summaryrefslogtreecommitdiffstats
path: root/gcc/cp/call.c
blob: 11cb6404054246b705b1bbb2b2d03868617db2b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
/* Functions related to invoking methods and overloaded functions.
   Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) and
   modified by Brendan Kehoe (brendan@cygnus.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* High-level class interface.  */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "cp-tree.h"
#include "output.h"
#include "flags.h"
#include "rtl.h"
#include "toplev.h"
#include "expr.h"
#include "ggc.h"

extern int inhibit_warnings;

static tree build_new_method_call PARAMS ((tree, tree, tree, tree, int));

static tree build_field_call PARAMS ((tree, tree, tree, tree));
static struct z_candidate * tourney PARAMS ((struct z_candidate *));
static int equal_functions PARAMS ((tree, tree));
static int joust PARAMS ((struct z_candidate *, struct z_candidate *, int));
static int compare_ics PARAMS ((tree, tree));
static tree build_over_call PARAMS ((struct z_candidate *, tree, int));
#define convert_like(CONV, EXPR) convert_like_real (CONV, EXPR, NULL_TREE, 0, 0)
#define convert_like_with_context(CONV, EXPR, FN, ARGNO) convert_like_real (CONV, EXPR, FN, ARGNO, 0)
static tree convert_like_real PARAMS ((tree, tree, tree, int, int));
static void op_error PARAMS ((enum tree_code, enum tree_code, tree, tree,
			    tree, const char *));
static tree build_object_call PARAMS ((tree, tree));
static tree resolve_args PARAMS ((tree));
static struct z_candidate * build_user_type_conversion_1
	PARAMS ((tree, tree, int));
static void print_z_candidates PARAMS ((struct z_candidate *));
static tree build_this PARAMS ((tree));
static struct z_candidate * splice_viable PARAMS ((struct z_candidate *));
static int any_viable PARAMS ((struct z_candidate *));
static struct z_candidate * add_template_candidate
	PARAMS ((struct z_candidate *, tree, tree, tree, tree, tree, int,
	       unification_kind_t));
static struct z_candidate * add_template_candidate_real
	PARAMS ((struct z_candidate *, tree, tree, tree, tree, tree, int,
	       tree, unification_kind_t));
static struct z_candidate * add_template_conv_candidate 
        PARAMS ((struct z_candidate *, tree, tree, tree, tree));
static struct z_candidate * add_builtin_candidates
	PARAMS ((struct z_candidate *, enum tree_code, enum tree_code,
	       tree, tree *, int));
static struct z_candidate * add_builtin_candidate
	PARAMS ((struct z_candidate *, enum tree_code, enum tree_code,
	       tree, tree, tree, tree *, tree *, int));
static int is_complete PARAMS ((tree));
static struct z_candidate * build_builtin_candidate 
	PARAMS ((struct z_candidate *, tree, tree, tree, tree *, tree *,
	       int));
static struct z_candidate * add_conv_candidate 
	PARAMS ((struct z_candidate *, tree, tree, tree));
static struct z_candidate * add_function_candidate 
	PARAMS ((struct z_candidate *, tree, tree, tree, int));
static tree implicit_conversion PARAMS ((tree, tree, tree, int));
static tree standard_conversion PARAMS ((tree, tree, tree));
static tree reference_binding PARAMS ((tree, tree, tree, int));
static tree non_reference PARAMS ((tree));
static tree build_conv PARAMS ((enum tree_code, tree, tree));
static int is_subseq PARAMS ((tree, tree));
static int maybe_handle_ref_bind PARAMS ((tree*, tree*));
static void maybe_handle_implicit_object PARAMS ((tree*));
static struct z_candidate * add_candidate PARAMS ((struct z_candidate *,
						   tree, tree, int));
static tree source_type PARAMS ((tree));
static void add_warning PARAMS ((struct z_candidate *, struct z_candidate *));
static int reference_related_p PARAMS ((tree, tree));
static int reference_compatible_p PARAMS ((tree, tree));
static tree convert_class_to_reference PARAMS ((tree, tree, tree));
static tree direct_reference_binding PARAMS ((tree, tree));
static int promoted_arithmetic_type_p PARAMS ((tree));
static tree conditional_conversion PARAMS ((tree, tree));

tree
build_vfield_ref (datum, type)
     tree datum, type;
{
  tree rval;

  if (datum == error_mark_node)
    return error_mark_node;

  if (TREE_CODE (TREE_TYPE (datum)) == REFERENCE_TYPE)
    datum = convert_from_reference (datum);

  if (! TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (type))
    rval = build (COMPONENT_REF, TREE_TYPE (TYPE_VFIELD (type)),
		  datum, TYPE_VFIELD (type));
  else
    rval = build_component_ref (datum, DECL_NAME (TYPE_VFIELD (type)), NULL_TREE, 0);

  return rval;
}

/* Build a call to a member of an object.  I.e., one that overloads
   operator ()(), or is a pointer-to-function or pointer-to-method.  */

static tree
build_field_call (basetype_path, instance_ptr, name, parms)
     tree basetype_path, instance_ptr, name, parms;
{
  tree field, instance;

  if (IDENTIFIER_CTOR_OR_DTOR_P (name))
    return NULL_TREE;

  /* Speed up the common case.  */
  if (instance_ptr == current_class_ptr
      && IDENTIFIER_CLASS_VALUE (name) == NULL_TREE)
    return NULL_TREE;

  field = lookup_field (basetype_path, name, 1, 0);

  if (field == error_mark_node || field == NULL_TREE)
    return field;

  if (TREE_CODE (field) == FIELD_DECL || TREE_CODE (field) == VAR_DECL)
    {
      /* If it's a field, try overloading operator (),
	 or calling if the field is a pointer-to-function.  */
      instance = build_indirect_ref (instance_ptr, NULL_PTR);
      instance = build_component_ref_1 (instance, field, 0);

      if (instance == error_mark_node)
	return error_mark_node;

      if (IS_AGGR_TYPE (TREE_TYPE (instance)))
	return build_opfncall (CALL_EXPR, LOOKUP_NORMAL,
			       instance, parms, NULL_TREE);
      else if (TREE_CODE (TREE_TYPE (instance)) == FUNCTION_TYPE
	       || (TREE_CODE (TREE_TYPE (instance)) == POINTER_TYPE
		   && (TREE_CODE (TREE_TYPE (TREE_TYPE (instance)))
		       == FUNCTION_TYPE)))
	return build_function_call (instance, parms);
    }

  return NULL_TREE;
}

/* Returns nonzero iff the destructor name specified in NAME
   (a BIT_NOT_EXPR) matches BASETYPE.  The operand of NAME can take many
   forms...  */

int
check_dtor_name (basetype, name)
     tree basetype, name;
{
  name = TREE_OPERAND (name, 0);

  /* Just accept something we've already complained about.  */
  if (name == error_mark_node)
    return 1;

  if (TREE_CODE (name) == TYPE_DECL)
    name = TREE_TYPE (name);
  else if (TYPE_P (name))
    /* OK */;
  else if (TREE_CODE (name) == IDENTIFIER_NODE)
    {
      if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
	  || (TREE_CODE (basetype) == ENUMERAL_TYPE
	      && name == TYPE_IDENTIFIER (basetype)))
	name = basetype;
      else
	name = get_type_value (name);
    }
  else
    my_friendly_abort (980605);

  if (name && TYPE_MAIN_VARIANT (basetype) == TYPE_MAIN_VARIANT (name))
    return 1;
  return 0;
}

/* Build a method call of the form `EXP->SCOPES::NAME (PARMS)'.
   This is how virtual function calls are avoided.  */

tree
build_scoped_method_call (exp, basetype, name, parms)
     tree exp, basetype, name, parms;
{
  /* Because this syntactic form does not allow
     a pointer to a base class to be `stolen',
     we need not protect the derived->base conversion
     that happens here.
     
     @@ But we do have to check access privileges later.  */
  tree binfo, decl;
  tree type = TREE_TYPE (exp);

  if (type == error_mark_node
      || basetype == error_mark_node)
    return error_mark_node;

  if (processing_template_decl)
    {
      if (TREE_CODE (name) == BIT_NOT_EXPR
	  && TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
	{
	  tree type = get_aggr_from_typedef (TREE_OPERAND (name, 0), 0);
	  if (type)
	    name = build_min_nt (BIT_NOT_EXPR, type);
	}
      name = build_min_nt (SCOPE_REF, basetype, name);
      return build_min_nt (METHOD_CALL_EXPR, name, exp, parms, NULL_TREE);
    }

  if (TREE_CODE (type) == REFERENCE_TYPE)
    type = TREE_TYPE (type);

  if (TREE_CODE (basetype) == TREE_VEC)
    {
      binfo = basetype;
      basetype = BINFO_TYPE (binfo);
    }
  else
    binfo = NULL_TREE;

  /* Check the destructor call syntax.  */
  if (TREE_CODE (name) == BIT_NOT_EXPR)
    {
      /* We can get here if someone writes their destructor call like
	 `obj.NS::~T()'; this isn't really a scoped method call, so hand
	 it off.  */
      if (TREE_CODE (basetype) == NAMESPACE_DECL)
	return build_method_call (exp, name, parms, NULL_TREE, LOOKUP_NORMAL);

      if (! check_dtor_name (basetype, name))
	cp_error ("qualified type `%T' does not match destructor name `~%T'",
		  basetype, TREE_OPERAND (name, 0));

      /* Destructors can be "called" for simple types; see 5.2.4 and 12.4 Note
	 that explicit ~int is caught in the parser; this deals with typedefs
	 and template parms.  */
      if (! IS_AGGR_TYPE (basetype))
	{
	  if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (basetype))
	    cp_error ("type of `%E' does not match destructor type `%T' (type was `%T')",
		      exp, basetype, type);

	  return cp_convert (void_type_node, exp);
	}
    }

  if (TREE_CODE (basetype) == NAMESPACE_DECL)
    {
      cp_error ("`%D' is a namespace", basetype);
      return error_mark_node;
    }
  if (! is_aggr_type (basetype, 1))
    return error_mark_node;

  if (! IS_AGGR_TYPE (type))
    {
      cp_error ("base object `%E' of scoped method call is of non-aggregate type `%T'",
		exp, type);
      return error_mark_node;
    }

  if (! binfo)
    {
      binfo = get_binfo (basetype, type, 1);
      if (binfo == error_mark_node)
	return error_mark_node;
      if (! binfo)
	error_not_base_type (basetype, type);
    }

  if (binfo)
    {
      if (TREE_CODE (exp) == INDIRECT_REF)
	decl = build_indirect_ref
	  (convert_pointer_to_real
	   (binfo, build_unary_op (ADDR_EXPR, exp, 0)), NULL_PTR);
      else
	decl = build_scoped_ref (exp, basetype);

      /* Call to a destructor.  */
      if (TREE_CODE (name) == BIT_NOT_EXPR)
	{
	  if (! TYPE_HAS_DESTRUCTOR (TREE_TYPE (decl)))
	    return cp_convert (void_type_node, exp);
	  
	  return build_delete (TREE_TYPE (decl), decl, 
			       sfk_complete_destructor,
			       LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR,
			       0);
	}

      /* Call to a method.  */
      return build_method_call (decl, name, parms, binfo,
				LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
    }
  return error_mark_node;
}

/* We want the address of a function or method.  We avoid creating a
   pointer-to-member function.  */

tree
build_addr_func (function)
     tree function;
{
  tree type = TREE_TYPE (function);

  /* We have to do these by hand to avoid real pointer to member
     functions.  */
  if (TREE_CODE (type) == METHOD_TYPE)
    {
      tree addr;

      type = build_pointer_type (type);

      if (mark_addressable (function) == 0)
	return error_mark_node;

      addr = build1 (ADDR_EXPR, type, function);

      /* Address of a static or external variable or function counts
	 as a constant */
      if (staticp (function))
	TREE_CONSTANT (addr) = 1;

      function = addr;
    }
  else
    function = default_conversion (function);

  return function;
}

/* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
   POINTER_TYPE to those.  Note, pointer to member function types
   (TYPE_PTRMEMFUNC_P) must be handled by our callers.  */

tree
build_call (function, parms)
     tree function, parms;
{
  int is_constructor = 0;
  int nothrow;
  tree tmp;
  tree decl;
  tree result_type;

  function = build_addr_func (function);

  if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
    {
      sorry ("unable to call pointer to member function here");
      return error_mark_node;
    }

  result_type = TREE_TYPE (TREE_TYPE (TREE_TYPE (function)));

  if (TREE_CODE (function) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
    decl = TREE_OPERAND (function, 0);
  else
    decl = NULL_TREE;

  /* We check both the decl and the type; a function may be known not to
     throw without being declared throw().  */
  nothrow = ((decl && TREE_NOTHROW (decl))
	     || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function))));
  
  if (decl && DECL_CONSTRUCTOR_P (decl))
    is_constructor = 1;

  if (decl && ! TREE_USED (decl))
    {
      /* We invoke build_call directly for several library functions.
	 These may have been declared normally if we're building libgcc,
	 so we can't just check DECL_ARTIFICIAL.  */
      if (DECL_ARTIFICIAL (decl)
	  || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)), "__", 2))
	mark_used (decl);
      else
	my_friendly_abort (990125);
    }

  /* Don't pass empty class objects by value.  This is useful
     for tags in STL, which are used to control overload resolution.
     We don't need to handle other cases of copying empty classes.  */
  if (! decl || ! DECL_BUILT_IN (decl))
    for (tmp = parms; tmp; tmp = TREE_CHAIN (tmp))
      if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp)))
	  && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp))))
	{
	  tree t = build (EMPTY_CLASS_EXPR, TREE_TYPE (TREE_VALUE (tmp)));
	  TREE_VALUE (tmp) = build (COMPOUND_EXPR, TREE_TYPE (t),
				    TREE_VALUE (tmp), t);
	}

  function = build_nt (CALL_EXPR, function, parms, NULL_TREE);
  TREE_HAS_CONSTRUCTOR (function) = is_constructor;
  TREE_TYPE (function) = result_type;
  TREE_SIDE_EFFECTS (function) = 1;
  TREE_NOTHROW (function) = nothrow;
  
  return function;
}

/* Build something of the form ptr->method (args)
   or object.method (args).  This can also build
   calls to constructors, and find friends.

   Member functions always take their class variable
   as a pointer.

   INSTANCE is a class instance.

   NAME is the name of the method desired, usually an IDENTIFIER_NODE.

   PARMS help to figure out what that NAME really refers to.

   BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
   down to the real instance type to use for access checking.  We need this
   information to get protected accesses correct.  This parameter is used
   by build_member_call.

   FLAGS is the logical disjunction of zero or more LOOKUP_
   flags.  See cp-tree.h for more info.

   If this is all OK, calls build_function_call with the resolved
   member function.

   This function must also handle being called to perform
   initialization, promotion/coercion of arguments, and
   instantiation of default parameters.

   Note that NAME may refer to an instance variable name.  If
   `operator()()' is defined for the type of that field, then we return
   that result.  */

#ifdef GATHER_STATISTICS
extern int n_build_method_call;
#endif

tree
build_method_call (instance, name, parms, basetype_path, flags)
     tree instance, name, parms, basetype_path;
     int flags;
{
  tree basetype, instance_ptr;

#ifdef GATHER_STATISTICS
  n_build_method_call++;
#endif

  if (instance == error_mark_node
      || name == error_mark_node
      || parms == error_mark_node
      || (instance != NULL_TREE && TREE_TYPE (instance) == error_mark_node))
    return error_mark_node;

  if (processing_template_decl)
    {
      /* We need to process template parm names here so that tsubst catches
	 them properly.  Other type names can wait.  */
      if (TREE_CODE (name) == BIT_NOT_EXPR)
	{
	  tree type = NULL_TREE;

	  if (TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
	    type = get_aggr_from_typedef (TREE_OPERAND (name, 0), 0);
	  else if (TREE_CODE (TREE_OPERAND (name, 0)) == TYPE_DECL)
	    type = TREE_TYPE (TREE_OPERAND (name, 0));

	  if (type && TREE_CODE (type) == TEMPLATE_TYPE_PARM)
	    name = build_min_nt (BIT_NOT_EXPR, type);
	}

      return build_min_nt (METHOD_CALL_EXPR, name, instance, parms, NULL_TREE);
    }

  if (TREE_CODE (name) == BIT_NOT_EXPR)
    {
      if (parms)
	error ("destructors take no parameters");
      basetype = TREE_TYPE (instance);
      if (TREE_CODE (basetype) == REFERENCE_TYPE)
	basetype = TREE_TYPE (basetype);

      if (! check_dtor_name (basetype, name))
	cp_error
	  ("destructor name `~%T' does not match type `%T' of expression",
	   TREE_OPERAND (name, 0), basetype);

      if (! TYPE_HAS_DESTRUCTOR (complete_type (basetype)))
	return cp_convert (void_type_node, instance);
      instance = default_conversion (instance);
      instance_ptr = build_unary_op (ADDR_EXPR, instance, 0);
      return build_delete (build_pointer_type (basetype),
			   instance_ptr, sfk_complete_destructor,
			   LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
    }

  return build_new_method_call (instance, name, parms, basetype_path, flags);
}

/* New overloading code.  */

struct z_candidate {
  tree fn;
  tree convs;
  tree second_conv;
  int viable;
  tree basetype_path;
  tree template;
  tree warnings;
  struct z_candidate *next;
};

#define IDENTITY_RANK 0
#define EXACT_RANK 1
#define PROMO_RANK 2
#define STD_RANK 3
#define PBOOL_RANK 4
#define USER_RANK 5
#define ELLIPSIS_RANK 6
#define BAD_RANK 7

#define ICS_RANK(NODE)				\
  (ICS_BAD_FLAG (NODE) ? BAD_RANK   \
   : ICS_ELLIPSIS_FLAG (NODE) ? ELLIPSIS_RANK	\
   : ICS_USER_FLAG (NODE) ? USER_RANK		\
   : ICS_STD_RANK (NODE))

#define ICS_STD_RANK(NODE) TREE_COMPLEXITY (NODE)

#define ICS_USER_FLAG(NODE) TREE_LANG_FLAG_0 (NODE)
#define ICS_ELLIPSIS_FLAG(NODE) TREE_LANG_FLAG_1 (NODE)
#define ICS_THIS_FLAG(NODE) TREE_LANG_FLAG_2 (NODE)
#define ICS_BAD_FLAG(NODE) TREE_LANG_FLAG_3 (NODE)

/* In a REF_BIND or a BASE_CONV, this indicates that a temporary
   should be created to hold the result of the conversion.  */
#define NEED_TEMPORARY_P(NODE) (TREE_LANG_FLAG_4 ((NODE)))

#define USER_CONV_CAND(NODE) \
  ((struct z_candidate *)WRAPPER_PTR (TREE_OPERAND (NODE, 1)))
#define USER_CONV_FN(NODE) (USER_CONV_CAND (NODE)->fn)

int
null_ptr_cst_p (t)
     tree t;
{
  /* [conv.ptr]

     A null pointer constant is an integral constant expression
     (_expr.const_) rvalue of integer type that evaluates to zero.  */
  if (t == null_node
      || (CP_INTEGRAL_TYPE_P (TREE_TYPE (t)) && integer_zerop (t)))
    return 1;
  return 0;
}


/* Returns non-zero if PARMLIST consists of only default parms and/or
   ellipsis. */

int
sufficient_parms_p (parmlist)
     tree parmlist;
{
  for (; parmlist && parmlist != void_list_node;
       parmlist = TREE_CHAIN (parmlist))
    if (!TREE_PURPOSE (parmlist))
      return 0;
  return 1;
}

static tree
build_conv (code, type, from)
     enum tree_code code;
     tree type, from;
{
  tree t;
  int rank = ICS_STD_RANK (from);

  /* We can't use buildl1 here because CODE could be USER_CONV, which
     takes two arguments.  In that case, the caller is responsible for
     filling in the second argument.  */
  t = make_node (code);
  TREE_TYPE (t) = type;
  TREE_OPERAND (t, 0) = from;

  switch (code)
    {
    case PTR_CONV:
    case PMEM_CONV:
    case BASE_CONV:
    case STD_CONV:
      if (rank < STD_RANK)
	rank = STD_RANK;
      break;

    case QUAL_CONV:
      if (rank < EXACT_RANK)
	rank = EXACT_RANK;

    default:
      break;
    }
  ICS_STD_RANK (t) = rank;
  ICS_USER_FLAG (t) = ICS_USER_FLAG (from);
  ICS_BAD_FLAG (t) = ICS_BAD_FLAG (from);
  return t;
}

static tree
non_reference (t)
     tree t;
{
  if (TREE_CODE (t) == REFERENCE_TYPE)
    t = TREE_TYPE (t);
  return t;
}

tree
strip_top_quals (t)
     tree t;
{
  if (TREE_CODE (t) == ARRAY_TYPE)
    return t;
  return TYPE_MAIN_VARIANT (t);
}

/* Returns the standard conversion path (see [conv]) from type FROM to type
   TO, if any.  For proper handling of null pointer constants, you must
   also pass the expression EXPR to convert from.  */

static tree
standard_conversion (to, from, expr)
     tree to, from, expr;
{
  enum tree_code fcode, tcode;
  tree conv;
  int fromref = 0;

  if (TREE_CODE (to) == REFERENCE_TYPE)
    to = TREE_TYPE (to);
  if (TREE_CODE (from) == REFERENCE_TYPE)
    {
      fromref = 1;
      from = TREE_TYPE (from);
    }
  to = strip_top_quals (to);
  from = strip_top_quals (from);

  if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
      && expr && type_unknown_p (expr))
    {
      expr = instantiate_type (to, expr, itf_none);
      if (expr == error_mark_node)
	return NULL_TREE;
      from = TREE_TYPE (expr);
    }

  fcode = TREE_CODE (from);
  tcode = TREE_CODE (to);

  conv = build1 (IDENTITY_CONV, from, expr);

  if (fcode == FUNCTION_TYPE)
    {
      from = build_pointer_type (from);
      fcode = TREE_CODE (from);
      conv = build_conv (LVALUE_CONV, from, conv);
    }
  else if (fcode == ARRAY_TYPE)
    {
      from = build_pointer_type (TREE_TYPE (from));
      fcode = TREE_CODE (from);
      conv = build_conv (LVALUE_CONV, from, conv);
    }
  else if (fromref || (expr && lvalue_p (expr)))
    conv = build_conv (RVALUE_CONV, from, conv);

