summaryrefslogtreecommitdiffstats
path: root/gcc/c-typeck.c
blob: 29a9ec3abadc03ffaaefa3cd115f2a71c438b7cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
/* Build expressions with type checking for C compiler.
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */


/* This file is part of the C front end.
   It contains routines to build C expressions given their operands,
   including computing the types of the result, C-specific error checks,
   and some optimization.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "langhooks.h"
#include "c-tree.h"
#include "tm_p.h"
#include "flags.h"
#include "output.h"
#include "expr.h"
#include "toplev.h"
#include "intl.h"
#include "ggc.h"
#include "target.h"
#include "tree-iterator.h"
#include "tree-gimple.h"


/* Nonzero if we've already printed a "missing braces around initializer"
   message within this initializer.  */
static int missing_braces_mentioned;

static int require_constant_value;
static int require_constant_elements;

static tree qualify_type (tree, tree);
static int tagged_types_tu_compatible_p (tree, tree);
static int comp_target_types (tree, tree, int);
static int function_types_compatible_p (tree, tree);
static int type_lists_compatible_p (tree, tree);
static tree decl_constant_value_for_broken_optimization (tree);
static tree default_function_array_conversion (tree);
static tree lookup_field (tree, tree);
static tree convert_arguments (tree, tree, tree, tree);
static tree pointer_diff (tree, tree);
static tree convert_for_assignment (tree, tree, const char *, tree, tree,
				    int);
static void warn_for_assignment (const char *, const char *, tree, int);
static tree valid_compound_expr_initializer (tree, tree);
static void push_string (const char *);
static void push_member_name (tree);
static void push_array_bounds (int);
static int spelling_length (void);
static char *print_spelling (char *);
static void warning_init (const char *);
static tree digest_init (tree, tree, int);
static void output_init_element (tree, tree, tree, int);
static void output_pending_init_elements (int);
static int set_designator (int);
static void push_range_stack (tree);
static void add_pending_init (tree, tree);
static void set_nonincremental_init (void);
static void set_nonincremental_init_from_string (tree);
static tree find_init_member (tree);
static int lvalue_or_else (tree, const char *);

/* Do `exp = require_complete_type (exp);' to make sure exp
   does not have an incomplete type.  (That includes void types.)  */

tree
require_complete_type (tree value)
{
  tree type = TREE_TYPE (value);

  if (value == error_mark_node || type == error_mark_node)
    return error_mark_node;

  /* First, detect a valid value with a complete type.  */
  if (COMPLETE_TYPE_P (type))
    return value;

  c_incomplete_type_error (value, type);
  return error_mark_node;
}

/* Print an error message for invalid use of an incomplete type.
   VALUE is the expression that was used (or 0 if that isn't known)
   and TYPE is the type that was invalid.  */

void
c_incomplete_type_error (tree value, tree type)
{
  const char *type_code_string;

  /* Avoid duplicate error message.  */
  if (TREE_CODE (type) == ERROR_MARK)
    return;

  if (value != 0 && (TREE_CODE (value) == VAR_DECL
		     || TREE_CODE (value) == PARM_DECL))
    error ("`%s' has an incomplete type",
	   IDENTIFIER_POINTER (DECL_NAME (value)));
  else
    {
    retry:
      /* We must print an error message.  Be clever about what it says.  */

      switch (TREE_CODE (type))
	{
	case RECORD_TYPE:
	  type_code_string = "struct";
	  break;

	case UNION_TYPE:
	  type_code_string = "union";
	  break;

	case ENUMERAL_TYPE:
	  type_code_string = "enum";
	  break;

	case VOID_TYPE:
	  error ("invalid use of void expression");
	  return;

	case ARRAY_TYPE:
	  if (TYPE_DOMAIN (type))
	    {
	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
		{
		  error ("invalid use of flexible array member");
		  return;
		}
	      type = TREE_TYPE (type);
	      goto retry;
	    }
	  error ("invalid use of array with unspecified bounds");
	  return;

	default:
	  abort ();
	}

      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
	error ("invalid use of undefined type `%s %s'",
	       type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
      else
	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
	error ("invalid use of incomplete typedef `%s'",
	       IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
    }
}

