
while (true)
{
cp_token *token;
tree attribute_list;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not `__attribute__', then we're done. */
if (token->keyword != RID_ATTRIBUTE)
break;
/* Consume the `__attribute__' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Look for the two `(' tokens. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_CLOSE_PAREN)
/* Parse the attribute-list. */
attribute_list = cp_parser_attribute_list (parser);
else
/* If the next token is a `)', then there is no attribute
list. */
attribute_list = NULL;
/* Look for the two `)' tokens. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Add these new attributes to the list. */
attributes = chainon (attributes, attribute_list);
}
return attributes;
}
/* Parse an attribute-list.
attribute-list:
attribute
attribute-list , attribute
attribute:
identifier
identifier ( identifier )
identifier ( identifier , expression-list )
identifier ( expression-list )
Returns a TREE_LIST. Each node corresponds to an attribute. THe
TREE_PURPOSE of each node is the identifier indicating which
attribute is in use. The TREE_VALUE represents the arguments, if
any. */
static tree
cp_parser_attribute_list (cp_parser* parser)
{
tree attribute_list = NULL_TREE;
while (true)
{
cp_token *token;
tree identifier;
tree attribute;
/* Look for the identifier. We also allow keywords here; for
example `__attribute__ ((const))' is legal. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_NAME
&& token->type != CPP_KEYWORD)
return error_mark_node;
/* Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
/* Save away the identifier that indicates which attribute this is. */
identifier = token->value;
attribute = build_tree_list (identifier, NULL_TREE);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's an `(', then parse the attribute arguments. */
if (token->type == CPP_OPEN_PAREN)
{
tree arguments;
arguments = (cp_parser_parenthesized_expression_list
(parser, true, /*non_constant_p=*/NULL));
/* Save the identifier and arguments away. */
TREE_VALUE (attribute) = arguments;
}
/* Add this attribute to the list. */
TREE_CHAIN (attribute) = attribute_list;
attribute_list = attribute;
/* Now, look for more attributes. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token isn't a `,', we're done. */
if (token->type != CPP_COMMA)
break;
/* Consume the comma and keep going. */
cp_lexer_consume_token (parser->lexer);
}
/* We built up the list in reverse order. */
return nreverse (attribute_list);
}
/* Parse an optional `__extension__' keyword. Returns TRUE if it is
present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
current value of the PEDANTIC flag, regardless of whether or not
the `__extension__' keyword is present. The caller is responsible
for restoring the value of the PEDANTIC flag. */
static bool
cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
{
/* Save the old value of the PEDANTIC flag. */
*saved_pedantic = pedantic;
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
{
/* Consume the `__extension__' token. */
cp_lexer_consume_token (parser->lexer);
/* We're not being pedantic while the `__extension__' keyword is
in effect. */
pedantic = 0;
return true;
}
return false;
}
/* Parse a label declaration.
label-declaration:
__label__ label-declarator-seq ;
label-declarator-seq:
identifier , label-declarator-seq
identifier */
static void
cp_parser_label_declaration (cp_parser* parser)
{
/* Look for the `__label__' keyword. */
cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
while (true)
{
tree identifier;
/* Look for an identifier. */
identifier = cp_parser_identifier (parser);
/* Declare it as a lobel. */
finish_label_decl (identifier);
/* If the next token is a `;', stop. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
break;
/* Look for the `,' separating the label declarations. */
cp_parser_require (parser, CPP_COMMA, "`,'");
}
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
/* Support Functions */
/* Looks up NAME in the current scope, as given by PARSER->SCOPE.
NAME should have one of the representations used for an
id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
is returned. If PARSER->SCOPE is a dependent type, then a
SCOPE_REF is returned.
If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
returned; the name was already resolved when the TEMPLATE_ID_EXPR
was formed. Abstractly, such entities should not be passed to this
function, because they do not need to be looked up, but it is
simpler to check for this special case here, rather than at the
call-sites.
In cases not explicitly covered above, this function returns a
DECL, OVERLOAD, or baselink representing the result of the lookup.
If there was no entity with the indicated NAME, the ERROR_MARK_NODE
is returned.
If IS_TYPE is TRUE, bindings that do not refer to types are
ignored.
If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
are ignored.
