1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
|
/* Functions related to invoking methods and overloaded functions.
Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) and
modified by Brendan Kehoe (brendan@cygnus.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* High-level class interface. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "cp-tree.h"
#include "output.h"
#include "flags.h"
#include "rtl.h"
#include "toplev.h"
#include "expr.h"
#include "diagnostic.h"
#include "intl.h"
#include "target.h"
#include "convert.h"
#include "langhooks.h"
/* The various kinds of conversion. */
typedef enum conversion_kind {
ck_identity,
ck_lvalue,
ck_qual,
ck_std,
ck_ptr,
ck_pmem,
ck_base,
ck_ref_bind,
ck_user,
ck_ambig,
ck_rvalue
} conversion_kind;
/* The rank of the conversion. Order of the enumerals matters; better
conversions should come earlier in the list. */
typedef enum conversion_rank {
cr_identity,
cr_exact,
cr_promotion,
cr_std,
cr_pbool,
cr_user,
cr_ellipsis,
cr_bad
} conversion_rank;
/* An implicit conversion sequence, in the sense of [over.best.ics].
The first conversion to be performed is at the end of the chain.
That conversion is always a cr_identity conversion. */
typedef struct conversion conversion;
struct conversion {
/* The kind of conversion represented by this step. */
conversion_kind kind;
/* The rank of this conversion. */
conversion_rank rank;
BOOL_BITFIELD user_conv_p : 1;
BOOL_BITFIELD ellipsis_p : 1;
BOOL_BITFIELD this_p : 1;
BOOL_BITFIELD bad_p : 1;
/* If KIND is ck_ref_bind ck_base_conv, true to indicate that a
temporary should be created to hold the result of the
conversion. */
BOOL_BITFIELD need_temporary_p : 1;
/* If KIND is ck_identity or ck_base_conv, true to indicate that the
copy constructor must be accessible, even though it is not being
used. */
BOOL_BITFIELD check_copy_constructor_p : 1;
/* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion
from a pointer-to-derived to pointer-to-base is being performed. */
BOOL_BITFIELD base_p : 1;
/* If KIND is ck_ref_bind, true when either an lvalue reference is
being bound to an lvalue expression or an rvalue reference is
being bound to an rvalue expression. */
BOOL_BITFIELD rvaluedness_matches_p: 1;
/* The type of the expression resulting from the conversion. */
tree type;
union {
/* The next conversion in the chain. Since the conversions are
arranged from outermost to innermost, the NEXT conversion will
actually be performed before this conversion. This variant is
used only when KIND is neither ck_identity nor ck_ambig. */
conversion *next;
/* The expression at the beginning of the conversion chain. This
variant is used only if KIND is ck_identity or ck_ambig. */
tree expr;
} u;
/* The function candidate corresponding to this conversion
sequence. This field is only used if KIND is ck_user. */
struct z_candidate *cand;
};
#define CONVERSION_RANK(NODE) \
((NODE)->bad_p ? cr_bad \
: (NODE)->ellipsis_p ? cr_ellipsis \
: (NODE)->user_conv_p ? cr_user \
: (NODE)->rank)
static struct obstack conversion_obstack;
static bool conversion_obstack_initialized;
static struct z_candidate * tourney (struct z_candidate *);
static int equal_functions (tree, tree);
static int joust (struct z_candidate *, struct z_candidate *, bool);
static int compare_ics (conversion *, conversion *);
static tree build_over_call (struct z_candidate *, int);
static tree build_java_interface_fn_ref (tree, tree);
#define convert_like(CONV, EXPR) \
convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
/*issue_conversion_warnings=*/true, \
/*c_cast_p=*/false)
#define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
/*issue_conversion_warnings=*/true, \
/*c_cast_p=*/false)
static tree convert_like_real (conversion *, tree, tree, int, int, bool,
bool);
static void op_error (enum tree_code, enum tree_code, tree, tree,
tree, const char *);
static tree build_object_call (tree, tree);
static tree resolve_args (tree);
static struct z_candidate *build_user_type_conversion_1 (tree, tree, int);
static void print_z_candidate (const char *, struct z_candidate *);
static void print_z_candidates (struct z_candidate *);
static tree build_this (tree);
static struct z_candidate *splice_viable (struct z_candidate *, bool, bool *);
static bool any_strictly_viable (struct z_candidate *);
static struct z_candidate *add_template_candidate
(struct z_candidate **, tree, tree, tree, tree, tree,
tree, tree, int, unification_kind_t);
static struct z_candidate *add_template_candidate_real
(struct z_candidate **, tree, tree, tree, tree, tree,
tree, tree, int, tree, unification_kind_t);
static struct z_candidate *add_template_conv_candidate
(struct z_candidate **, tree, tree, tree, tree, tree, tree);
static void add_builtin_candidates
(struct z_candidate **, enum tree_code, enum tree_code,
tree, tree *, int);
static void add_builtin_candidate
(struct z_candidate **, enum tree_code, enum tree_code,
tree, tree, tree, tree *, tree *, int);
static bool is_complete (tree);
static void build_builtin_candidate
(struct z_candidate **, tree, tree, tree, tree *, tree *,
int);
static struct z_candidate *add_conv_candidate
(struct z_candidate **, tree, tree, tree, tree, tree);
static struct z_candidate *add_function_candidate
(struct z_candidate **, tree, tree, tree, tree, tree, int);
static conversion *implicit_conversion (tree, tree, tree, bool, int);
static conversion *standard_conversion (tree, tree, tree, bool, int);
static conversion *reference_binding (tree, tree, tree, bool, int);
static conversion *build_conv (conversion_kind, tree, conversion *);
static bool is_subseq (conversion *, conversion *);
static conversion *maybe_handle_ref_bind (conversion **);
static void maybe_handle_implicit_object (conversion **);
static struct z_candidate *add_candidate
(struct z_candidate **, tree, tree, size_t,
conversion **, tree, tree, int);
static tree source_type (conversion *);
static void add_warning (struct z_candidate *, struct z_candidate *);
static bool reference_related_p (tree, tree);
static bool reference_compatible_p (tree, tree);
static conversion *convert_class_to_reference (tree, tree, tree);
static conversion *direct_reference_binding (tree, conversion *);
static bool promoted_arithmetic_type_p (tree);
static conversion *conditional_conversion (tree, tree);
static char *name_as_c_string (tree, tree, bool *);
static tree call_builtin_trap (void);
static tree prep_operand (tree);
static void add_candidates (tree, tree, tree, bool, tree, tree,
int, struct z_candidate **);
static conversion *merge_conversion_sequences (conversion *, conversion *);
static bool magic_varargs_p (tree);
typedef void (*diagnostic_fn_t) (const char *, ...) ATTRIBUTE_GCC_CXXDIAG(1,2);
static tree build_temp (tree, tree, int, diagnostic_fn_t *);
static void check_constructor_callable (tree, tree);
/* Returns nonzero iff the destructor name specified in NAME matches BASETYPE.
NAME can take many forms... */
bool
check_dtor_name (tree basetype, tree name)
{
/* Just accept something we've already complained about. */
if (name == error_mark_node)
return true;
if (TREE_CODE (name) == TYPE_DECL)
name = TREE_TYPE (name);
else if (TYPE_P (name))
/* OK */;
else if (TREE_CODE (name) == IDENTIFIER_NODE)
{
if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
|| (TREE_CODE (basetype) == ENUMERAL_TYPE
&& name == TYPE_IDENTIFIER (basetype)))
return true;
else
name = get_type_value (name);
}
else
{
/* In the case of:
template <class T> struct S { ~S(); };
int i;
i.~S();
NAME will be a class template. */
gcc_assert (DECL_CLASS_TEMPLATE_P (name));
return false;
}
if (!name)
return false;
return same_type_p (TYPE_MAIN_VARIANT (basetype), TYPE_MAIN_VARIANT (name));
}
/* We want the address of a function or method. We avoid creating a
pointer-to-member function. */
tree
build_addr_func (tree function)
{
tree type = TREE_TYPE (function);
/* We have to do these by hand to avoid real pointer to member
functions. */
if (TREE_CODE (type) == METHOD_TYPE)
{
if (TREE_CODE (function) == OFFSET_REF)
{
tree object = build_address (TREE_OPERAND (function, 0));
return get_member_function_from_ptrfunc (&object,
TREE_OPERAND (function, 1));
}
function = build_address (function);
}
else
function = decay_conversion (function);
return function;
}
/* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
POINTER_TYPE to those. Note, pointer to member function types
(TYPE_PTRMEMFUNC_P) must be handled by our callers. There are
two variants. build_call_a is the primitive taking an array of
arguments, while build_call_n is a wrapper that handles varargs. */
tree
build_call_n (tree function, int n, ...)
{
if (n == 0)
return build_call_a (function, 0, NULL);
else
{
tree *argarray = (tree *) alloca (n * sizeof (tree));
va_list ap;
int i;
va_start (ap, n);
for (i = 0; i < n; i++)
argarray[i] = va_arg (ap, tree);
va_end (ap);
return build_call_a (function, n, argarray);
}
}
tree
build_call_a (tree function, int n, tree *argarray)
{
int is_constructor = 0;
int nothrow;
tree decl;
tree result_type;
tree fntype;
int i;
function = build_addr_func (function);
gcc_assert (TYPE_PTR_P (TREE_TYPE (function)));
fntype = TREE_TYPE (TREE_TYPE (function));
gcc_assert (TREE_CODE (fntype) == FUNCTION_TYPE
|| TREE_CODE (fntype) == METHOD_TYPE);
result_type = TREE_TYPE (fntype);
if (TREE_CODE (function) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
{
decl = TREE_OPERAND (function, 0);
if (!TREE_USED (decl))
{
/* We invoke build_call directly for several library
functions. These may have been declared normally if
we're building libgcc, so we can't just check
DECL_ARTIFICIAL. */
gcc_assert (DECL_ARTIFICIAL (decl)
|| !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
"__", 2));
mark_used (decl);
}
}
else
decl = NULL_TREE;
/* We check both the decl and the type; a function may be known not to
throw without being declared throw(). */
nothrow = ((decl && TREE_NOTHROW (decl))
|| TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function))));
if (decl && TREE_THIS_VOLATILE (decl) && cfun)
current_function_returns_abnormally = 1;
if (decl && TREE_DEPRECATED (decl))
warn_deprecated_use (decl);
require_complete_eh_spec_types (fntype, decl);
if (decl && DECL_CONSTRUCTOR_P (decl))
is_constructor = 1;
/* Don't pass empty class objects by value. This is useful
for tags in STL, which are used to control overload resolution.
We don't need to handle other cases of copying empty classes. */
if (! decl || ! DECL_BUILT_IN (decl))
for (i = 0; i < n; i++)
if (is_empty_class (TREE_TYPE (argarray[i]))
&& ! TREE_ADDRESSABLE (TREE_TYPE (argarray[i])))
{
tree t = build0 (EMPTY_CLASS_EXPR, TREE_TYPE (argarray[i]));
argarray[i] = build2 (COMPOUND_EXPR, TREE_TYPE (t),
argarray[i], t);
}
function = build_call_array (result_type, function, n, argarray);
TREE_HAS_CONSTRUCTOR (function) = is_constructor;
TREE_NOTHROW (function) = nothrow;
return function;
}
/* Build something of the form ptr->method (args)
or object.method (args). This can also build
calls to constructors, and find friends.
Member functions always take their class variable
as a pointer.
INSTANCE is a class instance.
NAME is the name of the method desired, usually an IDENTIFIER_NODE.
PARMS help to figure out what that NAME really refers to.
BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
down to the real instance type to use for access checking. We need this
information to get protected accesses correct.
FLAGS is the logical disjunction of zero or more LOOKUP_
flags. See cp-tree.h for more info.
If this is all OK, calls build_function_call with the resolved
member function.
This function must also handle being called to perform
initialization, promotion/coercion of arguments, and
instantiation of default parameters.
Note that NAME may refer to an instance variable name. If
`operator()()' is defined for the type of that field, then we return
that result. */
/* New overloading code. */
typedef struct z_candidate z_candidate;
typedef struct candidate_warning candidate_warning;
struct candidate_warning {
z_candidate *loser;
candidate_warning *next;
};
struct z_candidate {
/* The FUNCTION_DECL that will be called if this candidate is
selected by overload resolution. */
tree fn;
/* The arguments to use when calling this function. */
tree args;
/* The implicit conversion sequences for each of the arguments to
FN. */
conversion **convs;
/* The number of implicit conversion sequences. */
size_t num_convs;
/* If FN is a user-defined conversion, the standard conversion
sequence from the type returned by FN to the desired destination
type. */
conversion *second_conv;
int viable;
/* If FN is a member function, the binfo indicating the path used to
qualify the name of FN at the call site. This path is used to
determine whether or not FN is accessible if it is selected by
overload resolution. The DECL_CONTEXT of FN will always be a
(possibly improper) base of this binfo. */
tree access_path;
/* If FN is a non-static member function, the binfo indicating the
subobject to which the `this' pointer should be converted if FN
is selected by overload resolution. The type pointed to the by
the `this' pointer must correspond to the most derived class
indicated by the CONVERSION_PATH. */
tree conversion_path;
tree template_decl;
candidate_warning *warnings;
z_candidate *next;
};
/* Returns true iff T is a null pointer constant in the sense of
[conv.ptr]. */
bool
null_ptr_cst_p (tree t)
{
/* [conv.ptr]
A null pointer constant is an integral constant expression
(_expr.const_) rvalue of integer type that evaluates to zero. */
t = integral_constant_value (t);
if (t == null_node)
return true;
if (CP_INTEGRAL_TYPE_P (TREE_TYPE (t)) && integer_zerop (t))
{
STRIP_NOPS (t);
if (!TREE_OVERFLOW (t))
return true;
}
return false;
}
/* Returns nonzero if PARMLIST consists of only default parms and/or
ellipsis. */
bool
sufficient_parms_p (tree parmlist)
{
for (; parmlist && parmlist != void_list_node;
parmlist = TREE_CHAIN (parmlist))
if (!TREE_PURPOSE (parmlist))
return false;
return true;
}
/* Allocate N bytes of memory from the conversion obstack. The memory
is zeroed before being returned. */
static void *
conversion_obstack_alloc (size_t n)
{
void *p;
if (!conversion_obstack_initialized)
{
gcc_obstack_init (&conversion_obstack);
conversion_obstack_initialized = true;
}
p = obstack_alloc (&conversion_obstack, n);
memset (p, 0, n);
return p;
}
/* Dynamically allocate a conversion. */
static conversion *
alloc_conversion (conversion_kind kind)
{
conversion *c;
c = (conversion *) conversion_obstack_alloc (sizeof (conversion));
c->kind = kind;
return c;
}
#ifdef ENABLE_CHECKING
/* Make sure that all memory on the conversion obstack has been
freed. */
void
validate_conversion_obstack (void)
{
if (conversion_obstack_initialized)
gcc_assert ((obstack_next_free (&conversion_obstack)
== obstack_base (&conversion_obstack)));
}
#endif /* ENABLE_CHECKING */
/* Dynamically allocate an array of N conversions. */
static conversion **
alloc_conversions (size_t n)
{
return (conversion **) conversion_obstack_alloc (n * sizeof (conversion *));
}
static conversion *
build_conv (conversion_kind code, tree type, conversion *from)
{
conversion *t;
conversion_rank rank = CONVERSION_RANK (from);
/* We can't use buildl1 here because CODE could be USER_CONV, which
takes two arguments. In that case, the caller is responsible for
filling in the second argument. */
t = alloc_conversion (code);
t->type = type;
t->u.next = from;
switch (code)
{
case ck_ptr:
case ck_pmem:
case ck_base:
case ck_std:
if (rank < cr_std)
rank = cr_std;
break;
case ck_qual:
if (rank < cr_exact)
rank = cr_exact;
break;
default:
break;
}
t->rank = rank;
t->user_conv_p = (code == ck_user || from->user_conv_p);
t->bad_p = from->bad_p;
t->base_p = false;
return t;
}
/* Build a representation of the identity conversion from EXPR to
itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */
static conversion *
build_identity_conv (tree type, tree expr)
{
conversion *c;
c = alloc_conversion (ck_identity);
c->type = type;
c->u.expr = expr;
return c;
}
/* Converting from EXPR to TYPE was ambiguous in the sense that there
were multiple user-defined conversions to accomplish the job.
Build a conversion that indicates that ambiguity. */
static conversion *
build_ambiguous_conv (tree type, tree expr)
{
conversion *c;
c = alloc_conversion (ck_ambig);
c->type = type;
c->u.expr = expr;
return c;
}
tree
strip_top_quals (tree t)
{
if (TREE_CODE (t) == ARRAY_TYPE)
return t;
return cp_build_qualified_type (t, 0);
}
/* Returns the standard conversion path (see [conv]) from type FROM to type
TO, if any. For proper handling of null pointer constants, you must
also pass the expression EXPR to convert from. If C_CAST_P is true,
this conversion is coming from a C-style cast. */
static conversion *
standard_conversion (tree to, tree from, tree expr, bool c_cast_p,
int flags)
{
enum tree_code fcode, tcode;
conversion *conv;
bool fromref = false;
to = non_reference (to);
if (TREE_CODE (from) == REFERENCE_TYPE)
{
fromref = true;
from = TREE_TYPE (from);
}
to = strip_top_quals (to);
from = strip_top_quals (from);
if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
&& expr && type_unknown_p (expr))
{
expr = instantiate_type (to, expr, tf_conv);
if (expr == error_mark_node)
return NULL;
from = TREE_TYPE (expr);
}
fcode = TREE_CODE (from);
tcode = TREE_CODE (to);
conv = build_identity_conv (from, expr);
if (fcode == FUNCTION_TYPE || fcode == ARRAY_TYPE)
{
from = type_decays_to (from);
fcode = TREE_CODE (from);
conv = build_conv (ck_lvalue, from, conv);
}
else if (fromref || (expr && lvalue_p (expr)))
{
if (expr)
{
tree bitfield_type;
bitfield_type = is_bitfield_expr_with_lowered_type (expr);
if (bitfield_type)
{
from = strip_top_quals (bitfield_type);
fcode = TREE_CODE (from);
}
}
conv = build_conv (ck_rvalue, from, conv);
}
/* Allow conversion between `__complex__' data types. */
if (tcode == COMPLEX_TYPE && fcode == COMPLEX_TYPE)
{
/* The standard conversion sequence to convert FROM to TO is
the standard conversion sequence to perform componentwise
conversion. */
conversion *part_conv = standard_conversion
(TREE_TYPE (to), TREE_TYPE (from), NULL_TREE, c_cast_p, flags);
if (part_conv)
{
conv = build_conv (part_conv->kind, to, conv);
conv->rank = part_conv->rank;
}
else
conv = NULL;
return conv;
}
if (same_type_p (from, to))
return conv;
if ((tcode == POINTER_TYPE || TYPE_PTR_TO_MEMBER_P (to))
&& expr && null_ptr_cst_p (expr))
conv = build_conv (ck_std, to, conv);
else if ((tcode == INTEGER_TYPE && fcode == POINTER_TYPE)
|| (tcode == POINTER_TYPE && fcode == INTEGER_TYPE))
{
/* For backwards brain damage compatibility, allow interconversion of
pointers and integers with a pedwarn. */
conv = build_conv (ck_std, to, conv);
conv->bad_p = true;
}
else if (tcode == ENUMERAL_TYPE && fcode == INTEGER_TYPE)
{
/* For backwards brain damage compatibility, allow interconversion of
enums and integers with a pedwarn. */
conv = build_conv (ck_std, to, conv);
conv->bad_p = true;
}
else if ((tcode == POINTER_TYPE && fcode == POINTER_TYPE)
|| (TYPE_PTRMEM_P (to) && TYPE_PTRMEM_P (from)))
{
tree to_pointee;
tree from_pointee;
if (tcode == POINTER_TYPE
&& same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from),
TREE_TYPE (to)))
;
else if (VOID_TYPE_P (TREE_TYPE (to))
&& !TYPE_PTRMEM_P (from)
&& TREE_CODE (TREE_TYPE (from)) != FUNCTION_TYPE)
{
from = build_pointer_type
(cp_build_qualified_type (void_type_node,
cp_type_quals (TREE_TYPE (from))));
conv = build_conv (ck_ptr, from, conv);
}
else if (TYPE_PTRMEM_P (from))
{
tree fbase = TYPE_PTRMEM_CLASS_TYPE (from);
tree tbase = TYPE_PTRMEM_CLASS_TYPE (to);
if (DERIVED_FROM_P (fbase, tbase)
&& (same_type_ignoring_top_level_qualifiers_p
(TYPE_PTRMEM_POINTED_TO_TYPE (from),
TYPE_PTRMEM_POINTED_TO_TYPE (to))))
{
from = build_ptrmem_type (tbase,
TYPE_PTRMEM_POINTED_TO_TYPE (from));
conv = build_conv (ck_pmem, from, conv);
}
else if (!same_type_p (fbase, tbase))
return NULL;
}
else if (IS_AGGR_TYPE (TREE_TYPE (from))
&& IS_AGGR_TYPE (TREE_TYPE (to))
/* [conv.ptr]
An rvalue of type "pointer to cv D," where D is a
class type, can be converted to an rvalue of type
"pointer to cv B," where B is a base class (clause
_class.derived_) of D. If B is an inaccessible
(clause _class.access_) or ambiguous
(_class.member.lookup_) base class of D, a program
that necessitates this conversion is ill-formed.
