summaryrefslogtreecommitdiffstats
path: root/gcc/cgraphunit.c
blob: d2d4d4cb996c07f691c1c092fb3f7c4afabebc6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
/* Callgraph based intraprocedural optimizations.
   Copyright (C) 2003 Free Software Foundation, Inc.
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tree-inline.h"
#include "langhooks.h"
#include "hashtab.h"
#include "toplev.h"
#include "flags.h"
#include "ggc.h"
#include "debug.h"
#include "target.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "c-common.h"

#define INSNS_PER_CALL 10

static void cgraph_expand_all_functions (void);
static void cgraph_mark_functions_to_output (void);
static void cgraph_expand_function (struct cgraph_node *);
static tree record_call_1 (tree *, int *, void *);
static void cgraph_mark_local_functions (void);
static void cgraph_optimize_function (struct cgraph_node *);
static bool cgraph_default_inline_p (struct cgraph_node *n);
static void cgraph_analyze_function (struct cgraph_node *node);
static void cgraph_decide_inlining_incrementally (struct cgraph_node *);

/* Statistics we collect about inlining algorithm.  */
static int ncalls_inlined;
static int nfunctions_inlined;
static int initial_insns;
static int overall_insns;

/* Records tree nodes seen in cgraph_create_edges.  Simply using
   walk_tree_without_duplicates doesn't guarantee each node is visited
   once because it gets a new htab upon each recursive call from
   record_calls_1.  */
static htab_t visited_nodes;

/* Determine if function DECL is needed.  That is, visible to something
   either outside this translation unit, something magic in the system
   configury, or (if not doing unit-at-a-time) to something we havn't
   seen yet.  */

static bool
decide_is_function_needed (struct cgraph_node *node, tree decl)
{
  /* If we decided it was needed before, but at the time we didn't have
     the body of the function available, then it's still needed.  We have
     to go back and re-check its dependencies now.  */
  if (node->needed)
    return true;

  /* Externally visible functions must be output.  The exception is
     COMDAT functions that must be output only when they are needed.  */
  if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl) && !DECL_EXTERNAL (decl))
    return true;

  /* Constructors and destructors are reachable from the runtime by
     some mechanism.  */
  if (DECL_STATIC_CONSTRUCTOR (decl) || DECL_STATIC_DESTRUCTOR (decl))
    return true;

  /* If the user told us it is used, then it must be so.  */
  if (lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
    return true;

  /* ??? If the assembler name is set by hand, it is possible to assemble
     the name later after finalizing the function and the fact is noticed
     in assemble_name then.  This is arguably a bug.  */
  if (DECL_ASSEMBLER_NAME_SET_P (decl)
      && TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
    return true;

  if (flag_unit_at_a_time)
    return false;

  /* If not doing unit at a time, then we'll only defer this function
     if its marked for inlining.  Otherwise we want to emit it now.  */

  /* "extern inline" functions are never output locally.  */
  if (DECL_EXTERNAL (decl))
    return false;
  /* We want to emit COMDAT functions only when absolutely necessary.  */
  if (DECL_COMDAT (decl))
    return false;
  if (!DECL_INLINE (decl)
      || (!node->local.disregard_inline_limits
	  /* When declared inline, defer even the uninlinable functions.
	     This allows them to be eliminated when unused.  */
	  && !DECL_DECLARED_INLINE_P (decl) 
	  && (!node->local.inlinable || !cgraph_default_inline_p (node))))
    return true;

  return false;
}

/* When not doing unit-at-a-time, output all functions enqueued.
   Return true when such a functions were found.  */

bool
cgraph_assemble_pending_functions (void)
{
  bool output = false;

  if (flag_unit_at_a_time)
    return false;

  while (cgraph_nodes_queue)
    {
      struct cgraph_node *n = cgraph_nodes_queue;

      cgraph_nodes_queue = cgraph_nodes_queue->next_needed;
      if (!n->origin && !DECL_EXTERNAL (n->decl))
	{
	  cgraph_expand_function (n);
	  output = true;
	}
    }

  return output;
}

/* DECL has been parsed.  Take it, queue it, compile it at the whim of the
   logic in effect.  If NESTED is true, then our caller cannot stand to have
   the garbage collector run at the moment.  We would need to either create
   a new GC context, or just not compile right now.  */

void
cgraph_finalize_function (tree decl, bool nested)
{
  struct cgraph_node *node = cgraph_node (decl);

  if (node->local.finalized)
    {
      /* As an GCC extension we allow redefinition of the function.  The
	 semantics when both copies of bodies differ is not well defined.
	 We replace the old body with new body so in unit at a time mode
	 we always use new body, while in normal mode we may end up with
	 old body inlined into some functions and new body expanded and
	 inlined in others.
	 