   /* Allow conversion between `__complex__' data types  */
  if (tcode == COMPLEX_TYPE && fcode == COMPLEX_TYPE)
    {
      /* The standard conversion sequence to convert FROM to TO is
         the standard conversion sequence to perform componentwise
         conversion.  */
      tree part_conv = standard_conversion
        (TREE_TYPE (to), TREE_TYPE (from), NULL_TREE);
      
      if (part_conv)
        {
          conv = build_conv (TREE_CODE (part_conv), to, conv);
          ICS_STD_RANK (conv) = ICS_STD_RANK (part_conv);
        }
      else
        conv = NULL_TREE;

      return conv;
    }

  if (same_type_p (from, to))
    return conv;

  if ((tcode == POINTER_TYPE || TYPE_PTRMEMFUNC_P (to))
      && expr && null_ptr_cst_p (expr))
    {
      conv = build_conv (STD_CONV, to, conv);
    }
  else if (tcode == POINTER_TYPE && fcode == POINTER_TYPE)
    {
      enum tree_code ufcode = TREE_CODE (TREE_TYPE (from));
      enum tree_code utcode = TREE_CODE (TREE_TYPE (to));

      if (same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from),
						     TREE_TYPE (to)))
	;
      else if (utcode == VOID_TYPE && ufcode != OFFSET_TYPE
	       && ufcode != FUNCTION_TYPE)
	{
	  from = build_pointer_type
	    (cp_build_qualified_type (void_type_node, 
				      CP_TYPE_QUALS (TREE_TYPE (from))));
	  conv = build_conv (PTR_CONV, from, conv);
	}
      else if (ufcode == OFFSET_TYPE && utcode == OFFSET_TYPE)
	{
	  tree fbase = TYPE_OFFSET_BASETYPE (TREE_TYPE (from));
	  tree tbase = TYPE_OFFSET_BASETYPE (TREE_TYPE (to));
	  tree binfo = get_binfo (fbase, tbase, 1);

	  if (binfo && !binfo_from_vbase (binfo)
	      && (same_type_ignoring_top_level_qualifiers_p
		  (TREE_TYPE (TREE_TYPE (from)),
		   TREE_TYPE (TREE_TYPE (to)))))
	    {
	      from = build_offset_type (tbase, TREE_TYPE (TREE_TYPE (from)));
	      from = build_pointer_type (from);
	      conv = build_conv (PMEM_CONV, from, conv);
	    }
	}
      else if (IS_AGGR_TYPE (TREE_TYPE (from))
	       && IS_AGGR_TYPE (TREE_TYPE (to)))
	{
	  if (DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from)))
	    {
	      from = 
		cp_build_qualified_type (TREE_TYPE (to),
					 CP_TYPE_QUALS (TREE_TYPE (from)));
	      from = build_pointer_type (from);
	      conv = build_conv (PTR_CONV, from, conv);
	    }
	}

      if (same_type_p (from, to))
	/* OK */;
      else if (comp_ptr_ttypes (TREE_TYPE (to), TREE_TYPE (from)))
	conv = build_conv (QUAL_CONV, to, conv);
      else if (expr && string_conv_p (to, expr, 0))
	/* converting from string constant to char *.  */
	conv = build_conv (QUAL_CONV, to, conv);
      else if (ptr_reasonably_similar (TREE_TYPE (to), TREE_TYPE (from)))
	{
	  conv = build_conv (PTR_CONV, to, conv);
	  ICS_BAD_FLAG (conv) = 1;
	}
      else
	return 0;

      from = to;
    }
  else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
    {
      tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
      tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
      tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
      tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));
      tree binfo = get_binfo (fbase, tbase, 1);

      if (!binfo || binfo_from_vbase (binfo)
	  || !same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
	  || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
			 TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
	  || CP_TYPE_QUALS (fbase) != CP_TYPE_QUALS (tbase))
	return 0;

      from = cp_build_qualified_type (tbase, CP_TYPE_QUALS (fbase));
      from = build_cplus_method_type (from, TREE_TYPE (fromfn),
				      TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
      from = build_ptrmemfunc_type (build_pointer_type (from));
      conv = build_conv (PMEM_CONV, from, conv);
    }
  else if (tcode == BOOLEAN_TYPE)
    {
      if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE
	     || fcode == POINTER_TYPE || TYPE_PTRMEMFUNC_P (from)))
	return 0;

      conv = build_conv (STD_CONV, to, conv);
      if (fcode == POINTER_TYPE
	  || (TYPE_PTRMEMFUNC_P (from) && ICS_STD_RANK (conv) < PBOOL_RANK))
	ICS_STD_RANK (conv) = PBOOL_RANK;
    }
  /* We don't check for ENUMERAL_TYPE here because there are no standard
     conversions to enum type.  */
  else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
	   || tcode == REAL_TYPE)
    {
      if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
	return 0;
      conv = build_conv (STD_CONV, to, conv);

      /* Give this a better rank if it's a promotion.  */
      if (to == type_promotes_to (from)
	  && ICS_STD_RANK (TREE_OPERAND (conv, 0)) <= PROMO_RANK)
	ICS_STD_RANK (conv) = PROMO_RANK;
    }
  else if (IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
	   && is_properly_derived_from (from, to))
    {
      if (TREE_CODE (conv) == RVALUE_CONV)
	conv = TREE_OPERAND (conv, 0);
      conv = build_conv (BASE_CONV, to, conv);
      /* The derived-to-base conversion indicates the initialization
	 of a parameter with base type from an object of a derived
	 type.  A temporary object is created to hold the result of
	 the conversion.  */
      NEED_TEMPORARY_P (conv) = 1;
    }
  else
    return 0;

  return conv;
}

/* Returns non-zero if T1 is reference-related to T2.  */

static int
reference_related_p (t1, t2)
     tree t1;
     tree t2;
{
  t1 = TYPE_MAIN_VARIANT (t1);
  t2 = TYPE_MAIN_VARIANT (t2);

  /* [dcl.init.ref]

     Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
     to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
     of T2.  */
  return (same_type_p (t1, t2)
	  || (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
	      && DERIVED_FROM_P (t1, t2)));
}

/* Returns non-zero if T1 is reference-compatible with T2.  */

static int
reference_compatible_p (t1, t2)
     tree t1;
     tree t2;
{
  /* [dcl.init.ref]

     "cv1 T1" is reference compatible with "cv2 T2" if T1 is
     reference-related to T2 and cv1 is the same cv-qualification as,
     or greater cv-qualification than, cv2.  */
  return (reference_related_p (t1, t2)
	  && at_least_as_qualified_p (t1, t2));
}

/* Determine whether or not the EXPR (of class type S) can be
   converted to T as in [over.match.ref].  */

static tree
convert_class_to_reference (t, s, expr)
     tree t;
     tree s;
     tree expr;
{
  tree conversions;
  tree arglist;
  tree conv;
  struct z_candidate *candidates;
  struct z_candidate *cand;

  /* [over.match.ref]

     Assuming that "cv1 T" is the underlying type of the reference
     being initialized, and "cv S" is the type of the initializer
     expression, with S a class type, the candidate functions are
     selected as follows:

     --The conversion functions of S and its base classes are
       considered.  Those that are not hidden within S and yield type
       "reference to cv2 T2", where "cv1 T" is reference-compatible
       (_dcl.init.ref_) with "cv2 T2", are candidate functions.

     The argument list has one argument, which is the initializer
     expression.  */

  candidates = 0;

  /* Conceptually, we should take the address of EXPR and put it in
     the argument list.  Unfortunately, however, that can result in
     error messages, which we should not issue now because we are just
     trying to find a conversion operator.  Therefore, we use NULL,
     cast to the appropriate type.  */
  arglist = build_int_2 (0, 0);
  TREE_TYPE (arglist) = build_pointer_type (s);
  arglist = build_tree_list (NULL_TREE, arglist);
  
  for (conversions = lookup_conversions (s);
       conversions;
       conversions = TREE_CHAIN (conversions))
    {
      tree fns = TREE_VALUE (conversions);

      for (; fns; fns = OVL_NEXT (fns))
	{
	  tree f = OVL_CURRENT (fns);
	  tree t2 = TREE_TYPE (TREE_TYPE (f));
	  struct z_candidate *old_candidates = candidates;

	  /* If this is a template function, try to get an exact
             match.  */
	  if (TREE_CODE (f) == TEMPLATE_DECL)
	    {
	      candidates 
		= add_template_candidate (candidates,
					  f, s,
					  NULL_TREE,
					  arglist,
					  build_reference_type (t),
					  LOOKUP_NORMAL,
					  DEDUCE_CONV);
	      
	      if (candidates != old_candidates)
		{
		  /* Now, see if the conversion function really returns
		     an lvalue of the appropriate type.  From the
		     point of view of unification, simply returning an
		     rvalue of the right type is good enough.  */
		  f = candidates->fn;
		  t2 = TREE_TYPE (TREE_TYPE (f));
		  if (TREE_CODE (t2) != REFERENCE_TYPE
		      || !reference_compatible_p (t, TREE_TYPE (t2)))
		    candidates = candidates->next;
		}
	    }
	  else if (TREE_CODE (t2) == REFERENCE_TYPE
		   && reference_compatible_p (t, TREE_TYPE (t2)))
	    candidates 
	      = add_function_candidate (candidates, f, s, arglist, 
					LOOKUP_NORMAL);

	  if (candidates != old_candidates)
	    candidates->basetype_path = TYPE_BINFO (s);
	}
    }

  /* If none of the conversion functions worked out, let our caller
     know.  */
  if (!any_viable (candidates))
    return NULL_TREE;
  
  candidates = splice_viable (candidates);
  cand = tourney (candidates);
  if (!cand)
    return NULL_TREE;

  conv = build1 (IDENTITY_CONV, s, expr);
  conv = build_conv (USER_CONV,
		     non_reference (TREE_TYPE (TREE_TYPE (cand->fn))),
		     conv);
  TREE_OPERAND (conv, 1) = build_ptr_wrapper (cand);
  ICS_USER_FLAG (conv) = 1;
  if (cand->viable == -1)
    ICS_BAD_FLAG (conv) = 1;
  cand->second_conv = conv;

  return conv;
}

/* A reference of the indicated TYPE is being bound directly to the
   expression represented by the implicit conversion sequence CONV.
   Return a conversion sequence for this binding.  */

static tree
direct_reference_binding (type, conv)
     tree type;
     tree conv;
{
  tree t = TREE_TYPE (type);

  /* [over.ics.rank] 
     
     When a parameter of reference type binds directly
     (_dcl.init.ref_) to an argument expression, the implicit
     conversion sequence is the identity conversion, unless the
     argument expression has a type that is a derived class of the
     parameter type, in which case the implicit conversion sequence is
     a derived-to-base Conversion.
	 
     If the parameter binds directly to the result of applying a
     conversion function to the argument expression, the implicit
     conversion sequence is a user-defined conversion sequence
     (_over.ics.user_), with the second standard conversion sequence
     either an identity conversion or, if the conversion function
     returns an entity of a type that is a derived class of the
     parameter type, a derived-to-base conversion.  */
  if (!same_type_ignoring_top_level_qualifiers_p (t, TREE_TYPE (conv)))
    {
      /* Represent the derived-to-base conversion.  */
      conv = build_conv (BASE_CONV, t, conv);
      /* We will actually be binding to the base-class subobject in
	 the derived class, so we mark this conversion appropriately.
	 That way, convert_like knows not to generate a temporary.  */
      NEED_TEMPORARY_P (conv) = 0;
    }
  return build_conv (REF_BIND, type, conv);
}

/* Returns the conversion path from type FROM to reference type TO for
   purposes of reference binding.  For lvalue binding, either pass a
   reference type to FROM or an lvalue expression to EXPR.  If the
   reference will be bound to a temporary, NEED_TEMPORARY_P is set for
   the conversion returned.  */

static tree
reference_binding (rto, rfrom, expr, flags)
     tree rto, rfrom, expr;
     int flags;
{
  tree conv = NULL_TREE;
  tree to = TREE_TYPE (rto);
  tree from = rfrom;
  int related_p;
  int compatible_p;
  cp_lvalue_kind lvalue_p = clk_none;

  if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
    {
      expr = instantiate_type (to, expr, itf_none);
      if (expr == error_mark_node)
	return NULL_TREE;
      from = TREE_TYPE (expr);
    }

  if (TREE_CODE (from) == REFERENCE_TYPE)
    {
      /* Anything with reference type is an lvalue.  */
      lvalue_p = clk_ordinary;
      from = TREE_TYPE (from);
    }
  else if (expr)
    lvalue_p = real_lvalue_p (expr);

  /* Figure out whether or not the types are reference-related and
     reference compatible.  We have do do this after stripping
     references from FROM.  */
  related_p = reference_related_p (to, from);
  compatible_p = reference_compatible_p (to, from);

  if (lvalue_p && compatible_p)
    {
      /* [dcl.init.ref]

	 If the intializer expression 
	 
	 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
	    is reference-compatible with "cv2 T2,"
	 
	 the reference is bound directly to the initializer exprssion
	 lvalue.  */
      conv = build1 (IDENTITY_CONV, from, expr);
      conv = direct_reference_binding (rto, conv);
      if ((lvalue_p & clk_bitfield) != 0 
	  && CP_TYPE_CONST_NON_VOLATILE_P (to))
	/* For the purposes of overload resolution, we ignore the fact
	   this expression is a bitfield. (In particular,
	   [over.ics.ref] says specifically that a function with a
	   non-const reference parameter is viable even if the
	   argument is a bitfield.)

	   However, when we actually call the function we must create
	   a temporary to which to bind the reference.  If the
	   reference is volatile, or isn't const, then we cannot make
	   a temporary, so we just issue an error when the conversion
	   actually occurs.  */
	NEED_TEMPORARY_P (conv) = 1;
      return conv;
    }
  else if (CLASS_TYPE_P (from) && !(flags & LOOKUP_NO_CONVERSION))
    {
      /* [dcl.init.ref]

	 If the initializer exprsesion

	 -- has a class type (i.e., T2 is a class type) can be
	    implicitly converted to an lvalue of type "cv3 T3," where
	    "cv1 T1" is reference-compatible with "cv3 T3".  (this
	    conversion is selected by enumerating the applicable
	    conversion functions (_over.match.ref_) and choosing the
	    best one through overload resolution.  (_over.match_). 

        the reference is bound to the lvalue result of the conversion
	in the second case.  */
      conv = convert_class_to_reference (to, from, expr);
      if (conv)
	return direct_reference_binding (rto, conv);
    }

  /* From this point on, we conceptually need temporaries, even if we
     elide them.  Only the cases above are "direct bindings".  */
  if (flags & LOOKUP_NO_TEMP_BIND)
    return NULL_TREE;

  /* [over.ics.rank]
     
     When a parameter of reference type is not bound directly to an
     argument expression, the conversion sequence is the one required
     to convert the argument expression to the underlying type of the
     reference according to _over.best.ics_.  Conceptually, this
     conversion sequence corresponds to copy-initializing a temporary
     of the underlying type with the argument expression.  Any
     difference in top-level cv-qualification is subsumed by the
     initialization itself and does not constitute a conversion.  */

  /* [dcl.init.ref]

     Otherwise, the reference shall be to a non-volatile const type.  */
  if (!CP_TYPE_CONST_NON_VOLATILE_P (to))
    return NULL_TREE;

  /* [dcl.init.ref]
     
     If the initializer expression is an rvalue, with T2 a class type,
     and "cv1 T1" is reference-compatible with "cv2 T2", the reference
     is bound in one of the following ways:
     
     -- The reference is bound to the object represented by the rvalue
        or to a sub-object within that object.  

     In this case, the implicit conversion sequence is supposed to be
     same as we would obtain by generating a temporary.  Fortunately,
     if the types are reference compatible, then this is either an
     identity conversion or the derived-to-base conversion, just as
     for direct binding.  */
  if (CLASS_TYPE_P (from) && compatible_p)
    {
      conv = build1 (IDENTITY_CONV, from, expr);
      return direct_reference_binding (rto, conv);
    }

  /* [dcl.init.ref]

     Otherwise, a temporary of type "cv1 T1" is created and
     initialized from the initializer expression using the rules for a
     non-reference copy initialization.  If T1 is reference-related to
     T2, cv1 must be the same cv-qualification as, or greater
     cv-qualification than, cv2; otherwise, the program is ill-formed.  */
  if (related_p && !at_least_as_qualified_p (to, from))
    return NULL_TREE;

  conv = implicit_conversion (to, from, expr, flags);
  if (!conv)
    return NULL_TREE;

  conv = build_conv (REF_BIND, rto, conv);
  /* This reference binding, unlike those above, requires the
     creation of a temporary.  */
  NEED_TEMPORARY_P (conv) = 1;

  return conv;
}

/* Returns the implicit conversion sequence (see [over.ics]) from type FROM
   to type TO.  The optional expression EXPR may affect the conversion.
   FLAGS are the usual overloading flags.  Only LOOKUP_NO_CONVERSION is
   significant.  */

static tree
implicit_conversion (to, from, expr, flags)
     tree to, from, expr;
     int flags;
{
  tree conv;
  struct z_candidate *cand;

  /* Resolve expressions like `A::p' that we thought might become
     pointers-to-members.  */
  if (expr && TREE_CODE (expr) == OFFSET_REF)
    {
      expr = resolve_offset_ref (expr);
      from = TREE_TYPE (expr);
    }

  if (from == error_mark_node || to == error_mark_node
      || expr == error_mark_node)
    return NULL_TREE;

  /* Make sure both the FROM and TO types are complete so that
     user-defined conversions are available.  */
  complete_type (from);
  complete_type (to);

  if (TREE_CODE (to) == REFERENCE_TYPE)
    conv = reference_binding (to, from, expr, flags);
  else
    conv = standard_conversion (to, from, expr);

  if (conv)
    ;
  else if (expr != NULL_TREE
	   && (IS_AGGR_TYPE (from)
	       || IS_AGGR_TYPE (to))
	   && (flags & LOOKUP_NO_CONVERSION) == 0)
    {
      cand = build_user_type_conversion_1
	(to, expr, LOOKUP_ONLYCONVERTING);
      if (cand)
	conv = cand->second_conv;

      /* We used to try to bind a reference to a temporary here, but that
	 is now handled by the recursive call to this function at the end
	 of reference_binding.  */
    }

  return conv;
}

/* Add a new entry to the list of candidates.  Used by the add_*_candidate
   functions.  */

static struct z_candidate *
add_candidate (candidates, fn, convs, viable)
     struct z_candidate *candidates;
     tree fn, convs;
     int viable;
{
  struct z_candidate *cand
    = (struct z_candidate *) ggc_alloc_cleared (sizeof (struct z_candidate));

  cand->fn = fn;
  cand->convs = convs;
  cand->viable = viable;
  cand->next = candidates;

  return cand;
}

/* Create an overload candidate for the function or method FN called with
   the argument list ARGLIST and add it to CANDIDATES.  FLAGS is passed on
   to implicit_conversion.

   CTYPE, if non-NULL, is the type we want to pretend this function
   comes from for purposes of overload resolution.  */

static struct z_candidate *
add_function_candidate (candidates, fn, ctype, arglist, flags)
     struct z_candidate *candidates;
     tree fn, ctype, arglist;
     int flags;
{
  tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
  int i, len;
  tree convs;
  tree parmnode, argnode;
  int viable = 1;

  /* The `this' and `in_chrg' arguments to constructors are not considered
     in overload resolution.  */
  if (DECL_CONSTRUCTOR_P (fn))
    {
      parmlist = TREE_CHAIN (parmlist);
      arglist = TREE_CHAIN (arglist);
      if (DECL_HAS_IN_CHARGE_PARM_P (fn))
	{
	  parmlist = TREE_CHAIN (parmlist);
	  arglist = TREE_CHAIN (arglist);
	}
    }

  len = list_length (arglist);
  convs = make_tree_vec (len);

  /* 13.3.2 - Viable functions [over.match.viable]
     First, to be a viable function, a candidate function shall have enough
     parameters to agree in number with the arguments in the list.

     We need to check this first; otherwise, checking the ICSes might cause
     us to produce an ill-formed template instantiation.  */

  parmnode = parmlist;
  for (i = 0; i < len; ++i)
    {
      if (parmnode == NULL_TREE || parmnode == void_list_node)
	break;
      parmnode = TREE_CHAIN (parmnode);
    }

  if (i < len && parmnode)
    viable = 0;

  /* Make sure there are default args for the rest of the parms.  */
  else if (!sufficient_parms_p (parmnode))
    viable = 0;

  if (! viable)
    goto out;

  /* Second, for F to be a viable function, there shall exist for each
     argument an implicit conversion sequence that converts that argument
     to the corresponding parameter of F.  */

  parmnode = parmlist;
  argnode = arglist;

  for (i = 0; i < len; ++i)
    {
      tree arg = TREE_VALUE (argnode);
      tree argtype = lvalue_type (arg);
      tree t;
      int is_this;

      if (parmnode == void_list_node)
	break;

      is_this = (i == 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
		 && ! DECL_CONSTRUCTOR_P (fn));

      if (parmnode)
	{
	  tree parmtype = TREE_VALUE (parmnode);

	  /* The type of the implicit object parameter ('this') for
	     overload resolution is not always the same as for the
	     function itself; conversion functions are considered to
	     be members of the class being converted, and functions
	     introduced by a using-declaration are considered to be
	     members of the class that uses them.