Therefore, we use DERIVED_FROM_P, and do not check
access or uniqueness. */
&& DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from))
/* If FROM is not yet complete, then we must be parsing
the body of a class. We know what's derived from
what, but we can't actually perform a
derived-to-base conversion. For example, in:
struct D : public B {
static const int i = sizeof((B*)(D*)0);
};
the D*-to-B* conversion is a reinterpret_cast, not a
static_cast. */
&& COMPLETE_TYPE_P (TREE_TYPE (from)))
{
from =
cp_build_qualified_type (TREE_TYPE (to),
cp_type_quals (TREE_TYPE (from)));
from = build_pointer_type (from);
conv = build_conv (ck_ptr, from, conv);
conv->base_p = true;
}
if (tcode == POINTER_TYPE)
{
to_pointee = TREE_TYPE (to);
from_pointee = TREE_TYPE (from);
}
else
{
to_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (to);
from_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (from);
}
if (same_type_p (from, to))
/* OK */;
else if (c_cast_p && comp_ptr_ttypes_const (to, from))
/* In a C-style cast, we ignore CV-qualification because we
are allowed to perform a static_cast followed by a
const_cast. */
conv = build_conv (ck_qual, to, conv);
else if (!c_cast_p && comp_ptr_ttypes (to_pointee, from_pointee))
conv = build_conv (ck_qual, to, conv);
else if (expr && string_conv_p (to, expr, 0))
/* converting from string constant to char *. */
conv = build_conv (ck_qual, to, conv);
else if (ptr_reasonably_similar (to_pointee, from_pointee))
{
conv = build_conv (ck_ptr, to, conv);
conv->bad_p = true;
}
else
return NULL;
from = to;
}
else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
{
tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));
if (!DERIVED_FROM_P (fbase, tbase)
|| !same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
|| !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
|| cp_type_quals (fbase) != cp_type_quals (tbase))
return NULL;
from = cp_build_qualified_type (tbase, cp_type_quals (fbase));
from = build_method_type_directly (from,
TREE_TYPE (fromfn),
TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
from = build_ptrmemfunc_type (build_pointer_type (from));
conv = build_conv (ck_pmem, from, conv);
conv->base_p = true;
}
else if (tcode == BOOLEAN_TYPE)
{
/* [conv.bool]
An rvalue of arithmetic, enumeration, pointer, or pointer to
member type can be converted to an rvalue of type bool. */
if (ARITHMETIC_TYPE_P (from)
|| fcode == ENUMERAL_TYPE
|| fcode == POINTER_TYPE
|| TYPE_PTR_TO_MEMBER_P (from))
{
conv = build_conv (ck_std, to, conv);
if (fcode == POINTER_TYPE
|| TYPE_PTRMEM_P (from)
|| (TYPE_PTRMEMFUNC_P (from)
&& conv->rank < cr_pbool))
conv->rank = cr_pbool;
return conv;
}
return NULL;
}
/* We don't check for ENUMERAL_TYPE here because there are no standard
conversions to enum type. */
else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
|| tcode == REAL_TYPE)
{
if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
return NULL;
conv = build_conv (ck_std, to, conv);
/* Give this a better rank if it's a promotion. */
if (same_type_p (to, type_promotes_to (from))
&& conv->u.next->rank <= cr_promotion)
conv->rank = cr_promotion;
}
else if (fcode == VECTOR_TYPE && tcode == VECTOR_TYPE
&& vector_types_convertible_p (from, to, false))
return build_conv (ck_std, to, conv);
else if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE)
&& IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
&& is_properly_derived_from (from, to))
{
if (conv->kind == ck_rvalue)
conv = conv->u.next;
conv = build_conv (ck_base, to, conv);
/* The derived-to-base conversion indicates the initialization
of a parameter with base type from an object of a derived
type. A temporary object is created to hold the result of
the conversion. */
conv->need_temporary_p = true;
}
else
return NULL;
return conv;
}
/* Returns nonzero if T1 is reference-related to T2. */
static bool
reference_related_p (tree t1, tree t2)
{
t1 = TYPE_MAIN_VARIANT (t1);
t2 = TYPE_MAIN_VARIANT (t2);
/* [dcl.init.ref]
Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
of T2. */
return (same_type_p (t1, t2)
|| (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
&& DERIVED_FROM_P (t1, t2)));
}
/* Returns nonzero if T1 is reference-compatible with T2. */
static bool
reference_compatible_p (tree t1, tree t2)
{
/* [dcl.init.ref]
"cv1 T1" is reference compatible with "cv2 T2" if T1 is
reference-related to T2 and cv1 is the same cv-qualification as,
or greater cv-qualification than, cv2. */
return (reference_related_p (t1, t2)
&& at_least_as_qualified_p (t1, t2));
}
/* Determine whether or not the EXPR (of class type S) can be
converted to T as in [over.match.ref]. */
static conversion *
convert_class_to_reference (tree reference_type, tree s, tree expr)
{
tree conversions;
tree arglist;
conversion *conv;
tree t;
struct z_candidate *candidates;
struct z_candidate *cand;
bool any_viable_p;
conversions = lookup_conversions (s);
if (!conversions)
return NULL;
/* [over.match.ref]
Assuming that "cv1 T" is the underlying type of the reference
being initialized, and "cv S" is the type of the initializer
expression, with S a class type, the candidate functions are
selected as follows:
--The conversion functions of S and its base classes are
considered. Those that are not hidden within S and yield type
"reference to cv2 T2", where "cv1 T" is reference-compatible
(_dcl.init.ref_) with "cv2 T2", are candidate functions.
The argument list has one argument, which is the initializer
expression. */
candidates = 0;
/* Conceptually, we should take the address of EXPR and put it in
the argument list. Unfortunately, however, that can result in
error messages, which we should not issue now because we are just
trying to find a conversion operator. Therefore, we use NULL,
cast to the appropriate type. */
arglist = build_int_cst (build_pointer_type (s), 0);
arglist = build_tree_list (NULL_TREE, arglist);
t = TREE_TYPE (reference_type);
while (conversions)
{
tree fns = TREE_VALUE (conversions);
for (; fns; fns = OVL_NEXT (fns))
{
tree f = OVL_CURRENT (fns);
tree t2 = TREE_TYPE (TREE_TYPE (f));
cand = NULL;
/* If this is a template function, try to get an exact
match. */
if (TREE_CODE (f) == TEMPLATE_DECL)
{
cand = add_template_candidate (&candidates,
f, s,
NULL_TREE,
arglist,
reference_type,
TYPE_BINFO (s),
TREE_PURPOSE (conversions),
LOOKUP_NORMAL,
DEDUCE_CONV);
if (cand)
{
/* Now, see if the conversion function really returns
an lvalue of the appropriate type. From the
point of view of unification, simply returning an
rvalue of the right type is good enough. */
f = cand->fn;
t2 = TREE_TYPE (TREE_TYPE (f));
if (TREE_CODE (t2) != REFERENCE_TYPE
|| !reference_compatible_p (t, TREE_TYPE (t2)))
{
candidates = candidates->next;
cand = NULL;
}
}
}
else if (TREE_CODE (t2) == REFERENCE_TYPE
&& reference_compatible_p (t, TREE_TYPE (t2)))
cand = add_function_candidate (&candidates, f, s, arglist,
TYPE_BINFO (s),
TREE_PURPOSE (conversions),
LOOKUP_NORMAL);
if (cand)
{
conversion *identity_conv;
/* Build a standard conversion sequence indicating the
binding from the reference type returned by the
function to the desired REFERENCE_TYPE. */
identity_conv
= build_identity_conv (TREE_TYPE (TREE_TYPE
(TREE_TYPE (cand->fn))),
NULL_TREE);
cand->second_conv
= (direct_reference_binding
(reference_type, identity_conv));
cand->second_conv->rvaluedness_matches_p
= TYPE_REF_IS_RVALUE (TREE_TYPE (TREE_TYPE (cand->fn)))
== TYPE_REF_IS_RVALUE (reference_type);
cand->second_conv->bad_p |= cand->convs[0]->bad_p;
}
}
conversions = TREE_CHAIN (conversions);
}
candidates = splice_viable (candidates, pedantic, &any_viable_p);
/* If none of the conversion functions worked out, let our caller
know. */
if (!any_viable_p)
return NULL;
cand = tourney (candidates);
if (!cand)
return NULL;
/* Now that we know that this is the function we're going to use fix
the dummy first argument. */
cand->args = tree_cons (NULL_TREE,
build_this (expr),
TREE_CHAIN (cand->args));
/* Build a user-defined conversion sequence representing the
conversion. */
conv = build_conv (ck_user,
TREE_TYPE (TREE_TYPE (cand->fn)),
build_identity_conv (TREE_TYPE (expr), expr));
conv->cand = cand;
/* Merge it with the standard conversion sequence from the
conversion function's return type to the desired type. */
cand->second_conv = merge_conversion_sequences (conv, cand->second_conv);
if (cand->viable == -1)
conv->bad_p = true;
return cand->second_conv;
}
/* A reference of the indicated TYPE is being bound directly to the
expression represented by the implicit conversion sequence CONV.
Return a conversion sequence for this binding. */
static conversion *
direct_reference_binding (tree type, conversion *conv)
{
tree t;
gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
gcc_assert (TREE_CODE (conv->type) != REFERENCE_TYPE);
t = TREE_TYPE (type);
/* [over.ics.rank]
When a parameter of reference type binds directly
(_dcl.init.ref_) to an argument expression, the implicit
conversion sequence is the identity conversion, unless the
argument expression has a type that is a derived class of the
parameter type, in which case the implicit conversion sequence is
a derived-to-base Conversion.
If the parameter binds directly to the result of applying a
conversion function to the argument expression, the implicit
conversion sequence is a user-defined conversion sequence
(_over.ics.user_), with the second standard conversion sequence
either an identity conversion or, if the conversion function
returns an entity of a type that is a derived class of the
parameter type, a derived-to-base conversion. */
if (!same_type_ignoring_top_level_qualifiers_p (t, conv->type))
{
/* Represent the derived-to-base conversion. */
conv = build_conv (ck_base, t, conv);
/* We will actually be binding to the base-class subobject in
the derived class, so we mark this conversion appropriately.
That way, convert_like knows not to generate a temporary. */
conv->need_temporary_p = false;
}
return build_conv (ck_ref_bind, type, conv);
}
/* Returns the conversion path from type FROM to reference type TO for
purposes of reference binding. For lvalue binding, either pass a
reference type to FROM or an lvalue expression to EXPR. If the
reference will be bound to a temporary, NEED_TEMPORARY_P is set for
the conversion returned. If C_CAST_P is true, this
conversion is coming from a C-style cast. */
static conversion *
reference_binding (tree rto, tree rfrom, tree expr, bool c_cast_p, int flags)
{
conversion *conv = NULL;
tree to = TREE_TYPE (rto);
tree from = rfrom;
bool related_p;
bool compatible_p;
cp_lvalue_kind lvalue_p = clk_none;
if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
{
expr = instantiate_type (to, expr, tf_none);
if (expr == error_mark_node)
return NULL;
from = TREE_TYPE (expr);
}
if (TREE_CODE (from) == REFERENCE_TYPE)
{
/* Anything with reference type is an lvalue. */
lvalue_p = clk_ordinary;
from = TREE_TYPE (from);
}
else if (expr)
lvalue_p = real_lvalue_p (expr);
/* Figure out whether or not the types are reference-related and
reference compatible. We have do do this after stripping
references from FROM. */
related_p = reference_related_p (to, from);
/* If this is a C cast, first convert to an appropriately qualified
type, so that we can later do a const_cast to the desired type. */
if (related_p && c_cast_p
&& !at_least_as_qualified_p (to, from))
to = build_qualified_type (to, cp_type_quals (from));
compatible_p = reference_compatible_p (to, from);
/* Directly bind reference when target expression's type is compatible with
the reference and expression is an lvalue. In C++0x, the wording in
[8.5.3/5 dcl.init.ref] is changed to also allow direct bindings for const
and rvalue references to rvalues of compatible class type, as part of
DR391. */
if (compatible_p
&& (lvalue_p
|| ((cxx_dialect != cxx98)
&& (CP_TYPE_CONST_NON_VOLATILE_P(to) || TYPE_REF_IS_RVALUE (rto))
&& CLASS_TYPE_P (from))))
{
/* [dcl.init.ref]
If the initializer expression
-- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
is reference-compatible with "cv2 T2,"
the reference is bound directly to the initializer expression
lvalue. */
conv = build_identity_conv (from, expr);
conv = direct_reference_binding (rto, conv);
if (flags & LOOKUP_PREFER_RVALUE)
/* The top-level caller requested that we pretend that the lvalue
be treated as an rvalue. */
conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto);
else
conv->rvaluedness_matches_p
= (TYPE_REF_IS_RVALUE (rto) == !lvalue_p);
if ((lvalue_p & clk_bitfield) != 0
|| ((lvalue_p & clk_packed) != 0 && !TYPE_PACKED (to)))
/* For the purposes of overload resolution, we ignore the fact
this expression is a bitfield or packed field. (In particular,
[over.ics.ref] says specifically that a function with a
non-const reference parameter is viable even if the
argument is a bitfield.)
However, when we actually call the function we must create
a temporary to which to bind the reference. If the
reference is volatile, or isn't const, then we cannot make
a temporary, so we just issue an error when the conversion
actually occurs. */
conv->need_temporary_p = true;
return conv;
}
else if (CLASS_TYPE_P (from) && !(flags & LOOKUP_NO_CONVERSION))
{
/* [dcl.init.ref]
If the initializer expression
-- has a class type (i.e., T2 is a class type) can be
implicitly converted to an lvalue of type "cv3 T3," where
"cv1 T1" is reference-compatible with "cv3 T3". (this
conversion is selected by enumerating the applicable
conversion functions (_over.match.ref_) and choosing the
best one through overload resolution. (_over.match_).
the reference is bound to the lvalue result of the conversion
in the second case. */
conv = convert_class_to_reference (rto, from, expr);
if (conv)
return conv;
}
/* From this point on, we conceptually need temporaries, even if we
elide them. Only the cases above are "direct bindings". */
if (flags & LOOKUP_NO_TEMP_BIND)
return NULL;
/* [over.ics.rank]
When a parameter of reference type is not bound directly to an
argument expression, the conversion sequence is the one required
to convert the argument expression to the underlying type of the
reference according to _over.best.ics_. Conceptually, this
conversion sequence corresponds to copy-initializing a temporary
of the underlying type with the argument expression. Any
difference in top-level cv-qualification is subsumed by the
initialization itself and does not constitute a conversion. */
/* [dcl.init.ref]
Otherwise, the reference shall be to a non-volatile const type.
Under C++0x, [8.5.3/5 dcl.init.ref] it may also be an rvalue reference */
if (!CP_TYPE_CONST_NON_VOLATILE_P (to) && !TYPE_REF_IS_RVALUE (rto))
return NULL;
/* [dcl.init.ref]
If the initializer expression is an rvalue, with T2 a class type,
and "cv1 T1" is reference-compatible with "cv2 T2", the reference
is bound in one of the following ways:
-- The reference is bound to the object represented by the rvalue
or to a sub-object within that object.
-- ...
We use the first alternative. The implicit conversion sequence
is supposed to be same as we would obtain by generating a
temporary. Fortunately, if the types are reference compatible,
then this is either an identity conversion or the derived-to-base
conversion, just as for direct binding. */
if (CLASS_TYPE_P (from) && compatible_p)
{
conv = build_identity_conv (from, expr);
conv = direct_reference_binding (rto, conv);
conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto);
if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE))
conv->u.next->check_copy_constructor_p = true;
return conv;
}
/* [dcl.init.ref]
Otherwise, a temporary of type "cv1 T1" is created and
initialized from the initializer expression using the rules for a
non-reference copy initialization. If T1 is reference-related to
T2, cv1 must be the same cv-qualification as, or greater
cv-qualification than, cv2; otherwise, the program is ill-formed. */
if (related_p && !at_least_as_qualified_p (to, from))
return NULL;
conv = implicit_conversion (to, from, expr, c_cast_p,
flags);
if (!conv)
return NULL;
conv = build_conv (ck_ref_bind, rto, conv);
/* This reference binding, unlike those above, requires the
creation of a temporary. */
conv->need_temporary_p = true;
conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto);
return conv;
}
/* Returns the implicit conversion sequence (see [over.ics]) from type
FROM to type TO. The optional expression EXPR may affect the
conversion. FLAGS are the usual overloading flags. Only
LOOKUP_NO_CONVERSION is significant. If C_CAST_P is true, this
conversion is coming from a C-style cast. */
static conversion *
implicit_conversion (tree to, tree from, tree expr, bool c_cast_p,
int flags)
{
conversion *conv;
if (from == error_mark_node || to == error_mark_node
|| expr == error_mark_node)
return NULL;
if (TREE_CODE (to) == REFERENCE_TYPE)
conv = reference_binding (to, from, expr, c_cast_p, flags);
else
conv = standard_conversion (to, from, expr, c_cast_p, flags);
if (conv)
return conv;
if (expr != NULL_TREE
&& (IS_AGGR_TYPE (from)
|| IS_AGGR_TYPE (to))
&& (flags & LOOKUP_NO_CONVERSION) == 0)
{
struct z_candidate *cand;
cand = build_user_type_conversion_1
(to, expr, LOOKUP_ONLYCONVERTING);
if (cand)
conv = cand->second_conv;
/* We used to try to bind a reference to a temporary here, but that
is now handled after the recursive call to this function at the end
of reference_binding. */
return conv;
}
return NULL;
}
/* Add a new entry to the list of candidates. Used by the add_*_candidate
functions. */
static struct z_candidate *
add_candidate (struct z_candidate **candidates,
tree fn, tree args,
size_t num_convs, conversion **convs,
tree access_path, tree conversion_path,
int viable)
{
struct z_candidate *cand = (struct z_candidate *)
conversion_obstack_alloc (sizeof (struct z_candidate));
cand->fn = fn;
cand->args = args;
cand->convs = convs;
cand->num_convs = num_convs;
cand->access_path = access_path;
cand->conversion_path = conversion_path;
cand->viable = viable;
cand->next = *candidates;
*candidates = cand;
return cand;
}
/* Create an overload candidate for the function or method FN called with
the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
to implicit_conversion.
CTYPE, if non-NULL, is the type we want to pretend this function
comes from for purposes of overload resolution. */
static struct z_candidate *
add_function_candidate (struct z_candidate **candidates,
tree fn, tree ctype, tree arglist,
tree access_path, tree conversion_path,
int flags)
{
tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
int i, len;
conversion **convs;
tree parmnode, argnode;
tree orig_arglist;
int viable = 1;
/* At this point we should not see any functions which haven't been
explicitly declared, except for friend functions which will have
been found using argument dependent lookup. */
gcc_assert (!DECL_ANTICIPATED (fn) || DECL_HIDDEN_FRIEND_P (fn));
/* The `this', `in_chrg' and VTT arguments to constructors are not
considered in overload resolution. */
if (DECL_CONSTRUCTOR_P (fn))
{
parmlist = skip_artificial_parms_for (fn, parmlist);
orig_arglist = arglist;
arglist = skip_artificial_parms_for (fn, arglist);
}
else
orig_arglist = arglist;
len = list_length (arglist);
convs = alloc_conversions (len);
/* 13.3.2 - Viable functions [over.match.viable]
First, to be a viable function, a candidate function shall have enough
parameters to agree in number with the arguments in the list.
We need to check this first; otherwise, checking the ICSes might cause
us to produce an ill-formed template instantiation. */
parmnode = parmlist;
for (i = 0; i < len; ++i)
{
if (parmnode == NULL_TREE || parmnode == void_list_node)
break;
parmnode = TREE_CHAIN (parmnode);
}
if (i < len && parmnode)
viable = 0;
/* Make sure there are default args for the rest of the parms. */
else if (!sufficient_parms_p (parmnode))
viable = 0;
if (! viable)
goto out;
/* Second, for F to be a viable function, there shall exist for each
argument an implicit conversion sequence that converts that argument
to the corresponding parameter of F. */
parmnode = parmlist;
argnode = arglist;
for (i = 0; i < len; ++i)
{
tree arg = TREE_VALUE (argnode);
tree argtype = lvalue_type (arg);
conversion *t;
int is_this;
if (parmnode == void_list_node)
break;
is_this = (i == 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
&& ! DECL_CONSTRUCTOR_P (fn));
if (parmnode)
{
tree parmtype = TREE_VALUE (parmnode);
/* The type of the implicit object parameter ('this') for
overload resolution is not always the same as for the
function itself; conversion functions are considered to
be members of the class being converted, and functions
introduced by a using-declaration are considered to be
members of the class that uses them.
Since build_over_call ignores the ICS for the `this'
parameter, we can just change the parm type. */
if (ctype && is_this)
{
parmtype
= build_qualified_type (ctype,
TYPE_QUALS (TREE_TYPE (parmtype)));
parmtype = build_pointer_type (parmtype);
}
t = implicit_conversion (parmtype, argtype, arg,
/*c_cast_p=*/false, flags);
}
else
{
t = build_identity_conv (argtype, arg);
t->ellipsis_p = true;
}
if (t && is_this)
t->this_p = true;
convs[i] = t;
if (! t)
{
viable = 0;
break;
}
if (t->bad_p)
viable = -1;
if (parmnode)
parmnode = TREE_CHAIN (parmnode);
argnode = TREE_CHAIN (argnode);
}
out:
return add_candidate (candidates, fn, orig_arglist, len, convs,
access_path, conversion_path, viable);
}
/* Create an overload candidate for the conversion function FN which will
be invoked for expression OBJ, producing a pointer-to-function which
will in turn be called with the argument list ARGLIST, and add it to
CANDIDATES. FLAGS is passed on to implicit_conversion.
Actually, we don't really care about FN; we care about the type it
converts to. There may be multiple conversion functions that will
convert to that type, and we rely on build_user_type_conversion_1 to
choose the best one; so when we create our candidate, we record the type
instead of the function. */
static struct z_candidate *
add_conv_candidate (struct z_candidate **candidates, tree fn, tree obj,
tree arglist, tree access_path, tree conversion_path)
{
tree totype = TREE_TYPE (TREE_TYPE (fn));
int i, len, viable, flags;
tree parmlist, parmnode, argnode;
conversion **convs;
for (parmlist = totype; TREE_CODE (parmlist) != FUNCTION_TYPE; )
parmlist = TREE_TYPE (parmlist);
parmlist = TYPE_ARG_TYPES (parmlist);
len = list_length (arglist) + 1;
convs = alloc_conversions (len);
parmnode = parmlist;
argnode = arglist;
viable = 1;
flags = LOOKUP_NORMAL;
/* Don't bother looking up the same type twice. */
if (*candidates && (*candidates)->fn == totype)
return NULL;
for (i = 0; i < len; ++i)
{
tree arg = i == 0 ? obj : TREE_VALUE (argnode);
tree argtype = lvalue_type (arg);
conversion *t;
if (i == 0)
t = implicit_conversion (totype, argtype, arg, /*c_cast_p=*/false,
flags);
else if (parmnode == void_list_node)
break;
else if (parmnode)
t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg,
/*c_cast_p=*/false, flags);
else
{
t = build_identity_conv (argtype, arg);
t->ellipsis_p = true;
}
convs[i] = t;
if (! t)
break;
if (t->bad_p)
viable = -1;
if (i == 0)
continue;
if (parmnode)
parmnode = TREE_CHAIN (parmnode);
argnode = TREE_CHAIN (argnode);
}
if (i < len)
viable = 0;
if (!sufficient_parms_p (parmnode))
viable = 0;
return add_candidate (candidates, totype, arglist, len, convs,
access_path, conversion_path, viable);
}
static void
build_builtin_candidate (struct z_candidate **candidates, tree fnname,
tree type1, tree type2, tree *args, tree *argtypes,
int flags)
{
conversion *t;
conversion **convs;
size_t num_convs;
int viable = 1, i;
tree types[2];
types[0] = type1;
types[1] = type2;
num_convs = args[2] ? 3 : (args[1] ? 2 : 1);
convs = alloc_conversions (num_convs);
for (i = 0; i < 2; ++i)
{
if (! args[i])
break;
t = implicit_conversion (types[i], argtypes[i], args[i],
/*c_cast_p=*/false, flags);
if (! t)
{
viable = 0;
/* We need something for printing the candidate. */
t = build_identity_conv (types[i], NULL_TREE);
}
else if (t->bad_p)
viable = 0;
convs[i] = t;
}
/* For COND_EXPR we rearranged the arguments; undo that now. */
if (args[2])
{
convs[2] = convs[1];
convs[1] = convs[0];
t = implicit_conversion (boolean_type_node, argtypes[2], args[2],
/*c_cast_p=*/false, flags);
if (t)
convs[0] = t;
else
viable = 0;
}
add_candidate (candidates, fnname, /*args=*/NULL_TREE,
num_convs, convs,
/*access_path=*/NULL_TREE,
/*conversion_path=*/NULL_TREE,
viable);
}
static bool
is_complete (tree t)
{
return COMPLETE_TYPE_P (complete_type (t));
}
/* Returns nonzero if TYPE is a promoted arithmetic type. */
static bool
promoted_arithmetic_type_p (tree type)
{
/* [over.built]
In this section, the term promoted integral type is used to refer
to those integral types which are preserved by integral promotion
(including e.g. int and long but excluding e.g. char).
Similarly, the term promoted arithmetic type refers to promoted
integral types plus floating types. */
return ((INTEGRAL_TYPE_P (type)
&& same_type_p (type_promotes_to (type), type))
|| TREE_CODE (type) == REAL_TYPE);
}
/* Create any builtin operator overload candidates for the operator in
question given the converted operand types TYPE1 and TYPE2. The other
args are passed through from add_builtin_candidates to
build_builtin_candidate.
TYPE1 and TYPE2 may not be permissible, and we must filter them.