	 ??? It may make more sense to use one body for inlining and other
	 body for expanding the function but this is difficult to do.  */

      /* If node->output is set, then this is a unit-at-a-time compilation
	 and we have already begun whole-unit analysis.  This is *not*
	 testing for whether we've already emitted the function.  That
	 case can be sort-of legitimately seen with real function 
	 redefinition errors.  I would argue that the front end should
	 never present us with such a case, but don't enforce that for now.  */
      if (node->output)
	abort ();

      /* Reset our datastructures so we can analyze the function again.  */
      memset (&node->local, 0, sizeof (node->local));
      memset (&node->global, 0, sizeof (node->global));
      memset (&node->rtl, 0, sizeof (node->rtl));
      node->analyzed = false;
      while (node->callees)
	cgraph_remove_edge (node, node->callees->callee);

      /* We may need to re-queue the node for assembling in case
         we already proceeded it and ignored as not needed.  */
      if (node->reachable && !flag_unit_at_a_time)
	{
	  struct cgraph_node *n;

	  for (n = cgraph_nodes_queue; n; n = n->next_needed)
	    if (n == node)
	      break;
	  if (!n)
	    node->reachable = 0;
	}
    }

  notice_global_symbol (decl);
  node->decl = decl;
  node->local.finalized = true;

  /* If not unit at a time, then we need to create the call graph
     now, so that called functions can be queued and emitted now.  */
  if (!flag_unit_at_a_time)
    {
      cgraph_analyze_function (node);
      cgraph_decide_inlining_incrementally (node);
    }

  if (decide_is_function_needed (node, decl))
    cgraph_mark_needed_node (node);

  /* If not unit at a time, go ahead and emit everything we've found
     to be reachable at this time.  */
  if (!nested)
    cgraph_assemble_pending_functions ();

  /* If we've not yet emitted decl, tell the debug info about it.  */
  if (!TREE_ASM_WRITTEN (decl))
    (*debug_hooks->deferred_inline_function) (decl);
}

/* Walk tree and record all calls.  Called via walk_tree.  */
static tree
record_call_1 (tree *tp, int *walk_subtrees, void *data)
{
  tree t = *tp;

  switch (TREE_CODE (t))
    {
    case VAR_DECL:
      /* ??? Really, we should mark this decl as *potentially* referenced
	 by this function and re-examine whether the decl is actually used
	 after rtl has been generated.  */
      if (TREE_STATIC (t))
        cgraph_varpool_mark_needed_node (cgraph_varpool_node (t));
      break;

    case ADDR_EXPR:
      if (flag_unit_at_a_time)
	{
	  /* Record dereferences to the functions.  This makes the
	     functions reachable unconditionally.  */
	  tree decl = TREE_OPERAND (*tp, 0);
	  if (TREE_CODE (decl) == FUNCTION_DECL)
	    cgraph_mark_needed_node (cgraph_node (decl));
	}
      break;

    case CALL_EXPR:
      {
	tree decl = get_callee_fndecl (*tp);
	if (decl && TREE_CODE (decl) == FUNCTION_DECL)
	  {
	    if (DECL_BUILT_IN (decl))
	      return NULL;
	    cgraph_record_call (data, decl);

	    /* When we see a function call, we don't want to look at the
	       function reference in the ADDR_EXPR that is hanging from
	       the CALL_EXPR we're examining here, because we would
	       conclude incorrectly that the function's address could be
	       taken by something that is not a function call.  So only
	       walk the function parameter list, skip the other subtrees.  */

	    walk_tree (&TREE_OPERAND (*tp, 1), record_call_1, data,
		       visited_nodes);
	    *walk_subtrees = 0;
	  }
	break;
      }

    default:
      /* Save some cycles by not walking types and declaration as we
	 won't find anything useful there anyway.  */
      if (DECL_P (*tp) || TYPE_P (*tp))
	{
	  *walk_subtrees = 0;
	  break;
	}

      if ((unsigned int) TREE_CODE (t) >= LAST_AND_UNUSED_TREE_CODE)
	return (*lang_hooks.callgraph.analyze_expr) (tp, walk_subtrees, data);
      break;
    }

  return NULL;
}

/* Create cgraph edges for function calls inside BODY from DECL.  */

void
cgraph_create_edges (tree decl, tree body)
{
  /* The nodes we're interested in are never shared, so walk
     the tree ignoring duplicates.  */
  visited_nodes = htab_create (37, htab_hash_pointer,
				    htab_eq_pointer, NULL);
  walk_tree (&body, record_call_1, decl, visited_nodes);
  htab_delete (visited_nodes);
  visited_nodes = NULL;
}

/* Analyze the function scheduled to be output.  */
static void
cgraph_analyze_function (struct cgraph_node *node)
{
  tree decl = node->decl;

  current_function_decl = decl;

  /* First kill forward declaration so reverse inlining works properly.  */
  cgraph_create_edges (decl, DECL_SAVED_TREE (decl));

  node->local.inlinable = tree_inlinable_function_p (decl);
  if (!DECL_ESTIMATED_INSNS (decl))
    DECL_ESTIMATED_INSNS (decl)
      = (*lang_hooks.tree_inlining.estimate_num_insns) (decl);
  node->local.self_insns = DECL_ESTIMATED_INSNS (decl);
  if (node->local.inlinable)
    node->local.disregard_inline_limits
      = (*lang_hooks.tree_inlining.disregard_inline_limits) (decl);