If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
types. */
static tree
cp_parser_lookup_name (cp_parser *parser, tree name,
bool is_type, bool is_namespace, bool check_dependency)
{
tree decl;
tree object_type = parser->context->object_type;
/* Now that we have looked up the name, the OBJECT_TYPE (if any) is
no longer valid. Note that if we are parsing tentatively, and
the parse fails, OBJECT_TYPE will be automatically restored. */
parser->context->object_type = NULL_TREE;
if (name == error_mark_node)
return error_mark_node;
/* A template-id has already been resolved; there is no lookup to
do. */
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
return name;
if (BASELINK_P (name))
{
my_friendly_assert ((TREE_CODE (BASELINK_FUNCTIONS (name))
== TEMPLATE_ID_EXPR),
20020909);
return name;
}
/* A BIT_NOT_EXPR is used to represent a destructor. By this point,
it should already have been checked to make sure that the name
used matches the type being destroyed. */
if (TREE_CODE (name) == BIT_NOT_EXPR)
{
tree type;
/* Figure out to which type this destructor applies. */
if (parser->scope)
type = parser->scope;
else if (object_type)
type = object_type;
else
type = current_class_type;
/* If that's not a class type, there is no destructor. */
if (!type || !CLASS_TYPE_P (type))
return error_mark_node;
/* If it was a class type, return the destructor. */
return CLASSTYPE_DESTRUCTORS (type);
}
/* By this point, the NAME should be an ordinary identifier. If
the id-expression was a qualified name, the qualifying scope is
stored in PARSER->SCOPE at this point. */
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE,
20000619);
/* Perform the lookup. */
if (parser->scope)
{
bool dependent_p;
if (parser->scope == error_mark_node)
return error_mark_node;
/* If the SCOPE is dependent, the lookup must be deferred until
the template is instantiated -- unless we are explicitly
looking up names in uninstantiated templates. Even then, we
cannot look up the name if the scope is not a class type; it
might, for example, be a template type parameter. */
dependent_p = (TYPE_P (parser->scope)
&& !(parser->in_declarator_p
&& currently_open_class (parser->scope))
&& dependent_type_p (parser->scope));
if ((check_dependency || !CLASS_TYPE_P (parser->scope))
&& dependent_p)
{
if (!is_type)
decl = build_nt (SCOPE_REF, parser->scope, name);
else
/* The resolution to Core Issue 180 says that `struct A::B'
should be considered a type-name, even if `A' is
dependent. */
decl = TYPE_NAME (make_typename_type (parser->scope,
name,
/*complain=*/1));
}
else
{
/* If PARSER->SCOPE is a dependent type, then it must be a
class type, and we must not be checking dependencies;
otherwise, we would have processed this lookup above. So
that PARSER->SCOPE is not considered a dependent base by
lookup_member, we must enter the scope here. */
if (dependent_p)
push_scope (parser->scope);
/* If the PARSER->SCOPE is a a template specialization, it
may be instantiated during name lookup. In that case,
errors may be issued. Even if we rollback the current
tentative parse, those errors are valid. */
decl = lookup_qualified_name (parser->scope, name, is_type,
/*complain=*/true);
if (dependent_p)
pop_scope (parser->scope);
}
parser->qualifying_scope = parser->scope;
parser->object_scope = NULL_TREE;
}
else if (object_type)
{
tree object_decl = NULL_TREE;
/* Look up the name in the scope of the OBJECT_TYPE, unless the
OBJECT_TYPE is not a class. */
if (CLASS_TYPE_P (object_type))
/* If the OBJECT_TYPE is a template specialization, it may
be instantiated during name lookup. In that case, errors
may be issued. Even if we rollback the current tentative
parse, those errors are valid. */
object_decl = lookup_member (object_type,
name,
/*protect=*/0, is_type);
/* Look it up in the enclosing context, too. */
decl = lookup_name_real (name, is_type, /*nonclass=*/0,
is_namespace,
/*flags=*/0);
parser->object_scope = object_type;
parser->qualifying_scope = NULL_TREE;
if (object_decl)
decl = object_decl;
}
else
{
decl = lookup_name_real (name, is_type, /*nonclass=*/0,
is_namespace,
/*flags=*/0);
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
/* If the lookup failed, let our caller know. */
if (!decl
|| decl == error_mark_node
|| (TREE_CODE (decl) == FUNCTION_DECL
&& DECL_ANTICIPATED (decl)))
return error_mark_node;
/* If it's a TREE_LIST, the result of the lookup was ambiguous. */
if (TREE_CODE (decl) == TREE_LIST)
{
/* The error message we have to print is too complicated for
cp_parser_error, so we incorporate its actions directly. */
if (!cp_parser_simulate_error (parser))
{
error ("reference to `%D' is ambiguous", name);
print_candidates (decl);
}
return error_mark_node;
}
my_friendly_assert (DECL_P (decl)
|| TREE_CODE (decl) == OVERLOAD
|| TREE_CODE (decl) == SCOPE_REF
|| BASELINK_P (decl),
20000619);
/* If we have resolved the name of a member declaration, check to
see if the declaration is accessible. When the name resolves to
set of overloaded functions, accessibility is checked when
overload resolution is done.
During an explicit instantiation, access is not checked at all,
as per [temp.explicit]. */
if (DECL_P (decl))
check_accessibility_of_qualified_id (decl, object_type, parser->scope);
return decl;
}
/* Like cp_parser_lookup_name, but for use in the typical case where
CHECK_ACCESS is TRUE, IS_TYPE is FALSE, and CHECK_DEPENDENCY is
TRUE. */
static tree
cp_parser_lookup_name_simple (cp_parser* parser, tree name)
{
return cp_parser_lookup_name (parser, name,
/*is_type=*/false,
/*is_namespace=*/false,
/*check_dependency=*/true);
}
/* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
the current context, return the TYPE_DECL. If TAG_NAME_P is
true, the DECL indicates the class being defined in a class-head,
or declared in an elaborated-type-specifier.