	     Since build_over_call ignores the ICS for the `this'
	     parameter, we can just change the parm type.  */
	  if (ctype && is_this)
	    {
	      parmtype
		= build_qualified_type (ctype,
					TYPE_QUALS (TREE_TYPE (parmtype)));
	      parmtype = build_pointer_type (parmtype);
	    }

	  t = implicit_conversion (parmtype, argtype, arg, flags);
	}
      else
	{
	  t = build1 (IDENTITY_CONV, argtype, arg);
	  ICS_ELLIPSIS_FLAG (t) = 1;
	}

      if (t && is_this)
	ICS_THIS_FLAG (t) = 1;

      TREE_VEC_ELT (convs, i) = t;
      if (! t)
	{
	  viable = 0;
	  break;
	}

      if (ICS_BAD_FLAG (t))
	viable = -1;

      if (parmnode)
	parmnode = TREE_CHAIN (parmnode);
      argnode = TREE_CHAIN (argnode);
    }

 out:
  return add_candidate (candidates, fn, convs, viable);
}

/* Create an overload candidate for the conversion function FN which will
   be invoked for expression OBJ, producing a pointer-to-function which
   will in turn be called with the argument list ARGLIST, and add it to
   CANDIDATES.  FLAGS is passed on to implicit_conversion.

   Actually, we don't really care about FN; we care about the type it
   converts to.  There may be multiple conversion functions that will
   convert to that type, and we rely on build_user_type_conversion_1 to
   choose the best one; so when we create our candidate, we record the type
   instead of the function.  */

static struct z_candidate *
add_conv_candidate (candidates, fn, obj, arglist)
     struct z_candidate *candidates;
     tree fn, obj, arglist;
{
  tree totype = TREE_TYPE (TREE_TYPE (fn));
  int i, len, viable, flags;
  tree parmlist, convs, parmnode, argnode;

  for (parmlist = totype; TREE_CODE (parmlist) != FUNCTION_TYPE; )
    parmlist = TREE_TYPE (parmlist);
  parmlist = TYPE_ARG_TYPES (parmlist);

  len = list_length (arglist) + 1;
  convs = make_tree_vec (len);
  parmnode = parmlist;
  argnode = arglist;
  viable = 1;
  flags = LOOKUP_NORMAL;

  /* Don't bother looking up the same type twice.  */
  if (candidates && candidates->fn == totype)
    return candidates;

  for (i = 0; i < len; ++i)
    {
      tree arg = i == 0 ? obj : TREE_VALUE (argnode);
      tree argtype = lvalue_type (arg);
      tree t;

      if (i == 0)
	t = implicit_conversion (totype, argtype, arg, flags);
      else if (parmnode == void_list_node)
	break;
      else if (parmnode)
	t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg, flags);
      else
	{
	  t = build1 (IDENTITY_CONV, argtype, arg);
	  ICS_ELLIPSIS_FLAG (t) = 1;
	}

      TREE_VEC_ELT (convs, i) = t;
      if (! t)
	break;

      if (ICS_BAD_FLAG (t))
	viable = -1;

      if (i == 0)
	continue;

      if (parmnode)
	parmnode = TREE_CHAIN (parmnode);
      argnode = TREE_CHAIN (argnode);
    }

  if (i < len)
    viable = 0;

  if (!sufficient_parms_p (parmnode))
    viable = 0;

  return add_candidate (candidates, totype, convs, viable);
}

static struct z_candidate *
build_builtin_candidate (candidates, fnname, type1, type2,
			 args, argtypes, flags)
     struct z_candidate *candidates;
     tree fnname, type1, type2, *args, *argtypes;
     int flags;

{
  tree t, convs;
  int viable = 1, i;
  tree types[2];

  types[0] = type1;
  types[1] = type2;

  convs = make_tree_vec (args[2] ? 3 : (args[1] ? 2 : 1));

  for (i = 0; i < 2; ++i)
    {
      if (! args[i])
	break;

      t = implicit_conversion (types[i], argtypes[i], args[i], flags);
      if (! t)
	{
	  viable = 0;
	  /* We need something for printing the candidate.  */
	  t = build1 (IDENTITY_CONV, types[i], NULL_TREE);
	}
      else if (ICS_BAD_FLAG (t))
	viable = 0;
      TREE_VEC_ELT (convs, i) = t;
    }

  /* For COND_EXPR we rearranged the arguments; undo that now.  */
  if (args[2])
    {
      TREE_VEC_ELT (convs, 2) = TREE_VEC_ELT (convs, 1);
      TREE_VEC_ELT (convs, 1) = TREE_VEC_ELT (convs, 0);
      t = implicit_conversion (boolean_type_node, argtypes[2], args[2], flags);
      if (t)
	TREE_VEC_ELT (convs, 0) = t;
      else
	viable = 0;
    }      

  return add_candidate (candidates, fnname, convs, viable);
}

static int
is_complete (t)
     tree t;
{
  return COMPLETE_TYPE_P (complete_type (t));
}

/* Returns non-zero if TYPE is a promoted arithmetic type.  */

static int
promoted_arithmetic_type_p (type)
     tree type;
{
  /* [over.built]

     In this section, the term promoted integral type is used to refer
     to those integral types which are preserved by integral promotion
     (including e.g.  int and long but excluding e.g.  char).
     Similarly, the term promoted arithmetic type refers to promoted
     integral types plus floating types.  */
  return ((INTEGRAL_TYPE_P (type)
	   && same_type_p (type_promotes_to (type), type))
	  || TREE_CODE (type) == REAL_TYPE);
}

/* Create any builtin operator overload candidates for the operator in
   question given the converted operand types TYPE1 and TYPE2.  The other
   args are passed through from add_builtin_candidates to
   build_builtin_candidate.  
   
   TYPE1 and TYPE2 may not be permissible, and we must filter them. 
   If CODE is requires candidates operands of the same type of the kind
   of which TYPE1 and TYPE2 are, we add both candidates
   CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2).  */

static struct z_candidate *
add_builtin_candidate (candidates, code, code2, fnname, type1, type2,
		       args, argtypes, flags)
     struct z_candidate *candidates;
     enum tree_code code, code2;
     tree fnname, type1, type2, *args, *argtypes;
     int flags;
{
  switch (code)
    {
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      args[1] = integer_zero_node;
      type2 = integer_type_node;
      break;
    default:
      break;
    }

  switch (code)
    {

/* 4 For every pair T, VQ), where T is an arithmetic or  enumeration  type,
     and  VQ  is  either  volatile or empty, there exist candidate operator
     functions of the form
	     VQ T&   operator++(VQ T&);
	     T       operator++(VQ T&, int);
   5 For every pair T, VQ), where T is an enumeration type or an arithmetic
     type  other than bool, and VQ is either volatile or empty, there exist
     candidate operator functions of the form
	     VQ T&   operator--(VQ T&);
	     T       operator--(VQ T&, int);
   6 For every pair T, VQ), where T is  a  cv-qualified  or  cv-unqualified
     complete  object type, and VQ is either volatile or empty, there exist
     candidate operator functions of the form
	     T*VQ&   operator++(T*VQ&);
	     T*VQ&   operator--(T*VQ&);
	     T*      operator++(T*VQ&, int);
	     T*      operator--(T*VQ&, int);  */

    case POSTDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
      if (TREE_CODE (type1) == BOOLEAN_TYPE)
	return candidates;
    case POSTINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
      if (ARITHMETIC_TYPE_P (type1) || TYPE_PTROB_P (type1))
	{
	  type1 = build_reference_type (type1);
	  break;
	}
      return candidates;

/* 7 For every cv-qualified or cv-unqualified complete object type T, there
     exist candidate operator functions of the form

	     T&      operator*(T*);

   8 For every function type T, there exist candidate operator functions of
     the form
	     T&      operator*(T*);  */

    case INDIRECT_REF:
      if (TREE_CODE (type1) == POINTER_TYPE
	  && (TYPE_PTROB_P (type1)
	      || TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
	break;
      return candidates;

/* 9 For every type T, there exist candidate operator functions of the form
	     T*      operator+(T*);

   10For  every  promoted arithmetic type T, there exist candidate operator
     functions of the form
	     T       operator+(T);
	     T       operator-(T);  */

    case CONVERT_EXPR: /* unary + */
      if (TREE_CODE (type1) == POINTER_TYPE
	  && TREE_CODE (TREE_TYPE (type1)) != OFFSET_TYPE)
	break;
    case NEGATE_EXPR:
      if (ARITHMETIC_TYPE_P (type1))
	break;
      return candidates;

/* 11For every promoted integral type T,  there  exist  candidate  operator
     functions of the form
	     T       operator~(T);  */

    case BIT_NOT_EXPR:
      if (INTEGRAL_TYPE_P (type1))
	break;
      return candidates;

/* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
     is the same type as C2 or is a derived class of C2, T  is  a  complete
     object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
     there exist candidate operator functions of the form
	     CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
     where CV12 is the union of CV1 and CV2.  */

    case MEMBER_REF:
      if (TREE_CODE (type1) == POINTER_TYPE
	  && (TYPE_PTRMEMFUNC_P (type2) || TYPE_PTRMEM_P (type2)))
	{
	  tree c1 = TREE_TYPE (type1);
	  tree c2 = (TYPE_PTRMEMFUNC_P (type2)
		     ? TYPE_METHOD_BASETYPE (TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (type2)))
		     : TYPE_OFFSET_BASETYPE (TREE_TYPE (type2)));

	  if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
	      && (TYPE_PTRMEMFUNC_P (type2)
		  || is_complete (TREE_TYPE (TREE_TYPE (type2)))))
	    break;
	}
      return candidates;

/* 13For every pair of promoted arithmetic types L and R, there exist  can-
     didate operator functions of the form
	     LR      operator*(L, R);
	     LR      operator/(L, R);
	     LR      operator+(L, R);
	     LR      operator-(L, R);
	     bool    operator<(L, R);
	     bool    operator>(L, R);
	     bool    operator<=(L, R);
	     bool    operator>=(L, R);
	     bool    operator==(L, R);
	     bool    operator!=(L, R);
     where  LR  is  the  result of the usual arithmetic conversions between
     types L and R.

   14For every pair of types T and I, where T  is  a  cv-qualified  or  cv-
     unqualified  complete  object  type and I is a promoted integral type,
     there exist candidate operator functions of the form
	     T*      operator+(T*, I);
	     T&      operator[](T*, I);
	     T*      operator-(T*, I);
	     T*      operator+(I, T*);
	     T&      operator[](I, T*);

   15For every T, where T is a pointer to complete object type, there exist
     candidate operator functions of the form112)
	     ptrdiff_t operator-(T, T);

   16For every pointer or enumeration type T, there exist candidate operator
     functions of the form
	     bool    operator<(T, T);
	     bool    operator>(T, T);
	     bool    operator<=(T, T);
	     bool    operator>=(T, T);
	     bool    operator==(T, T);
	     bool    operator!=(T, T);

   17For every pointer to member type T,  there  exist  candidate  operator
     functions of the form
	     bool    operator==(T, T);
	     bool    operator!=(T, T);  */

    case MINUS_EXPR:
      if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
	break;
      if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
	{
	  type2 = ptrdiff_type_node;
	  break;
	}
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
      if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	break;
      return candidates;

    case EQ_EXPR:
    case NE_EXPR:
      if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
	  || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
	break;
      if ((TYPE_PTRMEMFUNC_P (type1) || TYPE_PTRMEM_P (type1))
	  && null_ptr_cst_p (args[1]))
	{
	  type2 = type1;
	  break;
	}
      if ((TYPE_PTRMEMFUNC_P (type2) || TYPE_PTRMEM_P (type2))
	  && null_ptr_cst_p (args[0]))
	{
	  type1 = type2;
	  break;
	}
      /* FALLTHROUGH */
    case LT_EXPR:
    case GT_EXPR:
    case LE_EXPR:
    case GE_EXPR:
    case MAX_EXPR:
    case MIN_EXPR:
      if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
        break;
      if (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
	break;
      if (TREE_CODE (type1) == ENUMERAL_TYPE && TREE_CODE (type2) == ENUMERAL_TYPE)
        break;
      if (TYPE_PTR_P (type1) && null_ptr_cst_p (args[1]))
	{
	  type2 = type1;
	  break;
	}
      if (null_ptr_cst_p (args[0]) && TYPE_PTR_P (type2))
	{
	  type1 = type2;
	  break;
	}
      return candidates;

    case PLUS_EXPR:
      if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	break;
    case ARRAY_REF:
      if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
	{
	  type1 = ptrdiff_type_node;
	  break;
	}
      if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
	{
	  type2 = ptrdiff_type_node;
	  break;
	}
      return candidates;

/* 18For  every pair of promoted integral types L and R, there exist candi-
     date operator functions of the form
	     LR      operator%(L, R);
	     LR      operator&(L, R);
	     LR      operator^(L, R);
	     LR      operator|(L, R);
	     L       operator<<(L, R);
	     L       operator>>(L, R);
     where LR is the result of the  usual  arithmetic  conversions  between
     types L and R.  */

    case TRUNC_MOD_EXPR:
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
	break;
      return candidates;

/* 19For  every  triple  L, VQ, R), where L is an arithmetic or enumeration
     type, VQ is either volatile or empty, and R is a  promoted  arithmetic
     type, there exist candidate operator functions of the form
	     VQ L&   operator=(VQ L&, R);
	     VQ L&   operator*=(VQ L&, R);
	     VQ L&   operator/=(VQ L&, R);
	     VQ L&   operator+=(VQ L&, R);
	     VQ L&   operator-=(VQ L&, R);

   20For  every  pair T, VQ), where T is any type and VQ is either volatile
     or empty, there exist candidate operator functions of the form
	     T*VQ&   operator=(T*VQ&, T*);

   21For every pair T, VQ), where T is a pointer to member type and  VQ  is
     either  volatile or empty, there exist candidate operator functions of
     the form
	     VQ T&   operator=(VQ T&, T);

   22For every triple  T,  VQ,  I),  where  T  is  a  cv-qualified  or  cv-
     unqualified  complete object type, VQ is either volatile or empty, and
     I is a promoted integral type, there exist  candidate  operator  func-
     tions of the form
	     T*VQ&   operator+=(T*VQ&, I);
	     T*VQ&   operator-=(T*VQ&, I);

   23For  every  triple  L,  VQ,  R), where L is an integral or enumeration
     type, VQ is either volatile or empty, and R  is  a  promoted  integral
     type, there exist candidate operator functions of the form

	     VQ L&   operator%=(VQ L&, R);
	     VQ L&   operator<<=(VQ L&, R);
	     VQ L&   operator>>=(VQ L&, R);
	     VQ L&   operator&=(VQ L&, R);
	     VQ L&   operator^=(VQ L&, R);
	     VQ L&   operator|=(VQ L&, R);  */

    case MODIFY_EXPR:
      switch (code2)
	{
	case PLUS_EXPR:
	case MINUS_EXPR:
	  if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
	    {
	      type2 = ptrdiff_type_node;
	      break;
	    }
	case MULT_EXPR:
	case TRUNC_DIV_EXPR:
	  if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	    break;
	  return candidates;

	case TRUNC_MOD_EXPR:
	case BIT_AND_EXPR:
	case BIT_IOR_EXPR:
	case BIT_XOR_EXPR:
	case LSHIFT_EXPR:
	case RSHIFT_EXPR:
	  if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
	    break;
	  return candidates;

	case NOP_EXPR:
	  if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
	    break;
	  if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
	      || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
	      || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
	      || ((TYPE_PTRMEMFUNC_P (type1)
		   || TREE_CODE (type1) == POINTER_TYPE)
		  && null_ptr_cst_p (args[1])))
	    {
	      type2 = type1;
	      break;
	    }
	  return candidates;

	default:
	  my_friendly_abort (367);
	}
      type1 = build_reference_type (type1);
      break;

    case COND_EXPR:
      /* [over.builtin]

	 For every pair of promoted arithmetic types L and R, there
	 exist candidate operator functions of the form 

	 LR operator?(bool, L, R); 

	 where LR is the result of the usual arithmetic conversions
	 between types L and R.

	 For every type T, where T is a pointer or pointer-to-member
	 type, there exist candidate operator functions of the form T
	 operator?(bool, T, T);  */

      if (promoted_arithmetic_type_p (type1)
	  && promoted_arithmetic_type_p (type2))
	/* That's OK.  */
	break;

      /* Otherwise, the types should be pointers.  */
      if (!(TREE_CODE (type1) == POINTER_TYPE
	    || TYPE_PTRMEM_P (type1)
	    || TYPE_PTRMEMFUNC_P (type1))
	  || !(TREE_CODE (type2) == POINTER_TYPE
	       || TYPE_PTRMEM_P (type2)
	       || TYPE_PTRMEMFUNC_P (type2)))
	return candidates;
      
      /* We don't check that the two types are the same; the logic
	 below will actually create two candidates; one in which both
	 parameter types are TYPE1, and one in which both parameter
	 types are TYPE2.  */
	break;

      /* These arguments do not make for a legal overloaded operator.  */
      return candidates;

    default:
      my_friendly_abort (367);
    }

  /* If we're dealing with two pointer types or two enumeral types,
     we need candidates for both of them.  */
  if (type2 && !same_type_p (type1, type2)
      && TREE_CODE (type1) == TREE_CODE (type2)
      && (TREE_CODE (type1) == REFERENCE_TYPE
	  || (TREE_CODE (type1) == POINTER_TYPE
	      && TYPE_PTRMEM_P (type1) == TYPE_PTRMEM_P (type2))
	  || TYPE_PTRMEMFUNC_P (type1)
	  || IS_AGGR_TYPE (type1)
	  || TREE_CODE (type1) == ENUMERAL_TYPE))
    {
      candidates = build_builtin_candidate
	(candidates, fnname, type1, type1, args, argtypes, flags);
      return build_builtin_candidate
	(candidates, fnname, type2, type2, args, argtypes, flags);
    }

  return build_builtin_candidate
    (candidates, fnname, type1, type2, args, argtypes, flags);
}

tree
type_decays_to (type)
     tree type;
{
  if (TREE_CODE (type) == ARRAY_TYPE)
    return build_pointer_type (TREE_TYPE (type));
  if (TREE_CODE (type) == FUNCTION_TYPE)
    return build_pointer_type (type);
  return type;
}

/* There are three conditions of builtin candidates:

   1) bool-taking candidates.  These are the same regardless of the input.
   2) pointer-pair taking candidates.  These are generated for each type
      one of the input types converts to.
   3) arithmetic candidates.  According to the standard, we should generate
      all of these, but I'm trying not to...
   
   Here we generate a superset of the possible candidates for this particular
   case.  That is a subset of the full set the standard defines, plus some
   other cases which the standard disallows. add_builtin_candidate will
   filter out the illegal set.  */

static struct z_candidate *
add_builtin_candidates (candidates, code, code2, fnname, args, flags)
     struct z_candidate *candidates;
     enum tree_code code, code2;
     tree fnname, *args;
     int flags;
{
  int ref1, i;
  int enum_p = 0;
  tree type, argtypes[3];
  /* TYPES[i] is the set of possible builtin-operator parameter types
     we will consider for the Ith argument.  These are represented as
     a TREE_LIST; the TREE_VALUE of each node is the potential
     parameter type.  */
  tree types[2];

  for (i = 0; i < 3; ++i)
    {
      if (args[i])
	argtypes[i]  = lvalue_type (args[i]);
      else
	argtypes[i] = NULL_TREE;
    }

  switch (code)
    {
/* 4 For every pair T, VQ), where T is an arithmetic or  enumeration  type,
     and  VQ  is  either  volatile or empty, there exist candidate operator
     functions of the form
		 VQ T&   operator++(VQ T&);  */

    case POSTINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case MODIFY_EXPR:
      ref1 = 1;
      break;

/* 24There also exist candidate operator functions of the form
	     bool    operator!(bool);
	     bool    operator&&(bool, bool);
	     bool    operator||(bool, bool);  */

    case TRUTH_NOT_EXPR:
      return build_builtin_candidate
	(candidates, fnname, boolean_type_node,
	 NULL_TREE, args, argtypes, flags);

    case TRUTH_ORIF_EXPR:
    case TRUTH_ANDIF_EXPR:
      return build_builtin_candidate
	(candidates, fnname, boolean_type_node,
	 boolean_type_node, args, argtypes, flags);

    case ADDR_EXPR:
    case COMPOUND_EXPR:
    case COMPONENT_REF:
      return candidates;

    case COND_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
      enum_p = 1;
      /* FALLTHROUGH */
    
    default:
      ref1 = 0;
    }

  types[0] = types[1] = NULL_TREE;

  for (i = 0; i < 2; ++i)
    {
      if (! args[i])
	;
      else if (IS_AGGR_TYPE (argtypes[i]))
	{
	  tree convs;

	  if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
	    return candidates;

	  convs = lookup_conversions (argtypes[i]);

	  if (code == COND_EXPR)
	    {
	      if (real_lvalue_p (args[i]))
		types[i] = tree_cons
		  (NULL_TREE, build_reference_type (argtypes[i]), types[i]);

	      types[i] = tree_cons
		(NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
	    }

	  else if (! convs)
	    return candidates;

	  for (; convs; convs = TREE_CHAIN (convs))
	    {
	      type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));

	      if (i == 0 && ref1
		  && (TREE_CODE (type) != REFERENCE_TYPE
		      || CP_TYPE_CONST_P (TREE_TYPE (type))))
		continue;

	      if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
		types[i] = tree_cons (NULL_TREE, type, types[i]);

	      type = non_reference (type);
	      if (i != 0 || ! ref1)
		{
		  type = TYPE_MAIN_VARIANT (type_decays_to (type));
	          if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
	            types[i] = tree_cons (NULL_TREE, type, types[i]);
		  if (INTEGRAL_TYPE_P (type))
		    type = type_promotes_to (type);
		}

	      if (! value_member (type, types[i]))
		types[i] = tree_cons (NULL_TREE, type, types[i]);
	    }
	}
      else
	{
	  if (code == COND_EXPR && real_lvalue_p (args[i]))
	    types[i] = tree_cons
	      (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
	  type = non_reference (argtypes[i]);
	  if (i != 0 || ! ref1)
	    {
	      type = TYPE_MAIN_VARIANT (type_decays_to (type));
	      if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
	        types[i] = tree_cons (NULL_TREE, type, types[i]);
	      if (INTEGRAL_TYPE_P (type))
		type = type_promotes_to (type);
	    }
	  types[i] = tree_cons (NULL_TREE, type, types[i]);
	}
    }

  /* Run through the possible parameter types of both arguments,
     creating candidates with those parameter types.  */
  for (; types[0]; types[0] = TREE_CHAIN (types[0]))
    {
      if (types[1])
	for (type = types[1]; type; type = TREE_CHAIN (type))
	  candidates = add_builtin_candidate
	    (candidates, code, code2, fnname, TREE_VALUE (types[0]),
	     TREE_VALUE (type), args, argtypes, flags);
      else
	candidates = add_builtin_candidate
	  (candidates, code, code2, fnname, TREE_VALUE (types[0]),
	   NULL_TREE, args, argtypes, flags);
    }

  return candidates;
}


/* If TMPL can be successfully instantiated as indicated by
   EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.