If CODE is requires candidates operands of the same type of the kind
of which TYPE1 and TYPE2 are, we add both candidates
CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
static void
add_builtin_candidate (struct z_candidate **candidates, enum tree_code code,
enum tree_code code2, tree fnname, tree type1,
tree type2, tree *args, tree *argtypes, int flags)
{
switch (code)
{
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
args[1] = integer_zero_node;
type2 = integer_type_node;
break;
default:
break;
}
switch (code)
{
/* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
and VQ is either volatile or empty, there exist candidate operator
functions of the form
VQ T& operator++(VQ T&);
T operator++(VQ T&, int);
5 For every pair T, VQ), where T is an enumeration type or an arithmetic
type other than bool, and VQ is either volatile or empty, there exist
candidate operator functions of the form
VQ T& operator--(VQ T&);
T operator--(VQ T&, int);
6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
complete object type, and VQ is either volatile or empty, there exist
candidate operator functions of the form
T*VQ& operator++(T*VQ&);
T*VQ& operator--(T*VQ&);
T* operator++(T*VQ&, int);
T* operator--(T*VQ&, int); */
case POSTDECREMENT_EXPR:
case PREDECREMENT_EXPR:
if (TREE_CODE (type1) == BOOLEAN_TYPE)
return;
case POSTINCREMENT_EXPR:
case PREINCREMENT_EXPR:
if (ARITHMETIC_TYPE_P (type1) || TYPE_PTROB_P (type1))
{
type1 = build_reference_type (type1);
break;
}
return;
/* 7 For every cv-qualified or cv-unqualified complete object type T, there
exist candidate operator functions of the form
T& operator*(T*);
8 For every function type T, there exist candidate operator functions of
the form
T& operator*(T*); */
case INDIRECT_REF:
if (TREE_CODE (type1) == POINTER_TYPE
&& (TYPE_PTROB_P (type1)
|| TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
break;
return;
/* 9 For every type T, there exist candidate operator functions of the form
T* operator+(T*);
10For every promoted arithmetic type T, there exist candidate operator
functions of the form
T operator+(T);
T operator-(T); */
case UNARY_PLUS_EXPR: /* unary + */
if (TREE_CODE (type1) == POINTER_TYPE)
break;
case NEGATE_EXPR:
if (ARITHMETIC_TYPE_P (type1))
break;
return;
/* 11For every promoted integral type T, there exist candidate operator
functions of the form
T operator~(T); */
case BIT_NOT_EXPR:
if (INTEGRAL_TYPE_P (type1))
break;
return;
/* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
is the same type as C2 or is a derived class of C2, T is a complete
object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
there exist candidate operator functions of the form
CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
where CV12 is the union of CV1 and CV2. */
case MEMBER_REF:
if (TREE_CODE (type1) == POINTER_TYPE
&& TYPE_PTR_TO_MEMBER_P (type2))
{
tree c1 = TREE_TYPE (type1);
tree c2 = TYPE_PTRMEM_CLASS_TYPE (type2);
if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
&& (TYPE_PTRMEMFUNC_P (type2)
|| is_complete (TYPE_PTRMEM_POINTED_TO_TYPE (type2))))
break;
}
return;
/* 13For every pair of promoted arithmetic types L and R, there exist can-
didate operator functions of the form
LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);
where LR is the result of the usual arithmetic conversions between
types L and R.
14For every pair of types T and I, where T is a cv-qualified or cv-
unqualified complete object type and I is a promoted integral type,
there exist candidate operator functions of the form
T* operator+(T*, I);
T& operator[](T*, I);
T* operator-(T*, I);
T* operator+(I, T*);
T& operator[](I, T*);
15For every T, where T is a pointer to complete object type, there exist
candidate operator functions of the form112)
ptrdiff_t operator-(T, T);
16For every pointer or enumeration type T, there exist candidate operator
functions of the form
bool operator<(T, T);
bool operator>(T, T);
bool operator<=(T, T);
bool operator>=(T, T);
bool operator==(T, T);
bool operator!=(T, T);
17For every pointer to member type T, there exist candidate operator
functions of the form
bool operator==(T, T);
bool operator!=(T, T); */
case MINUS_EXPR:
if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
break;
if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
{
type2 = ptrdiff_type_node;
break;
}
case MULT_EXPR:
case TRUNC_DIV_EXPR:
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
break;
return;
case EQ_EXPR:
case NE_EXPR:
if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
|| (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
break;
if (TYPE_PTR_TO_MEMBER_P (type1) && null_ptr_cst_p (args[1]))
{
type2 = type1;
break;
}
if (TYPE_PTR_TO_MEMBER_P (type2) && null_ptr_cst_p (args[0]))
{
type1 = type2;
break;
}
/* Fall through. */
case LT_EXPR:
case GT_EXPR:
case LE_EXPR:
case GE_EXPR:
case MAX_EXPR:
case MIN_EXPR:
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
break;
if (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
break;
if (TREE_CODE (type1) == ENUMERAL_TYPE
&& TREE_CODE (type2) == ENUMERAL_TYPE)
break;
if (TYPE_PTR_P (type1)
&& null_ptr_cst_p (args[1])
&& !uses_template_parms (type1))
{
type2 = type1;
break;
}
if (null_ptr_cst_p (args[0])
&& TYPE_PTR_P (type2)
&& !uses_template_parms (type2))
{
type1 = type2;
break;
}
return;
case PLUS_EXPR:
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
break;
case ARRAY_REF:
if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
{
type1 = ptrdiff_type_node;
break;
}
if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
{
type2 = ptrdiff_type_node;
break;
}
return;
/* 18For every pair of promoted integral types L and R, there exist candi-
date operator functions of the form
LR operator%(L, R);
LR operator&(L, R);
LR operator^(L, R);
LR operator|(L, R);
L operator<<(L, R);
L operator>>(L, R);
where LR is the result of the usual arithmetic conversions between
types L and R. */
case TRUNC_MOD_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
break;
return;
/* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
type, VQ is either volatile or empty, and R is a promoted arithmetic
type, there exist candidate operator functions of the form
VQ L& operator=(VQ L&, R);
VQ L& operator*=(VQ L&, R);
VQ L& operator/=(VQ L&, R);
VQ L& operator+=(VQ L&, R);
VQ L& operator-=(VQ L&, R);
20For every pair T, VQ), where T is any type and VQ is either volatile
or empty, there exist candidate operator functions of the form
T*VQ& operator=(T*VQ&, T*);
21For every pair T, VQ), where T is a pointer to member type and VQ is
either volatile or empty, there exist candidate operator functions of
the form
VQ T& operator=(VQ T&, T);
22For every triple T, VQ, I), where T is a cv-qualified or cv-
unqualified complete object type, VQ is either volatile or empty, and
I is a promoted integral type, there exist candidate operator func-
tions of the form
T*VQ& operator+=(T*VQ&, I);
T*VQ& operator-=(T*VQ&, I);
23For every triple L, VQ, R), where L is an integral or enumeration
type, VQ is either volatile or empty, and R is a promoted integral
type, there exist candidate operator functions of the form
VQ L& operator%=(VQ L&, R);
VQ L& operator<<=(VQ L&, R);
VQ L& operator>>=(VQ L&, R);
VQ L& operator&=(VQ L&, R);
VQ L& operator^=(VQ L&, R);
VQ L& operator|=(VQ L&, R); */
case MODIFY_EXPR:
switch (code2)
{
case PLUS_EXPR:
case MINUS_EXPR:
if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
{
type2 = ptrdiff_type_node;
break;
}
case MULT_EXPR:
case TRUNC_DIV_EXPR:
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
break;
return;
case TRUNC_MOD_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
break;
return;
case NOP_EXPR:
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
break;
if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
|| (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
|| (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
|| ((TYPE_PTRMEMFUNC_P (type1)
|| TREE_CODE (type1) == POINTER_TYPE)
&& null_ptr_cst_p (args[1])))
{
type2 = type1;
break;
}
return;
default:
gcc_unreachable ();
}
type1 = build_reference_type (type1);
break;
case COND_EXPR:
/* [over.built]
For every pair of promoted arithmetic types L and R, there
exist candidate operator functions of the form
LR operator?(bool, L, R);
where LR is the result of the usual arithmetic conversions
between types L and R.
For every type T, where T is a pointer or pointer-to-member
type, there exist candidate operator functions of the form T
operator?(bool, T, T); */
if (promoted_arithmetic_type_p (type1)
&& promoted_arithmetic_type_p (type2))
/* That's OK. */
break;
/* Otherwise, the types should be pointers. */
if (!(TYPE_PTR_P (type1) || TYPE_PTR_TO_MEMBER_P (type1))
|| !(TYPE_PTR_P (type2) || TYPE_PTR_TO_MEMBER_P (type2)))
return;
/* We don't check that the two types are the same; the logic
below will actually create two candidates; one in which both
parameter types are TYPE1, and one in which both parameter
types are TYPE2. */
break;
default:
gcc_unreachable ();
}
/* If we're dealing with two pointer types or two enumeral types,
we need candidates for both of them. */
if (type2 && !same_type_p (type1, type2)
&& TREE_CODE (type1) == TREE_CODE (type2)
&& (TREE_CODE (type1) == REFERENCE_TYPE
|| (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
|| (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
|| TYPE_PTRMEMFUNC_P (type1)
|| IS_AGGR_TYPE (type1)
|| TREE_CODE (type1) == ENUMERAL_TYPE))
{
build_builtin_candidate
(candidates, fnname, type1, type1, args, argtypes, flags);
build_builtin_candidate
(candidates, fnname, type2, type2, args, argtypes, flags);
return;
}
build_builtin_candidate
(candidates, fnname, type1, type2, args, argtypes, flags);
}
tree
type_decays_to (tree type)
{
if (TREE_CODE (type) == ARRAY_TYPE)
return build_pointer_type (TREE_TYPE (type));
if (TREE_CODE (type) == FUNCTION_TYPE)
return build_pointer_type (type);
return type;
}
/* There are three conditions of builtin candidates:
1) bool-taking candidates. These are the same regardless of the input.
2) pointer-pair taking candidates. These are generated for each type
one of the input types converts to.
3) arithmetic candidates. According to the standard, we should generate
all of these, but I'm trying not to...
Here we generate a superset of the possible candidates for this particular
case. That is a subset of the full set the standard defines, plus some
other cases which the standard disallows. add_builtin_candidate will
filter out the invalid set. */
static void
add_builtin_candidates (struct z_candidate **candidates, enum tree_code code,
enum tree_code code2, tree fnname, tree *args,
int flags)
{
int ref1, i;
int enum_p = 0;
tree type, argtypes[3];
/* TYPES[i] is the set of possible builtin-operator parameter types
we will consider for the Ith argument. These are represented as
a TREE_LIST; the TREE_VALUE of each node is the potential
parameter type. */
tree types[2];
for (i = 0; i < 3; ++i)
{
if (args[i])
argtypes[i] = lvalue_type (args[i]);
else
argtypes[i] = NULL_TREE;
}
switch (code)
{
/* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
and VQ is either volatile or empty, there exist candidate operator
functions of the form
VQ T& operator++(VQ T&); */
case POSTINCREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case PREDECREMENT_EXPR:
case MODIFY_EXPR:
ref1 = 1;
break;
/* 24There also exist candidate operator functions of the form
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool); */
case TRUTH_NOT_EXPR:
build_builtin_candidate
(candidates, fnname, boolean_type_node,
NULL_TREE, args, argtypes, flags);
return;
case TRUTH_ORIF_EXPR:
case TRUTH_ANDIF_EXPR:
build_builtin_candidate
(candidates, fnname, boolean_type_node,
boolean_type_node, args, argtypes, flags);
return;
case ADDR_EXPR:
case COMPOUND_EXPR:
case COMPONENT_REF:
return;
case COND_EXPR:
case EQ_EXPR:
case NE_EXPR:
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
enum_p = 1;
/* Fall through. */
default:
ref1 = 0;
}
types[0] = types[1] = NULL_TREE;
for (i = 0; i < 2; ++i)
{
if (! args[i])
;
else if (IS_AGGR_TYPE (argtypes[i]))
{
tree convs;
if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
return;
convs = lookup_conversions (argtypes[i]);
if (code == COND_EXPR)
{
if (real_lvalue_p (args[i]))
types[i] = tree_cons
(NULL_TREE, build_reference_type (argtypes[i]), types[i]);
types[i] = tree_cons
(NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
}
else if (! convs)
return;
for (; convs; convs = TREE_CHAIN (convs))
{
type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));
if (i == 0 && ref1
&& (TREE_CODE (type) != REFERENCE_TYPE
|| CP_TYPE_CONST_P (TREE_TYPE (type))))
continue;
if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
types[i] = tree_cons (NULL_TREE, type, types[i]);
type = non_reference (type);
if (i != 0 || ! ref1)
{
type = TYPE_MAIN_VARIANT (type_decays_to (type));
if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
types[i] = tree_cons (NULL_TREE, type, types[i]);
if (INTEGRAL_TYPE_P (type))
type = type_promotes_to (type);
}
if (! value_member (type, types[i]))
types[i] = tree_cons (NULL_TREE, type, types[i]);
}
}
else
{
if (code == COND_EXPR && real_lvalue_p (args[i]))
types[i] = tree_cons
(NULL_TREE, build_reference_type (argtypes[i]), types[i]);
type = non_reference (argtypes[i]);
if (i != 0 || ! ref1)
{
type = TYPE_MAIN_VARIANT (type_decays_to (type));
if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
types[i] = tree_cons (NULL_TREE, type, types[i]);
if (INTEGRAL_TYPE_P (type))
type = type_promotes_to (type);
}
types[i] = tree_cons (NULL_TREE, type, types[i]);
}
}
/* Run through the possible parameter types of both arguments,
creating candidates with those parameter types. */
for (; types[0]; types[0] = TREE_CHAIN (types[0]))
{
if (types[1])
for (type = types[1]; type; type = TREE_CHAIN (type))
add_builtin_candidate
(candidates, code, code2, fnname, TREE_VALUE (types[0]),
TREE_VALUE (type), args, argtypes, flags);
else
add_builtin_candidate
(candidates, code, code2, fnname, TREE_VALUE (types[0]),
NULL_TREE, args, argtypes, flags);
}
}
/* If TMPL can be successfully instantiated as indicated by
EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
TMPL is the template. EXPLICIT_TARGS are any explicit template
arguments. ARGLIST is the arguments provided at the call-site.
The RETURN_TYPE is the desired type for conversion operators. If
OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
add_conv_candidate. */
static struct z_candidate*
add_template_candidate_real (struct z_candidate **candidates, tree tmpl,
tree ctype, tree explicit_targs, tree arglist,
tree return_type, tree access_path,
tree conversion_path, int flags, tree obj,
unification_kind_t strict)
{
int ntparms = DECL_NTPARMS (tmpl);
tree targs = make_tree_vec (ntparms);
tree args_without_in_chrg = arglist;
struct z_candidate *cand;
int i;
tree fn;
/* We don't do deduction on the in-charge parameter, the VTT
parameter or 'this'. */
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl))
args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl)
|| DECL_BASE_CONSTRUCTOR_P (tmpl))
&& CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl)))
args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
i = fn_type_unification (tmpl, explicit_targs, targs,
args_without_in_chrg,
return_type, strict, flags);
if (i != 0)
return NULL;
fn = instantiate_template (tmpl, targs, tf_none);
if (fn == error_mark_node)
return NULL;
/* In [class.copy]:
A member function template is never instantiated to perform the
copy of a class object to an object of its class type.
It's a little unclear what this means; the standard explicitly
does allow a template to be used to copy a class. For example,
in:
struct A {
A(A&);
template <class T> A(const T&);
};
const A f ();
void g () { A a (f ()); }
the member template will be used to make the copy. The section
quoted above appears in the paragraph that forbids constructors
whose only parameter is (a possibly cv-qualified variant of) the
class type, and a logical interpretation is that the intent was
to forbid the instantiation of member templates which would then
have that form. */
if (DECL_CONSTRUCTOR_P (fn) && list_length (arglist) == 2)
{
tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (fn);
if (arg_types && same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types)),
ctype))
return NULL;
}
if (obj != NULL_TREE)
/* Aha, this is a conversion function. */
cand = add_conv_candidate (candidates, fn, obj, access_path,
conversion_path, arglist);
else
cand = add_function_candidate (candidates, fn, ctype,
arglist, access_path,
conversion_path, flags);
if (DECL_TI_TEMPLATE (fn) != tmpl)
/* This situation can occur if a member template of a template
class is specialized. Then, instantiate_template might return
an instantiation of the specialization, in which case the
DECL_TI_TEMPLATE field will point at the original
specialization. For example:
template <class T> struct S { template <class U> void f(U);
template <> void f(int) {}; };
S<double> sd;
sd.f(3);
Here, TMPL will be template <class U> S<double>::f(U).
And, instantiate template will give us the specialization
template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
for this will point at template <class T> template <> S<T>::f(int),
so that we can find the definition. For the purposes of
overload resolution, however, we want the original TMPL. */
cand->template_decl = tree_cons (tmpl, targs, NULL_TREE);
else
cand->template_decl = DECL_TEMPLATE_INFO (fn);
return cand;
}
static struct z_candidate *
add_template_candidate (struct z_candidate **candidates, tree tmpl, tree ctype,
tree explicit_targs, tree arglist, tree return_type,
tree access_path, tree conversion_path, int flags,
unification_kind_t strict)
{
return
add_template_candidate_real (candidates, tmpl, ctype,
explicit_targs, arglist, return_type,
access_path, conversion_path,
flags, NULL_TREE, strict);
}
static struct z_candidate *
add_template_conv_candidate (struct z_candidate **candidates, tree tmpl,
tree obj, tree arglist, tree return_type,
tree access_path, tree conversion_path)
{
return
add_template_candidate_real (candidates, tmpl, NULL_TREE, NULL_TREE,
arglist, return_type, access_path,
conversion_path, 0, obj, DEDUCE_CONV);
}
/* The CANDS are the set of candidates that were considered for
overload resolution. Return the set of viable candidates. If none
of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
is true if a candidate should be considered viable only if it is
strictly viable. */
static struct z_candidate*
splice_viable (struct z_candidate *cands,
bool strict_p,
bool *any_viable_p)
{
struct z_candidate *viable;
struct z_candidate **last_viable;
struct z_candidate **cand;
viable = NULL;
last_viable = &viable;
*any_viable_p = false;
cand = &cands;
while (*cand)
{
struct z_candidate *c = *cand;
if (strict_p ? c->viable == 1 : c->viable)
{
*last_viable = c;
*cand = c->next;
c->next = NULL;
last_viable = &c->next;
*any_viable_p = true;
}
else
cand = &c->next;
}
return viable ? viable : cands;
}
static bool
any_strictly_viable (struct z_candidate *cands)
{
for (; cands; cands = cands->next)
if (cands->viable == 1)
return true;
return false;
}
/* OBJ is being used in an expression like "OBJ.f (...)". In other
words, it is about to become the "this" pointer for a member
function call. Take the address of the object. */
static tree
build_this (tree obj)
{
/* In a template, we are only concerned about the type of the
expression, so we can take a shortcut. */
if (processing_template_decl)
return build_address (obj);
return build_unary_op (ADDR_EXPR, obj, 0);
}
/* Returns true iff functions are equivalent. Equivalent functions are
not '==' only if one is a function-local extern function or if
both are extern "C". */
static inline int
equal_functions (tree fn1, tree fn2)
{
if (DECL_LOCAL_FUNCTION_P (fn1) || DECL_LOCAL_FUNCTION_P (fn2)
|| DECL_EXTERN_C_FUNCTION_P (fn1))
return decls_match (fn1, fn2);
return fn1 == fn2;
}
/* Print information about one overload candidate CANDIDATE. MSGSTR
is the text to print before the candidate itself.
NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
to have been run through gettext by the caller. This wart makes
life simpler in print_z_candidates and for the translators. */
static void
print_z_candidate (const char *msgstr, struct z_candidate *candidate)
{
if (TREE_CODE (candidate->fn) == IDENTIFIER_NODE)
{
if (candidate->num_convs == 3)
inform ("%s %D(%T, %T, %T) <built-in>", msgstr, candidate->fn,
candidate->convs[0]->type,
candidate->convs[1]->type,
candidate->convs[2]->type);
else if (candidate->num_convs == 2)
inform ("%s %D(%T, %T) <built-in>", msgstr, candidate->fn,
candidate->convs[0]->type,
candidate->convs[1]->type);
else
inform ("%s %D(%T) <built-in>", msgstr, candidate->fn,
candidate->convs[0]->type);
}
else if (TYPE_P (candidate->fn))
inform ("%s %T <conversion>", msgstr, candidate->fn);
else if (candidate->viable == -1)
inform ("%s %+#D <near match>", msgstr, candidate->fn);
else
inform ("%s %+#D", msgstr, candidate->fn);
}
static void
print_z_candidates (struct z_candidate *candidates)
{
const char *str;
struct z_candidate *cand1;
struct z_candidate **cand2;
/* There may be duplicates in the set of candidates. We put off
checking this condition as long as possible, since we have no way
to eliminate duplicates from a set of functions in less than n^2
time. Now we are about to emit an error message, so it is more
permissible to go slowly. */
for (cand1 = candidates; cand1; cand1 = cand1->next)
{
tree fn = cand1->fn;
/* Skip builtin candidates and conversion functions. */
if (TREE_CODE (fn) != FUNCTION_DECL)
continue;
cand2 = &cand1->next;
while (*cand2)
{
if (TREE_CODE ((*cand2)->fn) == FUNCTION_DECL
&& equal_functions (fn, (*cand2)->fn))
*cand2 = (*cand2)->next;
else
cand2 = &(*cand2)->next;
}
}
if (!candidates)
return;
str = _("candidates are:");
print_z_candidate (str, candidates);
if (candidates->next)
{
/* Indent successive candidates by the width of the translation
of the above string. */
size_t len = gcc_gettext_width (str) + 1;
char *spaces = (char *) alloca (len);
memset (spaces, ' ', len-1);
spaces[len - 1] = '\0';
candidates = candidates->next;
do
{
print_z_candidate (spaces, candidates);
candidates = candidates->next;
}
while (candidates);
}
}
/* USER_SEQ is a user-defined conversion sequence, beginning with a
USER_CONV. STD_SEQ is the standard conversion sequence applied to
the result of the conversion function to convert it to the final
desired type. Merge the two sequences into a single sequence,
and return the merged sequence. */
static conversion *
merge_conversion_sequences (conversion *user_seq, conversion *std_seq)
{
conversion **t;
gcc_assert (user_seq->kind == ck_user);
/* Find the end of the second conversion sequence. */
t = &(std_seq);
while ((*t)->kind != ck_identity)
t = &((*t)->u.next);
/* Replace the identity conversion with the user conversion
sequence. */
*t = user_seq;
/* The entire sequence is a user-conversion sequence. */
std_seq->user_conv_p = true;
return std_seq;
}
/* Returns the best overload candidate to perform the requested
conversion. This function is used for three the overloading situations
described in [over.match.copy], [over.match.conv], and [over.match.ref].