/* Given a type, apply default promotions wrt unnamed function
   arguments and return the new type.  */

tree
c_type_promotes_to (tree type)
{
  if (TYPE_MAIN_VARIANT (type) == float_type_node)
    return double_type_node;

  if (c_promoting_integer_type_p (type))
    {
      /* Preserve unsignedness if not really getting any wider.  */
      if (TYPE_UNSIGNED (type)
          && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
        return unsigned_type_node;
      return integer_type_node;
    }

  return type;
}

/* Return a variant of TYPE which has all the type qualifiers of LIKE
   as well as those of TYPE.  */

static tree
qualify_type (tree type, tree like)
{
  return c_build_qualified_type (type,
				 TYPE_QUALS (type) | TYPE_QUALS (like));
}

/* Return the composite type of two compatible types.

   We assume that comptypes has already been done and returned
   nonzero; if that isn't so, this may crash.  In particular, we
   assume that qualifiers match.  */

tree
composite_type (tree t1, tree t2)
{
  enum tree_code code1;
  enum tree_code code2;
  tree attributes;

  /* Save time if the two types are the same.  */

  if (t1 == t2) return t1;

  /* If one type is nonsense, use the other.  */
  if (t1 == error_mark_node)
    return t2;
  if (t2 == error_mark_node)
    return t1;

  code1 = TREE_CODE (t1);
  code2 = TREE_CODE (t2);

  /* Merge the attributes.  */
  attributes = targetm.merge_type_attributes (t1, t2);

  /* If one is an enumerated type and the other is the compatible
     integer type, the composite type might be either of the two
     (DR#013 question 3).  For consistency, use the enumerated type as
     the composite type.  */

  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
    return t1;
  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
    return t2;

  if (code1 != code2)
    abort ();

  switch (code1)
    {
    case POINTER_TYPE:
      /* For two pointers, do this recursively on the target type.  */
      {
	tree pointed_to_1 = TREE_TYPE (t1);
	tree pointed_to_2 = TREE_TYPE (t2);
	tree target = composite_type (pointed_to_1, pointed_to_2);
	t1 = build_pointer_type (target);
	t1 = build_type_attribute_variant (t1, attributes);
	return qualify_type (t1, t2);
      }

    case ARRAY_TYPE:
      {
	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
	
	/* We should not have any type quals on arrays at all.  */
	if (TYPE_QUALS (t1) || TYPE_QUALS (t2))
	  abort ();
	
	/* Save space: see if the result is identical to one of the args.  */
	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
	  return build_type_attribute_variant (t1, attributes);
	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
	  return build_type_attribute_variant (t2, attributes);
	
	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
	  return build_type_attribute_variant (t1, attributes);
	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
	  return build_type_attribute_variant (t2, attributes);
	
	/* Merge the element types, and have a size if either arg has one.  */
	t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
	return build_type_attribute_variant (t1, attributes);
      }

    case FUNCTION_TYPE:
      /* Function types: prefer the one that specified arg types.
	 If both do, merge the arg types.  Also merge the return types.  */
      {
	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
	tree p1 = TYPE_ARG_TYPES (t1);
	tree p2 = TYPE_ARG_TYPES (t2);
	int len;
	tree newargs, n;
	int i;

	/* Save space: see if the result is identical to one of the args.  */
	if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
	  return build_type_attribute_variant (t1, attributes);
	if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
	  return build_type_attribute_variant (t2, attributes);

	/* Simple way if one arg fails to specify argument types.  */
	if (TYPE_ARG_TYPES (t1) == 0)
	 {
	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
	    t1 = build_type_attribute_variant (t1, attributes);
	    return qualify_type (t1, t2);
	 }
	if (TYPE_ARG_TYPES (t2) == 0)
	 {
	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
	   t1 = build_type_attribute_variant (t1, attributes);
	   return qualify_type (t1, t2);
	 }