Otherwise, return DECL. */
static tree
cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
{
/* If the TEMPLATE_DECL is being declared as part of a class-head,
the translation from TEMPLATE_DECL to TYPE_DECL occurs:
struct A {
template <typename T> struct B;
};
template <typename T> struct A::B {};
Similarly, in a elaborated-type-specifier:
namespace N { struct X{}; }
struct A {
template <typename T> friend struct N::X;
};
However, if the DECL refers to a class type, and we are in
the scope of the class, then the name lookup automatically
finds the TYPE_DECL created by build_self_reference rather
than a TEMPLATE_DECL. For example, in:
template <class T> struct S {
S s;
};
there is no need to handle such case. */
if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
return DECL_TEMPLATE_RESULT (decl);
return decl;
}
/* If too many, or too few, template-parameter lists apply to the
declarator, issue an error message. Returns TRUE if all went well,
and FALSE otherwise. */
static bool
cp_parser_check_declarator_template_parameters (cp_parser* parser,
tree declarator)
{
unsigned num_templates;
/* We haven't seen any classes that involve template parameters yet. */
num_templates = 0;
switch (TREE_CODE (declarator))
{
case CALL_EXPR:
case ARRAY_REF:
case INDIRECT_REF:
case ADDR_EXPR:
{
tree main_declarator = TREE_OPERAND (declarator, 0);
return
cp_parser_check_declarator_template_parameters (parser,
main_declarator);
}
case SCOPE_REF:
{
tree scope;
tree member;
scope = TREE_OPERAND (declarator, 0);
member = TREE_OPERAND (declarator, 1);
/* If this is a pointer-to-member, then we are not interested
in the SCOPE, because it does not qualify the thing that is
being declared. */
if (TREE_CODE (member) == INDIRECT_REF)
return (cp_parser_check_declarator_template_parameters
(parser, member));
while (scope && CLASS_TYPE_P (scope))
{
/* You're supposed to have one `template <...>'
for every template class, but you don't need one
for a full specialization. For example:
template <class T> struct S{};
template <> struct S<int> { void f(); };
void S<int>::f () {}
is correct; there shouldn't be a `template <>' for
the definition of `S<int>::f'. */
if (CLASSTYPE_TEMPLATE_INFO (scope)
&& (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
|| uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
++num_templates;
scope = TYPE_CONTEXT (scope);
}
}
/* Fall through. */
default:
/* If the DECLARATOR has the form `X<y>' then it uses one
additional level of template parameters. */
if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
++num_templates;
return cp_parser_check_template_parameters (parser,
num_templates);
}
}
/* NUM_TEMPLATES were used in the current declaration. If that is
invalid, return FALSE and issue an error messages. Otherwise,
return TRUE. */
static bool
cp_parser_check_template_parameters (cp_parser* parser,
unsigned num_templates)
{
/* If there are more template classes than parameter lists, we have
something like:
template <class T> void S<T>::R<T>::f (); */
if (parser->num_template_parameter_lists < num_templates)
{
error ("too few template-parameter-lists");
return false;
}
/* If there are the same number of template classes and parameter
lists, that's OK. */
if (parser->num_template_parameter_lists == num_templates)
return true;
/* If there are more, but only one more, then we are referring to a
member template. That's OK too. */
if (parser->num_template_parameter_lists == num_templates + 1)
return true;
/* Otherwise, there are too many template parameter lists. We have
something like:
template <class T> template <class U> void S::f(); */
error ("too many template-parameter-lists");
return false;
}
/* Parse a binary-expression of the general form:
binary-expression:
<expr>
binary-expression <token> <expr>
The TOKEN_TREE_MAP maps <token> types to <expr> codes. FN is used
to parser the <expr>s. If the first production is used, then the
value returned by FN is returned directly. Otherwise, a node with
the indicated EXPR_TYPE is returned, with operands corresponding to
the two sub-expressions. */
static tree
cp_parser_binary_expression (cp_parser* parser,
const cp_parser_token_tree_map token_tree_map,
cp_parser_expression_fn fn)
{
tree lhs;
/* Parse the first expression. */
lhs = (*fn) (parser);
/* Now, look for more expressions. */
while (true)
{
cp_token *token;
const cp_parser_token_tree_map_node *map_node;
tree rhs;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the token is `>', and that's not an operator at the
moment, then we're done. */
if (token->type == CPP_GREATER
&& !parser->greater_than_is_operator_p)
break;
/* If we find one of the tokens we want, build the corresponding
tree representation. */
for (map_node = token_tree_map;
map_node->token_type != CPP_EOF;
++map_node)
if (map_node->token_type == token->type)
{
/* Consume the operator token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the right-hand side of the expression. */
rhs = (*fn) (parser);
/* Build the binary tree node. */
lhs = build_x_binary_op (map_node->tree_type, lhs, rhs);
break;
}
/* If the token wasn't one of the ones we want, we're done. */
if (map_node->token_type == CPP_EOF)
break;
}
return lhs;
}
/* Parse an optional `::' token indicating that the following name is
from the global namespace. If so, PARSER->SCOPE is set to the
GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
Returns the new value of PARSER->SCOPE, if the `::' token is
present, and NULL_TREE otherwise. */
static tree
cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a `::' token then we're starting from the
global namespace, not our current location. */
if (token->type == CPP_SCOPE)
{
/* Consume the `::' token. */
cp_lexer_consume_token (parser->lexer);
/* Set the SCOPE so that we know where to start the lookup. */
parser->scope = global_namespace;
parser->qualifying_scope = global_namespace;
parser->object_scope = NULL_TREE;
return parser->scope;
}
else if (!current_scope_valid_p)
{
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
return NULL_TREE;
}
/* Returns TRUE if the upcoming token sequence is the start of a
constructor declarator. If FRIEND_P is true, the declarator is
preceded by the `friend' specifier. */
static bool
cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
{
bool constructor_p;
tree type_decl = NULL_TREE;
bool nested_name_p;
cp_token *next_token;
/* The common case is that this is not a constructor declarator, so
try to avoid doing lots of work if at all possible. It's not
valid declare a constructor at function scope. */
if (at_function_scope_p ())
return false;
/* And only certain tokens can begin a constructor declarator. */
next_token = cp_lexer_peek_token (parser->lexer);
if (next_token->type != CPP_NAME
&& next_token->type != CPP_SCOPE
&& next_token->type != CPP_NESTED_NAME_SPECIFIER
&& next_token->type != CPP_TEMPLATE_ID)
return false;
/* Parse tentatively; we are going to roll back all of the tokens
consumed here. */
cp_parser_parse_tentatively (parser);
/* Assume that we are looking at a constructor declarator. */
constructor_p = true;
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. */
nested_name_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/false,
/*type_p=*/false)
!= NULL_TREE);
/* Outside of a class-specifier, there must be a
nested-name-specifier. */
if (!nested_name_p &&
(!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
|| friend_p))
constructor_p = false;
/* If we still think that this might be a constructor-declarator,
look for a class-name. */
if (constructor_p)
{
/* If we have:
template <typename T> struct S { S(); };
template <typename T> S<T>::S ();
we must recognize that the nested `S' names a class.