If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
per [dcl.init.ref], so we ignore temporary bindings. */
static struct z_candidate *
build_user_type_conversion_1 (tree totype, tree expr, int flags)
{
struct z_candidate *candidates, *cand;
tree fromtype = TREE_TYPE (expr);
tree ctors = NULL_TREE;
tree conv_fns = NULL_TREE;
conversion *conv = NULL;
tree args = NULL_TREE;
bool any_viable_p;
/* We represent conversion within a hierarchy using RVALUE_CONV and
BASE_CONV, as specified by [over.best.ics]; these become plain
constructor calls, as specified in [dcl.init]. */
gcc_assert (!IS_AGGR_TYPE (fromtype) || !IS_AGGR_TYPE (totype)
|| !DERIVED_FROM_P (totype, fromtype));
if (IS_AGGR_TYPE (totype))
ctors = lookup_fnfields (totype, complete_ctor_identifier, 0);
if (IS_AGGR_TYPE (fromtype))
conv_fns = lookup_conversions (fromtype);
candidates = 0;
flags |= LOOKUP_NO_CONVERSION;
if (ctors)
{
tree t;
ctors = BASELINK_FUNCTIONS (ctors);
t = build_int_cst (build_pointer_type (totype), 0);
args = build_tree_list (NULL_TREE, expr);
/* We should never try to call the abstract or base constructor
from here. */
gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors))
&& !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors)));
args = tree_cons (NULL_TREE, t, args);
}
for (; ctors; ctors = OVL_NEXT (ctors))
{
tree ctor = OVL_CURRENT (ctors);
if (DECL_NONCONVERTING_P (ctor))
continue;
if (TREE_CODE (ctor) == TEMPLATE_DECL)
cand = add_template_candidate (&candidates, ctor, totype,
NULL_TREE, args, NULL_TREE,
TYPE_BINFO (totype),
TYPE_BINFO (totype),
flags,
DEDUCE_CALL);
else
cand = add_function_candidate (&candidates, ctor, totype,
args, TYPE_BINFO (totype),
TYPE_BINFO (totype),
flags);
if (cand)
cand->second_conv = build_identity_conv (totype, NULL_TREE);
}
if (conv_fns)
args = build_tree_list (NULL_TREE, build_this (expr));
for (; conv_fns; conv_fns = TREE_CHAIN (conv_fns))
{
tree fns;
tree conversion_path = TREE_PURPOSE (conv_fns);
int convflags = LOOKUP_NO_CONVERSION;
/* If we are called to convert to a reference type, we are trying to
find an lvalue binding, so don't even consider temporaries. If
we don't find an lvalue binding, the caller will try again to
look for a temporary binding. */
if (TREE_CODE (totype) == REFERENCE_TYPE)
convflags |= LOOKUP_NO_TEMP_BIND;
for (fns = TREE_VALUE (conv_fns); fns; fns = OVL_NEXT (fns))
{
tree fn = OVL_CURRENT (fns);
/* [over.match.funcs] For conversion functions, the function
is considered to be a member of the class of the implicit
object argument for the purpose of defining the type of
the implicit object parameter.
So we pass fromtype as CTYPE to add_*_candidate. */
if (TREE_CODE (fn) == TEMPLATE_DECL)
cand = add_template_candidate (&candidates, fn, fromtype,
NULL_TREE,
args, totype,
TYPE_BINFO (fromtype),
conversion_path,
flags,
DEDUCE_CONV);
else
cand = add_function_candidate (&candidates, fn, fromtype,
args,
TYPE_BINFO (fromtype),
conversion_path,
flags);
if (cand)
{
conversion *ics
= implicit_conversion (totype,
TREE_TYPE (TREE_TYPE (cand->fn)),
0,
/*c_cast_p=*/false, convflags);
cand->second_conv = ics;
if (!ics)
cand->viable = 0;
else if (candidates->viable == 1 && ics->bad_p)
cand->viable = -1;
}
}
}
candidates = splice_viable (candidates, pedantic, &any_viable_p);
if (!any_viable_p)
return NULL;
cand = tourney (candidates);
if (cand == 0)
{
if (flags & LOOKUP_COMPLAIN)
{
error ("conversion from %qT to %qT is ambiguous",
fromtype, totype);
print_z_candidates (candidates);
}
cand = candidates; /* any one will do */
cand->second_conv = build_ambiguous_conv (totype, expr);
cand->second_conv->user_conv_p = true;
if (!any_strictly_viable (candidates))
cand->second_conv->bad_p = true;
/* If there are viable candidates, don't set ICS_BAD_FLAG; an
ambiguous conversion is no worse than another user-defined
conversion. */
return cand;
}
/* Build the user conversion sequence. */
conv = build_conv
(ck_user,
(DECL_CONSTRUCTOR_P (cand->fn)
? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
build_identity_conv (TREE_TYPE (expr), expr));
conv->cand = cand;
/* Combine it with the second conversion sequence. */
cand->second_conv = merge_conversion_sequences (conv,
cand->second_conv);
if (cand->viable == -1)
cand->second_conv->bad_p = true;
return cand;
}
tree
build_user_type_conversion (tree totype, tree expr, int flags)
{
struct z_candidate *cand
= build_user_type_conversion_1 (totype, expr, flags);
if (cand)
{
if (cand->second_conv->kind == ck_ambig)
return error_mark_node;
expr = convert_like (cand->second_conv, expr);
return convert_from_reference (expr);
}
return NULL_TREE;
}
/* Do any initial processing on the arguments to a function call. */
static tree
resolve_args (tree args)
{
tree t;
for (t = args; t; t = TREE_CHAIN (t))
{
tree arg = TREE_VALUE (t);
if (error_operand_p (arg))
return error_mark_node;
else if (VOID_TYPE_P (TREE_TYPE (arg)))
{
error ("invalid use of void expression");
return error_mark_node;
}
else if (invalid_nonstatic_memfn_p (arg))
return error_mark_node;
}
return args;
}
/* Perform overload resolution on FN, which is called with the ARGS.
Return the candidate function selected by overload resolution, or
NULL if the event that overload resolution failed. In the case
that overload resolution fails, *CANDIDATES will be the set of
candidates considered, and ANY_VIABLE_P will be set to true or
false to indicate whether or not any of the candidates were
viable.
The ARGS should already have gone through RESOLVE_ARGS before this
function is called. */
static struct z_candidate *
perform_overload_resolution (tree fn,
tree args,
struct z_candidate **candidates,
bool *any_viable_p)
{
struct z_candidate *cand;
tree explicit_targs = NULL_TREE;
int template_only = 0;
*candidates = NULL;
*any_viable_p = true;
/* Check FN and ARGS. */
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL
|| TREE_CODE (fn) == TEMPLATE_DECL
|| TREE_CODE (fn) == OVERLOAD
|| TREE_CODE (fn) == TEMPLATE_ID_EXPR);
gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
{
explicit_targs = TREE_OPERAND (fn, 1);
fn = TREE_OPERAND (fn, 0);
template_only = 1;
}
/* Add the various candidate functions. */
add_candidates (fn, args, explicit_targs, template_only,
/*conversion_path=*/NULL_TREE,
/*access_path=*/NULL_TREE,
LOOKUP_NORMAL,
candidates);
*candidates = splice_viable (*candidates, pedantic, any_viable_p);
if (!*any_viable_p)
return NULL;
cand = tourney (*candidates);
return cand;
}
/* Return an expression for a call to FN (a namespace-scope function,
or a static member function) with the ARGS. */
tree
build_new_function_call (tree fn, tree args, bool koenig_p)
{
struct z_candidate *candidates, *cand;
bool any_viable_p;
void *p;
tree result;
args = resolve_args (args);
if (args == error_mark_node)
return error_mark_node;
/* If this function was found without using argument dependent
lookup, then we want to ignore any undeclared friend
functions. */
if (!koenig_p)
{
tree orig_fn = fn;
fn = remove_hidden_names (fn);
if (!fn)
{
error ("no matching function for call to %<%D(%A)%>",
DECL_NAME (OVL_CURRENT (orig_fn)), args);
return error_mark_node;
}
}
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
cand = perform_overload_resolution (fn, args, &candidates, &any_viable_p);
if (!cand)
{
if (!any_viable_p && candidates && ! candidates->next)
return build_function_call (candidates->fn, args);
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
fn = TREE_OPERAND (fn, 0);
if (!any_viable_p)
error ("no matching function for call to %<%D(%A)%>",
DECL_NAME (OVL_CURRENT (fn)), args);
else
error ("call of overloaded %<%D(%A)%> is ambiguous",
DECL_NAME (OVL_CURRENT (fn)), args);
if (candidates)
print_z_candidates (candidates);
result = error_mark_node;
}
else
result = build_over_call (cand, LOOKUP_NORMAL);
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return result;
}
/* Build a call to a global operator new. FNNAME is the name of the
operator (either "operator new" or "operator new[]") and ARGS are
the arguments provided. *SIZE points to the total number of bytes
required by the allocation, and is updated if that is changed here.
*COOKIE_SIZE is non-NULL if a cookie should be used. If this
function determines that no cookie should be used, after all,
*COOKIE_SIZE is set to NULL_TREE. If FN is non-NULL, it will be
set, upon return, to the allocation function called. */
tree
build_operator_new_call (tree fnname, tree args,
tree *size, tree *cookie_size,
tree *fn)
{
tree fns;
struct z_candidate *candidates;
struct z_candidate *cand;
bool any_viable_p;
if (fn)
*fn = NULL_TREE;
args = tree_cons (NULL_TREE, *size, args);
args = resolve_args (args);
if (args == error_mark_node)
return args;
/* Based on:
[expr.new]
If this lookup fails to find the name, or if the allocated type
is not a class type, the allocation function's name is looked
up in the global scope.
we disregard block-scope declarations of "operator new". */
fns = lookup_function_nonclass (fnname, args, /*block_p=*/false);
/* Figure out what function is being called. */
cand = perform_overload_resolution (fns, args, &candidates, &any_viable_p);
/* If no suitable function could be found, issue an error message
and give up. */
if (!cand)
{
if (!any_viable_p)
error ("no matching function for call to %<%D(%A)%>",
DECL_NAME (OVL_CURRENT (fns)), args);
else
error ("call of overloaded %<%D(%A)%> is ambiguous",
DECL_NAME (OVL_CURRENT (fns)), args);
if (candidates)
print_z_candidates (candidates);
return error_mark_node;
}
/* If a cookie is required, add some extra space. Whether
or not a cookie is required cannot be determined until
after we know which function was called. */
if (*cookie_size)
{
bool use_cookie = true;
if (!abi_version_at_least (2))
{
tree placement = TREE_CHAIN (args);
/* In G++ 3.2, the check was implemented incorrectly; it
looked at the placement expression, rather than the
type of the function. */
if (placement && !TREE_CHAIN (placement)
&& same_type_p (TREE_TYPE (TREE_VALUE (placement)),
ptr_type_node))
use_cookie = false;
}
else
{
tree arg_types;
arg_types = TYPE_ARG_TYPES (TREE_TYPE (cand->fn));
/* Skip the size_t parameter. */
arg_types = TREE_CHAIN (arg_types);
/* Check the remaining parameters (if any). */
if (arg_types
&& TREE_CHAIN (arg_types) == void_list_node
&& same_type_p (TREE_VALUE (arg_types),
ptr_type_node))
use_cookie = false;
}
/* If we need a cookie, adjust the number of bytes allocated. */
if (use_cookie)
{
/* Update the total size. */
*size = size_binop (PLUS_EXPR, *size, *cookie_size);
/* Update the argument list to reflect the adjusted size. */
TREE_VALUE (args) = *size;
}
else
*cookie_size = NULL_TREE;
}
/* Tell our caller which function we decided to call. */
if (fn)
*fn = cand->fn;
/* Build the CALL_EXPR. */
return build_over_call (cand, LOOKUP_NORMAL);
}
static tree
build_object_call (tree obj, tree args)
{
struct z_candidate *candidates = 0, *cand;
tree fns, convs, mem_args = NULL_TREE;
tree type = TREE_TYPE (obj);
bool any_viable_p;
tree result = NULL_TREE;
void *p;
if (TYPE_PTRMEMFUNC_P (type))
{
/* It's no good looking for an overloaded operator() on a
pointer-to-member-function. */
error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj);
return error_mark_node;
}
if (TYPE_BINFO (type))
{
fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname (CALL_EXPR), 1);
if (fns == error_mark_node)
return error_mark_node;
}
else
fns = NULL_TREE;
args = resolve_args (args);
if (args == error_mark_node)
return error_mark_node;
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
if (fns)
{
tree base = BINFO_TYPE (BASELINK_BINFO (fns));
mem_args = tree_cons (NULL_TREE, build_this (obj), args);
for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
{
tree fn = OVL_CURRENT (fns);
if (TREE_CODE (fn) == TEMPLATE_DECL)
add_template_candidate (&candidates, fn, base, NULL_TREE,
mem_args, NULL_TREE,
TYPE_BINFO (type),
TYPE_BINFO (type),
LOOKUP_NORMAL, DEDUCE_CALL);
else
add_function_candidate
(&candidates, fn, base, mem_args, TYPE_BINFO (type),
TYPE_BINFO (type), LOOKUP_NORMAL);
}
}
convs = lookup_conversions (type);
for (; convs; convs = TREE_CHAIN (convs))
{
tree fns = TREE_VALUE (convs);
tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));
if ((TREE_CODE (totype) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
|| (TREE_CODE (totype) == REFERENCE_TYPE
&& TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
|| (TREE_CODE (totype) == REFERENCE_TYPE
&& TREE_CODE (TREE_TYPE (totype)) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (TREE_TYPE (totype))) == FUNCTION_TYPE))
for (; fns; fns = OVL_NEXT (fns))
{
tree fn = OVL_CURRENT (fns);
if (TREE_CODE (fn) == TEMPLATE_DECL)
add_template_conv_candidate
(&candidates, fn, obj, args, totype,
/*access_path=*/NULL_TREE,
/*conversion_path=*/NULL_TREE);
else
add_conv_candidate (&candidates, fn, obj, args,
/*conversion_path=*/NULL_TREE,
/*access_path=*/NULL_TREE);
}
}
candidates = splice_viable (candidates, pedantic, &any_viable_p);
if (!any_viable_p)
{
error ("no match for call to %<(%T) (%A)%>", TREE_TYPE (obj), args);
print_z_candidates (candidates);
result = error_mark_node;
}
else
{
cand = tourney (candidates);
if (cand == 0)
{
error ("call of %<(%T) (%A)%> is ambiguous", TREE_TYPE (obj), args);
print_z_candidates (candidates);
result = error_mark_node;
}
/* Since cand->fn will be a type, not a function, for a conversion
function, we must be careful not to unconditionally look at
DECL_NAME here. */
else if (TREE_CODE (cand->fn) == FUNCTION_DECL
&& DECL_OVERLOADED_OPERATOR_P (cand->fn) == CALL_EXPR)
result = build_over_call (cand, LOOKUP_NORMAL);
else
{
obj = convert_like_with_context (cand->convs[0], obj, cand->fn, -1);
obj = convert_from_reference (obj);
result = build_function_call (obj, args);
}
}
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return result;
}
static void
op_error (enum tree_code code, enum tree_code code2,
tree arg1, tree arg2, tree arg3, const char *problem)
{
const char *opname;
if (code == MODIFY_EXPR)
opname = assignment_operator_name_info[code2].name;
else
opname = operator_name_info[code].name;
switch (code)
{
case COND_EXPR:
error ("%s for ternary %<operator?:%> in %<%E ? %E : %E%>",
problem, arg1, arg2, arg3);
break;
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
error ("%s for %<operator%s%> in %<%E%s%>", problem, opname, arg1, opname);
break;
case ARRAY_REF:
error ("%s for %<operator[]%> in %<%E[%E]%>", problem, arg1, arg2);
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
error ("%s for %qs in %<%s %E%>", problem, opname, opname, arg1);
break;
default:
if (arg2)
error ("%s for %<operator%s%> in %<%E %s %E%>",
problem, opname, arg1, opname, arg2);
else
error ("%s for %<operator%s%> in %<%s%E%>",
problem, opname, opname, arg1);
break;
}
}
/* Return the implicit conversion sequence that could be used to
convert E1 to E2 in [expr.cond]. */
static conversion *
conditional_conversion (tree e1, tree e2)
{
tree t1 = non_reference (TREE_TYPE (e1));
tree t2 = non_reference (TREE_TYPE (e2));
conversion *conv;
bool good_base;
/* [expr.cond]
If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
implicitly converted (clause _conv_) to the type "reference to
T2", subject to the constraint that in the conversion the
reference must bind directly (_dcl.init.ref_) to E1. */
if (real_lvalue_p (e2))
{
conv = implicit_conversion (build_reference_type (t2),
t1,
e1,
/*c_cast_p=*/false,
LOOKUP_NO_TEMP_BIND);
if (conv)
return conv;
}
/* [expr.cond]
If E1 and E2 have class type, and the underlying class types are
the same or one is a base class of the other: E1 can be converted
to match E2 if the class of T2 is the same type as, or a base
class of, the class of T1, and the cv-qualification of T2 is the
same cv-qualification as, or a greater cv-qualification than, the
cv-qualification of T1. If the conversion is applied, E1 is
changed to an rvalue of type T2 that still refers to the original
source class object (or the appropriate subobject thereof). */
if (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
&& ((good_base = DERIVED_FROM_P (t2, t1)) || DERIVED_FROM_P (t1, t2)))
{
if (good_base && at_least_as_qualified_p (t2, t1))
{
conv = build_identity_conv (t1, e1);
if (!same_type_p (TYPE_MAIN_VARIANT (t1),
TYPE_MAIN_VARIANT (t2)))
conv = build_conv (ck_base, t2, conv);
else
conv = build_conv (ck_rvalue, t2, conv);
return conv;
}
else
return NULL;
}
else
/* [expr.cond]
Otherwise: E1 can be converted to match E2 if E1 can be implicitly
converted to the type that expression E2 would have if E2 were
converted to an rvalue (or the type it has, if E2 is an rvalue). */
return implicit_conversion (t2, t1, e1, /*c_cast_p=*/false,
LOOKUP_NORMAL);
}
/* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
arguments to the conditional expression. */
tree
build_conditional_expr (tree arg1, tree arg2, tree arg3)
{
tree arg2_type;
tree arg3_type;
tree result = NULL_TREE;
tree result_type = NULL_TREE;
bool lvalue_p = true;
struct z_candidate *candidates = 0;
struct z_candidate *cand;
void *p;
/* As a G++ extension, the second argument to the conditional can be
omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
c'.) If the second operand is omitted, make sure it is
calculated only once. */
if (!arg2)
{
if (pedantic)
pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
/* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
if (real_lvalue_p (arg1))
arg2 = arg1 = stabilize_reference (arg1);
else
arg2 = arg1 = save_expr (arg1);
}
/* [expr.cond]
The first expr ession is implicitly converted to bool (clause
_conv_). */
arg1 = perform_implicit_conversion (boolean_type_node, arg1);
/* If something has already gone wrong, just pass that fact up the
tree. */
if (error_operand_p (arg1)
|| error_operand_p (arg2)
|| error_operand_p (arg3))
return error_mark_node;
/* [expr.cond]
If either the second or the third operand has type (possibly
cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
array-to-pointer (_conv.array_), and function-to-pointer
(_conv.func_) standard conversions are performed on the second
and third operands. */
arg2_type = unlowered_expr_type (arg2);
arg3_type = unlowered_expr_type (arg3);
if (VOID_TYPE_P (arg2_type) || VOID_TYPE_P (arg3_type))
{
/* Do the conversions. We don't these for `void' type arguments
since it can't have any effect and since decay_conversion
does not handle that case gracefully. */
if (!VOID_TYPE_P (arg2_type))
arg2 = decay_conversion (arg2);
if (!VOID_TYPE_P (arg3_type))
arg3 = decay_conversion (arg3);
arg2_type = TREE_TYPE (arg2);
arg3_type = TREE_TYPE (arg3);
/* [expr.cond]
One of the following shall hold:
--The second or the third operand (but not both) is a
throw-expression (_except.throw_); the result is of the
type of the other and is an rvalue.
--Both the second and the third operands have type void; the
result is of type void and is an rvalue.
We must avoid calling force_rvalue for expressions of type
"void" because it will complain that their value is being
used. */
if (TREE_CODE (arg2) == THROW_EXPR
&& TREE_CODE (arg3) != THROW_EXPR)
{
if (!VOID_TYPE_P (arg3_type))
arg3 = force_rvalue (arg3);
arg3_type = TREE_TYPE (arg3);
result_type = arg3_type;
}
else if (TREE_CODE (arg2) != THROW_EXPR
&& TREE_CODE (arg3) == THROW_EXPR)
{
if (!VOID_TYPE_P (arg2_type))
arg2 = force_rvalue (arg2);
arg2_type = TREE_TYPE (arg2);
result_type = arg2_type;
}
else if (VOID_TYPE_P (arg2_type) && VOID_TYPE_P (arg3_type))
result_type = void_type_node;
else
{
if (VOID_TYPE_P (arg2_type))
error ("second operand to the conditional operator "
"is of type %<void%>, "
"but the third operand is neither a throw-expression "
"nor of type %<void%>");
else
error ("third operand to the conditional operator "
"is of type %<void%>, "
"but the second operand is neither a throw-expression "
"nor of type %<void%>");
return error_mark_node;
}
lvalue_p = false;
goto valid_operands;
}
/* [expr.cond]
Otherwise, if the second and third operand have different types,
and either has (possibly cv-qualified) class type, an attempt is
made to convert each of those operands to the type of the other. */
else if (!same_type_p (arg2_type, arg3_type)
&& (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
{
conversion *conv2;
conversion *conv3;
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
conv2 = conditional_conversion (arg2, arg3);
conv3 = conditional_conversion (arg3, arg2);
/* [expr.cond]
If both can be converted, or one can be converted but the
conversion is ambiguous, the program is ill-formed. If
neither can be converted, the operands are left unchanged and
further checking is performed as described below. If exactly
one conversion is possible, that conversion is applied to the
chosen operand and the converted operand is used in place of
the original operand for the remainder of this section. */
if ((conv2 && !conv2->bad_p
&& conv3 && !conv3->bad_p)
|| (conv2 && conv2->kind == ck_ambig)
|| (conv3 && conv3->kind == ck_ambig))
{
error ("operands to ?: have different types %qT and %qT",
arg2_type, arg3_type);
result = error_mark_node;
}
else if (conv2 && (!conv2->bad_p || !conv3))
{
arg2 = convert_like (conv2, arg2);
arg2 = convert_from_reference (arg2);
arg2_type = TREE_TYPE (arg2);
/* Even if CONV2 is a valid conversion, the result of the
conversion may be invalid. For example, if ARG3 has type
"volatile X", and X does not have a copy constructor
accepting a "volatile X&", then even if ARG2 can be
converted to X, the conversion will fail. */
if (error_operand_p (arg2))
result = error_mark_node;
}
else if (conv3 && (!conv3->bad_p || !conv2))
{
arg3 = convert_like (conv3, arg3);
arg3 = convert_from_reference (arg3);
arg3_type = TREE_TYPE (arg3);
if (error_operand_p (arg3))
result = error_mark_node;
}
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
if (result)
return result;
/* If, after the conversion, both operands have class type,
treat the cv-qualification of both operands as if it were the
union of the cv-qualification of the operands.
The standard is not clear about what to do in this
circumstance. For example, if the first operand has type
"const X" and the second operand has a user-defined
conversion to "volatile X", what is the type of the second
operand after this step? Making it be "const X" (matching
the first operand) seems wrong, as that discards the
qualification without actually performing a copy. Leaving it
as "volatile X" seems wrong as that will result in the
conditional expression failing altogether, even though,
according to this step, the one operand could be converted to
the type of the other. */
if ((conv2 || conv3)
&& CLASS_TYPE_P (arg2_type)
&& TYPE_QUALS (arg2_type) != TYPE_QUALS (arg3_type))
arg2_type = arg3_type =
cp_build_qualified_type (arg2_type,
TYPE_QUALS (arg2_type)
| TYPE_QUALS (arg3_type));
}
/* [expr.cond]
If the second and third operands are lvalues and have the same
type, the result is of that type and is an lvalue. */
if (real_lvalue_p (arg2)
&& real_lvalue_p (arg3)
&& same_type_p (arg2_type, arg3_type))
{
result_type = arg2_type;
goto valid_operands;
}
/* [expr.cond]
Otherwise, the result is an rvalue. If the second and third
operand do not have the same type, and either has (possibly
cv-qualified) class type, overload resolution is used to
determine the conversions (if any) to be applied to the operands
(_over.match.oper_, _over.built_). */
lvalue_p = false;
if (!same_type_p (arg2_type, arg3_type)
&& (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
{
tree args[3];
conversion *conv;
bool any_viable_p;
/* Rearrange the arguments so that add_builtin_candidate only has
to know about two args. In build_builtin_candidates, the
arguments are unscrambled. */
args[0] = arg2;
args[1] = arg3;
args[2] = arg1;
add_builtin_candidates (&candidates,
COND_EXPR,
NOP_EXPR,
ansi_opname (COND_EXPR),
args,
LOOKUP_NORMAL);
/* [expr.cond]
If the overload resolution fails, the program is
ill-formed. */
candidates = splice_viable (candidates, pedantic, &any_viable_p);
if (!any_viable_p)
{
op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
print_z_candidates (candidates);
return error_mark_node;
}
cand = tourney (candidates);
if (!cand)
{
op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
print_z_candidates (candidates);
return error_mark_node;
}
/* [expr.cond]
Otherwise, the conversions thus determined are applied, and
the converted operands are used in place of the original
operands for the remainder of this section. */
conv = cand->convs[0];
arg1 = convert_like (conv, arg1);
conv = cand->convs[1];
arg2 = convert_like (conv, arg2);
conv = cand->convs[2];
arg3 = convert_like (conv, arg3);
}
/* [expr.cond]
Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
and function-to-pointer (_conv.func_) standard conversions are
performed on the second and third operands.
