summaryrefslogtreecommitdiffstats
path: root/gcc/config/vax/vax.c
blob: 9eab182b80eca4330ae7ce1be7a9715aff75e145 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/* Subroutines for insn-output.c for Vax.
   Copyright (C) 1987, 94, 95, 97, 98, 1999 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "function.h"
#include "output.h"
#include "insn-attr.h"
#ifdef VMS_TARGET
#include "tree.h"
#endif

/* This is like nonimmediate_operand with a restriction on the type of MEM.  */

void
split_quadword_operands (operands, low, n)
     rtx *operands, *low;
     int n;
{
  int i;
  /* Split operands.  */

  low[0] = low[1] = low[2] = 0;
  for (i = 0; i < 3; i++)
    {
      if (low[i])
	/* it's already been figured out */;
      else if (GET_CODE (operands[i]) == MEM
	       && (GET_CODE (XEXP (operands[i], 0)) == POST_INC))
	{
	  rtx addr = XEXP (operands[i], 0);
	  operands[i] = low[i] = gen_rtx_MEM (SImode, addr);
	  if (which_alternative == 0 && i == 0)
	    {
	      addr = XEXP (operands[i], 0);
	      operands[i+1] = low[i+1] = gen_rtx_MEM (SImode, addr);
	    }
	}
      else
	{
	  low[i] = operand_subword (operands[i], 0, 0, DImode);
	  operands[i] = operand_subword (operands[i], 1, 0, DImode);
	}
    }
}

print_operand_address (file, addr)
     FILE *file;
     register rtx addr;
{
  register rtx reg1, reg2, breg, ireg;
  rtx offset;

 retry:
  switch (GET_CODE (addr))
    {
    case MEM:
      fprintf (file, "*");
      addr = XEXP (addr, 0);
      goto retry;

    case REG:
      fprintf (file, "(%s)", reg_names[REGNO (addr)]);
      break;

    case PRE_DEC:
      fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case POST_INC:
      fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case PLUS:
      /* There can be either two or three things added here.  One must be a
	 REG.  One can be either a REG or a MULT of a REG and an appropriate
	 constant, and the third can only be a constant or a MEM.

	 We get these two or three things and put the constant or MEM in
	 OFFSET, the MULT or REG in IREG, and the REG in BREG.  If we have
	 a register and can't tell yet if it is a base or index register,
	 put it into REG1.  */

      reg1 = 0; ireg = 0; breg = 0; offset = 0;

      if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	  || GET_CODE (XEXP (addr, 0)) == MEM)
	{
	  offset = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	       || GET_CODE (XEXP (addr, 1)) == MEM)
	{
	  offset = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 1)) == MULT)
	{
	  ireg = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 0)) == MULT)
	{
	  ireg = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else if (GET_CODE (XEXP (addr, 1)) == REG)
	{
	  reg1 = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}
      else if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  reg1 = XEXP (addr, 0);
	  addr = XEXP (addr, 1);
	}
      else
	abort ();

      if (GET_CODE (addr) == REG)
	{
	  if (reg1)
	    ireg = addr;
	  else
	    reg1 = addr;
	}
      else if (GET_CODE (addr) == MULT)
	ireg = addr;
      else if (GET_CODE (addr) == PLUS)
	{
	  if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
	      || GET_CODE (XEXP (addr, 0)) == MEM)
	    {
	      if (offset)
		{
		  if (GET_CODE (offset) == CONST_INT)
		    offset = plus_constant (XEXP (addr, 0), INTVAL (offset));
		  else if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
		    offset = plus_constant (offset, INTVAL (XEXP (addr, 0)));
		  else
		    abort ();
		}
	      offset = XEXP (addr, 0);
	    }
	  else if (GET_CODE (XEXP (addr, 0)) == REG)
	    {
	      if (reg1)
		ireg = reg1, breg = XEXP (addr, 0), reg1 = 0;
	      else
		reg1 = XEXP (addr, 0);
	    }
	  else if (GET_CODE (XEXP (addr, 0)) == MULT)
	    {
	      if (ireg)
		abort ();
	      ireg = XEXP (addr, 0);
	    }
	  else
	    abort ();