  /* Inlining characteristics are maintained by the cgraph_mark_inline.  */
  node->global.insns = node->local.self_insns;
  if (!DECL_EXTERNAL (decl))
    {
      node->global.cloned_times = 1;
      node->global.will_be_output = true;
    }

  node->analyzed = true;
  current_function_decl = NULL;
}

/* Analyze the whole compilation unit once it is parsed completely.  */

void
cgraph_finalize_compilation_unit (void)
{
  struct cgraph_node *node;

  if (!flag_unit_at_a_time)
    {
      cgraph_assemble_pending_functions ();
      return;
    }

  cgraph_varpool_assemble_pending_decls ();
  if (!quiet_flag)
    fprintf (stderr, "\nAnalyzing compilation unit\n");

  timevar_push (TV_CGRAPH);
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Initial entry points:");
      for (node = cgraph_nodes; node; node = node->next)
	if (node->needed && DECL_SAVED_TREE (node->decl))
	  fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
      fprintf (cgraph_dump_file, "\n");
    }

  /* Propagate reachability flag and lower representation of all reachable
     functions.  In the future, lowering will introduce new functions and
     new entry points on the way (by template instantiation and virtual
     method table generation for instance).  */
  while (cgraph_nodes_queue)
    {
      struct cgraph_edge *edge;
      tree decl = cgraph_nodes_queue->decl;

      node = cgraph_nodes_queue;
      cgraph_nodes_queue = cgraph_nodes_queue->next_needed;

      /* ??? It is possible to create extern inline function and later using
	 weak alas attribute to kill it's body. See
	 gcc.c-torture/compile/20011119-1.c  */
      if (!DECL_SAVED_TREE (decl))
	continue;

      if (node->analyzed || !node->reachable || !DECL_SAVED_TREE (decl))
	abort ();

      cgraph_analyze_function (node);

      for (edge = node->callees; edge; edge = edge->next_callee)
	if (!edge->callee->reachable)
	  cgraph_mark_reachable_node (edge->callee);

      cgraph_varpool_assemble_pending_decls ();
    }

  /* Collect entry points to the unit.  */

  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Unit entry points:");
      for (node = cgraph_nodes; node; node = node->next)
	if (node->needed && DECL_SAVED_TREE (node->decl))
	  fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
      fprintf (cgraph_dump_file, "\n\nInitial ");
      dump_cgraph (cgraph_dump_file);
    }

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nReclaiming functions:");

  for (node = cgraph_nodes; node; node = node->next)
    {
      tree decl = node->decl;

      if (!node->reachable && DECL_SAVED_TREE (decl))
	{
	  cgraph_remove_node (node);
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
	}
    }
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "\n\nReclaimed ");
      dump_cgraph (cgraph_dump_file);
    }
  ggc_collect ();
  timevar_pop (TV_CGRAPH);
}

/* Figure out what functions we want to assemble.  */

static void
cgraph_mark_functions_to_output (void)
{
  struct cgraph_node *node;

  for (node = cgraph_nodes; node; node = node->next)
    {
      tree decl = node->decl;
      struct cgraph_edge *e;
      if (node->output)
	abort ();

      for (e = node->callers; e; e = e->next_caller)
	if (!e->inline_call)
	  break;

      /* We need to output all local functions that are used and not
	 always inlined, as well as those that are reachable from
	 outside the current compilation unit.  */
      if (DECL_SAVED_TREE (decl)
	  && (node->needed
	      || (e && node->reachable))
	  && !TREE_ASM_WRITTEN (decl) && !node->origin
	  && !DECL_EXTERNAL (decl))
	node->output = 1;
    }
}

/* Optimize the function before expansion.  */

static void
cgraph_optimize_function (struct cgraph_node *node)
{
  tree decl = node->decl;

  timevar_push (TV_INTEGRATION);
  /* optimize_inline_calls avoids inlining of current_function_decl.  */
  current_function_decl = decl;
  if (flag_inline_trees)
    optimize_inline_calls (decl);
  if (node->nested)
    {
      for (node = node->nested; node; node = node->next_nested)
	cgraph_optimize_function (node);
    }
  timevar_pop (TV_INTEGRATION);
}

/* Expand function specified by NODE.  */

static void
cgraph_expand_function (struct cgraph_node *node)
{
  tree decl = node->decl;

  if (flag_unit_at_a_time)
    announce_function (decl);

  cgraph_optimize_function (node);

  /* Generate RTL for the body of DECL.  Nested functions are expanded
     via lang_expand_decl_stmt.  */
  (*lang_hooks.callgraph.expand_function) (decl);

  if (!cgraph_function_possibly_inlined_p (decl))
    DECL_SAVED_TREE (decl) = NULL;
  current_function_decl = NULL;
}

/* Fill array order with all nodes with output flag set in the reverse
   topological order.  */
static int
cgraph_postorder (struct cgraph_node **order)
{
  struct cgraph_node *node, *node2;
  int stack_size = 0;
  int order_pos = 0;
  struct cgraph_edge *edge, last;

  struct cgraph_node **stack =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));