We need to force the lvalue-to-rvalue conversion here for class types,
so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
that isn't wrapped with a TARGET_EXPR plays havoc with exception
regions. */
arg2 = force_rvalue (arg2);
if (!CLASS_TYPE_P (arg2_type))
arg2_type = TREE_TYPE (arg2);
arg3 = force_rvalue (arg3);
if (!CLASS_TYPE_P (arg2_type))
arg3_type = TREE_TYPE (arg3);
if (arg2 == error_mark_node || arg3 == error_mark_node)
return error_mark_node;
/* [expr.cond]
After those conversions, one of the following shall hold:
--The second and third operands have the same type; the result is of
that type. */
if (same_type_p (arg2_type, arg3_type))
result_type = arg2_type;
/* [expr.cond]
--The second and third operands have arithmetic or enumeration
type; the usual arithmetic conversions are performed to bring
them to a common type, and the result is of that type. */
else if ((ARITHMETIC_TYPE_P (arg2_type)
|| TREE_CODE (arg2_type) == ENUMERAL_TYPE)
&& (ARITHMETIC_TYPE_P (arg3_type)
|| TREE_CODE (arg3_type) == ENUMERAL_TYPE))
{
/* In this case, there is always a common type. */
result_type = type_after_usual_arithmetic_conversions (arg2_type,
arg3_type);
if (TREE_CODE (arg2_type) == ENUMERAL_TYPE
&& TREE_CODE (arg3_type) == ENUMERAL_TYPE)
warning (0, "enumeral mismatch in conditional expression: %qT vs %qT",
arg2_type, arg3_type);
else if (extra_warnings
&& ((TREE_CODE (arg2_type) == ENUMERAL_TYPE
&& !same_type_p (arg3_type, type_promotes_to (arg2_type)))
|| (TREE_CODE (arg3_type) == ENUMERAL_TYPE
&& !same_type_p (arg2_type, type_promotes_to (arg3_type)))))
warning (0, "enumeral and non-enumeral type in conditional expression");
arg2 = perform_implicit_conversion (result_type, arg2);
arg3 = perform_implicit_conversion (result_type, arg3);
}
/* [expr.cond]
--The second and third operands have pointer type, or one has
pointer type and the other is a null pointer constant; pointer
conversions (_conv.ptr_) and qualification conversions
(_conv.qual_) are performed to bring them to their composite
pointer type (_expr.rel_). The result is of the composite
pointer type.
--The second and third operands have pointer to member type, or
one has pointer to member type and the other is a null pointer
constant; pointer to member conversions (_conv.mem_) and
qualification conversions (_conv.qual_) are performed to bring
them to a common type, whose cv-qualification shall match the
cv-qualification of either the second or the third operand.
The result is of the common type. */
else if ((null_ptr_cst_p (arg2)
&& (TYPE_PTR_P (arg3_type) || TYPE_PTR_TO_MEMBER_P (arg3_type)))
|| (null_ptr_cst_p (arg3)
&& (TYPE_PTR_P (arg2_type) || TYPE_PTR_TO_MEMBER_P (arg2_type)))
|| (TYPE_PTR_P (arg2_type) && TYPE_PTR_P (arg3_type))
|| (TYPE_PTRMEM_P (arg2_type) && TYPE_PTRMEM_P (arg3_type))
|| (TYPE_PTRMEMFUNC_P (arg2_type) && TYPE_PTRMEMFUNC_P (arg3_type)))
{
result_type = composite_pointer_type (arg2_type, arg3_type, arg2,
arg3, "conditional expression");
if (result_type == error_mark_node)
return error_mark_node;
arg2 = perform_implicit_conversion (result_type, arg2);
arg3 = perform_implicit_conversion (result_type, arg3);
}
if (!result_type)
{
error ("operands to ?: have different types %qT and %qT",
arg2_type, arg3_type);
return error_mark_node;
}
valid_operands:
result = fold_if_not_in_template (build3 (COND_EXPR, result_type, arg1,
arg2, arg3));
/* We can't use result_type below, as fold might have returned a
throw_expr. */
if (!lvalue_p)
{
/* Expand both sides into the same slot, hopefully the target of
the ?: expression. We used to check for TARGET_EXPRs here,
but now we sometimes wrap them in NOP_EXPRs so the test would
fail. */
if (CLASS_TYPE_P (TREE_TYPE (result)))
result = get_target_expr (result);
/* If this expression is an rvalue, but might be mistaken for an
lvalue, we must add a NON_LVALUE_EXPR. */
result = rvalue (result);
}
return result;
}
/* OPERAND is an operand to an expression. Perform necessary steps
required before using it. If OPERAND is NULL_TREE, NULL_TREE is
returned. */
static tree
prep_operand (tree operand)
{
if (operand)
{
if (CLASS_TYPE_P (TREE_TYPE (operand))
&& CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand)))
/* Make sure the template type is instantiated now. */
instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand)));
}
return operand;
}
/* Add each of the viable functions in FNS (a FUNCTION_DECL or
OVERLOAD) to the CANDIDATES, returning an updated list of
CANDIDATES. The ARGS are the arguments provided to the call,
without any implicit object parameter. The EXPLICIT_TARGS are
explicit template arguments provided. TEMPLATE_ONLY is true if
only template functions should be considered. CONVERSION_PATH,
ACCESS_PATH, and FLAGS are as for add_function_candidate. */
static void
add_candidates (tree fns, tree args,
tree explicit_targs, bool template_only,
tree conversion_path, tree access_path,
int flags,
struct z_candidate **candidates)
{
tree ctype;
tree non_static_args;
ctype = conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE;
/* Delay creating the implicit this parameter until it is needed. */
non_static_args = NULL_TREE;
while (fns)
{
tree fn;
tree fn_args;
fn = OVL_CURRENT (fns);
/* Figure out which set of arguments to use. */
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
{
/* If this function is a non-static member, prepend the implicit
object parameter. */
if (!non_static_args)
non_static_args = tree_cons (NULL_TREE,
build_this (TREE_VALUE (args)),
TREE_CHAIN (args));
fn_args = non_static_args;
}
else
/* Otherwise, just use the list of arguments provided. */
fn_args = args;
if (TREE_CODE (fn) == TEMPLATE_DECL)
add_template_candidate (candidates,
fn,
ctype,
explicit_targs,
fn_args,
NULL_TREE,
access_path,
conversion_path,
flags,
DEDUCE_CALL);
else if (!template_only)
add_function_candidate (candidates,
fn,
ctype,
fn_args,
access_path,
conversion_path,
flags);
fns = OVL_NEXT (fns);
}
}
tree
build_new_op (enum tree_code code, int flags, tree arg1, tree arg2, tree arg3,
bool *overloaded_p)
{
struct z_candidate *candidates = 0, *cand;
tree arglist, fnname;
tree args[3];
tree result = NULL_TREE;
bool result_valid_p = false;
enum tree_code code2 = NOP_EXPR;
conversion *conv;
void *p;
bool strict_p;
bool any_viable_p;
bool expl_eq_arg1 = false;
if (error_operand_p (arg1)
|| error_operand_p (arg2)
|| error_operand_p (arg3))
return error_mark_node;
if (code == MODIFY_EXPR)
{
code2 = TREE_CODE (arg3);
arg3 = NULL_TREE;
fnname = ansi_assopname (code2);
}
else
fnname = ansi_opname (code);
arg1 = prep_operand (arg1);
switch (code)
{
case NEW_EXPR:
case VEC_NEW_EXPR:
case VEC_DELETE_EXPR:
case DELETE_EXPR:
/* Use build_op_new_call and build_op_delete_call instead. */
gcc_unreachable ();
case CALL_EXPR:
return build_object_call (arg1, arg2);
case TRUTH_ORIF_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
if (COMPARISON_CLASS_P (arg1))
expl_eq_arg1 = true;
default:
break;
}
arg2 = prep_operand (arg2);
arg3 = prep_operand (arg3);
if (code == COND_EXPR)
{
if (arg2 == NULL_TREE
|| TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
|| TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
|| (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
&& ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
goto builtin;
}
else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
&& (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
goto builtin;
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
arg2 = integer_zero_node;
arglist = NULL_TREE;
if (arg3)
arglist = tree_cons (NULL_TREE, arg3, arglist);
if (arg2)
arglist = tree_cons (NULL_TREE, arg2, arglist);
arglist = tree_cons (NULL_TREE, arg1, arglist);
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
/* Add namespace-scope operators to the list of functions to
consider. */
add_candidates (lookup_function_nonclass (fnname, arglist, /*block_p=*/true),
arglist, NULL_TREE, false, NULL_TREE, NULL_TREE,
flags, &candidates);
/* Add class-member operators to the candidate set. */
if (CLASS_TYPE_P (TREE_TYPE (arg1)))
{
tree fns;
fns = lookup_fnfields (TREE_TYPE (arg1), fnname, 1);
if (fns == error_mark_node)
{
result = error_mark_node;
goto user_defined_result_ready;
}
if (fns)
add_candidates (BASELINK_FUNCTIONS (fns), arglist,
NULL_TREE, false,
BASELINK_BINFO (fns),
TYPE_BINFO (TREE_TYPE (arg1)),
flags, &candidates);
}
/* Rearrange the arguments for ?: so that add_builtin_candidate only has
to know about two args; a builtin candidate will always have a first
parameter of type bool. We'll handle that in
build_builtin_candidate. */
if (code == COND_EXPR)
{
args[0] = arg2;
args[1] = arg3;
args[2] = arg1;
}
else
{
args[0] = arg1;
args[1] = arg2;
args[2] = NULL_TREE;
}
add_builtin_candidates (&candidates, code, code2, fnname, args, flags);
switch (code)
{
case COMPOUND_EXPR:
case ADDR_EXPR:
/* For these, the built-in candidates set is empty
[over.match.oper]/3. We don't want non-strict matches
because exact matches are always possible with built-in
operators. The built-in candidate set for COMPONENT_REF
would be empty too, but since there are no such built-in
operators, we accept non-strict matches for them. */
strict_p = true;
break;
default:
strict_p = pedantic;
break;
}
candidates = splice_viable (candidates, strict_p, &any_viable_p);
if (!any_viable_p)
{
switch (code)
{
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
/* Look for an `operator++ (int)'. If they didn't have
one, then we fall back to the old way of doing things. */
if (flags & LOOKUP_COMPLAIN)
pedwarn ("no %<%D(int)%> declared for postfix %qs, "
"trying prefix operator instead",
fnname,
operator_name_info[code].name);
if (code == POSTINCREMENT_EXPR)
code = PREINCREMENT_EXPR;
else
code = PREDECREMENT_EXPR;
result = build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE,
overloaded_p);
break;
/* The caller will deal with these. */
case ADDR_EXPR:
case COMPOUND_EXPR:
case COMPONENT_REF:
result = NULL_TREE;
result_valid_p = true;
break;
default:
if (flags & LOOKUP_COMPLAIN)
{
op_error (code, code2, arg1, arg2, arg3, "no match");
print_z_candidates (candidates);
}
result = error_mark_node;
break;
}
}
else
{
cand = tourney (candidates);
if (cand == 0)
{
if (flags & LOOKUP_COMPLAIN)
{
op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
print_z_candidates (candidates);
}
result = error_mark_node;
}
else if (TREE_CODE (cand->fn) == FUNCTION_DECL)
{
if (overloaded_p)
*overloaded_p = true;
result = build_over_call (cand, LOOKUP_NORMAL);
}
else
{
/* Give any warnings we noticed during overload resolution. */
if (cand->warnings)
{
struct candidate_warning *w;
for (w = cand->warnings; w; w = w->next)
joust (cand, w->loser, 1);
}
/* Check for comparison of different enum types. */
switch (code)
{
case GT_EXPR:
case LT_EXPR:
case GE_EXPR:
case LE_EXPR:
case EQ_EXPR:
case NE_EXPR:
if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE
&& TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE
&& (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
!= TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
{
warning (0, "comparison between %q#T and %q#T",
TREE_TYPE (arg1), TREE_TYPE (arg2));
}
break;
default:
break;
}
/* We need to strip any leading REF_BIND so that bitfields
don't cause errors. This should not remove any important
conversions, because builtins don't apply to class
objects directly. */
conv = cand->convs[0];
if (conv->kind == ck_ref_bind)
conv = conv->u.next;
arg1 = convert_like (conv, arg1);
if (arg2)
{
conv = cand->convs[1];
if (conv->kind == ck_ref_bind)
conv = conv->u.next;
arg2 = convert_like (conv, arg2);
}
if (arg3)
{
conv = cand->convs[2];
if (conv->kind == ck_ref_bind)
conv = conv->u.next;
arg3 = convert_like (conv, arg3);
}
if (!expl_eq_arg1)
{
warn_logical_operator (code, arg1, arg2);
expl_eq_arg1 = true;
}
}
}
user_defined_result_ready:
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
if (result || result_valid_p)
return result;
builtin:
switch (code)
{
case MODIFY_EXPR:
return build_modify_expr (arg1, code2, arg2);
case INDIRECT_REF:
return build_indirect_ref (arg1, "unary *");
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
if (!expl_eq_arg1)
warn_logical_operator (code, arg1, arg2);
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case GT_EXPR:
case LT_EXPR:
case GE_EXPR:
case LE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case MAX_EXPR:
case MIN_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case TRUNC_MOD_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
return cp_build_binary_op (code, arg1, arg2);
case UNARY_PLUS_EXPR:
case NEGATE_EXPR:
case BIT_NOT_EXPR:
case TRUTH_NOT_EXPR:
case PREINCREMENT_EXPR:
case POSTINCREMENT_EXPR:
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
case REALPART_EXPR:
case IMAGPART_EXPR:
return build_unary_op (code, arg1, candidates != 0);
case ARRAY_REF:
return build_array_ref (arg1, arg2);
case COND_EXPR:
return build_conditional_expr (arg1, arg2, arg3);
case MEMBER_REF:
return build_m_component_ref (build_indirect_ref (arg1, NULL), arg2);
/* The caller will deal with these. */
case ADDR_EXPR:
case COMPONENT_REF:
case COMPOUND_EXPR:
return NULL_TREE;
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Build a call to operator delete. This has to be handled very specially,
because the restrictions on what signatures match are different from all
other call instances. For a normal delete, only a delete taking (void *)
or (void *, size_t) is accepted. For a placement delete, only an exact
match with the placement new is accepted.
CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
ADDR is the pointer to be deleted.
SIZE is the size of the memory block to be deleted.
GLOBAL_P is true if the delete-expression should not consider
class-specific delete operators.
PLACEMENT is the corresponding placement new call, or NULL_TREE.
If this call to "operator delete" is being generated as part to
deallocate memory allocated via a new-expression (as per [expr.new]
which requires that if the initialization throws an exception then
we call a deallocation function), then ALLOC_FN is the allocation
function. */
tree
build_op_delete_call (enum tree_code code, tree addr, tree size,
bool global_p, tree placement,
tree alloc_fn)
{
tree fn = NULL_TREE;
tree fns, fnname, argtypes, type;
int pass;
if (addr == error_mark_node)
return error_mark_node;
type = strip_array_types (TREE_TYPE (TREE_TYPE (addr)));
fnname = ansi_opname (code);
if (CLASS_TYPE_P (type)
&& COMPLETE_TYPE_P (complete_type (type))
&& !global_p)
/* In [class.free]
If the result of the lookup is ambiguous or inaccessible, or if
the lookup selects a placement deallocation function, the
program is ill-formed.
Therefore, we ask lookup_fnfields to complain about ambiguity. */
{
fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
if (fns == error_mark_node)
return error_mark_node;
}
else
fns = NULL_TREE;
if (fns == NULL_TREE)
fns = lookup_name_nonclass (fnname);
/* Strip const and volatile from addr. */
addr = cp_convert (ptr_type_node, addr);
if (placement)
{
/* Get the parameter types for the allocation function that is
being called. */
gcc_assert (alloc_fn != NULL_TREE);
argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
}
else
{
/* First try it without the size argument. */
argtypes = void_list_node;
}
/* We make two tries at finding a matching `operator delete'. On
the first pass, we look for a one-operator (or placement)
operator delete. If we're not doing placement delete, then on
the second pass we look for a two-argument delete. */
for (pass = 0; pass < (placement ? 1 : 2); ++pass)
{
/* Go through the `operator delete' functions looking for one
with a matching type. */
for (fn = BASELINK_P (fns) ? BASELINK_FUNCTIONS (fns) : fns;
fn;
fn = OVL_NEXT (fn))
{
tree t;
/* The first argument must be "void *". */
t = TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn)));
if (!same_type_p (TREE_VALUE (t), ptr_type_node))
continue;
t = TREE_CHAIN (t);
/* On the first pass, check the rest of the arguments. */
if (pass == 0)
{
tree a = argtypes;
while (a && t)
{
if (!same_type_p (TREE_VALUE (a), TREE_VALUE (t)))
break;
a = TREE_CHAIN (a);
t = TREE_CHAIN (t);
}
if (!a && !t)
break;
}
/* On the second pass, look for a function with exactly two
arguments: "void *" and "size_t". */
else if (pass == 1
/* For "operator delete(void *, ...)" there will be
no second argument, but we will not get an exact
match above. */
&& t
&& same_type_p (TREE_VALUE (t), size_type_node)
&& TREE_CHAIN (t) == void_list_node)
break;
}
/* If we found a match, we're done. */
if (fn)
break;
}
/* If we have a matching function, call it. */
if (fn)
{
/* Make sure we have the actual function, and not an
OVERLOAD. */
fn = OVL_CURRENT (fn);
/* If the FN is a member function, make sure that it is
accessible. */
if (DECL_CLASS_SCOPE_P (fn))
perform_or_defer_access_check (TYPE_BINFO (type), fn, fn);
if (placement)
{
/* The placement args might not be suitable for overload
resolution at this point, so build the call directly. */
int nargs = call_expr_nargs (placement);
tree *argarray = (tree *) alloca (nargs * sizeof (tree));
int i;
argarray[0] = addr;
for (i = 1; i < nargs; i++)
argarray[i] = CALL_EXPR_ARG (placement, i);
mark_used (fn);
return build_cxx_call (fn, nargs, argarray);
}
else
{
tree args;
if (pass == 0)
args = tree_cons (NULL_TREE, addr, NULL_TREE);
else
args = tree_cons (NULL_TREE, addr,
build_tree_list (NULL_TREE, size));
return build_function_call (fn, args);
}
}
/* [expr.new]
If no unambiguous matching deallocation function can be found,
propagating the exception does not cause the object's memory to
be freed. */
if (alloc_fn)
{
if (!placement)
warning (0, "no corresponding deallocation function for `%D'",
alloc_fn);
return NULL_TREE;
}
error ("no suitable %<operator %s%> for %qT",
operator_name_info[(int)code].name, type);
return error_mark_node;
}
/* If the current scope isn't allowed to access DECL along
BASETYPE_PATH, give an error. The most derived class in
BASETYPE_PATH is the one used to qualify DECL. DIAG_DECL is
the declaration to use in the error diagnostic. */
bool
enforce_access (tree basetype_path, tree decl, tree diag_decl)
{
gcc_assert (TREE_CODE (basetype_path) == TREE_BINFO);
if (!accessible_p (basetype_path, decl, true))
{
if (TREE_PRIVATE (decl))
error ("%q+#D is private", diag_decl);
else if (TREE_PROTECTED (decl))
error ("%q+#D is protected", diag_decl);
else
error ("%q+#D is inaccessible", diag_decl);
error ("within this context");
return false;
}
return true;
}
/* Check that a callable constructor to initialize a temporary of
TYPE from an EXPR exists. */
static void
check_constructor_callable (tree type, tree expr)
{
build_special_member_call (NULL_TREE,
complete_ctor_identifier,
build_tree_list (NULL_TREE, expr),
type,
LOOKUP_NORMAL | LOOKUP_ONLYCONVERTING
| LOOKUP_NO_CONVERSION
| LOOKUP_CONSTRUCTOR_CALLABLE);
}
/* Initialize a temporary of type TYPE with EXPR. The FLAGS are a
bitwise or of LOOKUP_* values. If any errors are warnings are
generated, set *DIAGNOSTIC_FN to "error" or "warning",
respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN
to NULL. */
static tree
build_temp (tree expr, tree type, int flags,
diagnostic_fn_t *diagnostic_fn)
{
int savew, savee;
savew = warningcount, savee = errorcount;
expr = build_special_member_call (NULL_TREE,
complete_ctor_identifier,
build_tree_list (NULL_TREE, expr),
type, flags);
if (warningcount > savew)
*diagnostic_fn = warning0;
else if (errorcount > savee)
*diagnostic_fn = error;
else
*diagnostic_fn = NULL;
return expr;
}
/* Perform warnings about peculiar, but valid, conversions from/to NULL.
EXPR is implicitly converted to type TOTYPE.
FN and ARGNUM are used for diagnostics. */
static void
conversion_null_warnings (tree totype, tree expr, tree fn, int argnum)
{
tree t = non_reference (totype);
/* Issue warnings about peculiar, but valid, uses of NULL. */
if (expr == null_node && TREE_CODE (t) != BOOLEAN_TYPE && ARITHMETIC_TYPE_P (t))
{
if (fn)
warning (OPT_Wconversion, "passing NULL to non-pointer argument %P of %qD",
argnum, fn);
else
warning (OPT_Wconversion, "converting to non-pointer type %qT from NULL", t);
}
/* Issue warnings if "false" is converted to a NULL pointer */
else if (expr == boolean_false_node && fn && POINTER_TYPE_P (t))
warning (OPT_Wconversion,
"converting %<false%> to pointer type for argument %P of %qD",
argnum, fn);
}
/* Perform the conversions in CONVS on the expression EXPR. FN and
ARGNUM are used for diagnostics. ARGNUM is zero based, -1
indicates the `this' argument of a method. INNER is nonzero when
being called to continue a conversion chain. It is negative when a
reference binding will be applied, positive otherwise. If
ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
conversions will be emitted if appropriate. If C_CAST_P is true,
this conversion is coming from a C-style cast; in that case,
conversions to inaccessible bases are permitted. */
static tree
convert_like_real (conversion *convs, tree expr, tree fn, int argnum,
int inner, bool issue_conversion_warnings,
bool c_cast_p)
{
tree totype = convs->type;
diagnostic_fn_t diagnostic_fn;
if (convs->bad_p
&& convs->kind != ck_user
&& convs->kind != ck_ambig
&& convs->kind != ck_ref_bind)
{
conversion *t = convs;
for (; t; t = convs->u.next)
{
if (t->kind == ck_user || !t->bad_p)
{
expr = convert_like_real (t, expr, fn, argnum, 1,
/*issue_conversion_warnings=*/false,
/*c_cast_p=*/false);
break;
}
else if (t->kind == ck_ambig)
return convert_like_real (t, expr, fn, argnum, 1,
/*issue_conversion_warnings=*/false,
/*c_cast_p=*/false);
else if (t->kind == ck_identity)
break;
}
pedwarn ("invalid conversion from %qT to %qT", TREE_TYPE (expr), totype);
if (fn)
pedwarn (" initializing argument %P of %qD", argnum, fn);
return cp_convert (totype, expr);
}
if (issue_conversion_warnings)
conversion_null_warnings (totype, expr, fn, argnum);
switch (convs->kind)
{
case ck_user:
{
struct z_candidate *cand = convs->cand;
tree convfn = cand->fn;
expr = build_over_call (cand, LOOKUP_NORMAL);
/* If this is a constructor or a function returning an aggr type,
we need to build up a TARGET_EXPR. */
if (DECL_CONSTRUCTOR_P (convfn))
expr = build_cplus_new (totype, expr);
/* The result of the call is then used to direct-initialize the object
that is the destination of the copy-initialization. [dcl.init]
Note that this step is not reflected in the conversion sequence;
it affects the semantics when we actually perform the
conversion, but is not considered during overload resolution.