	/* If both args specify argument types, we must merge the two
	   lists, argument by argument.  */
	/* Tell global_bindings_p to return false so that variable_size
	   doesn't abort on VLAs in parameter types.  */
	c_override_global_bindings_to_false = true;

	len = list_length (p1);
	newargs = 0;

	for (i = 0; i < len; i++)
	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);

	n = newargs;

	for (; p1;
	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
	  {
	    /* A null type means arg type is not specified.
	       Take whatever the other function type has.  */
	    if (TREE_VALUE (p1) == 0)
	      {
		TREE_VALUE (n) = TREE_VALUE (p2);
		goto parm_done;
	      }
	    if (TREE_VALUE (p2) == 0)
	      {
		TREE_VALUE (n) = TREE_VALUE (p1);
		goto parm_done;
	      }

	    /* Given  wait (union {union wait *u; int *i} *)
	       and  wait (union wait *),
	       prefer  union wait *  as type of parm.  */
	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
		&& TREE_VALUE (p1) != TREE_VALUE (p2))
	      {
		tree memb;
		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
		     memb; memb = TREE_CHAIN (memb))
		  if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
		    {
		      TREE_VALUE (n) = TREE_VALUE (p2);
		      if (pedantic)
			pedwarn ("function types not truly compatible in ISO C");
		      goto parm_done;
		    }
	      }
	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
		&& TREE_VALUE (p2) != TREE_VALUE (p1))
	      {
		tree memb;
		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
		     memb; memb = TREE_CHAIN (memb))
		  if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
		    {
		      TREE_VALUE (n) = TREE_VALUE (p1);
		      if (pedantic)
			pedwarn ("function types not truly compatible in ISO C");
		      goto parm_done;
		    }
	      }
	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
	  parm_done: ;
	  }

	c_override_global_bindings_to_false = false;
	t1 = build_function_type (valtype, newargs);
	t1 = qualify_type (t1, t2);
	/* ... falls through ...  */
      }

    default:
      return build_type_attribute_variant (t1, attributes);
    }

}

/* Return the type of a conditional expression between pointers to
   possibly differently qualified versions of compatible types.

   We assume that comp_target_types has already been done and returned
   nonzero; if that isn't so, this may crash.  */

static tree
common_pointer_type (tree t1, tree t2)
{
  tree attributes;
  tree pointed_to_1;
  tree pointed_to_2;
  tree target;

  /* Save time if the two types are the same.  */

  if (t1 == t2) return t1;

  /* If one type is nonsense, use the other.  */
  if (t1 == error_mark_node)
    return t2;
  if (t2 == error_mark_node)
    return t1;

  if (TREE_CODE (t1) != POINTER_TYPE || TREE_CODE (t2) != POINTER_TYPE)
    abort ();

  /* Merge the attributes.  */
  attributes = targetm.merge_type_attributes (t1, t2);

  /* Find the composite type of the target types, and combine the
     qualifiers of the two types' targets.  */
  pointed_to_1 = TREE_TYPE (t1);
  pointed_to_2 = TREE_TYPE (t2);
  target = composite_type (TYPE_MAIN_VARIANT (pointed_to_1),
			   TYPE_MAIN_VARIANT (pointed_to_2));
  t1 = build_pointer_type (c_build_qualified_type
			   (target,
			    TYPE_QUALS (pointed_to_1) |
			    TYPE_QUALS (pointed_to_2)));
  return build_type_attribute_variant (t1, attributes);
}

/* Return the common type for two arithmetic types under the usual
   arithmetic conversions.  The default conversions have already been
   applied, and enumerated types converted to their compatible integer
   types.  The resulting type is unqualified and has no attributes.