  /* We have to deal with cycles nicely, so use a depth first traversal
     output algorithm.  Ignore the fact that some functions won't need
     to be output and put them into order as well, so we get dependencies
     right through intline functions.  */
  for (node = cgraph_nodes; node; node = node->next)
    node->aux = NULL;
  for (node = cgraph_nodes; node; node = node->next)
    if (!node->aux)
      {
	node2 = node;
	if (!node->callers)
	  node->aux = &last;
	else
	  node->aux = node->callers;
	while (node2)
	  {
	    while (node2->aux != &last)
	      {
		edge = node2->aux;
		if (edge->next_caller)
		  node2->aux = edge->next_caller;
		else
		  node2->aux = &last;
		if (!edge->caller->aux)
		  {
		    if (!edge->caller->callers)
		      edge->caller->aux = &last;
		    else
		      edge->caller->aux = edge->caller->callers;
		    stack[stack_size++] = node2;
		    node2 = edge->caller;
		    break;
		  }
	      }
	    if (node2->aux == &last)
	      {
		order[order_pos++] = node2;
		if (stack_size)
		  node2 = stack[--stack_size];
		else
		  node2 = NULL;
	      }
	  }
      }
  free (stack);
  return order_pos;
}

#define INLINED_TIMES(node) ((size_t)(node)->aux)
#define SET_INLINED_TIMES(node,times) ((node)->aux = (void *)(times))

/* Return list of nodes we decided to inline NODE into, set their output
   flag and compute INLINED_TIMES.

   We do simple backtracing to get INLINED_TIMES right.  This should not be
   expensive as we limit the amount of inlining.  Alternatively we may first
   discover set of nodes, topologically sort these and propagate
   INLINED_TIMES  */

static int
cgraph_inlined_into (struct cgraph_node *node, struct cgraph_node **array)
{
  int nfound = 0;
  struct cgraph_edge **stack;
  struct cgraph_edge *e, *e1;
  int sp;
  int i;

  /* Fast path: since we traverse in mostly topological order, we will likely
     find no edges.  */
  for (e = node->callers; e; e = e->next_caller)
    if (e->inline_call)
      break;

  if (!e)
    return 0;

  /* Allocate stack for back-tracking up callgraph.  */
  stack = xmalloc ((cgraph_n_nodes + 1) * sizeof (struct cgraph_edge));
  sp = 0;

  /* Push the first edge on to the stack.  */
  stack[sp++] = e;

  while (sp)
    {
      struct cgraph_node *caller;

      /* Look at the edge on the top of the stack.  */
      e = stack[sp - 1];
      caller = e->caller;

      /* Check if the caller destination has been visited yet.  */
      if (!caller->output)
	{
	  array[nfound++] = e->caller;
	  /* Mark that we have visited the destination.  */
	  caller->output = true;
	  SET_INLINED_TIMES (caller, 0);
	}
      SET_INLINED_TIMES (caller, INLINED_TIMES (caller) + 1);

      for (e1 = caller->callers; e1; e1 = e1->next_caller)
	if (e1->inline_call)
	  break;
      if (e1)
	stack[sp++] = e1;
      else
	{
	  while (true)
	    {
	      for (e1 = e->next_caller; e1; e1 = e1->next_caller)
		if (e1->inline_call)
		  break;

	      if (e1)
		{
		  stack[sp - 1] = e1;
		  break;
		}
	      else
		{
		  sp--;
		  if (!sp)
		    break;
		  e = stack[sp - 1];
		}
	    }
	}
    }

  free (stack);


  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, " Found inline predecesors of %s:",
	       cgraph_node_name (node));
      for (i = 0; i < nfound; i++)
	{
	  fprintf (cgraph_dump_file, " %s", cgraph_node_name (array[i]));
	  if (INLINED_TIMES (array[i]) != 1)
	    fprintf (cgraph_dump_file, " (%i times)",
		     (int)INLINED_TIMES (array[i]));
	}
      fprintf (cgraph_dump_file, "\n");
    }

  return nfound;
}

/* Return list of nodes we decided to inline into NODE, set their output
   flag and compute INLINED_TIMES.

   This function is identical to cgraph_inlined_into with callers and callees
   nodes swapped.  */

static int
cgraph_inlined_callees (struct cgraph_node *node, struct cgraph_node **array)
{
  int nfound = 0;
  struct cgraph_edge **stack;
  struct cgraph_edge *e, *e1;
  int sp;
  int i;

  /* Fast path: since we traverse in mostly topological order, we will likely
     find no edges.  */
  for (e = node->callees; e; e = e->next_callee)
    if (e->inline_call)
      break;

  if (!e)
    return 0;

  /* Allocate stack for back-tracking up callgraph.  */
  stack = xmalloc ((cgraph_n_nodes + 1) * sizeof (struct cgraph_edge));
  sp = 0;

  /* Push the first edge on to the stack.  */
  stack[sp++] = e;

  while (sp)
    {
      struct cgraph_node *callee;

      /* Look at the edge on the top of the stack.  */
      e = stack[sp - 1];
      callee = e->callee;

      /* Check if the callee destination has been visited yet.  */
      if (!callee->output)
	{
	  array[nfound++] = e->callee;
	  /* Mark that we have visited the destination.  */
	  callee->output = true;
	  SET_INLINED_TIMES (callee, 0);
	}
      SET_INLINED_TIMES (callee, INLINED_TIMES (callee) + 1);

      for (e1 = callee->callees; e1; e1 = e1->next_callee)
	if (e1->inline_call)
	  break;
      if (e1)
	stack[sp++] = e1;
      else
	{
	  while (true)
	    {
	      for (e1 = e->next_callee; e1; e1 = e1->next_callee)
		if (e1->inline_call)
		  break;

	      if (e1)
		{
		  stack[sp - 1] = e1;
		  break;
		}
	      else
		{
		  sp--;
		  if (!sp)
		    break;
		  e = stack[sp - 1];
		}
	    }
	}
    }

  free (stack);