If the target is a class, that means call a ctor. */
if (IS_AGGR_TYPE (totype)
&& (inner >= 0 || !lvalue_p (expr)))
{
expr = (build_temp
(expr, totype,
/* Core issue 84, now a DR, says that we don't
allow UDCs for these args (which deliberately
breaks copy-init of an auto_ptr<Base> from an
auto_ptr<Derived>). */
LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING|LOOKUP_NO_CONVERSION,
&diagnostic_fn));
if (diagnostic_fn)
{
if (fn)
diagnostic_fn
(" initializing argument %P of %qD from result of %qD",
argnum, fn, convfn);
else
diagnostic_fn
(" initializing temporary from result of %qD", convfn);
}
expr = build_cplus_new (totype, expr);
}
return expr;
}
case ck_identity:
if (type_unknown_p (expr))
expr = instantiate_type (totype, expr, tf_warning_or_error);
/* Convert a constant to its underlying value, unless we are
about to bind it to a reference, in which case we need to
leave it as an lvalue. */
if (inner >= 0)
expr = decl_constant_value (expr);
if (convs->check_copy_constructor_p)
check_constructor_callable (totype, expr);
return expr;
case ck_ambig:
/* Call build_user_type_conversion again for the error. */
return build_user_type_conversion
(totype, convs->u.expr, LOOKUP_NORMAL);
default:
break;
};
expr = convert_like_real (convs->u.next, expr, fn, argnum,
convs->kind == ck_ref_bind ? -1 : 1,
convs->kind == ck_ref_bind ? issue_conversion_warnings : false,
c_cast_p);
if (expr == error_mark_node)
return error_mark_node;
switch (convs->kind)
{
case ck_rvalue:
expr = convert_bitfield_to_declared_type (expr);
if (! IS_AGGR_TYPE (totype))
return expr;
/* Else fall through. */
case ck_base:
if (convs->kind == ck_base && !convs->need_temporary_p)
{
/* We are going to bind a reference directly to a base-class
subobject of EXPR. */
if (convs->check_copy_constructor_p)
check_constructor_callable (TREE_TYPE (expr), expr);
/* Build an expression for `*((base*) &expr)'. */
expr = build_unary_op (ADDR_EXPR, expr, 0);
expr = convert_to_base (expr, build_pointer_type (totype),
!c_cast_p, /*nonnull=*/true);
expr = build_indirect_ref (expr, "implicit conversion");
return expr;
}
/* Copy-initialization where the cv-unqualified version of the source
type is the same class as, or a derived class of, the class of the
destination [is treated as direct-initialization]. [dcl.init] */
expr = build_temp (expr, totype, LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING,
&diagnostic_fn);
if (diagnostic_fn && fn)
diagnostic_fn (" initializing argument %P of %qD", argnum, fn);
return build_cplus_new (totype, expr);
case ck_ref_bind:
{
tree ref_type = totype;
/* If necessary, create a temporary.
VA_ARG_EXPR and CONSTRUCTOR expressions are special cases
that need temporaries, even when their types are reference
compatible with the type of reference being bound, so the
upcoming call to build_unary_op (ADDR_EXPR, expr, ...)
doesn't fail. */
if (convs->need_temporary_p
|| TREE_CODE (expr) == CONSTRUCTOR
|| TREE_CODE (expr) == VA_ARG_EXPR)
{
tree type = convs->u.next->type;
cp_lvalue_kind lvalue = real_lvalue_p (expr);
if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type))
&& !TYPE_REF_IS_RVALUE (ref_type))
{
/* If the reference is volatile or non-const, we
cannot create a temporary. */
if (lvalue & clk_bitfield)
error ("cannot bind bitfield %qE to %qT",
expr, ref_type);
else if (lvalue & clk_packed)
error ("cannot bind packed field %qE to %qT",
expr, ref_type);
else
error ("cannot bind rvalue %qE to %qT", expr, ref_type);
return error_mark_node;
}
/* If the source is a packed field, and we must use a copy
constructor, then building the target expr will require
binding the field to the reference parameter to the
copy constructor, and we'll end up with an infinite
loop. If we can use a bitwise copy, then we'll be
OK. */
if ((lvalue & clk_packed)
&& CLASS_TYPE_P (type)
&& !TYPE_HAS_TRIVIAL_INIT_REF (type))
{
error ("cannot bind packed field %qE to %qT",
expr, ref_type);
return error_mark_node;
}
expr = build_target_expr_with_type (expr, type);
}
/* Take the address of the thing to which we will bind the
reference. */
expr = build_unary_op (ADDR_EXPR, expr, 1);
if (expr == error_mark_node)
return error_mark_node;
/* Convert it to a pointer to the type referred to by the
reference. This will adjust the pointer if a derived to
base conversion is being performed. */
expr = cp_convert (build_pointer_type (TREE_TYPE (ref_type)),
expr);
/* Convert the pointer to the desired reference type. */
return build_nop (ref_type, expr);
}
case ck_lvalue:
return decay_conversion (expr);
case ck_qual:
/* Warn about deprecated conversion if appropriate. */
string_conv_p (totype, expr, 1);
break;
case ck_ptr:
if (convs->base_p)
expr = convert_to_base (expr, totype, !c_cast_p,
/*nonnull=*/false);
return build_nop (totype, expr);
case ck_pmem:
return convert_ptrmem (totype, expr, /*allow_inverse_p=*/false,
c_cast_p);
default:
break;
}
if (issue_conversion_warnings)
expr = convert_and_check (totype, expr);
else
expr = convert (totype, expr);
return expr;
}
/* Build a call to __builtin_trap. */
static tree
call_builtin_trap (void)
{
tree fn = implicit_built_in_decls[BUILT_IN_TRAP];
gcc_assert (fn != NULL);
fn = build_call_n (fn, 0);
return fn;
}
/* ARG is being passed to a varargs function. Perform any conversions
required. Return the converted value. */
tree
convert_arg_to_ellipsis (tree arg)
{
/* [expr.call]
The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
standard conversions are performed. */
arg = decay_conversion (arg);
/* [expr.call]
If the argument has integral or enumeration type that is subject
to the integral promotions (_conv.prom_), or a floating point
type that is subject to the floating point promotion
(_conv.fpprom_), the value of the argument is converted to the
promoted type before the call. */
if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
&& (TYPE_PRECISION (TREE_TYPE (arg))
< TYPE_PRECISION (double_type_node)))
arg = convert_to_real (double_type_node, arg);
else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg)))
arg = perform_integral_promotions (arg);
arg = require_complete_type (arg);
if (arg != error_mark_node
&& !pod_type_p (TREE_TYPE (arg)))
{
/* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
here and do a bitwise copy, but now cp_expr_size will abort if we
try to do that.
If the call appears in the context of a sizeof expression,
there is no need to emit a warning, since the expression won't be
evaluated. We keep the builtin_trap just as a safety check. */
if (!skip_evaluation)
warning (0, "cannot pass objects of non-POD type %q#T through %<...%>; "
"call will abort at runtime", TREE_TYPE (arg));
arg = call_builtin_trap ();
arg = build2 (COMPOUND_EXPR, integer_type_node, arg,
integer_zero_node);
}
return arg;
}
/* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
tree
build_x_va_arg (tree expr, tree type)
{
if (processing_template_decl)
return build_min (VA_ARG_EXPR, type, expr);
type = complete_type_or_else (type, NULL_TREE);
if (expr == error_mark_node || !type)
return error_mark_node;
if (! pod_type_p (type))
{
/* Remove reference types so we don't ICE later on. */
tree type1 = non_reference (type);
/* Undefined behavior [expr.call] 5.2.2/7. */
warning (0, "cannot receive objects of non-POD type %q#T through %<...%>; "
"call will abort at runtime", type);
expr = convert (build_pointer_type (type1), null_node);
expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr),
call_builtin_trap (), expr);
expr = build_indirect_ref (expr, NULL);
return expr;
}
return build_va_arg (expr, type);
}
/* TYPE has been given to va_arg. Apply the default conversions which
would have happened when passed via ellipsis. Return the promoted
type, or the passed type if there is no change. */
tree
cxx_type_promotes_to (tree type)
{
tree promote;
/* Perform the array-to-pointer and function-to-pointer
conversions. */
type = type_decays_to (type);
promote = type_promotes_to (type);
if (same_type_p (type, promote))
promote = type;
return promote;
}
/* ARG is a default argument expression being passed to a parameter of
the indicated TYPE, which is a parameter to FN. Do any required
conversions. Return the converted value. */
tree
convert_default_arg (tree type, tree arg, tree fn, int parmnum)
{
/* If the ARG is an unparsed default argument expression, the
conversion cannot be performed. */
if (TREE_CODE (arg) == DEFAULT_ARG)
{
error ("the default argument for parameter %d of %qD has "
"not yet been parsed",
parmnum, fn);
return error_mark_node;
}
if (fn && DECL_TEMPLATE_INFO (fn))
arg = tsubst_default_argument (fn, type, arg);
arg = break_out_target_exprs (arg);
if (TREE_CODE (arg) == CONSTRUCTOR)
{
arg = digest_init (type, arg);
arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
"default argument", fn, parmnum);
}
else
{
/* We must make a copy of ARG, in case subsequent processing
alters any part of it. For example, during gimplification a
cast of the form (T) &X::f (where "f" is a member function)
will lead to replacing the PTRMEM_CST for &X::f with a
VAR_DECL. We can avoid the copy for constants, since they
are never modified in place. */
if (!CONSTANT_CLASS_P (arg))
arg = unshare_expr (arg);
arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
"default argument", fn, parmnum);
arg = convert_for_arg_passing (type, arg);
}
return arg;
}
/* Returns the type which will really be used for passing an argument of
type TYPE. */
tree
type_passed_as (tree type)
{
/* Pass classes with copy ctors by invisible reference. */
if (TREE_ADDRESSABLE (type))
{
type = build_reference_type (type);
/* There are no other pointers to this temporary. */
type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
}
else if (targetm.calls.promote_prototypes (type)
&& INTEGRAL_TYPE_P (type)
&& COMPLETE_TYPE_P (type)
&& INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
TYPE_SIZE (integer_type_node)))
type = integer_type_node;
return type;
}
/* Actually perform the appropriate conversion. */
tree
convert_for_arg_passing (tree type, tree val)
{
tree bitfield_type;
/* If VAL is a bitfield, then -- since it has already been converted
to TYPE -- it cannot have a precision greater than TYPE.
If it has a smaller precision, we must widen it here. For
example, passing "int f:3;" to a function expecting an "int" will
not result in any conversion before this point.
If the precision is the same we must not risk widening. For
example, the COMPONENT_REF for a 32-bit "long long" bitfield will
often have type "int", even though the C++ type for the field is
"long long". If the value is being passed to a function
expecting an "int", then no conversions will be required. But,
if we call convert_bitfield_to_declared_type, the bitfield will
be converted to "long long". */
bitfield_type = is_bitfield_expr_with_lowered_type (val);
if (bitfield_type
&& TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type))
val = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type), val);
if (val == error_mark_node)
;
/* Pass classes with copy ctors by invisible reference. */
else if (TREE_ADDRESSABLE (type))
val = build1 (ADDR_EXPR, build_reference_type (type), val);
else if (targetm.calls.promote_prototypes (type)
&& INTEGRAL_TYPE_P (type)
&& COMPLETE_TYPE_P (type)
&& INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
TYPE_SIZE (integer_type_node)))
val = perform_integral_promotions (val);
if (warn_missing_format_attribute)
{
tree rhstype = TREE_TYPE (val);
const enum tree_code coder = TREE_CODE (rhstype);
const enum tree_code codel = TREE_CODE (type);
if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
&& coder == codel
&& check_missing_format_attribute (type, rhstype))
warning (OPT_Wmissing_format_attribute,
"argument of function call might be a candidate for a format attribute");
}
return val;
}
/* Returns true iff FN is a function with magic varargs, i.e. ones for
which no conversions at all should be done. This is true for some
builtins which don't act like normal functions. */
static bool
magic_varargs_p (tree fn)
{
if (DECL_BUILT_IN (fn))
switch (DECL_FUNCTION_CODE (fn))
{
case BUILT_IN_CLASSIFY_TYPE:
case BUILT_IN_CONSTANT_P:
case BUILT_IN_NEXT_ARG:
case BUILT_IN_STDARG_START:
case BUILT_IN_VA_START:
return true;
default:;
return lookup_attribute ("type generic",
TYPE_ATTRIBUTES (TREE_TYPE (fn))) != 0;
}
return false;
}
/* Subroutine of the various build_*_call functions. Overload resolution
has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
bitmask of various LOOKUP_* flags which apply to the call itself. */
static tree
build_over_call (struct z_candidate *cand, int flags)
{
tree fn = cand->fn;
tree args = cand->args;
conversion **convs = cand->convs;
conversion *conv;
tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
int parmlen;
tree arg, val;
int i = 0;
int j = 0;
int is_method = 0;
int nargs;
tree *argarray;
/* In a template, there is no need to perform all of the work that
is normally done. We are only interested in the type of the call
expression, i.e., the return type of the function. Any semantic
errors will be deferred until the template is instantiated. */
if (processing_template_decl)
{
tree expr;
tree return_type;
return_type = TREE_TYPE (TREE_TYPE (fn));
expr = build_call_list (return_type, fn, args);
if (TREE_THIS_VOLATILE (fn) && cfun)
current_function_returns_abnormally = 1;
if (!VOID_TYPE_P (return_type))
require_complete_type (return_type);
return convert_from_reference (expr);
}
/* Give any warnings we noticed during overload resolution. */
if (cand->warnings)
{
struct candidate_warning *w;
for (w = cand->warnings; w; w = w->next)
joust (cand, w->loser, 1);
}
if (DECL_FUNCTION_MEMBER_P (fn))
{
/* If FN is a template function, two cases must be considered.
For example:
struct A {
protected:
template <class T> void f();
};
template <class T> struct B {
protected:
void g();
};
struct C : A, B<int> {
using A::f; // #1
using B<int>::g; // #2
};
In case #1 where `A::f' is a member template, DECL_ACCESS is
recorded in the primary template but not in its specialization.
We check access of FN using its primary template.
In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply
because it is a member of class template B, DECL_ACCESS is
recorded in the specialization `B<int>::g'. We cannot use its
primary template because `B<T>::g' and `B<int>::g' may have
different access. */
if (DECL_TEMPLATE_INFO (fn)
&& DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn)))
perform_or_defer_access_check (cand->access_path,
DECL_TI_TEMPLATE (fn), fn);
else
perform_or_defer_access_check (cand->access_path, fn, fn);
}
if (args && TREE_CODE (args) != TREE_LIST)
args = build_tree_list (NULL_TREE, args);
arg = args;
/* Find maximum size of vector to hold converted arguments. */
parmlen = list_length (parm);
nargs = list_length (args);
if (parmlen > nargs)
nargs = parmlen;
argarray = (tree *) alloca (nargs * sizeof (tree));
/* The implicit parameters to a constructor are not considered by overload
resolution, and must be of the proper type. */
if (DECL_CONSTRUCTOR_P (fn))
{
argarray[j++] = TREE_VALUE (arg);
arg = TREE_CHAIN (arg);
parm = TREE_CHAIN (parm);
/* We should never try to call the abstract constructor. */
gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn));
if (DECL_HAS_VTT_PARM_P (fn))
{
argarray[j++] = TREE_VALUE (arg);
arg = TREE_CHAIN (arg);
parm = TREE_CHAIN (parm);
}
}
/* Bypass access control for 'this' parameter. */
else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
{
tree parmtype = TREE_VALUE (parm);
tree argtype = TREE_TYPE (TREE_VALUE (arg));
tree converted_arg;
tree base_binfo;
if (convs[i]->bad_p)
pedwarn ("passing %qT as %<this%> argument of %q#D discards qualifiers",
TREE_TYPE (argtype), fn);
/* [class.mfct.nonstatic]: If a nonstatic member function of a class
X is called for an object that is not of type X, or of a type
derived from X, the behavior is undefined.
So we can assume that anything passed as 'this' is non-null, and
optimize accordingly. */
gcc_assert (TREE_CODE (parmtype) == POINTER_TYPE);
/* Convert to the base in which the function was declared. */
gcc_assert (cand->conversion_path != NULL_TREE);
converted_arg = build_base_path (PLUS_EXPR,
TREE_VALUE (arg),
cand->conversion_path,
1);
/* Check that the base class is accessible. */
if (!accessible_base_p (TREE_TYPE (argtype),
BINFO_TYPE (cand->conversion_path), true))
error ("%qT is not an accessible base of %qT",
BINFO_TYPE (cand->conversion_path),
TREE_TYPE (argtype));
/* If fn was found by a using declaration, the conversion path
will be to the derived class, not the base declaring fn. We
must convert from derived to base. */
base_binfo = lookup_base (TREE_TYPE (TREE_TYPE (converted_arg)),
TREE_TYPE (parmtype), ba_unique, NULL);
converted_arg = build_base_path (PLUS_EXPR, converted_arg,
base_binfo, 1);
argarray[j++] = converted_arg;
parm = TREE_CHAIN (parm);
arg = TREE_CHAIN (arg);
++i;
is_method = 1;
}
for (; arg && parm;
parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
{
tree type = TREE_VALUE (parm);
conv = convs[i];
/* Don't make a copy here if build_call is going to. */
if (conv->kind == ck_rvalue
&& !TREE_ADDRESSABLE (complete_type (type)))
conv = conv->u.next;
val = convert_like_with_context
(conv, TREE_VALUE (arg), fn, i - is_method);
val = convert_for_arg_passing (type, val);
argarray[j++] = val;
}
/* Default arguments */
for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm), i++)
argarray[j++] = convert_default_arg (TREE_VALUE (parm),
TREE_PURPOSE (parm),
fn, i - is_method);
/* Ellipsis */
for (; arg; arg = TREE_CHAIN (arg))
{
tree a = TREE_VALUE (arg);
if (magic_varargs_p (fn))
/* Do no conversions for magic varargs. */;
else
a = convert_arg_to_ellipsis (a);
argarray[j++] = a;
}
gcc_assert (j <= nargs);
nargs = j;
check_function_arguments (TYPE_ATTRIBUTES (TREE_TYPE (fn)),
nargs, argarray, TYPE_ARG_TYPES (TREE_TYPE (fn)));
/* Avoid actually calling copy constructors and copy assignment operators,
if possible. */
if (! flag_elide_constructors)
/* Do things the hard way. */;
else if (cand->num_convs == 1
&& (DECL_COPY_CONSTRUCTOR_P (fn)
|| DECL_MOVE_CONSTRUCTOR_P (fn)))
{
tree targ;
arg = argarray[num_artificial_parms_for (fn)];
/* Pull out the real argument, disregarding const-correctness. */
targ = arg;
while (TREE_CODE (targ) == NOP_EXPR
|| TREE_CODE (targ) == NON_LVALUE_EXPR
|| TREE_CODE (targ) == CONVERT_EXPR)
targ = TREE_OPERAND (targ, 0);
if (TREE_CODE (targ) == ADDR_EXPR)
{
targ = TREE_OPERAND (targ, 0);
if (!same_type_ignoring_top_level_qualifiers_p
(TREE_TYPE (TREE_TYPE (arg)), TREE_TYPE (targ)))
targ = NULL_TREE;
}
else
targ = NULL_TREE;
if (targ)
arg = targ;
else
arg = build_indirect_ref (arg, 0);
/* [class.copy]: the copy constructor is implicitly defined even if
the implementation elided its use. */
if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
mark_used (fn);
/* If we're creating a temp and we already have one, don't create a
new one. If we're not creating a temp but we get one, use
INIT_EXPR to collapse the temp into our target. Otherwise, if the
ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
temp or an INIT_EXPR otherwise. */
if (integer_zerop (TREE_VALUE (args)))
{
if (TREE_CODE (arg) == TARGET_EXPR)
return arg;
else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
return build_target_expr_with_type (arg, DECL_CONTEXT (fn));
}
else if (TREE_CODE (arg) == TARGET_EXPR
|| TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
{
tree to = stabilize_reference
(build_indirect_ref (TREE_VALUE (args), 0));
val = build2 (INIT_EXPR, DECL_CONTEXT (fn), to, arg);
return val;
}
}
else if (DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR
&& copy_fn_p (fn)
&& TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn)))
{
tree to = stabilize_reference
(build_indirect_ref (argarray[0], 0));
tree type = TREE_TYPE (to);
tree as_base = CLASSTYPE_AS_BASE (type);
arg = argarray[1];
if (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (as_base)))
{
arg = build_indirect_ref (arg, 0);
val = build2 (MODIFY_EXPR, TREE_TYPE (to), to, arg);
}
else
{
/* We must only copy the non-tail padding parts.
Use __builtin_memcpy for the bitwise copy. */
tree arg0, arg1, arg2, t;
arg2 = TYPE_SIZE_UNIT (as_base);
arg1 = arg;
arg0 = build_unary_op (ADDR_EXPR, to, 0);
t = implicit_built_in_decls[BUILT_IN_MEMCPY];
t = build_call_n (t, 3, arg0, arg1, arg2);
t = convert (TREE_TYPE (arg0), t);
val = build_indirect_ref (t, 0);
}
return val;
}
mark_used (fn);
if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0)
{
tree t;
tree binfo = lookup_base (TREE_TYPE (TREE_TYPE (argarray[0])),
DECL_CONTEXT (fn),
ba_any, NULL);
gcc_assert (binfo && binfo != error_mark_node);
argarray[0] = build_base_path (PLUS_EXPR, argarray[0], binfo, 1);
if (TREE_SIDE_EFFECTS (argarray[0]))
argarray[0] = save_expr (argarray[0]);
t = build_pointer_type (TREE_TYPE (fn));
if (DECL_CONTEXT (fn) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn)))
fn = build_java_interface_fn_ref (fn, argarray[0]);
else
fn = build_vfn_ref (argarray[0], DECL_VINDEX (fn));
TREE_TYPE (fn) = t;
}
else if (DECL_INLINE (fn))
fn = inline_conversion (fn);
else
fn = build_addr_func (fn);
return build_cxx_call (fn, nargs, argarray);
}
/* Build and return a call to FN, using NARGS arguments in ARGARRAY.
This function performs no overload resolution, conversion, or other
high-level operations. */
tree
build_cxx_call (tree fn, int nargs, tree *argarray)
{
tree fndecl;
fn = build_call_a (fn, nargs, argarray);
/* If this call might throw an exception, note that fact. */
fndecl = get_callee_fndecl (fn);
if ((!fndecl || !TREE_NOTHROW (fndecl))
&& at_function_scope_p ()
&& cfun)
cp_function_chain->can_throw = 1;
/* Some built-in function calls will be evaluated at compile-time in
fold (). */
fn = fold_if_not_in_template (fn);
if (VOID_TYPE_P (TREE_TYPE (fn)))
return fn;
fn = require_complete_type (fn);
if (fn == error_mark_node)
return error_mark_node;
if (IS_AGGR_TYPE (TREE_TYPE (fn)))
fn = build_cplus_new (TREE_TYPE (fn), fn);
return convert_from_reference (fn);
}
static GTY(()) tree java_iface_lookup_fn;
/* Make an expression which yields the address of the Java interface
method FN. This is achieved by generating a call to libjava's
_Jv_LookupInterfaceMethodIdx(). */
static tree
build_java_interface_fn_ref (tree fn, tree instance)
{
tree lookup_fn, method, idx;
tree klass_ref, iface, iface_ref;
int i;
if (!java_iface_lookup_fn)
{
tree endlink = build_void_list_node ();
tree t = tree_cons (NULL_TREE, ptr_type_node,
tree_cons (NULL_TREE, ptr_type_node,
tree_cons (NULL_TREE, java_int_type_node,
endlink)));
java_iface_lookup_fn
= add_builtin_function ("_Jv_LookupInterfaceMethodIdx",
build_function_type (ptr_type_node, t),
0, NOT_BUILT_IN, NULL, NULL_TREE);
}
/* Look up the pointer to the runtime java.lang.Class object for `instance'.