   This is the type for the result of most arithmetic operations
   if the operands have the given two types.  */

tree
common_type (tree t1, tree t2)
{
  enum tree_code code1;
  enum tree_code code2;

  /* If one type is nonsense, use the other.  */
  if (t1 == error_mark_node)
    return t2;
  if (t2 == error_mark_node)
    return t1;

  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
    t1 = TYPE_MAIN_VARIANT (t1);

  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
    t2 = TYPE_MAIN_VARIANT (t2);

  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
    t1 = build_type_attribute_variant (t1, NULL_TREE);

  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
    t2 = build_type_attribute_variant (t2, NULL_TREE);

  /* Save time if the two types are the same.  */

  if (t1 == t2) return t1;

  code1 = TREE_CODE (t1);
  code2 = TREE_CODE (t2);

  if (code1 != VECTOR_TYPE && code1 != COMPLEX_TYPE
      && code1 != REAL_TYPE && code1 != INTEGER_TYPE)
    abort ();

  if (code2 != VECTOR_TYPE && code2 != COMPLEX_TYPE
      && code2 != REAL_TYPE && code2 != INTEGER_TYPE)
    abort ();

  /* If one type is a vector type, return that type.  (How the usual
     arithmetic conversions apply to the vector types extension is not
     precisely specified.)  */
  if (code1 == VECTOR_TYPE)
    return t1;

  if (code2 == VECTOR_TYPE)
    return t2;

  /* If one type is complex, form the common type of the non-complex
     components, then make that complex.  Use T1 or T2 if it is the
     required type.  */
  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
    {
      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
      tree subtype = common_type (subtype1, subtype2);

      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
	return t1;
      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
	return t2;
      else
	return build_complex_type (subtype);
    }

  /* If only one is real, use it as the result.  */

  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
    return t1;

  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
    return t2;

  /* Both real or both integers; use the one with greater precision.  */

  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
    return t1;
  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
    return t2;

  /* Same precision.  Prefer long longs to longs to ints when the
     same precision, following the C99 rules on integer type rank
     (which are equivalent to the C90 rules for C90 types).  */

  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
    return long_long_unsigned_type_node;

  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
    {
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
	return long_long_unsigned_type_node;
      else
        return long_long_integer_type_node;
    }

  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
    return long_unsigned_type_node;

  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
    {
      /* But preserve unsignedness from the other type,
	 since long cannot hold all the values of an unsigned int.  */
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
	return long_unsigned_type_node;
      else
	return long_integer_type_node;
    }

  /* Likewise, prefer long double to double even if same size.  */
  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
    return long_double_type_node;

  /* Otherwise prefer the unsigned one.  */

  if (TYPE_UNSIGNED (t1))
    return t1;
  else
    return t2;
}

/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
   or various other operations.  Return 2 if they are compatible
   but a warning may be needed if you use them together.  */

int
comptypes (tree type1, tree type2)
{
  tree t1 = type1;
  tree t2 = type2;
  int attrval, val;

  /* Suppress errors caused by previously reported errors.  */

  if (t1 == t2 || !t1 || !t2
      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
    return 1;

  /* If either type is the internal version of sizetype, return the
     language version.  */
  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
      && TYPE_ORIG_SIZE_TYPE (t1))
    t1 = TYPE_ORIG_SIZE_TYPE (t1);

  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
      && TYPE_ORIG_SIZE_TYPE (t2))
    t2 = TYPE_ORIG_SIZE_TYPE (t2);


  /* Enumerated types are compatible with integer types, but this is
     not transitive: two enumerated types in the same translation unit
     are compatible with each other only if they are the same type.  */

  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));

  if (t1 == t2)
    return 1;

  /* Different classes of types can't be compatible.  */

  if (TREE_CODE (t1) != TREE_CODE (t2))
    return 0;

  /* Qualifiers must match. C99 6.7.3p9 */

  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
    return 0;

  /* Allow for two different type nodes which have essentially the same
     definition.  Note that we already checked for equality of the type
     qualifiers (just above).  */

  if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
    return 1;

  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  if (! (attrval = targetm.comp_type_attributes (t1, t2)))
     return 0;