  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, " Found inline successors of %s:",
	       cgraph_node_name (node));
      for (i = 0; i < nfound; i++)
	{
	  fprintf (cgraph_dump_file, " %s", cgraph_node_name (array[i]));
	  if (INLINED_TIMES (array[i]) != 1)
	    fprintf (cgraph_dump_file, " (%i times)",
		     (int)INLINED_TIMES (array[i]));
	}
      fprintf (cgraph_dump_file, "\n");
    }

  return nfound;
}

/* Estimate size of the function after inlining WHAT into TO.  */

static int
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
				     struct cgraph_node *what)
{
  return (what->global.insns - INSNS_PER_CALL) * times + to->global.insns;
}

/* Estimate the growth caused by inlining NODE into all callees.  */

static int
cgraph_estimate_growth (struct cgraph_node *node)
{
  int growth = 0;
  int calls_saved = 0;
  int clones_added = 0;
  struct cgraph_edge *e;

  for (e = node->callers; e; e = e->next_caller)
    if (!e->inline_call)
      {
	growth += ((cgraph_estimate_size_after_inlining (1, e->caller, node)
		    -
		    e->caller->global.insns) *e->caller->global.cloned_times);
	calls_saved += e->caller->global.cloned_times;
	clones_added += e->caller->global.cloned_times;
      }

  /* ??? Wrong for self recursive functions or cases where we decide to not
     inline for different reasons, but it is not big deal as in that case
     we will keep the body around, but we will also avoid some inlining.  */
  if (!node->needed && !node->origin && !DECL_EXTERNAL (node->decl))
    growth -= node->global.insns, clones_added--;

  if (!calls_saved)
    calls_saved = 1;

  return growth;
}

/* Update insn sizes after inlining WHAT into TO that is already inlined into
   all nodes in INLINED array.  */

static void
cgraph_mark_inline (struct cgraph_node *to, struct cgraph_node *what,
		    struct cgraph_node **inlined, int ninlined,
		    struct cgraph_node **inlined_callees,
		    int ninlined_callees)
{
  int i;
  int times = 0;
  int clones = 0;
  struct cgraph_edge *e;
  bool called = false;
  int new_insns;

  what->global.inlined = 1;
  for (e = what->callers; e; e = e->next_caller)
    {
      if (e->caller == to)
	{
	  if (e->inline_call)
	    abort ();
	  e->inline_call = true;
	  times++;
	  clones += e->caller->global.cloned_times;
	}
      else if (!e->inline_call)
	called = true;
    }
  if (!times)
    abort ();
  ncalls_inlined += times;

  new_insns = cgraph_estimate_size_after_inlining (times, to, what);
  if (to->global.will_be_output)
    overall_insns += new_insns - to->global.insns;
  to->global.insns = new_insns;

  if (!called && !what->needed && !what->origin
      && flag_unit_at_a_time
      && !DECL_EXTERNAL (what->decl))
    {
      if (!what->global.will_be_output)
	abort ();
      clones--;
      nfunctions_inlined++;
      what->global.will_be_output = 0;
      overall_insns -= what->global.insns;
    }
  what->global.cloned_times += clones;
  for (i = 0; i < ninlined; i++)
    {
      new_insns =
	cgraph_estimate_size_after_inlining (INLINED_TIMES (inlined[i]) *
					     times, inlined[i], what);
      if (inlined[i]->global.will_be_output)
	overall_insns += new_insns - inlined[i]->global.insns;
      inlined[i]->global.insns = new_insns;
    }
  for (i = 0; i < ninlined_callees; i++)
    {
      inlined_callees[i]->global.cloned_times +=
	INLINED_TIMES (inlined_callees[i]) * clones;
    }
}

/* Return false when inlining WHAT into TO is not good idea as it would cause
   too large growth of function bodies.  */

static bool
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
			    struct cgraph_node **inlined, int ninlined)
{
  int i;
  int times = 0;
  struct cgraph_edge *e;
  int newsize;
  int limit;

  for (e = to->callees; e; e = e->next_callee)
    if (e->callee == what)
      times++;

  /* When inlining large function body called once into small function,
     take the inlined function as base for limiting the growth.  */
  if (to->local.self_insns > what->local.self_insns)
    limit = to->local.self_insns;
  else
    limit = what->local.self_insns;

  limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;

  newsize = cgraph_estimate_size_after_inlining (times, to, what);
  if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
      && newsize > limit)
    return false;
  for (i = 0; i < ninlined; i++)
    {
      newsize =
	cgraph_estimate_size_after_inlining (INLINED_TIMES (inlined[i]) *
					     times, inlined[i], what);
      if (newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
	  && newsize >
	  inlined[i]->local.self_insns *
	  (100 + PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH)) / 100)
	return false;
    }
  return true;
}

/* Return true when function N is small enough to be inlined.  */

static bool
cgraph_default_inline_p (struct cgraph_node *n)
{
  if (!DECL_INLINE (n->decl) || !DECL_SAVED_TREE (n->decl))
    return false;
  if (DECL_DECLARED_INLINE_P (n->decl))
    return n->global.insns < MAX_INLINE_INSNS_SINGLE;
  else
    return n->global.insns < MAX_INLINE_INSNS_AUTO;
}

/* We use greedy algorithm for inlining of small functions:
   All inline candidates are put into prioritized heap based on estimated
   growth of the overall number of instructions and then update the estimates.