	  if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
	      || GET_CODE (XEXP (addr, 1)) == MEM)
	    {
	      if (offset)
		{
		  if (GET_CODE (offset) == CONST_INT)
		    offset = plus_constant (XEXP (addr, 1), INTVAL (offset));
		  else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
		    offset = plus_constant (offset, INTVAL (XEXP (addr, 1)));
		  else
		    abort ();
		}
	      offset = XEXP (addr, 1);
	    }
	  else if (GET_CODE (XEXP (addr, 1)) == REG)
	    {
	      if (reg1)
		ireg = reg1, breg = XEXP (addr, 1), reg1 = 0;
	      else
		reg1 = XEXP (addr, 1);
	    }
	  else if (GET_CODE (XEXP (addr, 1)) == MULT)
	    {
	      if (ireg)
		abort ();
	      ireg = XEXP (addr, 1);
	    }
	  else
	    abort ();
	}
      else
	abort ();

      /* If REG1 is non-zero, figure out if it is a base or index register.  */
      if (reg1)
	{
	  if (breg != 0 || (offset && GET_CODE (offset) == MEM))
	    {
	      if (ireg)
		abort ();
	      ireg = reg1;
	    }
	  else
	    breg = reg1;
	}

      if (offset != 0)
	output_address (offset);

      if (breg != 0)
	fprintf (file, "(%s)", reg_names[REGNO (breg)]);

      if (ireg != 0)
	{
	  if (GET_CODE (ireg) == MULT)
	    ireg = XEXP (ireg, 0);
	  if (GET_CODE (ireg) != REG)
	    abort ();
	  fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
	}
      break;

    default:
      output_addr_const (file, addr);
    }
}

char *
rev_cond_name (op)
     rtx op;
{
  switch (GET_CODE (op))
    {
    case EQ:
      return "neq";
    case NE:
      return "eql";
    case LT:
      return "geq";
    case LE:
      return "gtr";
    case GT:
      return "leq";
    case GE:
      return "lss";
    case LTU:
      return "gequ";
    case LEU:
      return "gtru";
    case GTU:
      return "lequ";
    case GEU:
      return "lssu";

    default:
      abort ();
    }
}

int
vax_float_literal(c)
    register rtx c;
{
  register enum machine_mode mode;
  int i;
  union {double d; int i[2];} val;

  if (GET_CODE (c) != CONST_DOUBLE)
    return 0;

  mode = GET_MODE (c);

  if (c == const_tiny_rtx[(int) mode][0]
      || c == const_tiny_rtx[(int) mode][1]
      || c == const_tiny_rtx[(int) mode][2])
    return 1;

#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT

  val.i[0] = CONST_DOUBLE_LOW (c);
  val.i[1] = CONST_DOUBLE_HIGH (c);

  for (i = 0; i < 7; i ++)
    if (val.d == 1 << i || val.d == 1 / (1 << i))
      return 1;
#endif
  return 0;
}


/* Return the cost in cycles of a memory address, relative to register
   indirect.

   Each of the following adds the indicated number of cycles:

   1 - symbolic address
   1 - pre-decrement
   1 - indexing and/or offset(register)
   2 - indirect */


int vax_address_cost(addr)
    register rtx addr;
{
  int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0;
  rtx plus_op0 = 0, plus_op1 = 0;
 restart:
  switch (GET_CODE (addr))
    {
    case PRE_DEC:
      predec = 1;
    case REG:
    case SUBREG:
    case POST_INC:
      reg = 1;
      break;
    case MULT:
      indexed = 1;	/* 2 on VAX 2 */
      break;
    case CONST_INT:
      /* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */
      if (offset == 0)
	offset = (unsigned)(INTVAL(addr)+128) > 256;
      break;
    case CONST:
    case SYMBOL_REF:
      offset = 1;	/* 2 on VAX 2 */
      break;
    case LABEL_REF:	/* this is probably a byte offset from the pc */
      if (offset == 0)
	offset = 1;
      break;
    case PLUS:
      if (plus_op0)
	plus_op1 = XEXP (addr, 0);
      else
	plus_op0 = XEXP (addr, 0);
      addr = XEXP (addr, 1);
      goto restart;
    case MEM:
      indir = 2;	/* 3 on VAX 2 */
      addr = XEXP (addr, 0);
      goto restart;
    }