   TMPL is the template.  EXPLICIT_TARGS are any explicit template
   arguments.  ARGLIST is the arguments provided at the call-site.
   The RETURN_TYPE is the desired type for conversion operators.  If
   OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
   If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
   add_conv_candidate.  */

static struct z_candidate*
add_template_candidate_real (candidates, tmpl, ctype, explicit_targs,
			     arglist, return_type, flags,
			     obj, strict)
     struct z_candidate *candidates;
     tree tmpl, ctype, explicit_targs, arglist, return_type;
     int flags;
     tree obj;
     unification_kind_t strict;
{
  int ntparms = DECL_NTPARMS (tmpl);
  tree targs = make_tree_vec (ntparms);
  tree args_without_in_chrg = arglist;
  struct z_candidate *cand;
  int i;
  tree fn;

  /* We don't do deduction on the in-charge parameter, the VTT
     parameter or 'this'.  */
  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl))
    args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);

  if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl)
       || DECL_BASE_CONSTRUCTOR_P (tmpl))
      && TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (tmpl)))
    args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);

  i = fn_type_unification (tmpl, explicit_targs, targs,
			   args_without_in_chrg,
			   return_type, strict, -1);

  if (i != 0)
    return candidates;

  fn = instantiate_template (tmpl, targs);
  if (fn == error_mark_node)
    return candidates;

  if (obj != NULL_TREE)
    /* Aha, this is a conversion function.  */
    cand = add_conv_candidate (candidates, fn, obj, arglist);
  else
    cand = add_function_candidate (candidates, fn, ctype,
				   arglist, flags);
  if (DECL_TI_TEMPLATE (fn) != tmpl)
    /* This situation can occur if a member template of a template
       class is specialized.  Then, instantiate_template might return
       an instantiation of the specialization, in which case the
       DECL_TI_TEMPLATE field will point at the original
       specialization.  For example:

	 template <class T> struct S { template <class U> void f(U);
				       template <> void f(int) {}; };
	 S<double> sd;
	 sd.f(3);

       Here, TMPL will be template <class U> S<double>::f(U).
       And, instantiate template will give us the specialization
       template <> S<double>::f(int).  But, the DECL_TI_TEMPLATE field
       for this will point at template <class T> template <> S<T>::f(int),
       so that we can find the definition.  For the purposes of
       overload resolution, however, we want the original TMPL.  */
    cand->template = tree_cons (tmpl, targs, NULL_TREE);
  else
    cand->template = DECL_TEMPLATE_INFO (fn);

  return cand;
}


static struct z_candidate *
add_template_candidate (candidates, tmpl, ctype, explicit_targs, 
			arglist, return_type, flags, strict)
     struct z_candidate *candidates;
     tree tmpl, ctype, explicit_targs, arglist, return_type;
     int flags;
     unification_kind_t strict;
{
  return 
    add_template_candidate_real (candidates, tmpl, ctype,
				 explicit_targs, arglist, return_type, flags,
				 NULL_TREE, strict);
}


static struct z_candidate *
add_template_conv_candidate (candidates, tmpl, obj, arglist, return_type)
     struct z_candidate *candidates;
     tree tmpl, obj, arglist, return_type;
{
  return 
    add_template_candidate_real (candidates, tmpl, NULL_TREE, NULL_TREE,
				 arglist, return_type, 0, obj, DEDUCE_CONV);
}


static int
any_viable (cands)
     struct z_candidate *cands;
{
  for (; cands; cands = cands->next)
    if (pedantic ? cands->viable == 1 : cands->viable)
      return 1;
  return 0;
}

static struct z_candidate *
splice_viable (cands)
     struct z_candidate *cands;
{
  struct z_candidate **p = &cands;

  for (; *p; )
    {
      if (pedantic ? (*p)->viable == 1 : (*p)->viable)
	p = &((*p)->next);
      else
	*p = (*p)->next;
    }

  return cands;
}

static tree
build_this (obj)
     tree obj;
{
  /* Fix this to work on non-lvalues.  */
  return build_unary_op (ADDR_EXPR, obj, 0);
}

static void
print_z_candidates (candidates)
     struct z_candidate *candidates;
{
  const char *str = "candidates are:";
  for (; candidates; candidates = candidates->next)
    {
      if (TREE_CODE (candidates->fn) == IDENTIFIER_NODE)
	{
	  if (TREE_VEC_LENGTH (candidates->convs) == 3)
	    cp_error ("%s %D(%T, %T, %T) <builtin>", str, candidates->fn,
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)),
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 1)),
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 2)));
	  else if (TREE_VEC_LENGTH (candidates->convs) == 2)
	    cp_error ("%s %D(%T, %T) <builtin>", str, candidates->fn,
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)),
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 1)));
	  else
	    cp_error ("%s %D(%T) <builtin>", str, candidates->fn,
		      TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)));
	}
      else if (TYPE_P (candidates->fn))
	cp_error ("%s %T <conversion>", str, candidates->fn);
      else
	cp_error_at ("%s %+#D%s", str, candidates->fn,
		     candidates->viable == -1 ? " <near match>" : "");
      str = "               "; 
    }
}

/* Returns the best overload candidate to perform the requested
   conversion.  This function is used for three the overloading situations
   described in [over.match.copy], [over.match.conv], and [over.match.ref].
   If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
   per [dcl.init.ref], so we ignore temporary bindings.  */

static struct z_candidate *
build_user_type_conversion_1 (totype, expr, flags)
     tree totype, expr;
     int flags;
{
  struct z_candidate *candidates, *cand;
  tree fromtype = TREE_TYPE (expr);
  tree ctors = NULL_TREE, convs = NULL_TREE, *p;
  tree args = NULL_TREE;
  tree templates = NULL_TREE;

  /* We represent conversion within a hierarchy using RVALUE_CONV and
     BASE_CONV, as specified by [over.best.ics]; these become plain
     constructor calls, as specified in [dcl.init].  */
  if (IS_AGGR_TYPE (fromtype) && IS_AGGR_TYPE (totype)
      && DERIVED_FROM_P (totype, fromtype))
    abort ();

  if (IS_AGGR_TYPE (totype))
    ctors = lookup_fnfields (TYPE_BINFO (totype),
			     complete_ctor_identifier,
			     0);

  if (IS_AGGR_TYPE (fromtype))
    convs = lookup_conversions (fromtype);

  candidates = 0;
  flags |= LOOKUP_NO_CONVERSION;

  if (ctors)
    {
      tree t;

      ctors = TREE_VALUE (ctors);

      t = build_int_2 (0, 0);
      TREE_TYPE (t) = build_pointer_type (totype);
      args = build_tree_list (NULL_TREE, expr);
      if (DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors)))
	args = tree_cons (NULL_TREE, 
			  in_charge_arg_for_name (complete_ctor_identifier), 
			  args);
      args = tree_cons (NULL_TREE, t, args);
    }
  for (; ctors; ctors = OVL_NEXT (ctors))
    {
      tree ctor = OVL_CURRENT (ctors);
      if (DECL_NONCONVERTING_P (ctor))
	continue;

      if (TREE_CODE (ctor) == TEMPLATE_DECL) 
	{
	  templates = tree_cons (NULL_TREE, ctor, templates);
	  candidates = 
	    add_template_candidate (candidates, ctor, totype,
				    NULL_TREE, args, NULL_TREE, flags,
				    DEDUCE_CALL);
	} 
      else 
	candidates = add_function_candidate (candidates, ctor, totype,
					     args, flags); 

      if (candidates) 
	{
	  candidates->second_conv = build1 (IDENTITY_CONV, totype, NULL_TREE);
	  candidates->basetype_path = TYPE_BINFO (totype);
	} 
    }

  if (convs)
    args = build_tree_list (NULL_TREE, build_this (expr));

  for (; convs; convs = TREE_CHAIN (convs))
    {
      tree fns = TREE_VALUE (convs);
      int convflags = LOOKUP_NO_CONVERSION;
      tree ics;

      /* If we are called to convert to a reference type, we are trying to
	 find an lvalue binding, so don't even consider temporaries.  If
	 we don't find an lvalue binding, the caller will try again to
	 look for a temporary binding.  */
      if (TREE_CODE (totype) == REFERENCE_TYPE)
	convflags |= LOOKUP_NO_TEMP_BIND;

      if (TREE_CODE (OVL_CURRENT (fns)) != TEMPLATE_DECL)
	ics = implicit_conversion
	  (totype, TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns))), 0, convflags);
      else
	/* We can't compute this yet.  */
	ics = error_mark_node;

      if (TREE_CODE (totype) == REFERENCE_TYPE && ics && ICS_BAD_FLAG (ics))
	/* ignore the near match.  */;
      else if (ics)
	for (; fns; fns = OVL_NEXT (fns))
	  {
	    tree fn = OVL_CURRENT (fns);
	    struct z_candidate *old_candidates = candidates;

	    /* [over.match.funcs] For conversion functions, the function is
	       considered to be a member of the class of the implicit object
	       argument for the purpose of defining the type of the implicit
	       object parameter.

	       So we pass fromtype as CTYPE to add_*_candidate.  */

	    if (TREE_CODE (fn) == TEMPLATE_DECL)
	      {
		templates = tree_cons (NULL_TREE, fn, templates);
		candidates = 
		  add_template_candidate (candidates, fn, fromtype, NULL_TREE,
					  args, totype, flags,
					  DEDUCE_CONV);
	      } 
	    else 
	      candidates = add_function_candidate (candidates, fn, fromtype,
						   args, flags); 

	    if (candidates != old_candidates)
	      {
		if (TREE_CODE (fn) == TEMPLATE_DECL)
		  ics = implicit_conversion
		    (totype, TREE_TYPE (TREE_TYPE (candidates->fn)),
		     0, convflags);

		candidates->second_conv = ics;
		candidates->basetype_path = TYPE_BINFO (fromtype);

		if (ics == NULL_TREE)
		  candidates->viable = 0;
		else if (candidates->viable == 1 && ICS_BAD_FLAG (ics))
		  candidates->viable = -1;
	      }
	  }
    }

  if (! any_viable (candidates))
    {
#if 0
      if (flags & LOOKUP_COMPLAIN)
	{
	  if (candidates && ! candidates->next)
	    /* say why this one won't work or try to be loose */;
	  else
	    cp_error ("no viable candidates");
	}
#endif

      return 0;
    }

  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      if (flags & LOOKUP_COMPLAIN)
	{
	  cp_error ("conversion from `%T' to `%T' is ambiguous",
		    fromtype, totype);
	  print_z_candidates (candidates);
	}

      cand = candidates;	/* any one will do */
      cand->second_conv = build1 (AMBIG_CONV, totype, expr);
      ICS_USER_FLAG (cand->second_conv) = 1;
      ICS_BAD_FLAG (cand->second_conv) = 1;

      return cand;
    }

  for (p = &(cand->second_conv); TREE_CODE (*p) != IDENTITY_CONV; )
    p = &(TREE_OPERAND (*p, 0));

  *p = build
    (USER_CONV,
     (DECL_CONSTRUCTOR_P (cand->fn)
      ? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
     expr, build_ptr_wrapper (cand));
  ICS_USER_FLAG (cand->second_conv) = 1;
  if (cand->viable == -1)
    ICS_BAD_FLAG (cand->second_conv) = 1;

  return cand;
}

tree
build_user_type_conversion (totype, expr, flags)
     tree totype, expr;
     int flags;
{
  struct z_candidate *cand
    = build_user_type_conversion_1 (totype, expr, flags);

  if (cand)
    {
      if (TREE_CODE (cand->second_conv) == AMBIG_CONV)
	return error_mark_node;
      return convert_from_reference (convert_like (cand->second_conv, expr));
    }
  return NULL_TREE;
}

/* Do any initial processing on the arguments to a function call.  */

static tree
resolve_args (args)
     tree args;
{
  tree t;
  for (t = args; t; t = TREE_CHAIN (t))
    {
      if (TREE_VALUE (t) == error_mark_node)
	return error_mark_node;
      else if (TREE_CODE (TREE_TYPE (TREE_VALUE (t))) == VOID_TYPE)
	{
	  error ("invalid use of void expression");
	  return error_mark_node;
	}
      else if (TREE_CODE (TREE_VALUE (t)) == OFFSET_REF)
	TREE_VALUE (t) = resolve_offset_ref (TREE_VALUE (t));
    }
  return args;
}
      
tree
build_new_function_call (fn, args)
     tree fn, args;
{
  struct z_candidate *candidates = 0, *cand;
  tree explicit_targs = NULL_TREE;
  int template_only = 0;

  if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
    {
      explicit_targs = TREE_OPERAND (fn, 1);
      fn = TREE_OPERAND (fn, 0);
      template_only = 1;
    }

  if (really_overloaded_fn (fn))
    {
      tree t1;
      tree templates = NULL_TREE;

      args = resolve_args (args);

      if (args == error_mark_node)
	return error_mark_node;

      for (t1 = fn; t1; t1 = OVL_CHAIN (t1))
	{
	  tree t = OVL_FUNCTION (t1);

	  if (TREE_CODE (t) == TEMPLATE_DECL)
	    {
	      templates = tree_cons (NULL_TREE, t, templates);
	      candidates = add_template_candidate
		(candidates, t, NULL_TREE, explicit_targs, args, NULL_TREE,
		 LOOKUP_NORMAL, DEDUCE_CALL);  
	    }
	  else if (! template_only)
	    candidates = add_function_candidate
	      (candidates, t, NULL_TREE, args, LOOKUP_NORMAL);
	}

      if (! any_viable (candidates))
	{
	  if (candidates && ! candidates->next)
	    return build_function_call (candidates->fn, args);
	  cp_error ("no matching function for call to `%D(%A)'",
		    DECL_NAME (OVL_FUNCTION (fn)), args);
	  if (candidates)
	    print_z_candidates (candidates);
	  return error_mark_node;
	}
      candidates = splice_viable (candidates);
      cand = tourney (candidates);

      if (cand == 0)
	{
	  cp_error ("call of overloaded `%D(%A)' is ambiguous",
		    DECL_NAME (OVL_FUNCTION (fn)), args);
	  print_z_candidates (candidates);
	  return error_mark_node;
	}

      return build_over_call (cand, args, LOOKUP_NORMAL);
    }

  /* This is not really overloaded. */
  fn = OVL_CURRENT (fn);

  return build_function_call (fn, args);
}

static tree
build_object_call (obj, args)
     tree obj, args;
{
  struct z_candidate *candidates = 0, *cand;
  tree fns, convs, mem_args = NULL_TREE;
  tree type = TREE_TYPE (obj);

  if (TYPE_PTRMEMFUNC_P (type))
    {
      /* It's no good looking for an overloaded operator() on a
	 pointer-to-member-function.  */
      cp_error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj);
      return error_mark_node;
    }

  fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname (CALL_EXPR), 1);
  if (fns == error_mark_node)
    return error_mark_node;

  args = resolve_args (args);

  if (args == error_mark_node)
    return error_mark_node;

  if (fns)
    {
      tree base = BINFO_TYPE (TREE_PURPOSE (fns));
      mem_args = tree_cons (NULL_TREE, build_this (obj), args);

      for (fns = TREE_VALUE (fns); fns; fns = OVL_NEXT (fns))
	{
	  tree fn = OVL_CURRENT (fns);
	  if (TREE_CODE (fn) == TEMPLATE_DECL)
	    {
	      candidates 
		= add_template_candidate (candidates, fn, base, NULL_TREE,
					  mem_args, NULL_TREE, 
					  LOOKUP_NORMAL, DEDUCE_CALL);
	    }
	  else
	    candidates = add_function_candidate
	      (candidates, fn, base, mem_args, LOOKUP_NORMAL);

	  if (candidates)
	    candidates->basetype_path = TYPE_BINFO (type);
	}
    }

  convs = lookup_conversions (type);

  for (; convs; convs = TREE_CHAIN (convs))
    {
      tree fns = TREE_VALUE (convs);
      tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));

      if ((TREE_CODE (totype) == POINTER_TYPE
	   && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
	  || (TREE_CODE (totype) == REFERENCE_TYPE
	      && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
	  || (TREE_CODE (totype) == REFERENCE_TYPE
	      && TREE_CODE (TREE_TYPE (totype)) == POINTER_TYPE
	      && TREE_CODE (TREE_TYPE (TREE_TYPE (totype))) == FUNCTION_TYPE))
	for (; fns; fns = OVL_NEXT (fns))
	  {
	    tree fn = OVL_CURRENT (fns);
	    if (TREE_CODE (fn) == TEMPLATE_DECL) 
	      {
		candidates = add_template_conv_candidate (candidates,
							  fn,
							  obj,
							  args,
							  totype);
	      }
	    else
	      candidates = add_conv_candidate (candidates, fn, obj, args);
	  }
    }

  if (! any_viable (candidates))
    {
      cp_error ("no match for call to `(%T) (%A)'", TREE_TYPE (obj), args);
      print_z_candidates (candidates);
      return error_mark_node;
    }

  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      cp_error ("call of `(%T) (%A)' is ambiguous", TREE_TYPE (obj), args);
      print_z_candidates (candidates);
      return error_mark_node;
    }

  /* Since cand->fn will be a type, not a function, for a conversion
     function, we must be careful not to unconditionally look at
     DECL_NAME here.  */
  if (TREE_CODE (cand->fn) == FUNCTION_DECL
      && DECL_OVERLOADED_OPERATOR_P (cand->fn) == CALL_EXPR)
    return build_over_call (cand, mem_args, LOOKUP_NORMAL);

  obj = convert_like_with_context
          (TREE_VEC_ELT (cand->convs, 0), obj, cand->fn, -1);

  /* FIXME */
  return build_function_call (obj, args);
}

static void
op_error (code, code2, arg1, arg2, arg3, problem)
     enum tree_code code, code2;
     tree arg1, arg2, arg3;
     const char *problem;
{
  const char *opname;

  if (code == MODIFY_EXPR)
    opname = assignment_operator_name_info[code2].name;
  else
    opname = operator_name_info[code].name;

  switch (code)
    {
    case COND_EXPR:
      cp_error ("%s for `%T ? %T : %T' operator", problem,
		error_type (arg1), error_type (arg2), error_type (arg3));
      break;
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      cp_error ("%s for `%T %s' operator", problem, error_type (arg1), opname);
      break;
    case ARRAY_REF:
      cp_error ("%s for `%T [%T]' operator", problem,
		error_type (arg1), error_type (arg2));
      break;
    default:
      if (arg2)
	cp_error ("%s for `%T %s %T' operator", problem,
		  error_type (arg1), opname, error_type (arg2));
      else
	cp_error ("%s for `%s %T' operator", problem, opname, error_type (arg1));
    }
}

/* Return the implicit conversion sequence that could be used to
   convert E1 to E2 in [expr.cond].  */

static tree
conditional_conversion (e1, e2)
     tree e1;
     tree e2;
{
  tree t1 = non_reference (TREE_TYPE (e1));
  tree t2 = non_reference (TREE_TYPE (e2));
  tree conv;

  /* [expr.cond]

     If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
     implicitly converted (clause _conv_) to the type "reference to
     T2", subject to the constraint that in the conversion the
     reference must bind directly (_dcl.init.ref_) to E1.  */
  if (real_lvalue_p (e2))
    {
      conv = implicit_conversion (build_reference_type (t2), 
				  t1,
				  e1,
				  LOOKUP_NO_TEMP_BIND);
      if (conv)
	return conv;
    }

  /* [expr.cond]