   INLINED and INLINED_CALEES are just pointers to arrays large enough
   to be passed to cgraph_inlined_into and cgraph_inlined_callees.  */

static void
cgraph_decide_inlining_of_small_functions (struct cgraph_node **inlined,
					   struct cgraph_node **inlined_callees)
{
  int i;
  struct cgraph_node *node;
  fibheap_t heap = fibheap_new ();
  struct fibnode **heap_node =
    xcalloc (cgraph_max_uid, sizeof (struct fibnode *));
  int ninlined, ninlined_callees;
  int max_insns = ((HOST_WIDEST_INT) initial_insns
		   * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);

  /* Put all inline candidates into the heap.  */

  for (node = cgraph_nodes; node; node = node->next)
    {
      struct cgraph_edge *e;

      if (!node->local.inlinable || !node->callers
	  || !cgraph_default_inline_p (node))
	continue;

      /* Rule out always_inline functions we dealt with earlier.  */
      for (e = node->callers; e; e = e->next_caller)
	if (e->inline_call)
	  break;
      if (e)
	continue;
      heap_node[node->uid] =
	fibheap_insert (heap, cgraph_estimate_growth (node), node);
    }

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nDeciding on smaller functions:\n");
  while ((node = fibheap_extract_min (heap)) && overall_insns <= max_insns)
    {
      struct cgraph_edge *e;
      int old_insns = overall_insns;

      heap_node[node->uid] = NULL;
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, 
		 "\nConsidering %s with %i insns\n"
		 " Estimated growth is %+i insns.\n",
		 cgraph_node_name (node), node->global.insns,
		 cgraph_estimate_growth (node));
      if (!cgraph_default_inline_p (node))
	{
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, " Function too large.\n");
	  continue;
	}
      ninlined_callees = cgraph_inlined_callees (node, inlined_callees);
      for (e = node->callers; e; e = e->next_caller)
	if (!e->inline_call && e->caller != node)
	  {
	    ninlined = cgraph_inlined_into (e->caller, inlined);
	    if (e->callee->output
		|| !cgraph_check_inline_limits (e->caller, node, inlined,
						ninlined))
	      {
		for (i = 0; i < ninlined; i++)
		  inlined[i]->output = 0, node->aux = 0;
		if (cgraph_dump_file)
		  fprintf (cgraph_dump_file, " Not inlining into %s.\n",
			   cgraph_node_name (e->caller));
		continue;
	      }
	    cgraph_mark_inline (e->caller, node, inlined, ninlined,
				inlined_callees, ninlined_callees);
	    if (heap_node[e->caller->uid])
	      fibheap_replace_key (heap, heap_node[e->caller->uid],
				   cgraph_estimate_growth (e->caller));

	    /* Size of the functions we updated into has changed, so update
	       the keys.  */
	    for (i = 0; i < ninlined; i++)
	      {
		inlined[i]->output = 0, node->aux = 0;
		if (heap_node[inlined[i]->uid])
		  fibheap_replace_key (heap, heap_node[inlined[i]->uid],
				       cgraph_estimate_growth (inlined[i]));
	      }
	if (cgraph_dump_file)
	  fprintf (cgraph_dump_file, 
		   " Inlined into %s which now has %i insns.\n",
		   cgraph_node_name (e->caller),
		   e->caller->global.insns);

	  }

      /* Similarly all functions called by the function we just inlined
         are now called more times; update keys.  */

      for (e = node->callees; e; e = e->next_callee)
	if (!e->inline_call && heap_node[e->callee->uid])
	  fibheap_replace_key (heap, heap_node[e->callee->uid],
			       cgraph_estimate_growth (e->callee));

      for (i = 0; i < ninlined_callees; i++)
	{
	  struct cgraph_edge *e;

	  for (e = inlined_callees[i]->callees; e; e = e->next_callee)
	    if (!e->inline_call && heap_node[e->callee->uid])
	      fibheap_replace_key (heap, heap_node[e->callee->uid],
				   cgraph_estimate_growth (e->callee));

	  inlined_callees[i]->output = 0, node->aux = 0;
	}
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file, 
		 " Inlined %i times for a net change of %+i insns.\n",
		 node->global.cloned_times, overall_insns - old_insns);
    }
  if (cgraph_dump_file && !fibheap_empty (heap))
    fprintf (cgraph_dump_file, "\nReached the inline-unit-growth limit.\n");
  fibheap_delete (heap);
  free (heap_node);
}