  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  val = 0;

  switch (TREE_CODE (t1))
    {
    case POINTER_TYPE:
      /* We must give ObjC the first crack at comparing pointers, since
	   protocol qualifiers may be involved.  */
      if (c_dialect_objc () && (val = objc_comptypes (t1, t2, 0)) >= 0)
	break;
      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
	     ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
      break;

    case FUNCTION_TYPE:
      val = function_types_compatible_p (t1, t2);
      break;

    case ARRAY_TYPE:
      {
	tree d1 = TYPE_DOMAIN (t1);
	tree d2 = TYPE_DOMAIN (t2);
	bool d1_variable, d2_variable;
	bool d1_zero, d2_zero;
	val = 1;

	/* Target types must match incl. qualifiers.  */
	if (TREE_TYPE (t1) != TREE_TYPE (t2)
	    && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
	  return 0;

	/* Sizes must match unless one is missing or variable.  */
	if (d1 == 0 || d2 == 0 || d1 == d2)
	  break;

	d1_zero = ! TYPE_MAX_VALUE (d1);
	d2_zero = ! TYPE_MAX_VALUE (d2);

	d1_variable = (! d1_zero
		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
	d2_variable = (! d2_zero
		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));

	if (d1_variable || d2_variable)
	  break;
	if (d1_zero && d2_zero)
	  break;
	if (d1_zero || d2_zero
	    || ! tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
	    || ! tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
	  val = 0;

        break;
      }

    case RECORD_TYPE:
      /* We are dealing with two distinct structs.  In assorted Objective-C
	 corner cases, however, these can still be deemed equivalent.  */
      if (c_dialect_objc () && objc_comptypes (t1, t2, 0) == 1)
	val = 1;

    case ENUMERAL_TYPE:
    case UNION_TYPE:
      if (val != 1 && !same_translation_unit_p (t1, t2))
	val = tagged_types_tu_compatible_p (t1, t2);
      break;

    case VECTOR_TYPE:
      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
	    && comptypes (TREE_TYPE (t1), TREE_TYPE (t2));
      break;

    default:
      break;
    }
  return attrval == 2 && val == 1 ? 2 : val;
}

/* Return 1 if TTL and TTR are pointers to types that are equivalent,
   ignoring their qualifiers.  REFLEXIVE is only used by ObjC - set it
   to 1 or 0 depending if the check of the pointer types is meant to
   be reflexive or not (typically, assignments are not reflexive,
   while comparisons are reflexive).
*/

static int
comp_target_types (tree ttl, tree ttr, int reflexive)
{
  int val;

  /* Give objc_comptypes a crack at letting these types through.  */
  if ((val = objc_comptypes (ttl, ttr, reflexive)) >= 0)
    return val;

  val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
		   TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));

  if (val == 2 && pedantic)
    pedwarn ("types are not quite compatible");
  return val;
}

/* Subroutines of `comptypes'.  */

/* Determine whether two trees derive from the same translation unit.
   If the CONTEXT chain ends in a null, that tree's context is still
   being parsed, so if two trees have context chains ending in null,
   they're in the same translation unit.  */
int
same_translation_unit_p (tree t1, tree t2)
{
  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
      {
      case 'd': t1 = DECL_CONTEXT (t1); break;
      case 't': t1 = TYPE_CONTEXT (t1); break;
      case 'x': t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
      default: abort ();
      }

  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
      {
      case 'd': t2 = DECL_CONTEXT (t2); break;
      case 't': t2 = TYPE_CONTEXT (t2); break;
      case 'x': t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
      default: abort ();
      }

  return t1 == t2;
}

/* The C standard says that two structures in different translation
   units are compatible with each other only if the types of their
   fields are compatible (among other things).  So, consider two copies
   of this structure:  */

struct tagged_tu_seen {
  const struct tagged_tu_seen * next;
  tree t1;
  tree t2;
};