Similarly, for:
template <typename T> S<T>::S<T> ();
we must recognize that the nested `S' names a template. */
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
/*type_p=*/false,
/*check_dependency_p=*/false,
/*class_head_p=*/false);
/* If there was no class-name, then this is not a constructor. */
constructor_p = !cp_parser_error_occurred (parser);
}
/* If we're still considering a constructor, we have to see a `(',
to begin the parameter-declaration-clause, followed by either a
`)', an `...', or a decl-specifier. We need to check for a
type-specifier to avoid being fooled into thinking that:
S::S (f) (int);
is a constructor. (It is actually a function named `f' that
takes one parameter (of type `int') and returns a value of type
`S::S'. */
if (constructor_p
&& cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
{
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
&& !cp_parser_storage_class_specifier_opt (parser))
{
tree type;
unsigned saved_num_template_parameter_lists;
/* Names appearing in the type-specifier should be looked up
in the scope of the class. */
if (current_class_type)
type = NULL_TREE;
else
{
type = TREE_TYPE (type_decl);
if (TREE_CODE (type) == TYPENAME_TYPE)
{
type = resolve_typename_type (type,
/*only_current_p=*/false);
if (type == error_mark_node)
{
cp_parser_abort_tentative_parse (parser);
return false;
}
}
push_scope (type);
}
/* Inside the constructor parameter list, surrounding
template-parameter-lists do not apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* Look for the type-specifier. */
cp_parser_type_specifier (parser,
CP_PARSER_FLAGS_NONE,
/*is_friend=*/false,
/*is_declarator=*/true,
/*declares_class_or_enum=*/NULL,
/*is_cv_qualifier=*/NULL);
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
/* Leave the scope of the class. */
if (type)
pop_scope (type);
constructor_p = !cp_parser_error_occurred (parser);
}
}
else
constructor_p = false;
/* We did not really want to consume any tokens. */
cp_parser_abort_tentative_parse (parser);
return constructor_p;
}
/* Parse the definition of the function given by the DECL_SPECIFIERS,
ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
they must be performed once we are in the scope of the function.
Returns the function defined. */
static tree
cp_parser_function_definition_from_specifiers_and_declarator
(cp_parser* parser,
tree decl_specifiers,
tree attributes,
tree declarator)
{
tree fn;
bool success_p;
/* Begin the function-definition. */
success_p = begin_function_definition (decl_specifiers,
attributes,
declarator);
/* If there were names looked up in the decl-specifier-seq that we
did not check, check them now. We must wait until we are in the
scope of the function to perform the checks, since the function
might be a friend. */
perform_deferred_access_checks ();
if (!success_p)
{
/* If begin_function_definition didn't like the definition, skip
the entire function. */
error ("invalid function declaration");
cp_parser_skip_to_end_of_block_or_statement (parser);
fn = error_mark_node;
}
else
fn = cp_parser_function_definition_after_declarator (parser,
/*inline_p=*/false);
return fn;
}
/* Parse the part of a function-definition that follows the
declarator. INLINE_P is TRUE iff this function is an inline
function defined with a class-specifier.
Returns the function defined. */
static tree
cp_parser_function_definition_after_declarator (cp_parser* parser,
bool inline_p)
{
tree fn;
bool ctor_initializer_p = false;
bool saved_in_unbraced_linkage_specification_p;
unsigned saved_num_template_parameter_lists;
/* If the next token is `return', then the code may be trying to
make use of the "named return value" extension that G++ used to
support. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
{
/* Consume the `return' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Look for the identifier that indicates what value is to be
returned. */
cp_parser_identifier (parser);
/* Issue an error message. */
error ("named return values are no longer supported");
/* Skip tokens until we reach the start of the function body. */
while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
cp_lexer_consume_token (parser->lexer);
}
/* The `extern' in `extern "C" void f () { ... }' does not apply to
anything declared inside `f'. */
saved_in_unbraced_linkage_specification_p
= parser->in_unbraced_linkage_specification_p;
parser->in_unbraced_linkage_specification_p = false;
/* Inside the function, surrounding template-parameter-lists do not
apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* If the next token is `try', then we are looking at a
function-try-block. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
ctor_initializer_p = cp_parser_function_try_block (parser);
/* A function-try-block includes the function-body, so we only do
this next part if we're not processing a function-try-block. */
else
ctor_initializer_p
= cp_parser_ctor_initializer_opt_and_function_body (parser);
/* Finish the function. */
fn = finish_function ((ctor_initializer_p ? 1 : 0) |
(inline_p ? 2 : 0));
/* Generate code for it, if necessary. */
expand_or_defer_fn (fn);
/* Restore the saved values. */
parser->in_unbraced_linkage_specification_p
= saved_in_unbraced_linkage_specification_p;
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
return fn;
}
/* Parse a template-declaration, assuming that the `export' (and
`extern') keywords, if present, has already been scanned. MEMBER_P
is as for cp_parser_template_declaration. */
static void
cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
{
tree decl = NULL_TREE;
tree parameter_list;
bool friend_p = false;
/* Look for the `template' keyword. */
if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
return;
/* And the `<'. */
if (!cp_parser_require (parser, CPP_LESS, "`<'"))
return;
/* Parse the template parameters. */
begin_template_parm_list ();
/* If the next token is `>', then we have an invalid
specialization. Rather than complain about an invalid template
parameter, issue an error message here. */
if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
{
cp_parser_error (parser, "invalid explicit specialization");
parameter_list = NULL_TREE;
}
else
parameter_list = cp_parser_template_parameter_list (parser);
parameter_list = end_template_parm_list (parameter_list);
/* Look for the `>'. */
cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
/* We just processed one more parameter list. */
++parser->num_template_parameter_lists;
/* If the next token is `template', there are more template
parameters. */
if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_TEMPLATE))
cp_parser_template_declaration_after_export (parser, member_p);
else
{
decl = cp_parser_single_declaration (parser,
member_p,
&friend_p);
/* If this is a member template declaration, let the front
end know. */
if (member_p && !friend_p && decl)
{
if (TREE_CODE (decl) == TYPE_DECL)
cp_parser_check_access_in_redeclaration (decl);
decl = finish_member_template_decl (decl);
}
else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
make_friend_class (current_class_type, TREE_TYPE (decl),
/*complain=*/true);
}
/* We are done with the current parameter list. */
--parser->num_template_parameter_lists;
/* Finish up. */
finish_template_decl (parameter_list);
/* Register member declarations. */
if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
finish_member_declaration (decl);
/* If DECL is a function template, we must return to parse it later.