/* Decide on the inlining.  We do so in the topological order to avoid
   expenses on updating datastructures.  */

static void
cgraph_decide_inlining (void)
{
  struct cgraph_node *node;
  int nnodes;
  struct cgraph_node **order =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
  struct cgraph_node **inlined =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
  struct cgraph_node **inlined_callees =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
  int ninlined;
  int ninlined_callees;
  int old_insns = 0;
  int i, y;

  for (node = cgraph_nodes; node; node = node->next)
    initial_insns += node->local.self_insns;
  overall_insns = initial_insns;

  nnodes = cgraph_postorder (order);

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "\nDeciding on inlining.  Starting with %i insns.\n",
	     initial_insns);

  for (node = cgraph_nodes; node; node = node->next)
    node->aux = 0;

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nInlining always_inline functions:\n");

  /* In the first pass mark all always_inline edges.  Do this with a priority
     so none of our later choices will make this impossible.  */
  for (i = nnodes - 1; i >= 0; i--)
    {
      struct cgraph_edge *e;

      node = order[i];

      for (e = node->callees; e; e = e->next_callee)
	if (e->callee->local.disregard_inline_limits)
	  break;
      if (!e)
	continue;
      if (cgraph_dump_file)
	fprintf (cgraph_dump_file,
		 "\nConsidering %s %i insns (always inline)\n",
		 cgraph_node_name (e->callee), e->callee->global.insns);
      ninlined = cgraph_inlined_into (order[i], inlined);
      for (; e; e = e->next_callee)
	{
	  old_insns = overall_insns;
	  if (e->inline_call || !e->callee->local.disregard_inline_limits)
	    continue;
	  if (e->callee->output || e->callee == node)
	    continue;
	  ninlined_callees =
	    cgraph_inlined_callees (e->callee, inlined_callees);
	  cgraph_mark_inline (node, e->callee, inlined, ninlined,
			      inlined_callees, ninlined_callees);
	  for (y = 0; y < ninlined_callees; y++)
	    inlined_callees[y]->output = 0, node->aux = 0;
	  if (cgraph_dump_file)
	    fprintf (cgraph_dump_file, 
		     " Inlined into %s which now has %i insns.\n",
		     cgraph_node_name (node->callees->caller),
	             node->callees->caller->global.insns);
	}
	if (cgraph_dump_file && node->global.cloned_times > 0)
	  fprintf (cgraph_dump_file, 
		   " Inlined %i times for a net change of %+i insns.\n",
		   node->global.cloned_times, overall_insns - old_insns);
      for (y = 0; y < ninlined; y++)
	inlined[y]->output = 0, node->aux = 0;
    }

  cgraph_decide_inlining_of_small_functions (inlined, inlined_callees);

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nDeciding on functions called once:\n");

  /* And finally decide what functions are called once.  */

  for (i = nnodes - 1; i >= 0; i--)
    {
      node = order[i];

      if (node->callers && !node->callers->next_caller && !node->needed
	  && node->local.inlinable && !node->callers->inline_call
	  && !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
	{
	  bool ok = true;
	  struct cgraph_node *node1;

	  /* Verify that we won't duplicate the caller.  */
	  for (node1 = node->callers->caller;
	       node1->callers && node1->callers->inline_call
	       && ok; node1 = node1->callers->caller)
	    if (node1->callers->next_caller || node1->needed)
	      ok = false;
	  if (ok)
	    {
	      if (cgraph_dump_file)
		fprintf (cgraph_dump_file,
			 "\nConsidering %s %i insns.\n"
			 " Called once from %s %i insns.\n",
			 cgraph_node_name (node), node->global.insns,
			 cgraph_node_name (node->callers->caller),
			 node->callers->caller->global.insns);
	      ninlined = cgraph_inlined_into (node->callers->caller, inlined);
	      old_insns = overall_insns;
	      if (cgraph_check_inline_limits
		  (node->callers->caller, node, inlined, ninlined))
		{
		  ninlined_callees =
		    cgraph_inlined_callees (node, inlined_callees);
		  cgraph_mark_inline (node->callers->caller, node, inlined,
				      ninlined, inlined_callees,
				      ninlined_callees);
		  for (y = 0; y < ninlined_callees; y++)
		    inlined_callees[y]->output = 0, node->aux = 0;
		  if (cgraph_dump_file)
		    fprintf (cgraph_dump_file,
			     " Inlined into %s which now has %i insns"
			     " for a net change of %+i insns.\n",
			     cgraph_node_name (node->callers->caller),
			     node->callers->caller->global.insns,
			     overall_insns - old_insns);
		}
	      else
                {
		  if (cgraph_dump_file)
		    fprintf (cgraph_dump_file,
	                     " Inline limit reached, not inlined.\n");
	        }
	      for (y = 0; y < ninlined; y++)
		inlined[y]->output = 0, node->aux = 0;
	    }
	}
    }

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file,
	     "\nInlined %i calls, eliminated %i functions, "
	     "%i insns turned to %i insns.\n\n",
	     ncalls_inlined, nfunctions_inlined, initial_insns,
	     overall_insns);
  free (order);
  free (inlined);
  free (inlined_callees);
}