     If E1 and E2 have class type, and the underlying class types are
     the same or one is a base class of the other: E1 can be converted
     to match E2 if the class of T2 is the same type as, or a base
     class of, the class of T1, and the cv-qualification of T2 is the
     same cv-qualification as, or a greater cv-qualification than, the
     cv-qualification of T1.  If the conversion is applied, E1 is
     changed to an rvalue of type T2 that still refers to the original
     source class object (or the appropriate subobject thereof).  */
  if (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
      && same_or_base_type_p (TYPE_MAIN_VARIANT (t2), 
			      TYPE_MAIN_VARIANT (t1)))
    {
      if (at_least_as_qualified_p (t2, t1))
	{
	  conv = build1 (IDENTITY_CONV, t1, e1);
	  if (!same_type_p (TYPE_MAIN_VARIANT (t1), 
			    TYPE_MAIN_VARIANT (t2)))
	    conv = build_conv (BASE_CONV, t2, conv);
	  return conv;
	}
      else
	return NULL_TREE;
    }

  /* [expr.cond]

     E1 can be converted to match E2 if E1 can be implicitly converted
     to the type that expression E2 would have if E2 were converted to
     an rvalue (or the type it has, if E2 is an rvalue).  */
  return implicit_conversion (t2, t1, e1, LOOKUP_NORMAL);
}

/* Implement [expr.cond].  ARG1, ARG2, and ARG3 are the three
   arguments to the conditional expression.  By the time this function
   is called, any suitable candidate functions are included in
   CANDIDATES.  */

tree
build_conditional_expr (arg1, arg2, arg3)
     tree arg1;
     tree arg2;
     tree arg3;
{
  tree arg2_type;
  tree arg3_type;
  tree result;
  tree result_type = NULL_TREE;
  int lvalue_p = 1;
  struct z_candidate *candidates = 0;
  struct z_candidate *cand;

  /* As a G++ extension, the second argument to the conditional can be
     omitted.  (So that `a ? : c' is roughly equivalent to `a ? a :
     c'.)  If the second operand is omitted, make sure it is
     calculated only once.  */
  if (!arg2)
    {
      if (pedantic)
	pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
      arg1 = arg2 = save_expr (arg1);
    }

  /* [expr.cond]
  
     The first expr ession is implicitly converted to bool (clause
     _conv_).  */
  arg1 = cp_convert (boolean_type_node, arg1);

  /* If something has already gone wrong, just pass that fact up the
     tree.  */
  if (arg1 == error_mark_node 
      || arg2 == error_mark_node 
      || arg3 == error_mark_node 
      || TREE_TYPE (arg1) == error_mark_node
      || TREE_TYPE (arg2) == error_mark_node
      || TREE_TYPE (arg3) == error_mark_node)
    return error_mark_node;

  /* Convert from reference types to ordinary types; no expressions
     really have reference type in C++.  */
  arg2 = convert_from_reference (arg2);
  arg3 = convert_from_reference (arg3);
     
  /* [expr.cond]

     If either the second or the third operand has type (possibly
     cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
     array-to-pointer (_conv.array_), and function-to-pointer
     (_conv.func_) standard conversions are performed on the second
     and third operands.  */
  arg2_type = TREE_TYPE (arg2);
  arg3_type = TREE_TYPE (arg3);
  if (VOID_TYPE_P (arg2_type) || VOID_TYPE_P (arg3_type))
    {
      /* Do the conversions.  We don't these for `void' type arguments
	 since it can't have any effect and since decay_conversion
	 does not handle that case gracefully.  */
      if (!VOID_TYPE_P (arg2_type))
	arg2 = decay_conversion (arg2);
      if (!VOID_TYPE_P (arg3_type))
	arg3 = decay_conversion (arg3);
      arg2_type = TREE_TYPE (arg2);
      arg3_type = TREE_TYPE (arg3);

      /* [expr.cond]

	 One of the following shall hold:

	 --The second or the third operand (but not both) is a
	   throw-expression (_except.throw_); the result is of the
	   type of the other and is an rvalue.

	 --Both the second and the third operands have type void; the
	   result is of type void and is an rvalue.   */
      if ((TREE_CODE (arg2) == THROW_EXPR)
	  ^ (TREE_CODE (arg3) == THROW_EXPR))
	result_type = ((TREE_CODE (arg2) == THROW_EXPR) 
		       ? arg3_type : arg2_type);
      else if (VOID_TYPE_P (arg2_type) && VOID_TYPE_P (arg3_type))
	result_type = void_type_node;
      else
	{
	  cp_error ("`%E' has type `void' and is not a throw-expression",
		    VOID_TYPE_P (arg2_type) ? arg2 : arg3);
	  return error_mark_node;
	}

      lvalue_p = 0;
      goto valid_operands;
    }
  /* [expr.cond]

     Otherwise, if the second and third operand have different types,
     and either has (possibly cv-qualified) class type, an attempt is
     made to convert each of those operands to the type of the other.  */
  else if (!same_type_p (arg2_type, arg3_type)
	   && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
    {
      tree conv2 = conditional_conversion (arg2, arg3);
      tree conv3 = conditional_conversion (arg3, arg2);
      
      /* [expr.cond]

	 If both can be converted, or one can be converted but the
	 conversion is ambiguous, the program is ill-formed.  If
	 neither can be converted, the operands are left unchanged and
	 further checking is performed as described below.  If exactly
	 one conversion is possible, that conversion is applied to the
	 chosen operand and the converted operand is used in place of
	 the original operand for the remainder of this section.  */
      if ((conv2 && !ICS_BAD_FLAG (conv2) 
	   && conv3 && !ICS_BAD_FLAG (conv3))
	  || (conv2 && TREE_CODE (conv2) == AMBIG_CONV)
	  || (conv3 && TREE_CODE (conv3) == AMBIG_CONV))
	{
	  cp_error ("operands to ?: have different types");
	  return error_mark_node;
	}
      else if (conv2 && !ICS_BAD_FLAG (conv2))
	{
	  arg2 = convert_like (conv2, arg2);
	  arg2 = convert_from_reference (arg2);
	  /* That may not quite have done the trick.  If the two types
	     are cv-qualified variants of one another, we will have
	     just used an IDENTITY_CONV.  (There's no conversion from
	     an lvalue of one class type to an lvalue of another type,
	     even a cv-qualified variant, and we don't want to lose
	     lvalue-ness here.)  So, we manually add a NOP_EXPR here
	     if necessary.  */
	  if (!same_type_p (TREE_TYPE (arg2), arg3_type))
	    arg2 = build1 (NOP_EXPR, arg3_type, arg2);
	  arg2_type = TREE_TYPE (arg2);
	}
      else if (conv3 && !ICS_BAD_FLAG (conv3))
	{
	  arg3 = convert_like (conv3, arg3);
	  arg3 = convert_from_reference (arg3);
	  if (!same_type_p (TREE_TYPE (arg3), arg2_type))
	    arg3 = build1 (NOP_EXPR, arg2_type, arg3);
	  arg3_type = TREE_TYPE (arg3);
	}
    }

  /* [expr.cond]

     If the second and third operands are lvalues and have the same
     type, the result is of that type and is an lvalue.  */
  if (real_lvalue_p (arg2) && real_lvalue_p (arg3) && 
      same_type_p (arg2_type, arg3_type))
    {
      result_type = arg2_type;
      goto valid_operands;
    }

  /* [expr.cond]

     Otherwise, the result is an rvalue.  If the second and third
     operand do not have the same type, and either has (possibly
     cv-qualified) class type, overload resolution is used to
     determine the conversions (if any) to be applied to the operands
     (_over.match.oper_, _over.built_).  */
  lvalue_p = 0;
  if (!same_type_p (arg2_type, arg3_type)
      && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
    {
      tree args[3];
      tree conv;

      /* Rearrange the arguments so that add_builtin_candidate only has
	 to know about two args.  In build_builtin_candidates, the
	 arguments are unscrambled.  */
      args[0] = arg2;
      args[1] = arg3;
      args[2] = arg1;
      candidates = add_builtin_candidates (candidates, 
					   COND_EXPR, 
					   NOP_EXPR,
					   ansi_opname (COND_EXPR),
					   args,
					   LOOKUP_NORMAL);

      /* [expr.cond]

	 If the overload resolution fails, the program is
	 ill-formed.  */
      if (!any_viable (candidates))
	{
	  op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
	  print_z_candidates (candidates);
	  return error_mark_node;
	}
      candidates = splice_viable (candidates);
      cand = tourney (candidates);
      if (!cand)
	{
	  op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
	  print_z_candidates (candidates);
	  return error_mark_node;
	}

      /* [expr.cond]

	 Otherwise, the conversions thus determined are applied, and
	 the converted operands are used in place of the original
	 operands for the remainder of this section.  */
      conv = TREE_VEC_ELT (cand->convs, 0);
      arg1 = convert_like (conv, arg1);
      conv = TREE_VEC_ELT (cand->convs, 1);
      arg2 = convert_like (conv, arg2);
      conv = TREE_VEC_ELT (cand->convs, 2);
      arg3 = convert_like (conv, arg3);
    }

  /* [expr.cond]

     Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
     and function-to-pointer (_conv.func_) standard conversions are
     performed on the second and third operands.

     We need to force the lvalue-to-rvalue conversion here for class types,
     so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
     that isn't wrapped with a TARGET_EXPR plays havoc with exception
     regions.

     We use ocp_convert rather than build_user_type_conversion because the
     latter returns NULL_TREE on failure, while the former gives an error.  */

  if (IS_AGGR_TYPE (TREE_TYPE (arg2)) && real_lvalue_p (arg2))
    arg2 = ocp_convert (TREE_TYPE (arg2), arg2,
			CONV_IMPLICIT|CONV_FORCE_TEMP, LOOKUP_NORMAL);
  else
    arg2 = decay_conversion (arg2);
  arg2_type = TREE_TYPE (arg2);

  if (IS_AGGR_TYPE (TREE_TYPE (arg3)) && real_lvalue_p (arg3))
    arg3 = ocp_convert (TREE_TYPE (arg3), arg3,
			CONV_IMPLICIT|CONV_FORCE_TEMP, LOOKUP_NORMAL);
  else
    arg3 = decay_conversion (arg3);
  arg3_type = TREE_TYPE (arg3);

  /* [expr.cond]
     
     After those conversions, one of the following shall hold:

     --The second and third operands have the same type; the result  is  of
       that type.  */
  if (same_type_p (arg2_type, arg3_type))
    result_type = arg2_type;
  /* [expr.cond]

     --The second and third operands have arithmetic or enumeration
       type; the usual arithmetic conversions are performed to bring
       them to a common type, and the result is of that type.  */
  else if ((ARITHMETIC_TYPE_P (arg2_type) 
	    || TREE_CODE (arg2_type) == ENUMERAL_TYPE)
	   && (ARITHMETIC_TYPE_P (arg3_type)
	       || TREE_CODE (arg3_type) == ENUMERAL_TYPE))
    {
      /* In this case, there is always a common type.  */
      result_type = type_after_usual_arithmetic_conversions (arg2_type, 
							     arg3_type);
      
      if (TREE_CODE (arg2_type) == ENUMERAL_TYPE
          && TREE_CODE (arg3_type) == ENUMERAL_TYPE)
         cp_warning ("enumeral mismatch in conditional expression: `%T' vs `%T'",
                   arg2_type, arg3_type);
      else if (extra_warnings
               && ((TREE_CODE (arg2_type) == ENUMERAL_TYPE
                    && !same_type_p (arg3_type, type_promotes_to (arg2_type)))
                   || (TREE_CODE (arg3_type) == ENUMERAL_TYPE
                       && !same_type_p (arg2_type, type_promotes_to (arg3_type)))))
        cp_warning ("enumeral and non-enumeral type in conditional expression");
      
      arg2 = perform_implicit_conversion (result_type, arg2);
      arg3 = perform_implicit_conversion (result_type, arg3);
    }
  /* [expr.cond]

     --The second and third operands have pointer type, or one has
       pointer type and the other is a null pointer constant; pointer
       conversions (_conv.ptr_) and qualification conversions
       (_conv.qual_) are performed to bring them to their composite
       pointer type (_expr.rel_).  The result is of the composite
       pointer type.

     --The second and third operands have pointer to member type, or
       one has pointer to member type and the other is a null pointer
       constant; pointer to member conversions (_conv.mem_) and
       qualification conversions (_conv.qual_) are performed to bring
       them to a common type, whose cv-qualification shall match the
       cv-qualification of either the second or the third operand.
       The result is of the common type.   */
  else if ((null_ptr_cst_p (arg2) 
	    && (TYPE_PTR_P (arg3_type) || TYPE_PTRMEM_P (arg3_type)
		|| TYPE_PTRMEMFUNC_P (arg3_type)))
	   || (null_ptr_cst_p (arg3) 
	       && (TYPE_PTR_P (arg2_type) || TYPE_PTRMEM_P (arg2_type)
		|| TYPE_PTRMEMFUNC_P (arg2_type)))
	   || (TYPE_PTR_P (arg2_type) && TYPE_PTR_P (arg3_type))
	   || (TYPE_PTRMEM_P (arg2_type) && TYPE_PTRMEM_P (arg3_type))
	   || (TYPE_PTRMEMFUNC_P (arg2_type) 
	       && TYPE_PTRMEMFUNC_P (arg3_type)))
    {
      result_type = composite_pointer_type (arg2_type, arg3_type, arg2,
					    arg3, "conditional expression");
      arg2 = perform_implicit_conversion (result_type, arg2);
      arg3 = perform_implicit_conversion (result_type, arg3);
    }

  if (!result_type)
    {
      cp_error ("operands to ?: have different types");
      return error_mark_node;
    }

 valid_operands:
  result = fold (build (COND_EXPR, result_type, arg1, arg2, arg3));
  /* Expand both sides into the same slot, hopefully the target of the
     ?: expression.  We used to check for TARGET_EXPRs here, but now we
     sometimes wrap them in NOP_EXPRs so the test would fail.  */
  if (!lvalue_p && IS_AGGR_TYPE (result_type))
    result = build_target_expr_with_type (result, result_type);
  
  /* If this expression is an rvalue, but might be mistaken for an
     lvalue, we must add a NON_LVALUE_EXPR.  */
  if (!lvalue_p && real_lvalue_p (result))
    result = build1 (NON_LVALUE_EXPR, result_type, result);

  return result;
}

tree
build_new_op (code, flags, arg1, arg2, arg3)
     enum tree_code code;
     int flags;
     tree arg1, arg2, arg3;
{
  struct z_candidate *candidates = 0, *cand;
  tree fns, mem_arglist = NULL_TREE, arglist, fnname;
  enum tree_code code2 = NOP_EXPR;
  tree templates = NULL_TREE;
  tree conv;

  if (arg1 == error_mark_node
      || arg2 == error_mark_node
      || arg3 == error_mark_node)
    return error_mark_node;

  /* This can happen if a template takes all non-type parameters, e.g.
     undeclared_template<1, 5, 72>a;  */
  if (code == LT_EXPR && TREE_CODE (arg1) == TEMPLATE_DECL)
    {
      cp_error ("`%D' must be declared before use", arg1);
      return error_mark_node;
    }

  if (code == MODIFY_EXPR)
    {
      code2 = TREE_CODE (arg3);
      arg3 = NULL_TREE;
      fnname = ansi_assopname (code2);
    }
  else
    fnname = ansi_opname (code);

  switch (code)
    {
    case NEW_EXPR:
    case VEC_NEW_EXPR:
    case VEC_DELETE_EXPR:
    case DELETE_EXPR:
      /* Use build_op_new_call and build_op_delete_call instead. */
      my_friendly_abort (981018);

    case CALL_EXPR:
      return build_object_call (arg1, arg2);

    default:
      break;
    }

  /* The comma operator can have void args.  */
  if (TREE_CODE (arg1) == OFFSET_REF)
    arg1 = resolve_offset_ref (arg1);
  if (arg2 && TREE_CODE (arg2) == OFFSET_REF)
    arg2 = resolve_offset_ref (arg2);
  if (arg3 && TREE_CODE (arg3) == OFFSET_REF)
    arg3 = resolve_offset_ref (arg3);

  if (code == COND_EXPR)
    {
      if (arg2 == NULL_TREE
	  || TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
	  || TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
	  || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
	      && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
	goto builtin;
    }
  else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
	   && (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
    goto builtin;

  if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
    arg2 = integer_zero_node;

  if (arg2 && arg3)
    arglist = tree_cons (NULL_TREE, arg1, tree_cons
		      (NULL_TREE, arg2, build_tree_list (NULL_TREE, arg3)));
  else if (arg2)
    arglist = tree_cons (NULL_TREE, arg1, build_tree_list (NULL_TREE, arg2));
  else
    arglist = build_tree_list (NULL_TREE, arg1);

  fns = lookup_function_nonclass (fnname, arglist);

  if (fns && TREE_CODE (fns) == TREE_LIST)
    fns = TREE_VALUE (fns);
  for (; fns; fns = OVL_NEXT (fns))
    {
      tree fn = OVL_CURRENT (fns);
      if (TREE_CODE (fn) == TEMPLATE_DECL)
	{
	  templates = tree_cons (NULL_TREE, fn, templates);
	  candidates 
	    = add_template_candidate (candidates, fn, NULL_TREE, NULL_TREE,
				      arglist, TREE_TYPE (fnname),
				      flags, DEDUCE_CALL); 
	}
      else
	candidates = add_function_candidate (candidates, fn, NULL_TREE,
					     arglist, flags);
    }

  if (IS_AGGR_TYPE (TREE_TYPE (arg1)))
    {
      fns = lookup_fnfields (TYPE_BINFO (TREE_TYPE (arg1)), fnname, 1);
      if (fns == error_mark_node)
	return fns;
    }
  else
    fns = NULL_TREE;

  if (fns)
    {
      tree basetype = BINFO_TYPE (TREE_PURPOSE (fns));
      mem_arglist = tree_cons (NULL_TREE, build_this (arg1), TREE_CHAIN (arglist));
      for (fns = TREE_VALUE (fns); fns; fns = OVL_NEXT (fns))
	{
	  tree fn = OVL_CURRENT (fns);
	  tree this_arglist;

	  if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
	    this_arglist = mem_arglist;
	  else
	    this_arglist = arglist;

	  if (TREE_CODE (fn) == TEMPLATE_DECL)
	    {
	      /* A member template. */
	      templates = tree_cons (NULL_TREE, fn, templates);
	      candidates 
		= add_template_candidate (candidates, fn, basetype, NULL_TREE,
					  this_arglist,  TREE_TYPE (fnname),
					  flags, DEDUCE_CALL); 
	    }
	  else
	    candidates = add_function_candidate
	      (candidates, fn, basetype, this_arglist, flags);

	  if (candidates)
	    candidates->basetype_path = TYPE_BINFO (TREE_TYPE (arg1));
	}
    }

  {
    tree args[3];

    /* Rearrange the arguments for ?: so that add_builtin_candidate only has
       to know about two args; a builtin candidate will always have a first
       parameter of type bool.  We'll handle that in
       build_builtin_candidate.  */
    if (code == COND_EXPR)
      {
	args[0] = arg2;
	args[1] = arg3;
	args[2] = arg1;
      }
    else
      {
	args[0] = arg1;
	args[1] = arg2;
	args[2] = NULL_TREE;
      }

    candidates = add_builtin_candidates
      (candidates, code, code2, fnname, args, flags);
  }

  if (! any_viable (candidates))
    {
      switch (code)
	{
	case POSTINCREMENT_EXPR:
	case POSTDECREMENT_EXPR:
	  /* Look for an `operator++ (int)'.  If they didn't have
	     one, then we fall back to the old way of doing things.  */
	  if (flags & LOOKUP_COMPLAIN)
	    cp_pedwarn ("no `%D(int)' declared for postfix `%s', trying prefix operator instead",
			fnname, 
			operator_name_info[code].name);
	  if (code == POSTINCREMENT_EXPR)
	    code = PREINCREMENT_EXPR;
	  else
	    code = PREDECREMENT_EXPR;	
	  return build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE);
	  
	  /* The caller will deal with these.  */
	case ADDR_EXPR:
	case COMPOUND_EXPR:
	case COMPONENT_REF:
	  return NULL_TREE;

	default:
	  break;
	}
      if (flags & LOOKUP_COMPLAIN)
	{
	  op_error (code, code2, arg1, arg2, arg3, "no match");
	  print_z_candidates (candidates);
	}
      return error_mark_node;
    }
  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      if (flags & LOOKUP_COMPLAIN)
	{
	  op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
	  print_z_candidates (candidates);
	}
      return error_mark_node;
    }

  if (TREE_CODE (cand->fn) == FUNCTION_DECL)
    {
      extern int warn_synth;
      if (warn_synth
	  && fnname == ansi_assopname (NOP_EXPR)
	  && DECL_ARTIFICIAL (cand->fn)
	  && candidates->next
	  && ! candidates->next->next)
	{
	  cp_warning ("using synthesized `%#D' for copy assignment",
		      cand->fn);
	  cp_warning_at ("  where cfront would use `%#D'",
			 cand == candidates
			 ? candidates->next->fn
			 : candidates->fn);
	}

      return build_over_call
	(cand,
	 TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
	 ? mem_arglist : arglist,
	 LOOKUP_NORMAL);
    }

  /* Check for comparison of different enum types.  */
  switch (code)
    {
    case GT_EXPR:
    case LT_EXPR:
    case GE_EXPR:
    case LE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
      if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE 
	  && TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE 
	  && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
	      != TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
	{
	  cp_warning ("comparison between `%#T' and `%#T'", 
		      TREE_TYPE (arg1), TREE_TYPE (arg2));
	}
      break;
    default:
      break;
    }

  /* We need to strip any leading REF_BIND so that bitfields don't cause
     errors.  This should not remove any important conversions, because
     builtins don't apply to class objects directly.  */
  conv = TREE_VEC_ELT (cand->convs, 0);
  if (TREE_CODE (conv) == REF_BIND)
    conv = TREE_OPERAND (conv, 0);
  arg1 = convert_like (conv, arg1);
  if (arg2)
    {
      conv = TREE_VEC_ELT (cand->convs, 1);
      if (TREE_CODE (conv) == REF_BIND)
        conv = TREE_OPERAND (conv, 0);
      arg2 = convert_like (conv, arg2);
    }
  if (arg3)
    {
      conv = TREE_VEC_ELT (cand->convs, 2);
      if (TREE_CODE (conv) == REF_BIND)
        conv = TREE_OPERAND (conv, 0);
      arg3 = convert_like (conv, arg3);
    }

builtin:
  switch (code)
    {
    case MODIFY_EXPR:
      return build_modify_expr (arg1, code2, arg2);

    case INDIRECT_REF:
      return build_indirect_ref (arg1, "unary *");

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case GT_EXPR:
    case LT_EXPR:
    case GE_EXPR:
    case LE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case MAX_EXPR:
    case MIN_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case TRUNC_MOD_EXPR:
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
      return cp_build_binary_op (code, arg1, arg2);

    case CONVERT_EXPR:
    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
    case TRUTH_NOT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      return build_unary_op (code, arg1, candidates != 0);

    case ARRAY_REF:
      return build_array_ref (arg1, arg2);

    case COND_EXPR:
      return build_conditional_expr (arg1, arg2, arg3);

    case MEMBER_REF:
      return build_m_component_ref
	(build_indirect_ref (arg1, NULL_PTR), arg2);

      /* The caller will deal with these.  */
    case ADDR_EXPR:
    case COMPONENT_REF:
    case COMPOUND_EXPR:
      return NULL_TREE;

    default:
      my_friendly_abort (367);
      return NULL_TREE;
    }
}

/* Build a call to operator delete.  This has to be handled very specially,
   because the restrictions on what signatures match are different from all
   other call instances.  For a normal delete, only a delete taking (void *)
   or (void *, size_t) is accepted.  For a placement delete, only an exact
   match with the placement new is accepted.

   CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
   ADDR is the pointer to be deleted.  For placement delete, it is also
     used to determine what the corresponding new looked like.
   SIZE is the size of the memory block to be deleted.
   FLAGS are the usual overloading flags.
   PLACEMENT is the corresponding placement new call, or 0.  */

tree
build_op_delete_call (code, addr, size, flags, placement)
     enum tree_code code;
     tree addr, size, placement;
     int flags;
{
  tree fn, fns, fnname, fntype, argtypes, args, type;
  int pass;

  if (addr == error_mark_node)
    return error_mark_node;

  type = TREE_TYPE (TREE_TYPE (addr));
  while (TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);

  fnname = ansi_opname (code);

  if (IS_AGGR_TYPE (type) && ! (flags & LOOKUP_GLOBAL))
    /* In [class.free]

       If the result of the lookup is ambiguous or inaccessible, or if
       the lookup selects a placement deallocation function, the
       program is ill-formed.
  
       Therefore, we ask lookup_fnfields to complain ambout ambiguity.  */
    {
      fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
      if (fns == error_mark_node)
	return error_mark_node;
    }
  else
    fns = NULL_TREE;

  if (fns == NULL_TREE)
    fns = lookup_name_nonclass (fnname);

  if (placement)
    {
      /* placement is a CALL_EXPR around an ADDR_EXPR around a function.  */

      /* Extract the function.  */
      argtypes = TREE_OPERAND (TREE_OPERAND (placement, 0), 0);
      /* Then the second parm type.  */
      argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (argtypes)));

      /* Also the second argument.  */
      args = TREE_CHAIN (TREE_OPERAND (placement, 1));
    }
  else
    {
      /* First try it without the size argument.  */
      argtypes = void_list_node;
      args = NULL_TREE;
    }

  /* Strip const and volatile from addr.  */
  addr = cp_convert (ptr_type_node, addr);

  /* We make two tries at finding a matching `operator delete'.  On
     the first pass, we look for an one-operator (or placement)
     operator delete.  If we're not doing placement delete, then on
     the second pass we look for a two-argument delete.  */
  for (pass = 0; pass < (placement ? 1 : 2); ++pass) 
    {
      if (pass == 0)
	argtypes = tree_cons (NULL_TREE, ptr_type_node, argtypes);
      else 
	/* Normal delete; now try to find a match including the size
	   argument.  */
	argtypes = tree_cons (NULL_TREE, ptr_type_node,
			      tree_cons (NULL_TREE, sizetype, 
					 void_list_node));

      fntype = build_function_type (void_type_node, argtypes);
      fn = instantiate_type (fntype, fns, itf_no_attributes);

      if (fn != error_mark_node)
	{
	  /* Member functions.  */
	  if (BASELINK_P (fns))
	    enforce_access (type, fn);

	  if (pass == 0)
	    args = tree_cons (NULL_TREE, addr, args);
	  else
	    args = tree_cons (NULL_TREE, addr, 
			      build_tree_list (NULL_TREE, size));
	  return build_function_call (fn, args);
	}
    }

  /* If we are doing placement delete we do nothing if we don't find a
     matching op delete.  */
  if (placement)
    return NULL_TREE;

  cp_error ("no suitable `operator delete' for `%T'", type);
  return error_mark_node;
}

/* If the current scope isn't allowed to access DECL along
   BASETYPE_PATH, give an error.  The most derived class in
   BASETYPE_PATH is the one used to qualify DECL.  */

int
enforce_access (basetype_path, decl)
     tree basetype_path;
     tree decl;
{
  int accessible;

  accessible = accessible_p (basetype_path, decl);
  if (!accessible)
    {
      if (TREE_PRIVATE (decl))
	cp_error_at ("`%+#D' is private", decl);
      else if (TREE_PROTECTED (decl))
	cp_error_at ("`%+#D' is protected", decl);
      else
	cp_error_at ("`%+#D' is inaccessible", decl);
      cp_error ("within this context");
      return 0;
    }

  return 1;
}

/* Perform the conversions in CONVS on the expression EXPR. 
   FN and ARGNUM are used for diagnostics.  ARGNUM is zero based, -1
   indicates the `this' argument of a method.  INNER is non-zero when
   being called to continue a conversion chain. */

static tree
convert_like_real (convs, expr, fn, argnum, inner)
     tree convs, expr;
     tree fn;
     int argnum;
     int inner;
{
  extern int warningcount, errorcount;
  int savew, savee;

  tree totype = TREE_TYPE (convs);

  if (ICS_BAD_FLAG (convs)
      && TREE_CODE (convs) != USER_CONV
      && TREE_CODE (convs) != AMBIG_CONV
      && TREE_CODE (convs) != REF_BIND)
    {
      tree t = convs; 
      for (; t; t = TREE_OPERAND (t, 0))
	{
	  if (TREE_CODE (t) == USER_CONV)
	    {
	      expr = convert_like_real (t, expr, fn, argnum, 1);
	      break;
	    }
	  else if (TREE_CODE (t) == AMBIG_CONV)
	    return convert_like_real (t, expr, fn, argnum, 1);
	  else if (TREE_CODE (t) == IDENTITY_CONV)
	    break;
	}
      return convert_for_initialization
	(NULL_TREE, totype, expr, LOOKUP_NORMAL,
	 "conversion", fn, argnum);
    }
  
  if (!inner)
    expr = dubious_conversion_warnings
             (totype, expr, "argument", fn, argnum);
  switch (TREE_CODE (convs))
    {
    case USER_CONV:
      {
	struct z_candidate *cand
	  = WRAPPER_PTR (TREE_OPERAND (convs, 1));
	tree convfn = cand->fn;
	tree args;

	if (DECL_CONSTRUCTOR_P (convfn))
	  {
	    tree t = build_int_2 (0, 0);
	    TREE_TYPE (t) = build_pointer_type (DECL_CONTEXT (convfn));

	    args = build_tree_list (NULL_TREE, expr);
	    if (DECL_HAS_IN_CHARGE_PARM_P (convfn))
	      args = tree_cons (NULL_TREE, integer_one_node, args);
	    args = tree_cons (NULL_TREE, t, args);
	  }
	else
	  args = build_this (expr);
	expr = build_over_call (cand, args, LOOKUP_NORMAL);

	/* If this is a constructor or a function returning an aggr type,
	   we need to build up a TARGET_EXPR.  */
	if (DECL_CONSTRUCTOR_P (convfn))
	  expr = build_cplus_new (totype, expr);

	/* The result of the call is then used to direct-initialize the object
	   that is the destination of the copy-initialization.  [dcl.init]

	   Note that this step is not reflected in the conversion sequence;
	   it affects the semantics when we actually perform the
	   conversion, but is not considered during overload resolution.

	   If the target is a class, that means call a ctor.  */
	if (IS_AGGR_TYPE (totype))
	  {
	    savew = warningcount, savee = errorcount;
	    expr = build_new_method_call
	      (NULL_TREE, complete_ctor_identifier,
	       build_tree_list (NULL_TREE, expr), TYPE_BINFO (totype),
	       /* Core issue 84, now a DR, says that we don't allow UDCs
		  for these args (which deliberately breaks copy-init of an
		  auto_ptr<Base> from an auto_ptr<Derived>).  */
	       LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING|LOOKUP_NO_CONVERSION);

	    /* Tell the user where this failing constructor call came from.  */
	    if (fn)
	      {
		if (warningcount > savew)
		  cp_warning
		    ("  initializing argument %P of `%D' from result of `%D'",
		     argnum, fn, convfn);
		else if (errorcount > savee)
		  cp_error
		    ("  initializing argument %P of `%D' from result of `%D'",
		     argnum, fn, convfn);
	      }
	    else
	      {
		if (warningcount > savew)
		  cp_warning ("  initializing temporary from result of `%D'",
			      convfn);
		else if (errorcount > savee)
		  cp_error ("  initializing temporary from result of `%D'",
			    convfn);
	      }
	    expr = build_cplus_new (totype, expr);
	  }
	return expr;
      }
    case IDENTITY_CONV:
      if (type_unknown_p (expr))
	expr = instantiate_type (totype, expr, itf_complain);
      return expr;
    case AMBIG_CONV:
      /* Call build_user_type_conversion again for the error.  */
      return build_user_type_conversion
	(totype, TREE_OPERAND (convs, 0), LOOKUP_NORMAL);

    default:
      break;
    };

  expr = convert_like_real (TREE_OPERAND (convs, 0), expr, fn, argnum, 1);
  if (expr == error_mark_node)
    return error_mark_node;

  /* Convert a non-array constant variable to its underlying value, unless we
     are about to bind it to a reference, in which case we need to
     leave it as an lvalue.  */
  if (TREE_CODE (convs) != REF_BIND
      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
    expr = decl_constant_value (expr);

  switch (TREE_CODE (convs))
    {
    case RVALUE_CONV:
      if (! IS_AGGR_TYPE (totype))
	return expr;
      /* else fall through */
    case BASE_CONV:
      if (TREE_CODE (convs) == BASE_CONV && !NEED_TEMPORARY_P (convs))
	{
	  /* We are going to bind a reference directly to a base-class
	     subobject of EXPR.  */
	  tree base_ptr = build_pointer_type (totype);

	  /* Build an expression for `*((base*) &expr)'.  */
	  expr = build_unary_op (ADDR_EXPR, expr, 0);
	  expr = perform_implicit_conversion (base_ptr, expr);
	  expr = build_indirect_ref (expr, "implicit conversion");
	  return expr;
	}

      /* Copy-initialization where the cv-unqualified version of the source
	 type is the same class as, or a derived class of, the class of the
	 destination [is treated as direct-initialization].  [dcl.init] */
      if (fn)
	savew = warningcount, savee = errorcount;
      expr = build_new_method_call (NULL_TREE, complete_ctor_identifier,
				    build_tree_list (NULL_TREE, expr),
				    TYPE_BINFO (totype),
				    LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING);
      if (fn)
	{
	  if (warningcount > savew)
	    cp_warning ("  initializing argument %P of `%D'", argnum, fn);
	  else if (errorcount > savee)
	    cp_error ("  initializing argument %P of `%D'", argnum, fn);
	}
      return build_cplus_new (totype, expr);

    case REF_BIND:
      {
	tree ref_type = totype;

	/* If necessary, create a temporary.  */
	if (NEED_TEMPORARY_P (convs))
	  {
	    tree type = TREE_TYPE (TREE_OPERAND (convs, 0));
	    expr = build_target_expr_with_type (expr, type);
	  }

	/* Take the address of the thing to which we will bind the
	   reference.  */
	expr = build_unary_op (ADDR_EXPR, expr, 1);
	if (expr == error_mark_node)
	  return error_mark_node;

	/* Convert it to a pointer to the type referred to by the
	   reference.  This will adjust the pointer if a derived to
	   base conversion is being performed.  */
	expr = cp_convert (build_pointer_type (TREE_TYPE (ref_type)), 
			   expr);
	/* Convert the pointer to the desired reference type.  */
	expr = build1 (NOP_EXPR, ref_type, expr);

	return expr;
      }

    case LVALUE_CONV:
      return decay_conversion (expr);

    case QUAL_CONV:
      /* Warn about deprecated conversion if appropriate.  */
      string_conv_p (totype, expr, 1);
      break;
      
    default:
      break;
    }
  return ocp_convert (totype, expr, CONV_IMPLICIT,
		      LOOKUP_NORMAL|LOOKUP_NO_CONVERSION);
}

/* ARG is being passed to a varargs function.  Perform any conversions
   required.  Array/function to pointer decay must have already happened.
   Return the converted value.  */

tree
convert_arg_to_ellipsis (arg)
     tree arg;
{
  if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
      && (TYPE_PRECISION (TREE_TYPE (arg))
	  < TYPE_PRECISION (double_type_node)))
    /* Convert `float' to `double'.  */
    arg = cp_convert (double_type_node, arg);
  else
    /* Convert `short' and `char' to full-size `int'.  */
    arg = default_conversion (arg);

  arg = require_complete_type (arg);
  
  if (arg != error_mark_node && ! pod_type_p (TREE_TYPE (arg)))
    {
      /* Undefined behaviour [expr.call] 5.2.2/7.  */
      cp_warning ("cannot pass objects of non-POD type `%#T' through `...'",
		  TREE_TYPE (arg));
    }

  return arg;
}

/* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused.  */

tree
build_x_va_arg (expr, type)
     tree expr;
     tree type;
{
  if (processing_template_decl)
    return build_min (VA_ARG_EXPR, type, expr);
  
  type = complete_type_or_else (type, NULL_TREE);

  if (expr == error_mark_node || !type)
    return error_mark_node;
  
  if (! pod_type_p (type))
    {
      /* Undefined behaviour [expr.call] 5.2.2/7.  */
      cp_warning ("cannot receive objects of non-POD type `%#T' through `...'",
		  type);
    }
  
  return build_va_arg (expr, type);
}

/* TYPE has been given to va_arg. Apply the default conversions which would
   have happened when passed via ellipsis. Return the promoted type, or
   NULL_TREE, if there is no change.  */

tree
convert_type_from_ellipsis (type)
     tree type;
{
  tree promote;
  
  if (TREE_CODE (type) == ARRAY_TYPE)
    promote = build_pointer_type (TREE_TYPE (type));
  else if (TREE_CODE (type) == FUNCTION_TYPE)
    promote = build_pointer_type (type);
  else
    promote = type_promotes_to (type);
  
  return same_type_p (type, promote) ? NULL_TREE : promote;
}

/* ARG is a default argument expression being passed to a parameter of
   the indicated TYPE, which is a parameter to FN.  Do any required
   conversions.  Return the converted value.  */

tree
convert_default_arg (type, arg, fn, parmnum)
     tree type;
     tree arg;
     tree fn;
     int parmnum;
{
  if (TREE_CODE (arg) == DEFAULT_ARG)
    {
      /* When processing the default args for a class, we can find that
         there is an ordering constraint, and we call a function who's
         default args have not yet been converted. For instance,
          class A {
              A (int = 0);
              void Foo (A const & = A ());
          };
         We must process A::A before A::Foo's default arg can be converted.
         Remember the dependent function, so do_pending_defargs can retry,
         and check loops.  */
      unprocessed_defarg_fn (fn);
      
      /* Don't return error_mark node, as we won't be able to distinguish
         genuine errors from this case, and that would lead to repeated
         diagnostics.  Just make something of the right type.  */
      return build1 (NOP_EXPR, type, integer_zero_node);
    }

  if (fn && DECL_TEMPLATE_INFO (fn))
    arg = tsubst_default_argument (fn, type, arg);

  arg = break_out_target_exprs (arg);

  if (TREE_CODE (arg) == CONSTRUCTOR)
    {
      arg = digest_init (type, arg, 0);
      arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
					"default argument", fn, parmnum);
    }
  else
    {
      /* This could get clobbered by the following call.  */
      if (TREE_HAS_CONSTRUCTOR (arg))
	arg = copy_node (arg);

      arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
					"default argument", fn, parmnum);
      if (PROMOTE_PROTOTYPES
	  && (TREE_CODE (type) == INTEGER_TYPE
	      || TREE_CODE (type) == ENUMERAL_TYPE)
	  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
	arg = default_conversion (arg);
    }

  return arg;
}

static tree
build_over_call (cand, args, flags)
     struct z_candidate *cand;
     tree args;
     int flags;
{
  tree fn = cand->fn;
  tree convs = cand->convs;
  tree converted_args = NULL_TREE;
  tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
  tree conv, arg, val;
  int i = 0;
  int is_method = 0;

  /* Give any warnings we noticed during overload resolution.  */
  if (cand->warnings)
    for (val = cand->warnings; val; val = TREE_CHAIN (val))
      joust (cand, WRAPPER_PTR (TREE_VALUE (val)), 1);

  if (DECL_FUNCTION_MEMBER_P (fn))
    enforce_access (cand->basetype_path, fn);

  if (args && TREE_CODE (args) != TREE_LIST)
    args = build_tree_list (NULL_TREE, args);
  arg = args;

  /* The implicit parameters to a constructor are not considered by overload
     resolution, and must be of the proper type.  */
  if (DECL_CONSTRUCTOR_P (fn))
    {
      converted_args = tree_cons (NULL_TREE, TREE_VALUE (arg), converted_args);
      arg = TREE_CHAIN (arg);
      parm = TREE_CHAIN (parm);
      if (DECL_HAS_IN_CHARGE_PARM_P (fn))
	{
	  converted_args = tree_cons
	    (NULL_TREE, TREE_VALUE (arg), converted_args);
	  arg = TREE_CHAIN (arg);
	  parm = TREE_CHAIN (parm);
	}
    }      
  /* Bypass access control for 'this' parameter.  */
  else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
    {
      tree parmtype = TREE_VALUE (parm);
      tree argtype = TREE_TYPE (TREE_VALUE (arg));
      tree t;
      if (ICS_BAD_FLAG (TREE_VEC_ELT (convs, i)))
	cp_pedwarn ("passing `%T' as `this' argument of `%#D' discards qualifiers",
		    TREE_TYPE (argtype), fn);

      /* [class.mfct.nonstatic]: If a nonstatic member function of a class
	 X is called for an object that is not of type X, or of a type
	 derived from X, the behavior is undefined.

         So we can assume that anything passed as 'this' is non-null, and
	 optimize accordingly.  */
      my_friendly_assert (TREE_CODE (parmtype) == POINTER_TYPE, 19990811);
      t = convert_pointer_to_real (TREE_TYPE (parmtype), TREE_VALUE (arg));
      converted_args = tree_cons (NULL_TREE, t, converted_args);
      parm = TREE_CHAIN (parm);
      arg = TREE_CHAIN (arg);
      ++i;
      is_method = 1;
    }

  for (; arg && parm;
       parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
    {
      tree type = TREE_VALUE (parm);

      conv = TREE_VEC_ELT (convs, i);
      if (ICS_BAD_FLAG (conv))
	{
	  tree t = conv;
	  val = TREE_VALUE (arg);

	  for (; t; t = TREE_OPERAND (t, 0))
	    {
	      if (TREE_CODE (t) == USER_CONV
		  || TREE_CODE (t) == AMBIG_CONV)
		{
		  val = convert_like_with_context (t, val, fn, i - is_method);
		  break;
		}
	      else if (TREE_CODE (t) == IDENTITY_CONV)
		break;
	    }
	  val = convert_for_initialization
	    (NULL_TREE, type, val, LOOKUP_NORMAL,
	     "argument", fn, i - is_method);
	}
      else
	{
	  val = TREE_VALUE (arg);
	  val = convert_like_with_context
	          (conv, TREE_VALUE (arg), fn, i - is_method);
	}

      if (PROMOTE_PROTOTYPES
	  && (TREE_CODE (type) == INTEGER_TYPE
	      || TREE_CODE (type) == ENUMERAL_TYPE)
	  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
	val = default_conversion (val);
      converted_args = tree_cons (NULL_TREE, val, converted_args);
    }

  /* Default arguments */
  for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm), i++)
    converted_args 
      = tree_cons (NULL_TREE, 
		   convert_default_arg (TREE_VALUE (parm), 
					TREE_PURPOSE (parm),
					fn, i - is_method),
		   converted_args);

  /* Ellipsis */
  for (; arg; arg = TREE_CHAIN (arg))
    converted_args 
      = tree_cons (NULL_TREE,
		   convert_arg_to_ellipsis (TREE_VALUE (arg)),
		   converted_args);

  converted_args = nreverse (converted_args);

  if (warn_format && (DECL_NAME (fn) || DECL_ASSEMBLER_NAME (fn)))
    check_function_format (NULL, DECL_NAME (fn), DECL_ASSEMBLER_NAME (fn),
			   converted_args); 

  /* Avoid actually calling copy constructors and copy assignment operators,
     if possible.  */

  if (! flag_elide_constructors)
    /* Do things the hard way.  */;
  else if (TREE_VEC_LENGTH (convs) == 1
	   && DECL_COPY_CONSTRUCTOR_P (fn))
    {
      tree targ;
      arg = TREE_CHAIN (converted_args);
      if (DECL_HAS_IN_CHARGE_PARM_P (fn))
	arg = TREE_CHAIN (arg);
      arg = TREE_VALUE (arg);

      /* Pull out the real argument, disregarding const-correctness.  */
      targ = arg;
      while (TREE_CODE (targ) == NOP_EXPR
	     || TREE_CODE (targ) == NON_LVALUE_EXPR
	     || TREE_CODE (targ) == CONVERT_EXPR)
	targ = TREE_OPERAND (targ, 0);
      if (TREE_CODE (targ) == ADDR_EXPR)
	{
	  targ = TREE_OPERAND (targ, 0);
	  if (!same_type_ignoring_top_level_qualifiers_p 
	      (TREE_TYPE (TREE_TYPE (arg)), TREE_TYPE (targ)))
	    targ = NULL_TREE;
	}
      else
	targ = NULL_TREE;

      if (targ)
	arg = targ;
      else
	arg = build_indirect_ref (arg, 0);

      /* [class.copy]: the copy constructor is implicitly defined even if
	 the implementation elided its use.  */
      if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
	mark_used (fn);

      /* If we're creating a temp and we already have one, don't create a
         new one.  If we're not creating a temp but we get one, use
         INIT_EXPR to collapse the temp into our target.  Otherwise, if the
         ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
         temp or an INIT_EXPR otherwise.  */
      if (integer_zerop (TREE_VALUE (args)))
	{
	  if (! real_lvalue_p (arg))
	    return arg;
	  else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
	    return build_target_expr_with_type (arg, DECL_CONTEXT (fn));
	}
      else if (! real_lvalue_p (arg)
	       || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
	{
	  tree address;
	  tree to = stabilize_reference
	    (build_indirect_ref (TREE_VALUE (args), 0));

	  /* If we're initializing an empty class, then we actually
	     have to use a MODIFY_EXPR rather than an INIT_EXPR.  The
	     reason is that the dummy padding member in the target may
	     not actually be allocated if TO is a base class
	     subobject.  Since we've set TYPE_NONCOPIED_PARTS on the
	     padding, a MODIFY_EXPR will preserve its value, which is
	     the right thing to do if it's not really padding at all.
	  