  /* Up to 3 things can be added in an address.  They are stored in
     plus_op0, plus_op1, and addr.  */

  if (plus_op0)
    {
      addr = plus_op0;
      plus_op0 = 0;
      goto restart;
    }
  if (plus_op1)
    {
      addr = plus_op1;
      plus_op1 = 0;
      goto restart;
    }
  /* Indexing and register+offset can both be used (except on a VAX 2)
     without increasing execution time over either one alone. */
  if (reg && indexed && offset)
    return reg + indir + offset + predec;
  return reg + indexed + indir + offset + predec;
}


/* Cost of an expression on a VAX.  This version has costs tuned for the
   CVAX chip (found in the VAX 3 series) with comments for variations on
   other models.  */

int
vax_rtx_cost (x)
    register rtx x;
{
  register enum rtx_code code = GET_CODE (x);
  enum machine_mode mode = GET_MODE (x);
  register int c;
  int i = 0;				/* may be modified in switch */
  const char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */

  switch (code)
    {
    case POST_INC:
      return 2;
    case PRE_DEC:
      return 3;
    case MULT:
      switch (mode)
	{
	case DFmode:
	  c = 16;		/* 4 on VAX 9000 */
	  break;
	case SFmode:
	  c = 9;		/* 4 on VAX 9000, 12 on VAX 2 */
	  break;
	case DImode:
	  c = 16;		/* 6 on VAX 9000, 28 on VAX 2 */
	  break;
	case SImode:
	case HImode:
	case QImode:
	  c = 10;		/* 3-4 on VAX 9000, 20-28 on VAX 2 */
	  break;
	}
      break;
    case UDIV:
      c = 17;
      break;
    case DIV:
      if (mode == DImode)
	c = 30;	/* highly variable */
      else if (mode == DFmode)
	/* divide takes 28 cycles if the result is not zero, 13 otherwise */
	c = 24;
      else
	c = 11;			/* 25 on VAX 2 */
      break;
    case MOD:
      c = 23;
      break;
    case UMOD:
      c = 29;
      break;
    case FLOAT:
      c = 6 + (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode);
      /* 4 on VAX 9000 */
      break;
    case FIX:
      c = 7;			/* 17 on VAX 2 */
      break;
    case ASHIFT:
    case LSHIFTRT:
    case ASHIFTRT:
      if (mode == DImode)
	c = 12;
      else
	c = 10;			/* 6 on VAX 9000 */
      break;
    case ROTATE:
    case ROTATERT:
      c = 6;			/* 5 on VAX 2, 4 on VAX 9000 */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	fmt = "e";	/* all constant rotate counts are short */
      break;
    case PLUS:
      /* Check for small negative integer operand: subl2 can be used with
	 a short positive constant instead.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	if ((unsigned)(INTVAL (XEXP (x, 1)) + 63) < 127)
	  fmt = "e";
    case MINUS:
      c = (mode == DFmode) ? 13 : 8;	/* 6/8 on VAX 9000, 16/15 on VAX 2 */
    case IOR:
    case XOR:
      c = 3;
      break;
    case AND:
      /* AND is special because the first operand is complemented. */
      c = 3;
      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	{
	  if ((unsigned)~INTVAL (XEXP (x, 0)) > 63)
	    c = 4;
	  fmt = "e";
	  i = 1;
	}
      break;
    case NEG:
      if (mode == DFmode)
	return 9;
      else if (mode == SFmode)
	return 6;
      else if (mode == DImode)
	return 4;
    case NOT:
      return 2;
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      c = 15;
      break;
    case MEM:
      if (mode == DImode || mode == DFmode)
	c = 5;				/* 7 on VAX 2 */
      else
	c = 3;				/* 4 on VAX 2 */
      x = XEXP (x, 0);
      if (GET_CODE (x) == REG || GET_CODE (x) == POST_INC)
	return c;
      return c + vax_address_cost (x);
    default:
      c = 3;
      break;
    }


  /* Now look inside the expression.  Operands which are not registers or
     short constants add to the cost.