(Even though there is no definition, there might be default
arguments that need handling.) */
if (member_p && decl
&& (TREE_CODE (decl) == FUNCTION_DECL
|| DECL_FUNCTION_TEMPLATE_P (decl)))
TREE_VALUE (parser->unparsed_functions_queues)
= tree_cons (NULL_TREE, decl,
TREE_VALUE (parser->unparsed_functions_queues));
}
/* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
`function-definition' sequence. MEMBER_P is true, this declaration
appears in a class scope.
Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
*FRIEND_P is set to TRUE iff the declaration is a friend. */
static tree
cp_parser_single_declaration (cp_parser* parser,
bool member_p,
bool* friend_p)
{
int declares_class_or_enum;
tree decl = NULL_TREE;
tree decl_specifiers;
tree attributes;
/* Parse the dependent declaration. We don't know yet
whether it will be a function-definition. */
cp_parser_parse_tentatively (parser);
/* Defer access checks until we know what is being declared. */
push_deferring_access_checks (dk_deferred);
/* Try the `decl-specifier-seq [opt] init-declarator [opt]'
alternative. */
decl_specifiers
= cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&attributes,
&declares_class_or_enum);
/* Gather up the access checks that occurred the
decl-specifier-seq. */
stop_deferring_access_checks ();
/* Check for the declaration of a template class. */
if (declares_class_or_enum)
{
if (cp_parser_declares_only_class_p (parser))
{
decl = shadow_tag (decl_specifiers);
if (decl)
decl = TYPE_NAME (decl);
else
decl = error_mark_node;
}
}
else
decl = NULL_TREE;
/* If it's not a template class, try for a template function. If
the next token is a `;', then this declaration does not declare
anything. But, if there were errors in the decl-specifiers, then
the error might well have come from an attempted class-specifier.
In that case, there's no need to warn about a missing declarator. */
if (!decl
&& (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
|| !value_member (error_mark_node, decl_specifiers)))
decl = cp_parser_init_declarator (parser,
decl_specifiers,
attributes,
/*function_definition_allowed_p=*/false,
member_p,
declares_class_or_enum,
/*function_definition_p=*/NULL);
pop_deferring_access_checks ();
/* Clear any current qualification; whatever comes next is the start
of something new. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
/* Look for a trailing `;' after the declaration. */
if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'")
&& cp_parser_committed_to_tentative_parse (parser))
cp_parser_skip_to_end_of_block_or_statement (parser);
/* If it worked, set *FRIEND_P based on the DECL_SPECIFIERS. */
if (cp_parser_parse_definitely (parser))
{
if (friend_p)
*friend_p = cp_parser_friend_p (decl_specifiers);
}
/* Otherwise, try a function-definition. */
else
decl = cp_parser_function_definition (parser, friend_p);
return decl;
}
/* Parse a cast-expression that is not the operand of a unary "&". */
static tree
cp_parser_simple_cast_expression (cp_parser *parser)
{
return cp_parser_cast_expression (parser, /*address_p=*/false);
}
/* Parse a functional cast to TYPE. Returns an expression
representing the cast. */
static tree
cp_parser_functional_cast (cp_parser* parser, tree type)
{
tree expression_list;
expression_list
= cp_parser_parenthesized_expression_list (parser, false,
/*non_constant_p=*/NULL);
return build_functional_cast (type, expression_list);
}
/* MEMBER_FUNCTION is a member function, or a friend. If default
arguments, or the body of the function have not yet been parsed,
parse them now. */
static void
cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
{
cp_lexer *saved_lexer;
/* If this member is a template, get the underlying
FUNCTION_DECL. */
if (DECL_FUNCTION_TEMPLATE_P (member_function))
member_function = DECL_TEMPLATE_RESULT (member_function);
/* There should not be any class definitions in progress at this
point; the bodies of members are only parsed outside of all class
definitions. */
my_friendly_assert (parser->num_classes_being_defined == 0, 20010816);
/* While we're parsing the member functions we might encounter more
classes. We want to handle them right away, but we don't want
them getting mixed up with functions that are currently in the
queue. */
parser->unparsed_functions_queues
= tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
/* Make sure that any template parameters are in scope. */
maybe_begin_member_template_processing (member_function);
/* If the body of the function has not yet been parsed, parse it
now. */
if (DECL_PENDING_INLINE_P (member_function))
{
tree function_scope;
cp_token_cache *tokens;
/* The function is no longer pending; we are processing it. */
tokens = DECL_PENDING_INLINE_INFO (member_function);
DECL_PENDING_INLINE_INFO (member_function) = NULL;
DECL_PENDING_INLINE_P (member_function) = 0;
/* If this was an inline function in a local class, enter the scope
of the containing function. */
function_scope = decl_function_context (member_function);
if (function_scope)
push_function_context_to (function_scope);
/* Save away the current lexer. */
saved_lexer = parser->lexer;
/* Make a new lexer to feed us the tokens saved for this function. */
parser->lexer = cp_lexer_new_from_tokens (tokens);
parser->lexer->next = saved_lexer;
/* Set the current source position to be the location of the first
token in the saved inline body. */
cp_lexer_peek_token (parser->lexer);
/* Let the front end know that we going to be defining this
function. */
start_function (NULL_TREE, member_function, NULL_TREE,
SF_PRE_PARSED | SF_INCLASS_INLINE);
/* Now, parse the body of the function. */
cp_parser_function_definition_after_declarator (parser,
/*inline_p=*/true);
/* Leave the scope of the containing function. */
if (function_scope)
pop_function_context_from (function_scope);
/* Restore the lexer. */
parser->lexer = saved_lexer;
}
/* Remove any template parameters from the symbol table. */
maybe_end_member_template_processing ();
/* Restore the queue. */
parser->unparsed_functions_queues
= TREE_CHAIN (parser->unparsed_functions_queues);
}
/* If DECL contains any default args, remember it on the unparsed
functions queue. */
static void
cp_parser_save_default_args (cp_parser* parser, tree decl)
{
tree probe;