	     It's not safe to just throw away the ARG if we're looking
	     at an empty class because the ARG might contain a
	     TARGET_EXPR which wants to be bound to TO.  If it is not,
	     expand_expr will assign a dummy slot for the TARGET_EXPR,
	     and we will call a destructor for it, which is wrong,
	     because we will also destroy TO, but will never have
	     constructed it.  */
	  val = build (is_empty_class (DECL_CONTEXT (fn))
		       ? MODIFY_EXPR : INIT_EXPR, 
		       DECL_CONTEXT (fn), to, arg);
	  address = build_unary_op (ADDR_EXPR, val, 0);
	  /* Avoid a warning about this expression, if the address is
	     never used.  */
	  TREE_USED (address) = 1;
	  return address;
	}
    }
  else if (DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR
	   && copy_args_p (fn)
	   && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn)))
    {
      tree to = stabilize_reference
	(build_indirect_ref (TREE_VALUE (converted_args), 0));

      arg = build_indirect_ref (TREE_VALUE (TREE_CHAIN (converted_args)), 0);

      val = build (MODIFY_EXPR, TREE_TYPE (to), to, arg);
      return val;
    }

  mark_used (fn);

  if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0)
    {
      tree t, *p = &TREE_VALUE (converted_args);
      tree binfo = get_binfo
	(DECL_VIRTUAL_CONTEXT (fn), TREE_TYPE (TREE_TYPE (*p)), 0);
      *p = convert_pointer_to_real (binfo, *p);
      if (TREE_SIDE_EFFECTS (*p))
	*p = save_expr (*p);
      t = build_pointer_type (TREE_TYPE (fn));
      fn = build_vfn_ref (p, build_indirect_ref (*p, 0), DECL_VINDEX (fn));
      TREE_TYPE (fn) = t;
    }
  else if (DECL_INLINE (fn))
    fn = inline_conversion (fn);
  else
    fn = build_addr_func (fn);

  /* Recognize certain built-in functions so we can make tree-codes
     other than CALL_EXPR.  We do this when it enables fold-const.c
     to do something useful.  */

  if (TREE_CODE (fn) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
      && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
    {
      tree exp;
      exp = expand_tree_builtin (TREE_OPERAND (fn, 0), args, converted_args);
      if (exp)
	return exp;
    }

  /* Some built-in function calls will be evaluated at
     compile-time in fold ().  */
  fn = fold (build_call (fn, converted_args));
  if (VOID_TYPE_P (TREE_TYPE (fn)))
    return fn;
  fn = require_complete_type (fn);
  if (fn == error_mark_node)
    return error_mark_node;
  if (IS_AGGR_TYPE (TREE_TYPE (fn)))
    fn = build_cplus_new (TREE_TYPE (fn), fn);
  return convert_from_reference (fn);
}

/* Returns the value to use for the in-charge parameter when making a
   call to a function with the indicated NAME.  */

tree
in_charge_arg_for_name (name)
     tree name;
{
  if (name == base_ctor_identifier
      || name == base_dtor_identifier)
    return integer_zero_node;
  else if (name == complete_ctor_identifier)
    return integer_one_node;
  else if (name == complete_dtor_identifier)
    return integer_two_node;
  else if (name == deleting_dtor_identifier)
    return integer_three_node;

  /* This function should only be called with one of the names listed
     above.  */
  my_friendly_abort (20000411);
  return NULL_TREE;
}

static tree
build_new_method_call (instance, name, args, basetype_path, flags)
     tree instance, name, args, basetype_path;
     int flags;
{
  struct z_candidate *candidates = 0, *cand;
  tree explicit_targs = NULL_TREE;
  tree basetype, mem_args = NULL_TREE, fns, instance_ptr;
  tree pretty_name;
  tree user_args;
  tree templates = NULL_TREE;
  tree call;
  int template_only = 0;

  if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
    {
      explicit_targs = TREE_OPERAND (name, 1);
      name = TREE_OPERAND (name, 0);
      if (DECL_P (name))
	name = DECL_NAME (name);
      else
	{
	  if (TREE_CODE (name) == COMPONENT_REF)
	    name = TREE_OPERAND (name, 1);
	  if (TREE_CODE (name) == OVERLOAD)
	    name = DECL_NAME (OVL_CURRENT (name));
	}

      template_only = 1;
    }

  user_args = args;
  args = resolve_args (args);

  if (args == error_mark_node)
    return error_mark_node;

  if (instance == NULL_TREE)
    basetype = BINFO_TYPE (basetype_path);
  else
    {
      if (TREE_CODE (instance) == OFFSET_REF)
	instance = resolve_offset_ref (instance);
      if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
	instance = convert_from_reference (instance);
      basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));

      /* XXX this should be handled before we get here.  */
      if (! IS_AGGR_TYPE (basetype))
	{
	  if ((flags & LOOKUP_COMPLAIN) && basetype != error_mark_node)
	    cp_error ("request for member `%D' in `%E', which is of non-aggregate type `%T'",
		      name, instance, basetype);

	  return error_mark_node;
	}
    }

  if (basetype_path == NULL_TREE)
    basetype_path = TYPE_BINFO (basetype);

  if (instance)
    {
      instance_ptr = build_this (instance);

      if (! template_only)
	{
	  /* XXX this should be handled before we get here.  */
	  fns = build_field_call (basetype_path, instance_ptr, name, args);
	  if (fns)
	    return fns;
	}
    }
  else
    {
      instance_ptr = build_int_2 (0, 0);
      TREE_TYPE (instance_ptr) = build_pointer_type (basetype);
    }

  /* Callers should explicitly indicate whether they want to construct
     the complete object or just the part without virtual bases.  */
  my_friendly_assert (name != ctor_identifier, 20000408);
  /* Similarly for destructors.  */
  my_friendly_assert (name != dtor_identifier, 20000408);

  if (IDENTIFIER_CTOR_OR_DTOR_P (name))
    {
      int constructor_p;

      constructor_p = (name == complete_ctor_identifier
		       || name == base_ctor_identifier);
      pretty_name = (constructor_p 
		     ? constructor_name (basetype) : dtor_identifier);

      /* If we're a call to a constructor or destructor for a
	 subobject that uses virtual base classes, then we need to
	 pass down a pointer to a VTT for the subobject.  */
      if ((name == base_ctor_identifier
	   || name == base_dtor_identifier)
	  && TYPE_USES_VIRTUAL_BASECLASSES (basetype))
	{
	  tree vtt;
	  tree sub_vtt;
	  tree basebinfo = basetype_path;

	  /* If the current function is a complete object constructor
	     or destructor, then we fetch the VTT directly.
	     Otherwise, we look it up using the VTT we were given.  */
	  vtt = IDENTIFIER_GLOBAL_VALUE (get_vtt_name (current_class_type));
	  vtt = build_unary_op (ADDR_EXPR, vtt, /*noconvert=*/1);
	  vtt = build (COND_EXPR, TREE_TYPE (vtt), 
		       DECL_USE_VTT_PARM (current_function_decl),
		       DECL_VTT_PARM (current_function_decl),
		       vtt);
	  if (TREE_VIA_VIRTUAL (basebinfo))
	    basebinfo = binfo_for_vbase (basetype, current_class_type);
	  my_friendly_assert (BINFO_SUBVTT_INDEX (basebinfo), 20010110);
	  sub_vtt = build (PLUS_EXPR, TREE_TYPE (vtt), vtt,
			   BINFO_SUBVTT_INDEX (basebinfo));
	  sub_vtt = build_indirect_ref (sub_vtt, NULL);

	  args = tree_cons (NULL_TREE, sub_vtt, args);
	}
    }
  else
    pretty_name = name;

  fns = lookup_fnfields (basetype_path, name, 1);

  if (fns == error_mark_node)
    return error_mark_node;
  if (fns)
    {
      tree base = BINFO_TYPE (TREE_PURPOSE (fns));
      tree fn = TREE_VALUE (fns);
      mem_args = tree_cons (NULL_TREE, instance_ptr, args);
      for (; fn; fn = OVL_NEXT (fn))
	{
	  tree t = OVL_CURRENT (fn);
	  tree this_arglist;

	  /* We can end up here for copy-init of same or base class.  */
	  if ((flags & LOOKUP_ONLYCONVERTING)
	      && DECL_NONCONVERTING_P (t))
	    continue;

	  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t))
	    this_arglist = mem_args;
	  else
	    this_arglist = args;

	  if (TREE_CODE (t) == TEMPLATE_DECL)
	    {
	      /* A member template. */
	      templates = tree_cons (NULL_TREE, t, templates);
	      candidates = 
		add_template_candidate (candidates, t, base, explicit_targs,
					this_arglist,
					TREE_TYPE (name), flags, DEDUCE_CALL); 
	    }
	  else if (! template_only)
	    candidates = add_function_candidate (candidates, t, base,
						 this_arglist, flags);

	  if (candidates)
	    candidates->basetype_path = basetype_path;
	}
    }

  if (! any_viable (candidates))
    {
      /* XXX will LOOKUP_SPECULATIVELY be needed when this is done?  */
      if (flags & LOOKUP_SPECULATIVELY)
	return NULL_TREE;
      if (!COMPLETE_TYPE_P (basetype))
	incomplete_type_error (instance_ptr, basetype);
      else
	cp_error ("no matching function for call to `%T::%D(%A)%V'",
		  basetype, pretty_name, user_args,
		  TREE_TYPE (TREE_TYPE (instance_ptr)));
      print_z_candidates (candidates);
      return error_mark_node;
    }
  candidates = splice_viable (candidates);
  cand = tourney (candidates);

  if (cand == 0)
    {
      cp_error ("call of overloaded `%D(%A)' is ambiguous", pretty_name,
		user_args);
      print_z_candidates (candidates);
      return error_mark_node;
    }

  if (DECL_PURE_VIRTUAL_P (cand->fn)
      && instance == current_class_ref
      && (DECL_CONSTRUCTOR_P (current_function_decl)
	  || DECL_DESTRUCTOR_P (current_function_decl))
      && ! (flags & LOOKUP_NONVIRTUAL)
      && value_member (cand->fn, CLASSTYPE_PURE_VIRTUALS (basetype)))
    cp_error ((DECL_CONSTRUCTOR_P (current_function_decl) ? 
	       "abstract virtual `%#D' called from constructor"
	       : "abstract virtual `%#D' called from destructor"),
	      cand->fn);
  if (TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
      && is_dummy_object (instance_ptr))
    {
      cp_error ("cannot call member function `%D' without object", cand->fn);
      return error_mark_node;
    }

  if (DECL_VINDEX (cand->fn) && ! (flags & LOOKUP_NONVIRTUAL)
      && ((instance == current_class_ref && (dtor_label || ctor_label))
	  || resolves_to_fixed_type_p (instance, 0)))
    flags |= LOOKUP_NONVIRTUAL;

  if (TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE)
    call = build_over_call (cand, mem_args, flags);
  else
    {
      call = build_over_call (cand, args, flags);
      /* Do evaluate the object parameter in a call to a static member
	 function.  */
      if (TREE_SIDE_EFFECTS (instance))
	call = build (COMPOUND_EXPR, TREE_TYPE (call), instance, call);
    }

  return call;
}

/* Returns non-zero iff standard conversion sequence ICS1 is a proper
   subsequence of ICS2.  */

static int
is_subseq (ics1, ics2)
     tree ics1, ics2;
{
  /* We can assume that a conversion of the same code
     between the same types indicates a subsequence since we only get
     here if the types we are converting from are the same.  */

  while (TREE_CODE (ics1) == RVALUE_CONV
	 || TREE_CODE (ics1) == LVALUE_CONV)
    ics1 = TREE_OPERAND (ics1, 0);

  while (1)
    {
      while (TREE_CODE (ics2) == RVALUE_CONV
	  || TREE_CODE (ics2) == LVALUE_CONV)
	ics2 = TREE_OPERAND (ics2, 0);

      if (TREE_CODE (ics2) == USER_CONV
	  || TREE_CODE (ics2) == AMBIG_CONV
	  || TREE_CODE (ics2) == IDENTITY_CONV)
	/* At this point, ICS1 cannot be a proper subsequence of
	   ICS2.  We can get a USER_CONV when we are comparing the
	   second standard conversion sequence of two user conversion
	   sequences.  */
	return 0;

      ics2 = TREE_OPERAND (ics2, 0);

      if (TREE_CODE (ics2) == TREE_CODE (ics1)
	  && same_type_p (TREE_TYPE (ics2), TREE_TYPE (ics1))
	  && same_type_p (TREE_TYPE (TREE_OPERAND (ics2, 0)),
			     TREE_TYPE (TREE_OPERAND (ics1, 0))))
	return 1;
    }
}

/* Returns non-zero iff DERIVED is derived from BASE.  The inputs may
   be any _TYPE nodes.  */

int
is_properly_derived_from (derived, base)
     tree derived;
     tree base;
{
  if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
      || !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
    return 0;

  /* We only allow proper derivation here.  The DERIVED_FROM_P macro
     considers every class derived from itself.  */
  return (!same_type_ignoring_top_level_qualifiers_p (derived, base)
	  && DERIVED_FROM_P (base, derived));
}

/* We build the ICS for an implicit object parameter as a pointer
   conversion sequence.  However, such a sequence should be compared
   as if it were a reference conversion sequence.  If ICS is the
   implicit conversion sequence for an implicit object parameter,
   modify it accordingly.  */

static void
maybe_handle_implicit_object (ics)
     tree* ics;
{
  if (ICS_THIS_FLAG (*ics))
    {
      /* [over.match.funcs]
	 
	 For non-static member functions, the type of the
	 implicit object parameter is "reference to cv X"
	 where X is the class of which the function is a
	 member and cv is the cv-qualification on the member
	 function declaration.  */
      tree t = *ics;
      tree reference_type;

      /* The `this' parameter is a pointer to a class type.  Make the
	 implict conversion talk about a reference to that same class
	 type.  */
      reference_type = TREE_TYPE (TREE_TYPE (*ics));
      reference_type = build_reference_type (reference_type);

      if (TREE_CODE (t) == QUAL_CONV)
	t = TREE_OPERAND (t, 0);
      if (TREE_CODE (t) == PTR_CONV)
	t = TREE_OPERAND (t, 0);
      t = build1 (IDENTITY_CONV, TREE_TYPE (TREE_TYPE (t)), NULL_TREE);
      t = direct_reference_binding (reference_type, t); 
      *ics = t;
    }
}

/* If ICS is a REF_BIND, modify it appropriately, set TARGET_TYPE
   to the type the reference originally referred to, and return 1.
   Otherwise, return 0.  */

static int
maybe_handle_ref_bind (ics, target_type)
     tree* ics;
     tree* target_type;
{
  if (TREE_CODE (*ics) == REF_BIND)
    {
      *target_type = TREE_TYPE (TREE_TYPE (*ics));
      *ics = TREE_OPERAND (*ics, 0);
      return 1;
    }
  
  return 0;
}

/* Compare two implicit conversion sequences according to the rules set out in
   [over.ics.rank].  Return values:

      1: ics1 is better than ics2
     -1: ics2 is better than ics1
      0: ics1 and ics2 are indistinguishable */

static int
compare_ics (ics1, ics2)
     tree ics1, ics2;
{
  tree from_type1;
  tree from_type2;
  tree to_type1;
  tree to_type2;
  tree deref_from_type1 = NULL_TREE;
  tree deref_from_type2 = NULL_TREE;
  tree deref_to_type1 = NULL_TREE;
  tree deref_to_type2 = NULL_TREE;

  /* REF_BINDING is non-zero if the result of the conversion sequence
     is a reference type.   In that case TARGET_TYPE is the
     type referred to by the reference.  */
  int ref_binding1;
  int ref_binding2;
  tree target_type1;
  tree target_type2;

  /* Handle implicit object parameters.  */
  maybe_handle_implicit_object (&ics1);
  maybe_handle_implicit_object (&ics2);

  /* Handle reference parameters.  */
  ref_binding1 = maybe_handle_ref_bind (&ics1, &target_type1);
  ref_binding2 = maybe_handle_ref_bind (&ics2, &target_type2);

  /* [over.ics.rank]

     When  comparing  the  basic forms of implicit conversion sequences (as
     defined in _over.best.ics_)

     --a standard conversion sequence (_over.ics.scs_) is a better
       conversion sequence than a user-defined conversion sequence
       or an ellipsis conversion sequence, and
     
     --a user-defined conversion sequence (_over.ics.user_) is a
       better conversion sequence than an ellipsis conversion sequence
       (_over.ics.ellipsis_).  */
  if (ICS_RANK (ics1) > ICS_RANK (ics2))
    return -1;
  else if (ICS_RANK (ics1) < ICS_RANK (ics2))
    return 1;

  if (ICS_RANK (ics1) == BAD_RANK)
    {
      /* Both ICS are bad.  We try to make a decision based on what
	 would have happenned if they'd been good.  */
      if (ICS_USER_FLAG (ics1) > ICS_USER_FLAG (ics2)
	  || ICS_STD_RANK (ics1) > ICS_STD_RANK (ics2))
	return -1;
      else if (ICS_USER_FLAG (ics1) < ICS_USER_FLAG (ics2)
	       || ICS_STD_RANK (ics1) < ICS_STD_RANK (ics2))
	return 1;

      /* We couldn't make up our minds; try to figure it out below.  */
    }

  if (ICS_ELLIPSIS_FLAG (ics1))
    /* Both conversions are ellipsis conversions.  */
    return 0;

  /* User-defined  conversion sequence U1 is a better conversion sequence
     than another user-defined conversion sequence U2 if they contain the
     same user-defined conversion operator or constructor and if the sec-
     ond standard conversion sequence of U1 is  better  than  the  second
     standard conversion sequence of U2.  */

  if (ICS_USER_FLAG (ics1))
    {
      tree t1, t2;

      for (t1 = ics1; TREE_CODE (t1) != USER_CONV; t1 = TREE_OPERAND (t1, 0))
	if (TREE_CODE (t1) == AMBIG_CONV)
	  return 0;
      for (t2 = ics2; TREE_CODE (t2) != USER_CONV; t2 = TREE_OPERAND (t2, 0))
	if (TREE_CODE (t2) == AMBIG_CONV)
	  return 0;

      if (USER_CONV_FN (t1) != USER_CONV_FN (t2))
	return 0;

      /* We can just fall through here, after setting up
	 FROM_TYPE1 and FROM_TYPE2.  */
      from_type1 = TREE_TYPE (t1);
      from_type2 = TREE_TYPE (t2);
    }
  else
    {
      /* We're dealing with two standard conversion sequences. 

	 [over.ics.rank]
	 
	 Standard conversion sequence S1 is a better conversion
	 sequence than standard conversion sequence S2 if
     
	 --S1 is a proper subsequence of S2 (comparing the conversion
	   sequences in the canonical form defined by _over.ics.scs_,
	   excluding any Lvalue Transformation; the identity
	   conversion sequence is considered to be a subsequence of
	   any non-identity conversion sequence */
      
      from_type1 = ics1;
      while (TREE_CODE (from_type1) != IDENTITY_CONV)
	from_type1 = TREE_OPERAND (from_type1, 0);
      from_type1 = TREE_TYPE (from_type1);
      
      from_type2 = ics2;
      while (TREE_CODE (from_type2) != IDENTITY_CONV)
	from_type2 = TREE_OPERAND (from_type2, 0);
      from_type2 = TREE_TYPE (from_type2);
    }

  if (same_type_p (from_type1, from_type2))
    {
      if (is_subseq (ics1, ics2))
	return 1;
      if (is_subseq (ics2, ics1))
	return -1;
    }
  /* Otherwise, one sequence cannot be a subsequence of the other; they
     don't start with the same type.  This can happen when comparing the
     second standard conversion sequence in two user-defined conversion
     sequences.  */

  /* [over.ics.rank]

     Or, if not that,

     --the rank of S1 is better than the rank of S2 (by the rules
       defined below):

    Standard conversion sequences are ordered by their ranks: an Exact
    Match is a better conversion than a Promotion, which is a better
    conversion than a Conversion.