     FMT and I may have been adjusted in the switch above for instructions
     which require special handling */

  while (*fmt++ == 'e')
    {
      register rtx op = XEXP (x, i++);
      code = GET_CODE (op);

      /* A NOT is likely to be found as the first operand of an AND
	 (in which case the relevant cost is of the operand inside
	 the not) and not likely to be found anywhere else.  */
      if (code == NOT)
	op = XEXP (op, 0), code = GET_CODE (op);

      switch (code)
	{
	case CONST_INT:
	  if ((unsigned)INTVAL (op) > 63 && GET_MODE (x) != QImode)
	    c += 1;		/* 2 on VAX 2 */
	  break;
	case CONST:
	case LABEL_REF:
	case SYMBOL_REF:
	  c += 1;		/* 2 on VAX 2 */
	  break;
	case CONST_DOUBLE:
	  if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
	    {
	      /* Registers are faster than floating point constants -- even
		 those constants which can be encoded in a single byte.  */
	      if (vax_float_literal (op))
		c++;
	      else
		c += (GET_MODE (x) == DFmode) ? 3 : 2;
	    }
	  else
	    {
	      if (CONST_DOUBLE_HIGH (op) != 0
		  || (unsigned)CONST_DOUBLE_LOW (op) > 63)
		c += 2;
	    }
	  break;
	case MEM:
	  c += 1;		/* 2 on VAX 2 */
	  if (GET_CODE (XEXP (op, 0)) != REG)
	    c += vax_address_cost (XEXP (op, 0));
	  break;
	case REG:
	case SUBREG:
	  break;
	default:
	  c += 1;
	  break;
	}
    }
  return c;
}

/* Check a `double' value for validity for a particular machine mode.  */

static char *float_strings[] =
{
   "1.70141173319264430e+38", /* 2^127 (2^24 - 1) / 2^24 */
  "-1.70141173319264430e+38",
   "2.93873587705571877e-39", /* 2^-128 */
  "-2.93873587705571877e-39"
};

static REAL_VALUE_TYPE float_values[4];

static int inited_float_values = 0;


int
check_float_value (mode, d, overflow)
     enum machine_mode mode;
     REAL_VALUE_TYPE *d;
     int overflow;
{
  if (inited_float_values == 0)
    {
      int i;
      for (i = 0; i < 4; i++)
	{
	  float_values[i] = REAL_VALUE_ATOF (float_strings[i], DFmode);
	}

      inited_float_values = 1;
    }

  if (overflow)
    {
      bcopy ((char *) &float_values[0], (char *) d, sizeof (REAL_VALUE_TYPE));
      return 1;
    }

  if ((mode) == SFmode)
    {
      REAL_VALUE_TYPE r;
      bcopy ((char *) d, (char *) &r, sizeof (REAL_VALUE_TYPE));
      if (REAL_VALUES_LESS (float_values[0], r))
	{
	  bcopy ((char *) &float_values[0], (char *) d,
		 sizeof (REAL_VALUE_TYPE));
	  return 1;
	}
      else if (REAL_VALUES_LESS (r, float_values[1]))
	{
	  bcopy ((char *) &float_values[1], (char*) d,
		 sizeof (REAL_VALUE_TYPE));
	  return 1;
	}
      else if (REAL_VALUES_LESS (dconst0, r)
		&& REAL_VALUES_LESS (r, float_values[2]))
	{
	  bcopy ((char *) &dconst0, (char *) d, sizeof (REAL_VALUE_TYPE));
	  return 1;
	}
      else if (REAL_VALUES_LESS (r, dconst0)
		&& REAL_VALUES_LESS (float_values[3], r))
	{
	  bcopy ((char *) &dconst0, (char *) d, sizeof (REAL_VALUE_TYPE));
	  return 1;
	}
    }

  return 0;
}

#ifdef VMS_TARGET
/* Additional support code for VMS target. */

/* Linked list of all externals that are to be emitted when optimizing
   for the global pointer if they haven't been declared by the end of
   the program with an appropriate .comm or initialization.  */

static
struct extern_list {
  struct extern_list *next;	/* next external */
  char *name;			/* name of the external */
  int size;			/* external's actual size */
  int in_const;			/* section type flag */
} *extern_head = 0, *pending_head = 0;

/* Check whether NAME is already on the external definition list.  If not,
   add it to either that list or the pending definition list.  */

void
vms_check_external (decl, name, pending)
     tree decl;
     char *name;
     int pending;
{
  register struct extern_list *p, *p0;

  for (p = extern_head; p; p = p->next)
    if (!strcmp (p->name, name))
      return;

  for (p = pending_head, p0 = 0; p; p0 = p, p = p->next)
    if (!strcmp (p->name, name))
      {
	if (pending)
	  return;