/* Can they be compatible with each other?  We choose to break the
   recursion by allowing those types to be compatible.  */

static const struct tagged_tu_seen * tagged_tu_seen_base;

/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
   compatible.  If the two types are not the same (which has been
   checked earlier), this can only happen when multiple translation
   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
   rules.  */

static int
tagged_types_tu_compatible_p (tree t1, tree t2)
{
  tree s1, s2;
  bool needs_warning = false;

  /* We have to verify that the tags of the types are the same.  This
     is harder than it looks because this may be a typedef, so we have
     to go look at the original type.  It may even be a typedef of a
     typedef...
     In the case of compiler-created builtin structs the TYPE_DECL
     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
  while (TYPE_NAME (t1)
	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));

  while (TYPE_NAME (t2)
	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));

  /* C90 didn't have the requirement that the two tags be the same.  */
  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
    return 0;

  /* C90 didn't say what happened if one or both of the types were
     incomplete; we choose to follow C99 rules here, which is that they
     are compatible.  */
  if (TYPE_SIZE (t1) == NULL
      || TYPE_SIZE (t2) == NULL)
    return 1;

  {
    const struct tagged_tu_seen * tts_i;
    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
      if (tts_i->t1 == t1 && tts_i->t2 == t2)
	return 1;
  }

  switch (TREE_CODE (t1))
    {
    case ENUMERAL_TYPE:
      {

        /* Speed up the case where the type values are in the same order.  */
        tree tv1 = TYPE_VALUES (t1);
        tree tv2 = TYPE_VALUES (t2);

        if (tv1 == tv2)
          return 1;

        for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
          {
            if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
              break;
            if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
              return 0;
          }

        if (tv1 == NULL_TREE && tv2 == NULL_TREE)
          return 1;
        if (tv1 == NULL_TREE || tv2 == NULL_TREE)
          return 0;

	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
	  return 0;

	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
	  {
	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
	    if (s2 == NULL
		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
	      return 0;
	  }
	return 1;
      }

    case UNION_TYPE:
      {
	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
	  return 0;

	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
	  {
	    bool ok = false;
	    struct tagged_tu_seen tts;

	    tts.next = tagged_tu_seen_base;
	    tts.t1 = t1;
	    tts.t2 = t2;
	    tagged_tu_seen_base = &tts;

	    if (DECL_NAME (s1) != NULL)
	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
		if (DECL_NAME (s1) == DECL_NAME (s2))
		  {
		    int result;
		    result = comptypes (TREE_TYPE (s1), TREE_TYPE (s2));
		    if (result == 0)
		      break;
		    if (result == 2)
		      needs_warning = true;

		    if (TREE_CODE (s1) == FIELD_DECL
			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
		      break;

		    ok = true;
		    break;
		  }
	    tagged_tu_seen_base = tts.next;
	    if (! ok)
	      return 0;
	  }
	return needs_warning ? 2 : 1;
      }

    case RECORD_TYPE:
      {
	struct tagged_tu_seen tts;

	tts.next = tagged_tu_seen_base;
	tts.t1 = t1;
	tts.t2 = t2;
	tagged_tu_seen_base = &tts;

	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
	     s1 && s2;
	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
	  {
	    int result;
	    if (TREE_CODE (s1) != TREE_CODE (s2)
		|| DECL_NAME (s1) != DECL_NAME (s2))
	      break;
	    result = comptypes (TREE_TYPE (s1), TREE_TYPE (s2));
	    if (result == 0)
	      break;
	    if (result == 2)
	      needs_warning = true;

	    if (TREE_CODE (s1) == FIELD_DECL
		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
	      break;
	  }
	tagged_tu_seen_base = tts.next;
	if (s1 && s2)
	  return 0;
	return needs_warning ? 2 : 1;
      }

    default:
      abort ();
    }
}

/* Return 1 if two function types F1 and F2 are compatible.
   If either type specifies no argument types,
   the other must specify a fixed number of self-promoting arg types.
   Otherwise, if one type specifies only the number of arguments,
   the other must specify that number of self-promoting arg types.
   Otherwise, the argument types must match.  */

static int
function_types_compatible_p (tree f1, tree f2)
{
  tree args1, args2;
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  int val = 1;
  int val1;
  tree ret1, ret2;

  ret1 = TREE_TYPE (f1);
  ret2 = TREE_TYPE (f2);