    Two conversion sequences with the same rank are indistinguishable
    unless one of the following rules applies:

    --A conversion that is not a conversion of a pointer, or pointer
      to member, to bool is better than another conversion that is such
      a conversion.  

    The ICS_STD_RANK automatically handles the pointer-to-bool rule,
    so that we do not have to check it explicitly.  */
  if (ICS_STD_RANK (ics1) < ICS_STD_RANK (ics2))
    return 1;
  else if (ICS_STD_RANK (ics2) < ICS_STD_RANK (ics1))
    return -1;

  to_type1 = TREE_TYPE (ics1);
  to_type2 = TREE_TYPE (ics2);

  if (TYPE_PTR_P (from_type1)
      && TYPE_PTR_P (from_type2)
      && TYPE_PTR_P (to_type1)
      && TYPE_PTR_P (to_type2))
    {
      deref_from_type1 = TREE_TYPE (from_type1);
      deref_from_type2 = TREE_TYPE (from_type2);
      deref_to_type1 = TREE_TYPE (to_type1);
      deref_to_type2 = TREE_TYPE (to_type2);
    }
  /* The rules for pointers to members A::* are just like the rules
     for pointers A*, except opposite: if B is derived from A then
     A::* converts to B::*, not vice versa.  For that reason, we
     switch the from_ and to_ variables here.  */
  else if (TYPE_PTRMEM_P (from_type1)
	   && TYPE_PTRMEM_P (from_type2)
	   && TYPE_PTRMEM_P (to_type1)
	   && TYPE_PTRMEM_P (to_type2))
    {
      deref_to_type1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (from_type1));
      deref_to_type2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (from_type2));
      deref_from_type1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (to_type1));
      deref_from_type2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (to_type2));
    }
  else if (TYPE_PTRMEMFUNC_P (from_type1)
	   && TYPE_PTRMEMFUNC_P (from_type2)
	   && TYPE_PTRMEMFUNC_P (to_type1)
	   && TYPE_PTRMEMFUNC_P (to_type2))
    {
      deref_to_type1 = TYPE_PTRMEMFUNC_OBJECT_TYPE (from_type1);
      deref_to_type2 = TYPE_PTRMEMFUNC_OBJECT_TYPE (from_type2);
      deref_from_type1 = TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type1);
      deref_from_type2 = TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type2);
    }

  if (deref_from_type1 != NULL_TREE
      && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
      && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
    {
      /* This was one of the pointer or pointer-like conversions.  

	 [over.ics.rank]
	 
	 --If class B is derived directly or indirectly from class A,
	   conversion of B* to A* is better than conversion of B* to
	   void*, and conversion of A* to void* is better than
	   conversion of B* to void*.  */
      if (TREE_CODE (deref_to_type1) == VOID_TYPE
	  && TREE_CODE (deref_to_type2) == VOID_TYPE)
	{
	  if (is_properly_derived_from (deref_from_type1,
					deref_from_type2))
	    return -1;
	  else if (is_properly_derived_from (deref_from_type2,
					     deref_from_type1))
	    return 1;
	}
      else if (TREE_CODE (deref_to_type1) == VOID_TYPE
	       || TREE_CODE (deref_to_type2) == VOID_TYPE)
	{
	  if (same_type_p (deref_from_type1, deref_from_type2))
	    {
	      if (TREE_CODE (deref_to_type2) == VOID_TYPE)
		{
		  if (is_properly_derived_from (deref_from_type1,
						deref_to_type1))
		    return 1;
		}
	      /* We know that DEREF_TO_TYPE1 is `void' here.  */
	      else if (is_properly_derived_from (deref_from_type1,
						 deref_to_type2))
		return -1;
	    }
	}
      else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
	       && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
	{
	  /* [over.ics.rank]

	     --If class B is derived directly or indirectly from class A
	       and class C is derived directly or indirectly from B,
	     
	     --conversion of C* to B* is better than conversion of C* to
	       A*, 
	     
	     --conversion of B* to A* is better than conversion of C* to
	       A*  */
	  if (same_type_p (deref_from_type1, deref_from_type2))
	    {
	      if (is_properly_derived_from (deref_to_type1,
					    deref_to_type2))
		return 1;
	      else if (is_properly_derived_from (deref_to_type2,
						 deref_to_type1))
		return -1;
	    }
	  else if (same_type_p (deref_to_type1, deref_to_type2))
	    {
	      if (is_properly_derived_from (deref_from_type2,
					    deref_from_type1))
		return 1;
	      else if (is_properly_derived_from (deref_from_type1,
						 deref_from_type2))
		return -1;
	    }
	}
    }
  else if (IS_AGGR_TYPE_CODE (TREE_CODE (from_type1))
	   && same_type_p (from_type1, from_type2))
    {
      /* [over.ics.rank]
	 
	 --binding of an expression of type C to a reference of type
	   B& is better than binding an expression of type C to a
	   reference of type A&

	 --conversion of C to B is better than conversion of C to A,  */
      if (is_properly_derived_from (from_type1, to_type1)
	  && is_properly_derived_from (from_type1, to_type2))
	{
	  if (is_properly_derived_from (to_type1, to_type2))
	    return 1;
	  else if (is_properly_derived_from (to_type2, to_type1))
	    return -1;
	}
    }
  else if (IS_AGGR_TYPE_CODE (TREE_CODE (to_type1))
	   && same_type_p (to_type1, to_type2))
    {
      /* [over.ics.rank]

	 --binding of an expression of type B to a reference of type
	   A& is better than binding an expression of type C to a
	   reference of type A&, 

	 --onversion of B to A is better than conversion of C to A  */
      if (is_properly_derived_from (from_type1, to_type1)
	  && is_properly_derived_from (from_type2, to_type1))
	{
	  if (is_properly_derived_from (from_type2, from_type1))
	    return 1;
	  else if (is_properly_derived_from (from_type1, from_type2))
	    return -1;
	}
    }

  /* [over.ics.rank]

     --S1 and S2 differ only in their qualification conversion and  yield
       similar  types  T1 and T2 (_conv.qual_), respectively, and the cv-
       qualification signature of type T1 is a proper subset of  the  cv-
       qualification signature of type T2  */
  if (TREE_CODE (ics1) == QUAL_CONV 
      && TREE_CODE (ics2) == QUAL_CONV
      && same_type_p (from_type1, from_type2))
    return comp_cv_qual_signature (to_type1, to_type2);

  /* [over.ics.rank]
     
     --S1 and S2 are reference bindings (_dcl.init.ref_), and the
     types to which the references refer are the same type except for
     top-level cv-qualifiers, and the type to which the reference
     initialized by S2 refers is more cv-qualified than the type to
     which the reference initialized by S1 refers */
      
  if (ref_binding1 && ref_binding2
      && same_type_ignoring_top_level_qualifiers_p (to_type1, to_type2))
    return comp_cv_qualification (target_type2, target_type1);

  /* Neither conversion sequence is better than the other.  */
  return 0;
}

/* The source type for this standard conversion sequence.  */

static tree
source_type (t)
     tree t;
{
  for (;; t = TREE_OPERAND (t, 0))
    {
      if (TREE_CODE (t) == USER_CONV
	  || TREE_CODE (t) == AMBIG_CONV
	  || TREE_CODE (t) == IDENTITY_CONV)
	return TREE_TYPE (t);
    }
  my_friendly_abort (1823);
}

/* Note a warning about preferring WINNER to LOSER.  We do this by storing
   a pointer to LOSER and re-running joust to produce the warning if WINNER
   is actually used.  */

static void
add_warning (winner, loser)
     struct z_candidate *winner, *loser;
{
  winner->warnings = tree_cons (NULL_PTR,
				build_ptr_wrapper (loser),
				winner->warnings);
}

/* Returns true iff functions are equivalent. Equivalent functions are
   not '==' only if one is a function-local extern function or if
   both are extern "C".  */

static inline int
equal_functions (fn1, fn2)
     tree fn1;
     tree fn2;
{
  if (DECL_LOCAL_FUNCTION_P (fn1) || DECL_LOCAL_FUNCTION_P (fn2)
      || DECL_EXTERN_C_FUNCTION_P (fn1))
    return decls_match (fn1, fn2);
  return fn1 == fn2;
}

/* Compare two candidates for overloading as described in
   [over.match.best].  Return values:

      1: cand1 is better than cand2
     -1: cand2 is better than cand1
      0: cand1 and cand2 are indistinguishable */

static int
joust (cand1, cand2, warn)
     struct z_candidate *cand1, *cand2;
     int warn;
{
  int winner = 0;
  int i, off1 = 0, off2 = 0, len;

  /* Candidates that involve bad conversions are always worse than those
     that don't.  */
  if (cand1->viable > cand2->viable)
    return 1;
  if (cand1->viable < cand2->viable)
    return -1;

  /* If we have two pseudo-candidates for conversions to the same type,
     or two candidates for the same function, arbitrarily pick one.  */
  if (cand1->fn == cand2->fn
      && (TYPE_P (cand1->fn) || DECL_P (cand1->fn)))
    return 1;

  /* a viable function F1
     is defined to be a better function than another viable function F2  if
     for  all arguments i, ICSi(F1) is not a worse conversion sequence than
     ICSi(F2), and then */

  /* for some argument j, ICSj(F1) is a better conversion  sequence  than
     ICSj(F2) */

  /* For comparing static and non-static member functions, we ignore
     the implicit object parameter of the non-static function.  The
     standard says to pretend that the static function has an object
     parm, but that won't work with operator overloading.  */
  len = TREE_VEC_LENGTH (cand1->convs);
  if (len != TREE_VEC_LENGTH (cand2->convs))
    {
      if (DECL_STATIC_FUNCTION_P (cand1->fn)
	  && ! DECL_STATIC_FUNCTION_P (cand2->fn))
	off2 = 1;
      else if (! DECL_STATIC_FUNCTION_P (cand1->fn)
	       && DECL_STATIC_FUNCTION_P (cand2->fn))
	{
	  off1 = 1;
	  --len;
	}
      else
	my_friendly_abort (42);
    }

  for (i = 0; i < len; ++i)
    {
      tree t1 = TREE_VEC_ELT (cand1->convs, i+off1);
      tree t2 = TREE_VEC_ELT (cand2->convs, i+off2);
      int comp = compare_ics (t1, t2);

      if (comp != 0)
	{
	  if (warn_sign_promo
	      && ICS_RANK (t1) + ICS_RANK (t2) == STD_RANK + PROMO_RANK
	      && TREE_CODE (t1) == STD_CONV
	      && TREE_CODE (t2) == STD_CONV
	      && TREE_CODE (TREE_TYPE (t1)) == INTEGER_TYPE
	      && TREE_CODE (TREE_TYPE (t2)) == INTEGER_TYPE
	      && (TYPE_PRECISION (TREE_TYPE (t1))
		  == TYPE_PRECISION (TREE_TYPE (t2)))
	      && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (t1, 0)))
		  || (TREE_CODE (TREE_TYPE (TREE_OPERAND (t1, 0)))
		      == ENUMERAL_TYPE)))
	    {
	      tree type = TREE_TYPE (TREE_OPERAND (t1, 0));
	      tree type1, type2;
	      struct z_candidate *w, *l;
	      if (comp > 0)
		type1 = TREE_TYPE (t1), type2 = TREE_TYPE (t2),
		  w = cand1, l = cand2;
	      else
		type1 = TREE_TYPE (t2), type2 = TREE_TYPE (t1),
		  w = cand2, l = cand1;

	      if (warn)
		{
		  cp_warning ("passing `%T' chooses `%T' over `%T'",
			      type, type1, type2);
		  cp_warning ("  in call to `%D'", w->fn);
		}
	      else
		add_warning (w, l);
	    }

	  if (winner && comp != winner)
	    {
	      winner = 0;
	      goto tweak;
	    }
	  winner = comp;
	}
    }

  /* warn about confusing overload resolution for user-defined conversions,
     either between a constructor and a conversion op, or between two
     conversion ops.  */
  if (winner && cand1->second_conv
      && ((DECL_CONSTRUCTOR_P (cand1->fn)
	   != DECL_CONSTRUCTOR_P (cand2->fn))
	  /* Don't warn if the two conv ops convert to the same type...  */
	  || (! DECL_CONSTRUCTOR_P (cand1->fn)
	      && ! same_type_p (TREE_TYPE (TREE_TYPE (cand1->fn)),
				TREE_TYPE (TREE_TYPE (cand2->fn))))))
    {
      int comp = compare_ics (cand1->second_conv, cand2->second_conv);
      if (comp != winner)
	{
	  struct z_candidate *w, *l;
	  tree convn;
	  if (winner == 1)
	    w = cand1, l = cand2;
	  else
	    w = cand2, l = cand1;
	  if (DECL_CONTEXT (cand1->fn) == DECL_CONTEXT (cand2->fn)
	      && ! DECL_CONSTRUCTOR_P (cand1->fn)
	      && ! DECL_CONSTRUCTOR_P (cand2->fn)
	      && (convn = standard_conversion
		  (TREE_TYPE (TREE_TYPE (l->fn)),
		   TREE_TYPE (TREE_TYPE (w->fn)), NULL_TREE))
	      && TREE_CODE (convn) == QUAL_CONV)
	    /* Don't complain about `operator char *()' beating
	       `operator const char *() const'.  */;
	  else if (warn)
	    {
	      tree source = source_type (TREE_VEC_ELT (w->convs, 0));
	      if (! DECL_CONSTRUCTOR_P (w->fn))
		source = TREE_TYPE (source);
	      cp_warning ("choosing `%D' over `%D'", w->fn, l->fn);
	      cp_warning ("  for conversion from `%T' to `%T'",
			  source, TREE_TYPE (w->second_conv));
	      cp_warning ("  because conversion sequence for the argument is better");
	    }
	  else
	    add_warning (w, l);
	}
    }

  if (winner)
    return winner;

  /* or, if not that,
     F1 is a non-template function and F2 is a template function
     specialization.  */
         
  if (! cand1->template && cand2->template)
    return 1;
  else if (cand1->template && ! cand2->template)
    return -1;
  
  /* or, if not that,
     F1 and F2 are template functions and the function template for F1 is
     more specialized than the template for F2 according to the partial
     ordering rules.  */
  
  if (cand1->template && cand2->template)
    {
      winner = more_specialized
        (TI_TEMPLATE (cand1->template), TI_TEMPLATE (cand2->template),
         DEDUCE_ORDER,
         /* Never do unification on the 'this' parameter.  */
         TREE_VEC_LENGTH (cand1->convs)
         - DECL_NONSTATIC_MEMBER_FUNCTION_P (cand1->fn));
      if (winner)
        return winner;
    }

  /* a non-template user function is better than a builtin.  (Pedantically
     the builtin which matched the user function should not be added to
     the overload set, but we spot it here.
     
     [over.match.oper]
     ... the builtin candidates include ...
     - do not have the same parameter type list as any non-template
       non-member candidate.  */
                            
  if (TREE_CODE (cand1->fn) != IDENTIFIER_NODE
      && TREE_CODE (cand2->fn) == IDENTIFIER_NODE)
    return 1;
  else if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE
           && TREE_CODE (cand2->fn) != IDENTIFIER_NODE)
    return -1;
  
  /* or, if not that,
     the  context  is  an  initialization by user-defined conversion (see
     _dcl.init_  and  _over.match.user_)  and  the  standard   conversion
     sequence  from  the return type of F1 to the destination type (i.e.,
     the type of the entity being initialized)  is  a  better  conversion
     sequence  than the standard conversion sequence from the return type
     of F2 to the destination type.  */

  if (cand1->second_conv)
    {
      winner = compare_ics (cand1->second_conv, cand2->second_conv);
      if (winner)
        return winner;
    }
  
  /* If the built-in candidates are the same, arbitrarily pick one.  */
  if (cand1->fn == cand2->fn
      && TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
    {
      for (i = 0; i < len; ++i)
	if (!same_type_p (TREE_TYPE (TREE_VEC_ELT (cand1->convs, i)),
			  TREE_TYPE (TREE_VEC_ELT (cand2->convs, i))))
	  break;
      if (i == TREE_VEC_LENGTH (cand1->convs))
	return 1;

      /* Kludge around broken overloading rules whereby
	 Integer a, b; test ? a : b; is ambiguous, since there's a builtin
	 that takes references and another that takes values.  */
      if (cand1->fn == ansi_opname (COND_EXPR))
	{
	  tree c1 = TREE_VEC_ELT (cand1->convs, 1);
	  tree c2 = TREE_VEC_ELT (cand2->convs, 1);
	  tree t1 = strip_top_quals (non_reference (TREE_TYPE (c1)));
	  tree t2 = strip_top_quals (non_reference (TREE_TYPE (c2)));

	  if (same_type_p (t1, t2))
	    {
	      if (TREE_CODE (c1) == REF_BIND && TREE_CODE (c2) != REF_BIND)
		return 1;
	      if (TREE_CODE (c1) != REF_BIND && TREE_CODE (c2) == REF_BIND)
		return -1;
	    }
	}
    }

  /* If the two functions are the same (this can happen with declarations
     in multiple scopes and arg-dependent lookup), arbitrarily choose one.  */
  if (DECL_P (cand1->fn) && DECL_P (cand2->fn)
      && equal_functions (cand1->fn, cand2->fn))
    return 1;

tweak:

  /* Extension: If the worst conversion for one candidate is worse than the
     worst conversion for the other, take the first.  */
  if (!pedantic)
    {
      int rank1 = IDENTITY_RANK, rank2 = IDENTITY_RANK;

      for (i = 0; i < len; ++i)
	{
	  if (ICS_RANK (TREE_VEC_ELT (cand1->convs, i+off1)) > rank1)
	    rank1 = ICS_RANK (TREE_VEC_ELT (cand1->convs, i+off1));
	  if (ICS_RANK (TREE_VEC_ELT (cand2->convs, i+off2)) > rank2)
	    rank2 = ICS_RANK (TREE_VEC_ELT (cand2->convs, i+off2));
	}

      if (rank1 < rank2)
	return 1;
      if (rank1 > rank2)
	return -1;
    }

  my_friendly_assert (!winner, 20010121);
  return 0;
}

/* Given a list of candidates for overloading, find the best one, if any.
   This algorithm has a worst case of O(2n) (winner is last), and a best
   case of O(n/2) (totally ambiguous); much better than a sorting
   algorithm.  */

static struct z_candidate *
tourney (candidates)
     struct z_candidate *candidates;
{
  struct z_candidate *champ = candidates, *challenger;
  int fate;
  int champ_compared_to_predecessor = 0;

  /* Walk through the list once, comparing each current champ to the next
     candidate, knocking out a candidate or two with each comparison.  */

  for (challenger = champ->next; challenger; )
    {
      fate = joust (champ, challenger, 0);
      if (fate == 1)
	challenger = challenger->next;
      else
	{
	  if (fate == 0)
	    {
	      champ = challenger->next;
	      if (champ == 0)
		return 0;
	      champ_compared_to_predecessor = 0;
	    }
	  else
	    {
	      champ = challenger;
	      champ_compared_to_predecessor = 1;
	    }

	  challenger = champ->next;
	}
    }

  /* Make sure the champ is better than all the candidates it hasn't yet
     been compared to.  */

  for (challenger = candidates; 
       challenger != champ 
	 && !(champ_compared_to_predecessor && challenger->next == champ);
       challenger = challenger->next)
    {
      fate = joust (champ, challenger, 0);
      if (fate != 1)
	return 0;
    }

  return champ;
}

/* Returns non-zero if things of type FROM can be converted to TO.  */

int
can_convert (to, from)
     tree to, from;
{
  return can_convert_arg (to, from, NULL_TREE);
}

/* Returns non-zero if ARG (of type FROM) can be converted to TO.  */

int
can_convert_arg (to, from, arg)
     tree to, from, arg;
{
  tree t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
  return (t && ! ICS_BAD_FLAG (t));
}

/* Convert EXPR to TYPE.  Return the converted expression.  */

tree
perform_implicit_conversion (type, expr)
     tree type;
     tree expr;
{
  tree conv;
  
  if (expr == error_mark_node)
    return error_mark_node;
  conv = implicit_conversion (type, TREE_TYPE (expr), expr,
			      LOOKUP_NORMAL);
  if (!conv || ICS_BAD_FLAG (conv))
    {
      cp_error ("could not convert `%E' to `%T'", expr, type);
      return error_mark_node;
    }

  return convert_like (conv, expr);
}

/* Convert EXPR to the indicated reference TYPE, in a way suitable for
   initializing a variable of that TYPE.  Return the converted
   expression.  */

tree
initialize_reference (type, expr)
     tree type;
     tree expr;
{
  tree conv;

  conv = reference_binding (type, TREE_TYPE (expr), expr, LOOKUP_NORMAL);
  if (!conv || ICS_BAD_FLAG (conv))
    {
      cp_error ("could not convert `%E' to `%T'", expr, type);
      return error_mark_node;
    }

  return convert_like (conv, expr);
}
OpenPOWER on IntegriCloud