for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
probe;
probe = TREE_CHAIN (probe))
if (TREE_PURPOSE (probe))
{
TREE_PURPOSE (parser->unparsed_functions_queues)
= tree_cons (NULL_TREE, decl,
TREE_PURPOSE (parser->unparsed_functions_queues));
break;
}
return;
}
/* FN is a FUNCTION_DECL which may contains a parameter with an
unparsed DEFAULT_ARG. Parse the default args now. */
static void
cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
{
cp_lexer *saved_lexer;
cp_token_cache *tokens;
bool saved_local_variables_forbidden_p;
tree parameters;
/* While we're parsing the default args, we might (due to the
statement expression extension) encounter more classes. We want
to handle them right away, but we don't want them getting mixed
up with default args that are currently in the queue. */
parser->unparsed_functions_queues
= tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
for (parameters = TYPE_ARG_TYPES (TREE_TYPE (fn));
parameters;
parameters = TREE_CHAIN (parameters))
{
if (!TREE_PURPOSE (parameters)
|| TREE_CODE (TREE_PURPOSE (parameters)) != DEFAULT_ARG)
continue;
/* Save away the current lexer. */
saved_lexer = parser->lexer;
/* Create a new one, using the tokens we have saved. */
tokens = DEFARG_TOKENS (TREE_PURPOSE (parameters));
parser->lexer = cp_lexer_new_from_tokens (tokens);
/* Set the current source position to be the location of the
first token in the default argument. */
cp_lexer_peek_token (parser->lexer);
/* Local variable names (and the `this' keyword) may not appear
in a default argument. */
saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
parser->local_variables_forbidden_p = true;
/* Parse the assignment-expression. */
if (DECL_CONTEXT (fn))
push_nested_class (DECL_CONTEXT (fn));
TREE_PURPOSE (parameters) = cp_parser_assignment_expression (parser);
if (DECL_CONTEXT (fn))
pop_nested_class ();
/* Restore saved state. */
parser->lexer = saved_lexer;
parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
}
/* Restore the queue. */
parser->unparsed_functions_queues
= TREE_CHAIN (parser->unparsed_functions_queues);
}
/* Parse the operand of `sizeof' (or a similar operator). Returns
either a TYPE or an expression, depending on the form of the
input. The KEYWORD indicates which kind of expression we have
encountered. */
static tree
cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
{
static const char *format;
tree expr = NULL_TREE;
const char *saved_message;
bool saved_constant_expression_p;
/* Initialize FORMAT the first time we get here. */
if (!format)
format = "types may not be defined in `%s' expressions";
/* Types cannot be defined in a `sizeof' expression. Save away the
old message. */
saved_message = parser->type_definition_forbidden_message;
/* And create the new one. */
parser->type_definition_forbidden_message
= xmalloc (strlen (format)
+ strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
+ 1 /* `\0' */);
sprintf ((char *) parser->type_definition_forbidden_message,
format, IDENTIFIER_POINTER (ridpointers[keyword]));
/* The restrictions on constant-expressions do not apply inside
sizeof expressions. */
saved_constant_expression_p = parser->constant_expression_p;
parser->constant_expression_p = false;
/* Do not actually evaluate the expression. */
++skip_evaluation;
/* If it's a `(', then we might be looking at the type-id
construction. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree type;
/* We can't be sure yet whether we're looking at a type-id or an
expression. */
cp_parser_parse_tentatively (parser);
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the type-id. */
type = cp_parser_type_id (parser);
/* Now, look for the trailing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* If all went well, then we're done. */
if (cp_parser_parse_definitely (parser))
{
/* Build a list of decl-specifiers; right now, we have only
a single type-specifier. */
type = build_tree_list (NULL_TREE,
type);
/* Call grokdeclarator to figure out what type this is. */
expr = grokdeclarator (NULL_TREE,
type,
TYPENAME,
/*initialized=*/0,
/*attrlist=*/NULL);
}
}
/* If the type-id production did not work out, then we must be
looking at the unary-expression production. */
if (!expr)
expr = cp_parser_unary_expression (parser, /*address_p=*/false);
/* Go back to evaluating expressions. */
--skip_evaluation;
/* Free the message we created. */
free ((char *) parser->type_definition_forbidden_message);
/* And restore the old one. */
parser->type_definition_forbidden_message = saved_message;
parser->constant_expression_p = saved_constant_expression_p;
return expr;
}
/* If the current declaration has no declarator, return true. */
static bool
cp_parser_declares_only_class_p (cp_parser *parser)
{
/* If the next token is a `;' or a `,' then there is no
declarator. */
return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|| cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
}
/* Simplify EXPR if it is a non-dependent expression. Returns the
(possibly simplified) expression. */
static tree
cp_parser_fold_non_dependent_expr (tree expr)
{
/* If we're in a template, but EXPR isn't value dependent, simplify
it. We're supposed to treat:
template <typename T> void f(T[1 + 1]);
template <typename T> void f(T[2]);
as two declarations of the same function, for example. */
if (processing_template_decl
&& !type_dependent_expression_p (expr)
&& !value_dependent_expression_p (expr))
{
HOST_WIDE_INT saved_processing_template_decl;
saved_processing_template_decl = processing_template_decl;
processing_template_decl = 0;
expr = tsubst_copy_and_build (expr,
/*args=*/NULL_TREE,
tf_error,
/*in_decl=*/NULL_TREE,
/*function_p=*/false);
processing_template_decl = saved_processing_template_decl;
}
return expr;
}
/* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
static bool
cp_parser_friend_p (tree decl_specifiers)
{
while (decl_specifiers)
{
/* See if this decl-specifier is `friend'. */
if (TREE_CODE (TREE_VALUE (decl_specifiers)) == IDENTIFIER_NODE
&& C_RID_CODE (TREE_VALUE (decl_specifiers)) == RID_FRIEND)
return true;
/* Go on to the next decl-specifier. */
decl_specifiers = TREE_CHAIN (decl_specifiers);
}
return false;
}
/* If the next token is of the indicated TYPE, consume it. Otherwise,
issue an error message indicating that TOKEN_DESC was expected.