This is the first entry in the vtable. */
klass_ref = build_vtbl_ref (build_indirect_ref (instance, 0),
integer_zero_node);
/* Get the java.lang.Class pointer for the interface being called. */
iface = DECL_CONTEXT (fn);
iface_ref = lookup_field (iface, get_identifier ("class$"), 0, false);
if (!iface_ref || TREE_CODE (iface_ref) != VAR_DECL
|| DECL_CONTEXT (iface_ref) != iface)
{
error ("could not find class$ field in java interface type %qT",
iface);
return error_mark_node;
}
iface_ref = build_address (iface_ref);
iface_ref = convert (build_pointer_type (iface), iface_ref);
/* Determine the itable index of FN. */
i = 1;
for (method = TYPE_METHODS (iface); method; method = TREE_CHAIN (method))
{
if (!DECL_VIRTUAL_P (method))
continue;
if (fn == method)
break;
i++;
}
idx = build_int_cst (NULL_TREE, i);
lookup_fn = build1 (ADDR_EXPR,
build_pointer_type (TREE_TYPE (java_iface_lookup_fn)),
java_iface_lookup_fn);
return build_call_nary (ptr_type_node, lookup_fn,
3, klass_ref, iface_ref, idx);
}
/* Returns the value to use for the in-charge parameter when making a
call to a function with the indicated NAME.
FIXME:Can't we find a neater way to do this mapping? */
tree
in_charge_arg_for_name (tree name)
{
if (name == base_ctor_identifier
|| name == base_dtor_identifier)
return integer_zero_node;
else if (name == complete_ctor_identifier)
return integer_one_node;
else if (name == complete_dtor_identifier)
return integer_two_node;
else if (name == deleting_dtor_identifier)
return integer_three_node;
/* This function should only be called with one of the names listed
above. */
gcc_unreachable ();
return NULL_TREE;
}
/* Build a call to a constructor, destructor, or an assignment
operator for INSTANCE, an expression with class type. NAME
indicates the special member function to call; ARGS are the
arguments. BINFO indicates the base of INSTANCE that is to be
passed as the `this' parameter to the member function called.
FLAGS are the LOOKUP_* flags to use when processing the call.
If NAME indicates a complete object constructor, INSTANCE may be
NULL_TREE. In this case, the caller will call build_cplus_new to
store the newly constructed object into a VAR_DECL. */
tree
build_special_member_call (tree instance, tree name, tree args,
tree binfo, int flags)
{
tree fns;
/* The type of the subobject to be constructed or destroyed. */
tree class_type;
gcc_assert (name == complete_ctor_identifier
|| name == base_ctor_identifier
|| name == complete_dtor_identifier
|| name == base_dtor_identifier
|| name == deleting_dtor_identifier
|| name == ansi_assopname (NOP_EXPR));
if (TYPE_P (binfo))
{
/* Resolve the name. */
if (!complete_type_or_else (binfo, NULL_TREE))
return error_mark_node;
binfo = TYPE_BINFO (binfo);
}
gcc_assert (binfo != NULL_TREE);
class_type = BINFO_TYPE (binfo);
/* Handle the special case where INSTANCE is NULL_TREE. */
if (name == complete_ctor_identifier && !instance)
{
instance = build_int_cst (build_pointer_type (class_type), 0);
instance = build1 (INDIRECT_REF, class_type, instance);
}
else
{
if (name == complete_dtor_identifier
|| name == base_dtor_identifier
|| name == deleting_dtor_identifier)
gcc_assert (args == NULL_TREE);
/* Convert to the base class, if necessary. */
if (!same_type_ignoring_top_level_qualifiers_p
(TREE_TYPE (instance), BINFO_TYPE (binfo)))
{
if (name != ansi_assopname (NOP_EXPR))
/* For constructors and destructors, either the base is
non-virtual, or it is virtual but we are doing the
conversion from a constructor or destructor for the
complete object. In either case, we can convert
statically. */
instance = convert_to_base_statically (instance, binfo);
else
/* However, for assignment operators, we must convert
dynamically if the base is virtual. */
instance = build_base_path (PLUS_EXPR, instance,
binfo, /*nonnull=*/1);
}
}
gcc_assert (instance != NULL_TREE);
fns = lookup_fnfields (binfo, name, 1);
/* When making a call to a constructor or destructor for a subobject
that uses virtual base classes, pass down a pointer to a VTT for
the subobject. */
if ((name == base_ctor_identifier
|| name == base_dtor_identifier)
&& CLASSTYPE_VBASECLASSES (class_type))
{
tree vtt;
tree sub_vtt;
/* If the current function is a complete object constructor
or destructor, then we fetch the VTT directly.
Otherwise, we look it up using the VTT we were given. */
vtt = TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type));
vtt = decay_conversion (vtt);
vtt = build3 (COND_EXPR, TREE_TYPE (vtt),
build2 (EQ_EXPR, boolean_type_node,
current_in_charge_parm, integer_zero_node),
current_vtt_parm,
vtt);
gcc_assert (BINFO_SUBVTT_INDEX (binfo));
sub_vtt = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtt), vtt,
BINFO_SUBVTT_INDEX (binfo));
args = tree_cons (NULL_TREE, sub_vtt, args);
}
return build_new_method_call (instance, fns, args,
TYPE_BINFO (BINFO_TYPE (binfo)),
flags, /*fn=*/NULL);
}
/* Return the NAME, as a C string. The NAME indicates a function that
is a member of TYPE. *FREE_P is set to true if the caller must
free the memory returned.
Rather than go through all of this, we should simply set the names
of constructors and destructors appropriately, and dispense with
ctor_identifier, dtor_identifier, etc. */
static char *
name_as_c_string (tree name, tree type, bool *free_p)
{
char *pretty_name;
/* Assume that we will not allocate memory. */
*free_p = false;
/* Constructors and destructors are special. */
if (IDENTIFIER_CTOR_OR_DTOR_P (name))
{
pretty_name
= (char *) IDENTIFIER_POINTER (constructor_name (type));
/* For a destructor, add the '~'. */
if (name == complete_dtor_identifier
|| name == base_dtor_identifier
|| name == deleting_dtor_identifier)
{
pretty_name = concat ("~", pretty_name, NULL);
/* Remember that we need to free the memory allocated. */
*free_p = true;
}
}
else if (IDENTIFIER_TYPENAME_P (name))
{
pretty_name = concat ("operator ",
type_as_string (TREE_TYPE (name),
TFF_PLAIN_IDENTIFIER),
NULL);
/* Remember that we need to free the memory allocated. */
*free_p = true;
}
else
pretty_name = (char *) IDENTIFIER_POINTER (name);
return pretty_name;
}
/* Build a call to "INSTANCE.FN (ARGS)". If FN_P is non-NULL, it will
be set, upon return, to the function called. */
tree
build_new_method_call (tree instance, tree fns, tree args,
tree conversion_path, int flags,
tree *fn_p)
{
struct z_candidate *candidates = 0, *cand;
tree explicit_targs = NULL_TREE;
tree basetype = NULL_TREE;
tree access_binfo;
tree optype;
tree mem_args = NULL_TREE, instance_ptr;
tree name;
tree user_args;
tree call;
tree fn;
tree class_type;
int template_only = 0;
bool any_viable_p;
tree orig_instance;
tree orig_fns;
tree orig_args;
void *p;
gcc_assert (instance != NULL_TREE);
/* We don't know what function we're going to call, yet. */
if (fn_p)
*fn_p = NULL_TREE;
if (error_operand_p (instance)
|| error_operand_p (fns)
|| args == error_mark_node)
return error_mark_node;
if (!BASELINK_P (fns))
{
error ("call to non-function %qD", fns);
return error_mark_node;
}
orig_instance = instance;
orig_fns = fns;
orig_args = args;
/* Dismantle the baselink to collect all the information we need. */
if (!conversion_path)
conversion_path = BASELINK_BINFO (fns);
access_binfo = BASELINK_ACCESS_BINFO (fns);
optype = BASELINK_OPTYPE (fns);
fns = BASELINK_FUNCTIONS (fns);
if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
{
explicit_targs = TREE_OPERAND (fns, 1);
fns = TREE_OPERAND (fns, 0);
template_only = 1;
}
gcc_assert (TREE_CODE (fns) == FUNCTION_DECL
|| TREE_CODE (fns) == TEMPLATE_DECL
|| TREE_CODE (fns) == OVERLOAD);
fn = get_first_fn (fns);
name = DECL_NAME (fn);
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));
gcc_assert (CLASS_TYPE_P (basetype));
if (processing_template_decl)
{
instance = build_non_dependent_expr (instance);
args = build_non_dependent_args (orig_args);
}
/* The USER_ARGS are the arguments we will display to users if an
error occurs. The USER_ARGS should not include any
compiler-generated arguments. The "this" pointer hasn't been
added yet. However, we must remove the VTT pointer if this is a
call to a base-class constructor or destructor. */
user_args = args;
if (IDENTIFIER_CTOR_OR_DTOR_P (name))
{
/* Callers should explicitly indicate whether they want to construct
the complete object or just the part without virtual bases. */
gcc_assert (name != ctor_identifier);
/* Similarly for destructors. */
gcc_assert (name != dtor_identifier);
/* Remove the VTT pointer, if present. */
if ((name == base_ctor_identifier || name == base_dtor_identifier)
&& CLASSTYPE_VBASECLASSES (basetype))
user_args = TREE_CHAIN (user_args);
}
/* Process the argument list. */
args = resolve_args (args);
if (args == error_mark_node)
return error_mark_node;
instance_ptr = build_this (instance);
/* It's OK to call destructors on cv-qualified objects. Therefore,
convert the INSTANCE_PTR to the unqualified type, if necessary. */
if (DECL_DESTRUCTOR_P (fn))
{
tree type = build_pointer_type (basetype);
if (!same_type_p (type, TREE_TYPE (instance_ptr)))
instance_ptr = build_nop (type, instance_ptr);
name = complete_dtor_identifier;
}
class_type = (conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE);
mem_args = tree_cons (NULL_TREE, instance_ptr, args);
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
for (fn = fns; fn; fn = OVL_NEXT (fn))
{
tree t = OVL_CURRENT (fn);
tree this_arglist;
/* We can end up here for copy-init of same or base class. */
if ((flags & LOOKUP_ONLYCONVERTING)
&& DECL_NONCONVERTING_P (t))
continue;
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t))
this_arglist = mem_args;
else
this_arglist = args;
if (TREE_CODE (t) == TEMPLATE_DECL)
/* A member template. */
add_template_candidate (&candidates, t,
class_type,
explicit_targs,
this_arglist, optype,
access_binfo,
conversion_path,
flags,
DEDUCE_CALL);
else if (! template_only)
add_function_candidate (&candidates, t,
class_type,
this_arglist,
access_binfo,
conversion_path,
flags);
}
candidates = splice_viable (candidates, pedantic, &any_viable_p);
if (!any_viable_p)
{
if (!COMPLETE_TYPE_P (basetype))
cxx_incomplete_type_error (instance_ptr, basetype);
else
{
char *pretty_name;
bool free_p;
pretty_name = name_as_c_string (name, basetype, &free_p);
error ("no matching function for call to %<%T::%s(%A)%#V%>",
basetype, pretty_name, user_args,
TREE_TYPE (TREE_TYPE (instance_ptr)));
if (free_p)
free (pretty_name);
}
print_z_candidates (candidates);
call = error_mark_node;
}
else
{
cand = tourney (candidates);
if (cand == 0)
{
char *pretty_name;
bool free_p;
pretty_name = name_as_c_string (name, basetype, &free_p);
error ("call of overloaded %<%s(%A)%> is ambiguous", pretty_name,
user_args);
print_z_candidates (candidates);
if (free_p)
free (pretty_name);
call = error_mark_node;
}
else
{
fn = cand->fn;
if (!(flags & LOOKUP_NONVIRTUAL)
&& DECL_PURE_VIRTUAL_P (fn)
&& instance == current_class_ref
&& (DECL_CONSTRUCTOR_P (current_function_decl)
|| DECL_DESTRUCTOR_P (current_function_decl)))
/* This is not an error, it is runtime undefined
behavior. */
warning (0, (DECL_CONSTRUCTOR_P (current_function_decl) ?
"abstract virtual %q#D called from constructor"
: "abstract virtual %q#D called from destructor"),
fn);
if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE
&& is_dummy_object (instance_ptr))
{
error ("cannot call member function %qD without object",
fn);
call = error_mark_node;
}
else
{
if (DECL_VINDEX (fn) && ! (flags & LOOKUP_NONVIRTUAL)
&& resolves_to_fixed_type_p (instance, 0))
flags |= LOOKUP_NONVIRTUAL;
/* Now we know what function is being called. */
if (fn_p)
*fn_p = fn;
/* Build the actual CALL_EXPR. */
call = build_over_call (cand, flags);
/* In an expression of the form `a->f()' where `f' turns
out to be a static member function, `a' is
none-the-less evaluated. */
if (TREE_CODE (TREE_TYPE (fn)) != METHOD_TYPE
&& !is_dummy_object (instance_ptr)
&& TREE_SIDE_EFFECTS (instance_ptr))
call = build2 (COMPOUND_EXPR, TREE_TYPE (call),
instance_ptr, call);
else if (call != error_mark_node
&& DECL_DESTRUCTOR_P (cand->fn)
&& !VOID_TYPE_P (TREE_TYPE (call)))
/* An explicit call of the form "x->~X()" has type
"void". However, on platforms where destructors
return "this" (i.e., those where
targetm.cxx.cdtor_returns_this is true), such calls
will appear to have a return value of pointer type
to the low-level call machinery. We do not want to
change the low-level machinery, since we want to be
able to optimize "delete f()" on such platforms as
"operator delete(~X(f()))" (rather than generating
"t = f(), ~X(t), operator delete (t)"). */
call = build_nop (void_type_node, call);
}
}
}
if (processing_template_decl && call != error_mark_node)
call = (build_min_non_dep_call_list
(call,
build_min_nt (COMPONENT_REF, orig_instance, orig_fns, NULL_TREE),
orig_args));
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return call;
}
/* Returns true iff standard conversion sequence ICS1 is a proper
subsequence of ICS2. */
static bool
is_subseq (conversion *ics1, conversion *ics2)
{
/* We can assume that a conversion of the same code
between the same types indicates a subsequence since we only get
here if the types we are converting from are the same. */
while (ics1->kind == ck_rvalue
|| ics1->kind == ck_lvalue)
ics1 = ics1->u.next;
while (1)
{
while (ics2->kind == ck_rvalue
|| ics2->kind == ck_lvalue)
ics2 = ics2->u.next;
if (ics2->kind == ck_user
|| ics2->kind == ck_ambig
|| ics2->kind == ck_identity)
/* At this point, ICS1 cannot be a proper subsequence of
ICS2. We can get a USER_CONV when we are comparing the
second standard conversion sequence of two user conversion
sequences. */
return false;
ics2 = ics2->u.next;
if (ics2->kind == ics1->kind
&& same_type_p (ics2->type, ics1->type)
&& same_type_p (ics2->u.next->type,
ics1->u.next->type))
return true;
}
}
/* Returns nonzero iff DERIVED is derived from BASE. The inputs may
be any _TYPE nodes. */
bool
is_properly_derived_from (tree derived, tree base)
{
if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
|| !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
return false;
/* We only allow proper derivation here. The DERIVED_FROM_P macro
considers every class derived from itself. */
return (!same_type_ignoring_top_level_qualifiers_p (derived, base)
&& DERIVED_FROM_P (base, derived));
}
/* We build the ICS for an implicit object parameter as a pointer
conversion sequence. However, such a sequence should be compared
as if it were a reference conversion sequence. If ICS is the
implicit conversion sequence for an implicit object parameter,
modify it accordingly. */
static void
maybe_handle_implicit_object (conversion **ics)
{
if ((*ics)->this_p)
{
/* [over.match.funcs]
For non-static member functions, the type of the
implicit object parameter is "reference to cv X"
where X is the class of which the function is a
member and cv is the cv-qualification on the member
function declaration. */
conversion *t = *ics;
tree reference_type;
/* The `this' parameter is a pointer to a class type. Make the
implicit conversion talk about a reference to that same class
type. */
reference_type = TREE_TYPE (t->type);
reference_type = build_reference_type (reference_type);
if (t->kind == ck_qual)
t = t->u.next;
if (t->kind == ck_ptr)
t = t->u.next;
t = build_identity_conv (TREE_TYPE (t->type), NULL_TREE);
t = direct_reference_binding (reference_type, t);
t->rvaluedness_matches_p = 1;
*ics = t;
}
}
/* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
and return the initial reference binding conversion. Otherwise,
leave *ICS unchanged and return NULL. */
static conversion *
maybe_handle_ref_bind (conversion **ics)
{
if ((*ics)->kind == ck_ref_bind)
{
conversion *old_ics = *ics;
*ics = old_ics->u.next;
(*ics)->user_conv_p = old_ics->user_conv_p;
(*ics)->bad_p = old_ics->bad_p;
return old_ics;
}
return NULL;
}
/* Compare two implicit conversion sequences according to the rules set out in
[over.ics.rank]. Return values:
1: ics1 is better than ics2
-1: ics2 is better than ics1
0: ics1 and ics2 are indistinguishable */
static int
compare_ics (conversion *ics1, conversion *ics2)
{
tree from_type1;
tree from_type2;
tree to_type1;
tree to_type2;
tree deref_from_type1 = NULL_TREE;
tree deref_from_type2 = NULL_TREE;
tree deref_to_type1 = NULL_TREE;
tree deref_to_type2 = NULL_TREE;
conversion_rank rank1, rank2;
/* REF_BINDING is nonzero if the result of the conversion sequence
is a reference type. In that case REF_CONV is the reference
binding conversion. */
conversion *ref_conv1;
conversion *ref_conv2;
/* Handle implicit object parameters. */
maybe_handle_implicit_object (&ics1);
maybe_handle_implicit_object (&ics2);
/* Handle reference parameters. */
ref_conv1 = maybe_handle_ref_bind (&ics1);
ref_conv2 = maybe_handle_ref_bind (&ics2);
/* [over.ics.rank]
When comparing the basic forms of implicit conversion sequences (as
defined in _over.best.ics_)
--a standard conversion sequence (_over.ics.scs_) is a better
conversion sequence than a user-defined conversion sequence
or an ellipsis conversion sequence, and
--a user-defined conversion sequence (_over.ics.user_) is a
better conversion sequence than an ellipsis conversion sequence
(_over.ics.ellipsis_). */
rank1 = CONVERSION_RANK (ics1);
rank2 = CONVERSION_RANK (ics2);
if (rank1 > rank2)
return -1;
else if (rank1 < rank2)
return 1;
if (rank1 == cr_bad)
{
/* XXX Isn't this an extension? */
/* Both ICS are bad. We try to make a decision based on what
would have happened if they'd been good. */
if (ics1->user_conv_p > ics2->user_conv_p
|| ics1->rank > ics2->rank)
return -1;
else if (ics1->user_conv_p < ics2->user_conv_p
|| ics1->rank < ics2->rank)
return 1;
/* We couldn't make up our minds; try to figure it out below. */
}
if (ics1->ellipsis_p)
/* Both conversions are ellipsis conversions. */
return 0;
/* User-defined conversion sequence U1 is a better conversion sequence
than another user-defined conversion sequence U2 if they contain the
same user-defined conversion operator or constructor and if the sec-
ond standard conversion sequence of U1 is better than the second
standard conversion sequence of U2. */
if (ics1->user_conv_p)
{
conversion *t1;
conversion *t2;
for (t1 = ics1; t1->kind != ck_user; t1 = t1->u.next)
if (t1->kind == ck_ambig)
return 0;
for (t2 = ics2; t2->kind != ck_user; t2 = t2->u.next)
if (t2->kind == ck_ambig)
return 0;
if (t1->cand->fn != t2->cand->fn)
return 0;
/* We can just fall through here, after setting up
FROM_TYPE1 and FROM_TYPE2. */
from_type1 = t1->type;
from_type2 = t2->type;
}
else
{
conversion *t1;
conversion *t2;
/* We're dealing with two standard conversion sequences.
[over.ics.rank]
Standard conversion sequence S1 is a better conversion
sequence than standard conversion sequence S2 if
--S1 is a proper subsequence of S2 (comparing the conversion
sequences in the canonical form defined by _over.ics.scs_,
excluding any Lvalue Transformation; the identity
conversion sequence is considered to be a subsequence of
any non-identity conversion sequence */
t1 = ics1;
while (t1->kind != ck_identity)
t1 = t1->u.next;
from_type1 = t1->type;
t2 = ics2;
while (t2->kind != ck_identity)
t2 = t2->u.next;
from_type2 = t2->type;
}
if (same_type_p (from_type1, from_type2))
{
if (is_subseq (ics1, ics2))
return 1;
if (is_subseq (ics2, ics1))
return -1;
}
/* Otherwise, one sequence cannot be a subsequence of the other; they
don't start with the same type. This can happen when comparing the
second standard conversion sequence in two user-defined conversion
sequences. */
/* [over.ics.rank]
Or, if not that,
--the rank of S1 is better than the rank of S2 (by the rules
defined below):
Standard conversion sequences are ordered by their ranks: an Exact
Match is a better conversion than a Promotion, which is a better
conversion than a Conversion.
Two conversion sequences with the same rank are indistinguishable
unless one of the following rules applies:
--A conversion that is not a conversion of a pointer, or pointer
to member, to bool is better than another conversion that is such
a conversion.
The ICS_STD_RANK automatically handles the pointer-to-bool rule,
so that we do not have to check it explicitly. */
if (ics1->rank < ics2->rank)
return 1;
else if (ics2->rank < ics1->rank)
return -1;
to_type1 = ics1->type;
to_type2 = ics2->type;
if (TYPE_PTR_P (from_type1)
&& TYPE_PTR_P (from_type2)
&& TYPE_PTR_P (to_type1)
&& TYPE_PTR_P (to_type2))
{
deref_from_type1 = TREE_TYPE (from_type1);
deref_from_type2 = TREE_TYPE (from_type2);
deref_to_type1 = TREE_TYPE (to_type1);
deref_to_type2 = TREE_TYPE (to_type2);
}
/* The rules for pointers to members A::* are just like the rules
for pointers A*, except opposite: if B is derived from A then
A::* converts to B::*, not vice versa. For that reason, we
switch the from_ and to_ variables here. */
else if ((TYPE_PTRMEM_P (from_type1) && TYPE_PTRMEM_P (from_type2)
&& TYPE_PTRMEM_P (to_type1) && TYPE_PTRMEM_P (to_type2))
|| (TYPE_PTRMEMFUNC_P (from_type1)
&& TYPE_PTRMEMFUNC_P (from_type2)
&& TYPE_PTRMEMFUNC_P (to_type1)
&& TYPE_PTRMEMFUNC_P (to_type2)))
{
deref_to_type1 = TYPE_PTRMEM_CLASS_TYPE (from_type1);
deref_to_type2 = TYPE_PTRMEM_CLASS_TYPE (from_type2);
deref_from_type1 = TYPE_PTRMEM_CLASS_TYPE (to_type1);
deref_from_type2 = TYPE_PTRMEM_CLASS_TYPE (to_type2);
}
if (deref_from_type1 != NULL_TREE
&& IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
&& IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
{
/* This was one of the pointer or pointer-like conversions.