  /* 'volatile' qualifiers on a function's return type mean the function
     is noreturn.  */
  if (pedantic && TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
    pedwarn ("function return types not compatible due to `volatile'");
  if (TYPE_VOLATILE (ret1))
    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
  if (TYPE_VOLATILE (ret2))
    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
  val = comptypes (ret1, ret2);
  if (val == 0)
    return 0;

  args1 = TYPE_ARG_TYPES (f1);
  args2 = TYPE_ARG_TYPES (f2);

  /* An unspecified parmlist matches any specified parmlist
     whose argument types don't need default promotions.  */

  if (args1 == 0)
    {
      if (!self_promoting_args_p (args2))
	return 0;
      /* If one of these types comes from a non-prototype fn definition,
	 compare that with the other type's arglist.
	 If they don't match, ask for a warning (but no error).  */
      if (TYPE_ACTUAL_ARG_TYPES (f1)
	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
	val = 2;
      return val;
    }
  if (args2 == 0)
    {
      if (!self_promoting_args_p (args1))
	return 0;
      if (TYPE_ACTUAL_ARG_TYPES (f2)
	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
	val = 2;
      return val;
    }

  /* Both types have argument lists: compare them and propagate results.  */
  val1 = type_lists_compatible_p (args1, args2);
  return val1 != 1 ? val1 : val;
}

/* Check two lists of types for compatibility,
   returning 0 for incompatible, 1 for compatible,
   or 2 for compatible with warning.  */

static int
type_lists_compatible_p (tree args1, tree args2)
{
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  int val = 1;
  int newval = 0;

  while (1)
    {
      if (args1 == 0 && args2 == 0)
	return val;
      /* If one list is shorter than the other,
	 they fail to match.  */
      if (args1 == 0 || args2 == 0)
	return 0;
      /* A null pointer instead of a type
	 means there is supposed to be an argument
	 but nothing is specified about what type it has.
	 So match anything that self-promotes.  */
      if (TREE_VALUE (args1) == 0)
	{
	  if (c_type_promotes_to (TREE_VALUE (args2)) != TREE_VALUE (args2))
	    return 0;
	}
      else if (TREE_VALUE (args2) == 0)
	{
	  if (c_type_promotes_to (TREE_VALUE (args1)) != TREE_VALUE (args1))
	    return 0;
	}
      /* If one of the lists has an error marker, ignore this arg.  */
      else if (TREE_CODE (TREE_VALUE (args1)) == ERROR_MARK
	       || TREE_CODE (TREE_VALUE (args2)) == ERROR_MARK)
	;
      else if (! (newval = comptypes (TYPE_MAIN_VARIANT (TREE_VALUE (args1)),
				      TYPE_MAIN_VARIANT (TREE_VALUE (args2)))))
	{
	  /* Allow  wait (union {union wait *u; int *i} *)
	     and  wait (union wait *)  to be compatible.  */
	  if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
	      && (TYPE_NAME (TREE_VALUE (args1)) == 0
		  || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
	      && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
	      && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
				     TYPE_SIZE (TREE_VALUE (args2))))
	    {
	      tree memb;
	      for (memb = TYPE_FIELDS (TREE_VALUE (args1));
		   memb; memb = TREE_CHAIN (memb))
		if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
		  break;
	      if (memb == 0)
		return 0;
	    }
	  else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
		   && (TYPE_NAME (TREE_VALUE (args2)) == 0
		       || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
		   && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
		   && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
					  TYPE_SIZE (TREE_VALUE (args1))))
	    {
	      tree memb;
	      for (memb = TYPE_FIELDS (TREE_VALUE (args2));
		   memb; memb = TREE_CHAIN (memb))
		if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
		  break;
	      if (memb == 0)
		return 0;
	    }
	  else
	    return 0;
	}