Returns the token consumed, if the token had the appropriate type.
Otherwise, returns NULL. */
static cp_token *
cp_parser_require (cp_parser* parser,
enum cpp_ttype type,
const char* token_desc)
{
if (cp_lexer_next_token_is (parser->lexer, type))
return cp_lexer_consume_token (parser->lexer);
else
{
/* Output the MESSAGE -- unless we're parsing tentatively. */
if (!cp_parser_simulate_error (parser))
error ("expected %s", token_desc);
return NULL;
}
}
/* Like cp_parser_require, except that tokens will be skipped until
the desired token is found. An error message is still produced if
the next token is not as expected. */
static void
cp_parser_skip_until_found (cp_parser* parser,
enum cpp_ttype type,
const char* token_desc)
{
cp_token *token;
unsigned nesting_depth = 0;
if (cp_parser_require (parser, type, token_desc))
return;
/* Skip tokens until the desired token is found. */
while (true)
{
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we've reached the token we want, consume it and
stop. */
if (token->type == type && !nesting_depth)
{
cp_lexer_consume_token (parser->lexer);
return;
}
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
return;
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_SQUARE)
++nesting_depth;
else if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE)
{
if (nesting_depth-- == 0)
return;
}
/* Consume this token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* If the next token is the indicated keyword, consume it. Otherwise,
issue an error message indicating that TOKEN_DESC was expected.
Returns the token consumed, if the token had the appropriate type.
Otherwise, returns NULL. */
static cp_token *
cp_parser_require_keyword (cp_parser* parser,
enum rid keyword,
const char* token_desc)
{
cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
if (token && token->keyword != keyword)
{
dyn_string_t error_msg;
/* Format the error message. */
error_msg = dyn_string_new (0);
dyn_string_append_cstr (error_msg, "expected ");
dyn_string_append_cstr (error_msg, token_desc);
cp_parser_error (parser, error_msg->s);
dyn_string_delete (error_msg);
return NULL;
}
return token;
}
/* Returns TRUE iff TOKEN is a token that can begin the body of a
function-definition. */
static bool
cp_parser_token_starts_function_definition_p (cp_token* token)
{
return (/* An ordinary function-body begins with an `{'. */
token->type == CPP_OPEN_BRACE
/* A ctor-initializer begins with a `:'. */
|| token->type == CPP_COLON
/* A function-try-block begins with `try'. */
|| token->keyword == RID_TRY
/* The named return value extension begins with `return'. */
|| token->keyword == RID_RETURN);
}
/* Returns TRUE iff the next token is the ":" or "{" beginning a class
definition. */
static bool
cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
{
cp_token *token;
token = cp_lexer_peek_token (parser->lexer);
return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
}
/* Returns TRUE iff the next token is the "," or ">" ending a
template-argument. */
static bool
cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
{
cp_token *token;
token = cp_lexer_peek_token (parser->lexer);
return (token->type == CPP_COMMA || token->type == CPP_GREATER);
}
/* Returns the kind of tag indicated by TOKEN, if it is a class-key,
or none_type otherwise. */
static enum tag_types
cp_parser_token_is_class_key (cp_token* token)
{
switch (token->keyword)
{
case RID_CLASS:
return class_type;
case RID_STRUCT:
return record_type;
case RID_UNION:
return union_type;
default:
return none_type;
}
}
/* Issue an error message if the CLASS_KEY does not match the TYPE. */
static void
cp_parser_check_class_key (enum tag_types class_key, tree type)
{
if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
pedwarn ("`%s' tag used in naming `%#T'",
class_key == union_type ? "union"
: class_key == record_type ? "struct" : "class",
type);
}
/* Issue an error message if DECL is redeclared with different
access than its original declaration [class.access.spec/3].
This applies to nested classes and nested class templates.
[class.mem/1]. */
static void cp_parser_check_access_in_redeclaration (tree decl)
{
if (!CLASS_TYPE_P (TREE_TYPE (decl)))
return;
if ((TREE_PRIVATE (decl)
!= (current_access_specifier == access_private_node))
|| (TREE_PROTECTED (decl)
!= (current_access_specifier == access_protected_node)))
error ("%D redeclared with different access", decl);
}
/* Look for the `template' keyword, as a syntactic disambiguator.