/* Decide on the inlining.  We do so in the topological order to avoid
   expenses on updating datastructures.  */

static void
cgraph_decide_inlining_incrementally (struct cgraph_node *node)
{
  struct cgraph_edge *e;
  struct cgraph_node **inlined =
    xmalloc (sizeof (struct cgraph_node *) * cgraph_n_nodes);
  struct cgraph_node **inlined_callees =
    xmalloc (sizeof (struct cgraph_node *) * cgraph_n_nodes);
  int ninlined;
  int ninlined_callees;
  int y;

  ninlined = cgraph_inlined_into (node, inlined);

  /* First of all look for always inline functions.  */
  for (e = node->callees; e; e = e->next_callee)
    if (e->callee->local.disregard_inline_limits && !e->callee->output
	&& e->callee != node && !e->inline_call)
      {
	ninlined_callees = cgraph_inlined_callees (e->callee, inlined_callees);
	cgraph_mark_inline (node, e->callee, inlined, ninlined,
			    inlined_callees, ninlined_callees);
	for (y = 0; y < ninlined_callees; y++)
	  inlined_callees[y]->output = 0, node->aux = 0;
      }

  /* Now do the automatic inlining.  */
  for (e = node->callees; e; e = e->next_callee)
    if (e->callee->local.inlinable && !e->callee->output
	&& e->callee != node && !e->inline_call
        && cgraph_default_inline_p (e->callee)
	&& cgraph_check_inline_limits (node, e->callee, inlined,
				       ninlined))
      {
	ninlined_callees = cgraph_inlined_callees (e->callee, inlined_callees);
	cgraph_mark_inline (node, e->callee, inlined, ninlined,
			    inlined_callees, ninlined_callees);
	for (y = 0; y < ninlined_callees; y++)
	  inlined_callees[y]->output = 0, node->aux = 0;
      }

  /* Clear the flags set by cgraph_inlined_into.  */
  for (y = 0; y < ninlined; y++)
    inlined[y]->output = 0, node->aux = 0;

  free (inlined);
  free (inlined_callees);
}


/* Return true when CALLER_DECL should be inlined into CALLEE_DECL.  */

bool
cgraph_inline_p (tree caller_decl, tree callee_decl)
{
  struct cgraph_node *caller = cgraph_node (caller_decl);
  struct cgraph_node *callee = cgraph_node (callee_decl);
  struct cgraph_edge *e;

  for (e = caller->callees; e; e = e->next_callee)
    if (e->callee == callee)
      return e->inline_call;
  /* We do not record builtins in the callgraph.  Perhaps it would make more
     sense to do so and then prune out those not overwritten by explicit
     function body.  */
  return false;
}
/* Expand all functions that must be output.

   Attempt to topologically sort the nodes so function is output when
   all called functions are already assembled to allow data to be
   propagated across the callgraph.  Use a stack to get smaller distance
   between a function and it's callees (later we may choose to use a more
   sophisticated algorithm for function reordering; we will likely want
   to use subsections to make the output functions appear in top-down
   order).  */

static void
cgraph_expand_all_functions (void)
{
  struct cgraph_node *node;
  struct cgraph_node **order =
    xcalloc (cgraph_n_nodes, sizeof (struct cgraph_node *));
  int order_pos = 0;
  int i;

  cgraph_mark_functions_to_output ();

  order_pos = cgraph_postorder (order);

  for (i = order_pos - 1; i >= 0; i--)
    {
      node = order[i];
      if (node->output)
	{
	  if (!node->reachable)
	    abort ();
	  node->output = 0;
	  cgraph_expand_function (node);
	}
    }
  free (order);
}

/* Mark all local functions.

   A local function is one whose calls can occur only in the
   current compilation unit, so we change its calling convention.
   We simply mark all static functions whose address is not taken
   as local.  */

static void
cgraph_mark_local_functions (void)
{
  struct cgraph_node *node;

  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\nMarking local functions:");

  /* Figure out functions we want to assemble.  */
  for (node = cgraph_nodes; node; node = node->next)
    {
      node->local.local = (!node->needed
		           && DECL_SAVED_TREE (node->decl)
		           && !TREE_PUBLIC (node->decl));
      if (cgraph_dump_file && node->local.local)
	fprintf (cgraph_dump_file, " %s", cgraph_node_name (node));
    }
  if (cgraph_dump_file)
    fprintf (cgraph_dump_file, "\n\n");
}

/* Perform simple optimizations based on callgraph.  */

void
cgraph_optimize (void)
{
  if (!flag_unit_at_a_time)
    return;
  timevar_push (TV_CGRAPHOPT);
  if (!quiet_flag)
    fprintf (stderr, "Performing intraprocedural optimizations\n");

  cgraph_mark_local_functions ();
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Marked ");
      dump_cgraph (cgraph_dump_file);
    }

  cgraph_decide_inlining ();
  cgraph_global_info_ready = true;
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "Optimized ");
      dump_cgraph (cgraph_dump_file);
    }
  timevar_pop (TV_CGRAPHOPT);

  /* Output everything.  */
  if (!quiet_flag)
    fprintf (stderr, "Assembling functions:\n");
  cgraph_expand_all_functions ();
  if (cgraph_dump_file)
    {
      fprintf (cgraph_dump_file, "\nFinal ");
      dump_cgraph (cgraph_dump_file);
    }
}
OpenPOWER on IntegriCloud