[over.ics.rank]
--If class B is derived directly or indirectly from class A,
conversion of B* to A* is better than conversion of B* to
void*, and conversion of A* to void* is better than
conversion of B* to void*. */
if (TREE_CODE (deref_to_type1) == VOID_TYPE
&& TREE_CODE (deref_to_type2) == VOID_TYPE)
{
if (is_properly_derived_from (deref_from_type1,
deref_from_type2))
return -1;
else if (is_properly_derived_from (deref_from_type2,
deref_from_type1))
return 1;
}
else if (TREE_CODE (deref_to_type1) == VOID_TYPE
|| TREE_CODE (deref_to_type2) == VOID_TYPE)
{
if (same_type_p (deref_from_type1, deref_from_type2))
{
if (TREE_CODE (deref_to_type2) == VOID_TYPE)
{
if (is_properly_derived_from (deref_from_type1,
deref_to_type1))
return 1;
}
/* We know that DEREF_TO_TYPE1 is `void' here. */
else if (is_properly_derived_from (deref_from_type1,
deref_to_type2))
return -1;
}
}
else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
&& IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
{
/* [over.ics.rank]
--If class B is derived directly or indirectly from class A
and class C is derived directly or indirectly from B,
--conversion of C* to B* is better than conversion of C* to
A*,
--conversion of B* to A* is better than conversion of C* to
A* */
if (same_type_p (deref_from_type1, deref_from_type2))
{
if (is_properly_derived_from (deref_to_type1,
deref_to_type2))
return 1;
else if (is_properly_derived_from (deref_to_type2,
deref_to_type1))
return -1;
}
else if (same_type_p (deref_to_type1, deref_to_type2))
{
if (is_properly_derived_from (deref_from_type2,
deref_from_type1))
return 1;
else if (is_properly_derived_from (deref_from_type1,
deref_from_type2))
return -1;
}
}
}
else if (CLASS_TYPE_P (non_reference (from_type1))
&& same_type_p (from_type1, from_type2))
{
tree from = non_reference (from_type1);
/* [over.ics.rank]
--binding of an expression of type C to a reference of type
B& is better than binding an expression of type C to a
reference of type A&
--conversion of C to B is better than conversion of C to A, */
if (is_properly_derived_from (from, to_type1)
&& is_properly_derived_from (from, to_type2))
{
if (is_properly_derived_from (to_type1, to_type2))
return 1;
else if (is_properly_derived_from (to_type2, to_type1))
return -1;
}
}
else if (CLASS_TYPE_P (non_reference (to_type1))
&& same_type_p (to_type1, to_type2))
{
tree to = non_reference (to_type1);
/* [over.ics.rank]
--binding of an expression of type B to a reference of type
A& is better than binding an expression of type C to a
reference of type A&,
--conversion of B to A is better than conversion of C to A */
if (is_properly_derived_from (from_type1, to)
&& is_properly_derived_from (from_type2, to))
{
if (is_properly_derived_from (from_type2, from_type1))
return 1;
else if (is_properly_derived_from (from_type1, from_type2))
return -1;
}
}
/* [over.ics.rank]
--S1 and S2 differ only in their qualification conversion and yield
similar types T1 and T2 (_conv.qual_), respectively, and the cv-
qualification signature of type T1 is a proper subset of the cv-
qualification signature of type T2 */
if (ics1->kind == ck_qual
&& ics2->kind == ck_qual
&& same_type_p (from_type1, from_type2))
return comp_cv_qual_signature (to_type1, to_type2);
/* [over.ics.rank]
--S1 and S2 are reference bindings (_dcl.init.ref_) and neither refers
to an implicit object parameter, and either S1 binds an lvalue reference
to an lvalue and S2 binds an rvalue reference or S1 binds an rvalue
reference to an rvalue and S2 binds an lvalue reference
(C++0x draft standard, 13.3.3.2)
--S1 and S2 are reference bindings (_dcl.init.ref_), and the
types to which the references refer are the same type except for
top-level cv-qualifiers, and the type to which the reference
initialized by S2 refers is more cv-qualified than the type to
which the reference initialized by S1 refers */
if (ref_conv1 && ref_conv2
&& same_type_ignoring_top_level_qualifiers_p (to_type1, to_type2))
{
if (ref_conv1->rvaluedness_matches_p
&& !ref_conv2->rvaluedness_matches_p)
return 1;
else if (!ref_conv1->rvaluedness_matches_p
&& ref_conv2->rvaluedness_matches_p)
return -1;
return comp_cv_qualification (TREE_TYPE (ref_conv2->type),
TREE_TYPE (ref_conv1->type));
}
/* Neither conversion sequence is better than the other. */
return 0;
}
/* The source type for this standard conversion sequence. */
static tree
source_type (conversion *t)
{
for (;; t = t->u.next)
{
if (t->kind == ck_user
|| t->kind == ck_ambig
|| t->kind == ck_identity)
return t->type;
}
gcc_unreachable ();
}
/* Note a warning about preferring WINNER to LOSER. We do this by storing
a pointer to LOSER and re-running joust to produce the warning if WINNER
is actually used. */
static void
add_warning (struct z_candidate *winner, struct z_candidate *loser)
{
candidate_warning *cw = (candidate_warning *)
conversion_obstack_alloc (sizeof (candidate_warning));
cw->loser = loser;
cw->next = winner->warnings;
winner->warnings = cw;
}
/* Compare two candidates for overloading as described in
[over.match.best]. Return values:
1: cand1 is better than cand2
-1: cand2 is better than cand1
0: cand1 and cand2 are indistinguishable */
static int
joust (struct z_candidate *cand1, struct z_candidate *cand2, bool warn)
{
int winner = 0;
int off1 = 0, off2 = 0;
size_t i;
size_t len;
/* Candidates that involve bad conversions are always worse than those
that don't. */
if (cand1->viable > cand2->viable)
return 1;
if (cand1->viable < cand2->viable)
return -1;
/* If we have two pseudo-candidates for conversions to the same type,
or two candidates for the same function, arbitrarily pick one. */
if (cand1->fn == cand2->fn
&& (IS_TYPE_OR_DECL_P (cand1->fn)))
return 1;
/* a viable function F1
is defined to be a better function than another viable function F2 if
for all arguments i, ICSi(F1) is not a worse conversion sequence than
ICSi(F2), and then */
/* for some argument j, ICSj(F1) is a better conversion sequence than
ICSj(F2) */
/* For comparing static and non-static member functions, we ignore
the implicit object parameter of the non-static function. The
standard says to pretend that the static function has an object
parm, but that won't work with operator overloading. */
len = cand1->num_convs;
if (len != cand2->num_convs)
{
int static_1 = DECL_STATIC_FUNCTION_P (cand1->fn);
int static_2 = DECL_STATIC_FUNCTION_P (cand2->fn);
gcc_assert (static_1 != static_2);
if (static_1)
off2 = 1;
else
{
off1 = 1;
--len;
}
}
for (i = 0; i < len; ++i)
{
conversion *t1 = cand1->convs[i + off1];
conversion *t2 = cand2->convs[i + off2];
int comp = compare_ics (t1, t2);
if (comp != 0)
{
if (warn_sign_promo
&& (CONVERSION_RANK (t1) + CONVERSION_RANK (t2)
== cr_std + cr_promotion)
&& t1->kind == ck_std
&& t2->kind == ck_std
&& TREE_CODE (t1->type) == INTEGER_TYPE
&& TREE_CODE (t2->type) == INTEGER_TYPE
&& (TYPE_PRECISION (t1->type)
== TYPE_PRECISION (t2->type))
&& (TYPE_UNSIGNED (t1->u.next->type)
|| (TREE_CODE (t1->u.next->type)
== ENUMERAL_TYPE)))
{
tree type = t1->u.next->type;
tree type1, type2;
struct z_candidate *w, *l;
if (comp > 0)
type1 = t1->type, type2 = t2->type,
w = cand1, l = cand2;
else
type1 = t2->type, type2 = t1->type,
w = cand2, l = cand1;
if (warn)
{
warning (OPT_Wsign_promo, "passing %qT chooses %qT over %qT",
type, type1, type2);
warning (OPT_Wsign_promo, " in call to %qD", w->fn);
}
else
add_warning (w, l);
}
if (winner && comp != winner)
{
winner = 0;
goto tweak;
}
winner = comp;
}
}
/* warn about confusing overload resolution for user-defined conversions,
either between a constructor and a conversion op, or between two
conversion ops. */
if (winner && warn_conversion && cand1->second_conv
&& (!DECL_CONSTRUCTOR_P (cand1->fn) || !DECL_CONSTRUCTOR_P (cand2->fn))
&& winner != compare_ics (cand1->second_conv, cand2->second_conv))
{
struct z_candidate *w, *l;
bool give_warning = false;
if (winner == 1)
w = cand1, l = cand2;
else
w = cand2, l = cand1;
/* We don't want to complain about `X::operator T1 ()'
beating `X::operator T2 () const', when T2 is a no less
cv-qualified version of T1. */
if (DECL_CONTEXT (w->fn) == DECL_CONTEXT (l->fn)
&& !DECL_CONSTRUCTOR_P (w->fn) && !DECL_CONSTRUCTOR_P (l->fn))
{
tree t = TREE_TYPE (TREE_TYPE (l->fn));
tree f = TREE_TYPE (TREE_TYPE (w->fn));
if (TREE_CODE (t) == TREE_CODE (f) && POINTER_TYPE_P (t))
{
t = TREE_TYPE (t);
f = TREE_TYPE (f);
}
if (!comp_ptr_ttypes (t, f))
give_warning = true;
}
else
give_warning = true;
if (!give_warning)
/*NOP*/;
else if (warn)
{
tree source = source_type (w->convs[0]);
if (! DECL_CONSTRUCTOR_P (w->fn))
source = TREE_TYPE (source);
warning (OPT_Wconversion, "choosing %qD over %qD", w->fn, l->fn);
warning (OPT_Wconversion, " for conversion from %qT to %qT",
source, w->second_conv->type);
inform (" because conversion sequence for the argument is better");
}
else
add_warning (w, l);
}
if (winner)
return winner;
/* or, if not that,
F1 is a non-template function and F2 is a template function
specialization. */
if (!cand1->template_decl && cand2->template_decl)
return 1;
else if (cand1->template_decl && !cand2->template_decl)
return -1;
/* or, if not that,
F1 and F2 are template functions and the function template for F1 is
more specialized than the template for F2 according to the partial
ordering rules. */
if (cand1->template_decl && cand2->template_decl)
{
winner = more_specialized_fn
(TI_TEMPLATE (cand1->template_decl),
TI_TEMPLATE (cand2->template_decl),
/* [temp.func.order]: The presence of unused ellipsis and default
arguments has no effect on the partial ordering of function
templates. add_function_candidate() will not have
counted the "this" argument for constructors. */
cand1->num_convs + DECL_CONSTRUCTOR_P (cand1->fn));
if (winner)
return winner;
}
/* or, if not that,
the context is an initialization by user-defined conversion (see
_dcl.init_ and _over.match.user_) and the standard conversion
sequence from the return type of F1 to the destination type (i.e.,
the type of the entity being initialized) is a better conversion
sequence than the standard conversion sequence from the return type
of F2 to the destination type. */
if (cand1->second_conv)
{
winner = compare_ics (cand1->second_conv, cand2->second_conv);
if (winner)
return winner;
}
/* Check whether we can discard a builtin candidate, either because we
have two identical ones or matching builtin and non-builtin candidates.
(Pedantically in the latter case the builtin which matched the user
function should not be added to the overload set, but we spot it here.
[over.match.oper]
... the builtin candidates include ...
- do not have the same parameter type list as any non-template
non-member candidate. */
if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE
|| TREE_CODE (cand2->fn) == IDENTIFIER_NODE)
{
for (i = 0; i < len; ++i)
if (!same_type_p (cand1->convs[i]->type,
cand2->convs[i]->type))
break;
if (i == cand1->num_convs)
{
if (cand1->fn == cand2->fn)
/* Two built-in candidates; arbitrarily pick one. */
return 1;
else if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
/* cand1 is built-in; prefer cand2. */
return -1;
else
/* cand2 is built-in; prefer cand1. */
return 1;
}
}
/* If the two functions are the same (this can happen with declarations
in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
if (DECL_P (cand1->fn) && DECL_P (cand2->fn)
&& equal_functions (cand1->fn, cand2->fn))
return 1;
tweak:
/* Extension: If the worst conversion for one candidate is worse than the
worst conversion for the other, take the first. */
if (!pedantic)
{
conversion_rank rank1 = cr_identity, rank2 = cr_identity;
struct z_candidate *w = 0, *l = 0;
for (i = 0; i < len; ++i)
{
if (CONVERSION_RANK (cand1->convs[i+off1]) > rank1)
rank1 = CONVERSION_RANK (cand1->convs[i+off1]);
if (CONVERSION_RANK (cand2->convs[i + off2]) > rank2)
rank2 = CONVERSION_RANK (cand2->convs[i + off2]);
}
if (rank1 < rank2)
winner = 1, w = cand1, l = cand2;
if (rank1 > rank2)
winner = -1, w = cand2, l = cand1;
if (winner)
{
if (warn)
{
pedwarn ("\
ISO C++ says that these are ambiguous, even \
though the worst conversion for the first is better than \
the worst conversion for the second:");
print_z_candidate (_("candidate 1:"), w);
print_z_candidate (_("candidate 2:"), l);
}
else
add_warning (w, l);
return winner;
}
}
gcc_assert (!winner);
return 0;
}
/* Given a list of candidates for overloading, find the best one, if any.
This algorithm has a worst case of O(2n) (winner is last), and a best
case of O(n/2) (totally ambiguous); much better than a sorting
algorithm. */
static struct z_candidate *
tourney (struct z_candidate *candidates)
{
struct z_candidate *champ = candidates, *challenger;
int fate;
int champ_compared_to_predecessor = 0;
/* Walk through the list once, comparing each current champ to the next
candidate, knocking out a candidate or two with each comparison. */
for (challenger = champ->next; challenger; )
{
fate = joust (champ, challenger, 0);
if (fate == 1)
challenger = challenger->next;
else
{
if (fate == 0)
{
champ = challenger->next;
if (champ == 0)
return NULL;
champ_compared_to_predecessor = 0;
}
else
{
champ = challenger;
champ_compared_to_predecessor = 1;
}
challenger = champ->next;
}
}
/* Make sure the champ is better than all the candidates it hasn't yet
been compared to. */
for (challenger = candidates;
challenger != champ
&& !(champ_compared_to_predecessor && challenger->next == champ);
challenger = challenger->next)
{
fate = joust (champ, challenger, 0);
if (fate != 1)
return NULL;
}
return champ;
}
/* Returns nonzero if things of type FROM can be converted to TO. */
bool
can_convert (tree to, tree from)
{
return can_convert_arg (to, from, NULL_TREE, LOOKUP_NORMAL);
}
/* Returns nonzero if ARG (of type FROM) can be converted to TO. */
bool
can_convert_arg (tree to, tree from, tree arg, int flags)
{
conversion *t;
void *p;
bool ok_p;
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
t = implicit_conversion (to, from, arg, /*c_cast_p=*/false,
flags);
ok_p = (t && !t->bad_p);
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return ok_p;
}
/* Like can_convert_arg, but allows dubious conversions as well. */
bool
can_convert_arg_bad (tree to, tree from, tree arg)
{
conversion *t;
void *p;
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
/* Try to perform the conversion. */
t = implicit_conversion (to, from, arg, /*c_cast_p=*/false,
LOOKUP_NORMAL);
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return t != NULL;
}
/* Convert EXPR to TYPE. Return the converted expression.
Note that we allow bad conversions here because by the time we get to
this point we are committed to doing the conversion. If we end up
doing a bad conversion, convert_like will complain. */
tree
perform_implicit_conversion (tree type, tree expr)
{
conversion *conv;
void *p;
if (error_operand_p (expr))
return error_mark_node;
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
conv = implicit_conversion (type, TREE_TYPE (expr), expr,
/*c_cast_p=*/false,
LOOKUP_NORMAL);
if (!conv)
{
error ("could not convert %qE to %qT", expr, type);
expr = error_mark_node;
}
else if (processing_template_decl)
{
/* In a template, we are only concerned about determining the
type of non-dependent expressions, so we do not have to
perform the actual conversion. */
if (TREE_TYPE (expr) != type)
expr = build_nop (type, expr);
}
else
expr = convert_like (conv, expr);
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return expr;
}
/* Convert EXPR to TYPE (as a direct-initialization) if that is
permitted. If the conversion is valid, the converted expression is
returned. Otherwise, NULL_TREE is returned, except in the case
that TYPE is a class type; in that case, an error is issued. If
C_CAST_P is true, then this direction initialization is taking
place as part of a static_cast being attempted as part of a C-style
cast. */
tree
perform_direct_initialization_if_possible (tree type,
tree expr,
bool c_cast_p)
{
conversion *conv;
void *p;
if (type == error_mark_node || error_operand_p (expr))
return error_mark_node;
/* [dcl.init]
If the destination type is a (possibly cv-qualified) class type:
-- If the initialization is direct-initialization ...,
constructors are considered. ... If no constructor applies, or
the overload resolution is ambiguous, the initialization is
ill-formed. */
if (CLASS_TYPE_P (type))
{
expr = build_special_member_call (NULL_TREE, complete_ctor_identifier,
build_tree_list (NULL_TREE, expr),
type, LOOKUP_NORMAL);
return build_cplus_new (type, expr);
}
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
conv = implicit_conversion (type, TREE_TYPE (expr), expr,
c_cast_p,
LOOKUP_NORMAL);
if (!conv || conv->bad_p)
expr = NULL_TREE;
else
expr = convert_like_real (conv, expr, NULL_TREE, 0, 0,
/*issue_conversion_warnings=*/false,
c_cast_p);
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return expr;
}
/* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
is being bound to a temporary. Create and return a new VAR_DECL
with the indicated TYPE; this variable will store the value to
which the reference is bound. */
tree
make_temporary_var_for_ref_to_temp (tree decl, tree type)
{
tree var;
/* Create the variable. */
var = create_temporary_var (type);
/* Register the variable. */
if (TREE_STATIC (decl))
{
/* Namespace-scope or local static; give it a mangled name. */
tree name;
TREE_STATIC (var) = 1;
name = mangle_ref_init_variable (decl);
DECL_NAME (var) = name;
SET_DECL_ASSEMBLER_NAME (var, name);
var = pushdecl_top_level (var);
}
else
/* Create a new cleanup level if necessary. */
maybe_push_cleanup_level (type);
return var;
}
/* Convert EXPR to the indicated reference TYPE, in a way suitable for
initializing a variable of that TYPE. If DECL is non-NULL, it is
the VAR_DECL being initialized with the EXPR. (In that case, the
type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
also be non-NULL, and with *CLEANUP initialized to NULL. Upon
return, if *CLEANUP is no longer NULL, it will be an expression
that should be pushed as a cleanup after the returned expression
is used to initialize DECL.
Return the converted expression. */
tree
initialize_reference (tree type, tree expr, tree decl, tree *cleanup)
{
conversion *conv;
void *p;
if (type == error_mark_node || error_operand_p (expr))
return error_mark_node;
/* Get the high-water mark for the CONVERSION_OBSTACK. */
p = conversion_obstack_alloc (0);
conv = reference_binding (type, TREE_TYPE (expr), expr, /*c_cast_p=*/false,
LOOKUP_NORMAL);
if (!conv || conv->bad_p)
{
if (!(TYPE_QUALS (TREE_TYPE (type)) & TYPE_QUAL_CONST)
&& !real_lvalue_p (expr))
error ("invalid initialization of non-const reference of "
"type %qT from a temporary of type %qT",
type, TREE_TYPE (expr));
else
error ("invalid initialization of reference of type "
"%qT from expression of type %qT", type,
TREE_TYPE (expr));
return error_mark_node;
}
/* If DECL is non-NULL, then this special rule applies:
[class.temporary]
The temporary to which the reference is bound or the temporary
that is the complete object to which the reference is bound
persists for the lifetime of the reference.
The temporaries created during the evaluation of the expression
initializing the reference, except the temporary to which the
reference is bound, are destroyed at the end of the
full-expression in which they are created.
In that case, we store the converted expression into a new
VAR_DECL in a new scope.
However, we want to be careful not to create temporaries when
they are not required. For example, given:
struct B {};
struct D : public B {};
D f();
const B& b = f();
there is no need to copy the return value from "f"; we can just
extend its lifetime. Similarly, given:
struct S {};
struct T { operator S(); };
T t;
const S& s = t;
we can extend the lifetime of the return value of the conversion
operator. */
gcc_assert (conv->kind == ck_ref_bind);
if (decl)
{
tree var;
tree base_conv_type;
/* Skip over the REF_BIND. */
conv = conv->u.next;
/* If the next conversion is a BASE_CONV, skip that too -- but
remember that the conversion was required. */
if (conv->kind == ck_base)
{
if (conv->check_copy_constructor_p)
check_constructor_callable (TREE_TYPE (expr), expr);
base_conv_type = conv->type;
conv = conv->u.next;
}
else
base_conv_type = NULL_TREE;
/* Perform the remainder of the conversion. */
expr = convert_like_real (conv, expr,
/*fn=*/NULL_TREE, /*argnum=*/0,
/*inner=*/-1,
/*issue_conversion_warnings=*/true,
/*c_cast_p=*/false);
if (error_operand_p (expr))
expr = error_mark_node;
else
{
if (!real_lvalue_p (expr))
{
tree init;
tree type;
/* Create the temporary variable. */
type = TREE_TYPE (expr);
var = make_temporary_var_for_ref_to_temp (decl, type);
layout_decl (var, 0);
/* If the rvalue is the result of a function call it will be
a TARGET_EXPR. If it is some other construct (such as a
member access expression where the underlying object is
itself the result of a function call), turn it into a
TARGET_EXPR here. It is important that EXPR be a
TARGET_EXPR below since otherwise the INIT_EXPR will
attempt to make a bitwise copy of EXPR to initialize
VAR. */
if (TREE_CODE (expr) != TARGET_EXPR)
expr = get_target_expr (expr);
/* Create the INIT_EXPR that will initialize the temporary
variable. */
init = build2 (INIT_EXPR, type, var, expr);
if (at_function_scope_p ())
{
add_decl_expr (var);
*cleanup = cxx_maybe_build_cleanup (var);
/* We must be careful to destroy the temporary only
after its initialization has taken place. If the
initialization throws an exception, then the
destructor should not be run. We cannot simply
transform INIT into something like:
(INIT, ({ CLEANUP_STMT; }))
because emit_local_var always treats the
initializer as a full-expression. Thus, the
destructor would run too early; it would run at the
end of initializing the reference variable, rather
than at the end of the block enclosing the
reference variable.
The solution is to pass back a cleanup expression
which the caller is responsible for attaching to
the statement tree. */
}
else
{
rest_of_decl_compilation (var, /*toplev=*/1, at_eof);
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
static_aggregates = tree_cons (NULL_TREE, var,
static_aggregates);
}
/* Use its address to initialize the reference variable. */
expr = build_address (var);
if (base_conv_type)
expr = convert_to_base (expr,
build_pointer_type (base_conv_type),
/*check_access=*/true,
/*nonnull=*/true);
expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr), init, expr);
}
else
/* Take the address of EXPR. */
expr = build_unary_op (ADDR_EXPR, expr, 0);
/* If a BASE_CONV was required, perform it now. */
if (base_conv_type)
expr = (perform_implicit_conversion
(build_pointer_type (base_conv_type), expr));
expr = build_nop (type, expr);
}
}
else
/* Perform the conversion. */
expr = convert_like (conv, expr);
/* Free all the conversions we allocated. */
obstack_free (&conversion_obstack, p);
return expr;
}
#include "gt-cp-call.h"
|