	/* Was pending, but has now been defined; move it to other list.  */
	if (p == pending_head)
	  pending_head = p->next;
	else
	  p0->next = p->next;
	p->next = extern_head;
	extern_head = p;
	return;
      }

  /* Not previously seen; create a new list entry.  */
  p = (struct extern_list *)permalloc ((long) sizeof (struct extern_list));
  p->name = name;

  if (pending)
    {
      /* Save the size and section type and link to `pending' list.  */
      p->size = (DECL_SIZE (decl) == 0) ? 0 :
	TREE_INT_CST_LOW (size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
				      size_int (BITS_PER_UNIT)));
      p->in_const = (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl));

      p->next = pending_head;
      pending_head = p;
    }
  else
    {
      /* Size and section type don't matter; link to `declared' list.  */
      p->size = p->in_const = 0;        /* arbitrary init */

      p->next = extern_head;
      extern_head = p;
    }
  return;
}

void
vms_flush_pending_externals (file)
     FILE *file;
{
  register struct extern_list *p;

  while (pending_head)
    {
      /* Move next pending declaration to the "done" list.  */
      p = pending_head;
      pending_head = p->next;
      p->next = extern_head;
      extern_head = p;

      /* Now output the actual declaration.  */
      if (p->in_const)
	const_section ();
      else
	data_section ();
      fputs (".comm ", file);
      assemble_name (file, p->name);
      fprintf (file, ",%d\n", p->size);
    }
}
#endif /* VMS_TARGET */

#ifdef VMS
/* Additional support code for VMS host. */

#ifdef QSORT_WORKAROUND
  /*
	Do not use VAXCRTL's qsort() due to a severe bug:  once you've
	sorted something which has a size that's an exact multiple of 4
	and is longword aligned, you cannot safely sort anything which
	is either not a multiple of 4 in size or not longword aligned.
	A static "move-by-longword" optimization flag inside qsort() is
	never reset.  This is known of affect VMS V4.6 through VMS V5.5-1,
	and was finally fixed in VMS V5.5-2.

	In this work-around an insertion sort is used for simplicity.
	The qsort code from glibc should probably be used instead.
   */
void
not_qsort (array, count, size, compare)
     void *array;
     unsigned count, size;
     int (*compare)();
{

  if (size == sizeof (short))
    {
      register int i;
      register short *next, *prev;
      short tmp, *base = array;

      for (next = base, i = count - 1; i > 0; i--)
	{
	  prev = next++;
	  if ((*compare)(next, prev) < 0)
	    {
	      tmp = *next;
	      do  *(prev + 1) = *prev;
		while (--prev >= base ? (*compare)(&tmp, prev) < 0 : 0);
	      *(prev + 1) = tmp;
	    }
	}
    }
  else if (size == sizeof (long))
    {
      register int i;
      register long *next, *prev;
      long tmp, *base = array;

      for (next = base, i = count - 1; i > 0; i--)
	{
	  prev = next++;
	  if ((*compare)(next, prev) < 0)
	    {
	      tmp = *next;
	      do  *(prev + 1) = *prev;
		while (--prev >= base ? (*compare)(&tmp, prev) < 0 : 0);
	      *(prev + 1) = tmp;
	    }
	}
    }
  else  /* arbitrary size */
    {
      register int i;
      register char *next, *prev, *tmp = alloca (size), *base = array;

      for (next = base, i = count - 1; i > 0; i--)
	{   /* count-1 forward iterations */
	  prev = next,  next += size;		/* increment front pointer */
	  if ((*compare)(next, prev) < 0)
	    {	/* found element out of order; move others up then re-insert */
	      memcpy (tmp, next, size);		/* save smaller element */
	      do { memcpy (prev + size, prev, size); /* move larger elem. up */
		   prev -= size;		/* decrement back pointer */
		 } while (prev >= base ? (*compare)(tmp, prev) < 0 : 0);
	      memcpy (prev + size, tmp, size);	/* restore small element */
	    }
	}
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  return;
}
#endif /* QSORT_WORKAROUND */

#endif /* VMS */
OpenPOWER on IntegriCloud