Return TRUE iff it is present, in which case it will be
consumed. */
static bool
cp_parser_optional_template_keyword (cp_parser *parser)
{
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* The `template' keyword can only be used within templates;
outside templates the parser can always figure out what is a
template and what is not. */
if (!processing_template_decl)
{
error ("`template' (as a disambiguator) is only allowed "
"within templates");
/* If this part of the token stream is rescanned, the same
error message would be generated. So, we purge the token
from the stream. */
cp_lexer_purge_token (parser->lexer);
return false;
}
else
{
/* Consume the `template' keyword. */
cp_lexer_consume_token (parser->lexer);
return true;
}
}
return false;
}
/* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
set PARSER->SCOPE, and perform other related actions. */
static void
cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
{
tree value;
tree check;
/* Get the stored value. */
value = cp_lexer_consume_token (parser->lexer)->value;
/* Perform any access checks that were deferred. */
for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
/* Set the scope from the stored value. */
parser->scope = TREE_VALUE (value);
parser->qualifying_scope = TREE_TYPE (value);
parser->object_scope = NULL_TREE;
}
/* Add tokens to CACHE until an non-nested END token appears. */
static void
cp_parser_cache_group (cp_parser *parser,
cp_token_cache *cache,
enum cpp_ttype end,
unsigned depth)
{
while (true)
{
cp_token *token;
/* Abort a parenthesized expression if we encounter a brace. */
if ((end == CPP_CLOSE_PAREN || depth == 0)
&& cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
return;
/* Consume the next token. */
token = cp_lexer_consume_token (parser->lexer);
/* If we've reached the end of the file, stop. */
if (token->type == CPP_EOF)
return;
/* Add this token to the tokens we are saving. */
cp_token_cache_push_token (cache, token);
/* See if it starts a new group. */
if (token->type == CPP_OPEN_BRACE)
{
cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, depth + 1);
if (depth == 0)
return;
}
else if (token->type == CPP_OPEN_PAREN)
cp_parser_cache_group (parser, cache, CPP_CLOSE_PAREN, depth + 1);
else if (token->type == end)
return;
}
}
/* Begin parsing tentatively. We always save tokens while parsing
tentatively so that if the tentative parsing fails we can restore the
tokens. */
static void
cp_parser_parse_tentatively (cp_parser* parser)
{
/* Enter a new parsing context. */
parser->context = cp_parser_context_new (parser->context);
/* Begin saving tokens. */
cp_lexer_save_tokens (parser->lexer);
/* In order to avoid repetitive access control error messages,
access checks are queued up until we are no longer parsing
tentatively. */
push_deferring_access_checks (dk_deferred);
}
/* Commit to the currently active tentative parse. */
static void
cp_parser_commit_to_tentative_parse (cp_parser* parser)
{
cp_parser_context *context;
cp_lexer *lexer;
/* Mark all of the levels as committed. */
lexer = parser->lexer;
for (context = parser->context; context->next; context = context->next)
{
if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
break;
context->status = CP_PARSER_STATUS_KIND_COMMITTED;
while (!cp_lexer_saving_tokens (lexer))
lexer = lexer->next;
cp_lexer_commit_tokens (lexer);
}
}
/* Abort the currently active tentative parse. All consumed tokens
will be rolled back, and no diagnostics will be issued. */
static void
cp_parser_abort_tentative_parse (cp_parser* parser)
{
cp_parser_simulate_error (parser);
/* Now, pretend that we want to see if the construct was
successfully parsed. */
cp_parser_parse_definitely (parser);
}
/* Stop parsing tentatively. If a parse error has occurred, restore the
token stream. Otherwise, commit to the tokens we have consumed.
Returns true if no error occurred; false otherwise. */
static bool
cp_parser_parse_definitely (cp_parser* parser)
{
bool error_occurred;
cp_parser_context *context;
/* Remember whether or not an error occurred, since we are about to
destroy that information. */
error_occurred = cp_parser_error_occurred (parser);
/* Remove the topmost context from the stack. */
context = parser->context;
parser->context = context->next;
/* If no parse errors occurred, commit to the tentative parse. */
if (!error_occurred)
{
/* Commit to the tokens read tentatively, unless that was
already done. */
if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
cp_lexer_commit_tokens (parser->lexer);
pop_to_parent_deferring_access_checks ();
}
/* Otherwise, if errors occurred, roll back our state so that things
are just as they were before we began the tentative parse. */
else
{
cp_lexer_rollback_tokens (parser->lexer);
pop_deferring_access_checks ();
}
/* Add the context to the front of the free list. */
context->next = cp_parser_context_free_list;
cp_parser_context_free_list = context;
return !error_occurred;
}
/* Returns true if we are parsing tentatively -- but have decided that
we will stick with this tentative parse, even if errors occur. */
static bool
cp_parser_committed_to_tentative_parse (cp_parser* parser)
{
return (cp_parser_parsing_tentatively (parser)
&& parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
}
/* Returns nonzero iff an error has occurred during the most recent
tentative parse. */
static bool
cp_parser_error_occurred (cp_parser* parser)
{
return (cp_parser_parsing_tentatively (parser)
&& parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
}
/* Returns nonzero if GNU extensions are allowed. */
static bool
cp_parser_allow_gnu_extensions_p (cp_parser* parser)
{
return parser->allow_gnu_extensions_p;
}
/* The parser. */
static GTY (()) cp_parser *the_parser;
/* External interface. */
/* Parse one entire translation unit. */
void
c_parse_file (void)
{
bool error_occurred;
the_parser = cp_parser_new ();
push_deferring_access_checks (flag_access_control
? dk_no_deferred : dk_no_check);
error_occurred = cp_parser_translation_unit (the_parser);
the_parser = NULL;
}
/* Clean up after parsing the entire translation unit. */
void
free_parser_stacks (void)
{
/* Nothing to do. */
}
/* This variable must be provided by every front end. */
int yydebug;
#include "gt-cp-parser.h"
|