      /* comptypes said ok, but record if it said to warn.  */
      if (newval > val)
	val = newval;

      args1 = TREE_CHAIN (args1);
      args2 = TREE_CHAIN (args2);
    }
}

/* Compute the size to increment a pointer by.  */

tree
c_size_in_bytes (tree type)
{
  enum tree_code code = TREE_CODE (type);

  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
    return size_one_node;

  if (!COMPLETE_OR_VOID_TYPE_P (type))
    {
      error ("arithmetic on pointer to an incomplete type");
      return size_one_node;
    }

  /* Convert in case a char is more than one unit.  */
  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
		     size_int (TYPE_PRECISION (char_type_node)
			       / BITS_PER_UNIT));
}

/* Return either DECL or its known constant value (if it has one).  */

tree
decl_constant_value (tree decl)
{
  if (/* Don't change a variable array bound or initial value to a constant
	 in a place where a variable is invalid.  Note that DECL_INITIAL
	 isn't valid for a PARM_DECL.  */
      current_function_decl != 0
      && TREE_CODE (decl) != PARM_DECL
      && ! TREE_THIS_VOLATILE (decl)
      && TREE_READONLY (decl)
      && DECL_INITIAL (decl) != 0
      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
      /* This is invalid if initial value is not constant.
	 If it has either a function call, a memory reference,
	 or a variable, then re-evaluating it could give different results.  */
      && TREE_CONSTANT (DECL_INITIAL (decl))
      /* Check for cases where this is sub-optimal, even though valid.  */
      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
    return DECL_INITIAL (decl);
  return decl;
}

/* Return either DECL or its known constant value (if it has one), but
   return DECL if pedantic or DECL has mode BLKmode.  This is for
   bug-compatibility with the old behavior of decl_constant_value
   (before GCC 3.0); every use of this function is a bug and it should
   be removed before GCC 3.1.  It is not appropriate to use pedantic
   in a way that affects optimization, and BLKmode is probably not the
   right test for avoiding misoptimizations either.  */

static tree
decl_constant_value_for_broken_optimization (tree decl)
{
  if (pedantic || DECL_MODE (decl) == BLKmode)
    return decl;
  else
    return decl_constant_value (decl);
}


/* Perform the default conversion of arrays and functions to pointers.
   Return the result of converting EXP.  For any other expression, just
   return EXP.  */

static tree
default_function_array_conversion (tree exp)
{
  tree orig_exp;
  tree type = TREE_TYPE (exp);
  enum tree_code code = TREE_CODE (type);
  int not_lvalue = 0;

  /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
     an lvalue.

     Do not use STRIP_NOPS here!  It will remove conversions from pointer
     to integer and cause infinite recursion.  */
  orig_exp = exp;
  while (TREE_CODE (exp) == NON_LVALUE_EXPR
	 || (TREE_CODE (exp) == NOP_EXPR
	     && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
    {
      if (TREE_CODE (exp) == NON_LVALUE_EXPR)
	not_lvalue = 1;
      exp = TREE_OPERAND (exp, 0);
    }

  if (TREE_NO_WARNING (orig_exp))
    TREE_NO_WARNING (exp) = 1;

  if (code == FUNCTION_TYPE)
    {
      return build_unary_op (ADDR_EXPR, exp, 0);
    }
  if (code == ARRAY_TYPE)
    {
      tree adr;
      tree restype = TREE_TYPE (type);
      tree ptrtype;
      int constp = 0;
      int volatilep = 0;
      int lvalue_array_p;

      if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r' || DECL_P (exp))
	{
	  constp = TREE_READONLY (exp);
	  volatilep = TREE_THIS_VOLATILE (exp);
	}

      if (TYPE_QUALS (type) || constp || volatilep)
	restype
	  = c_build_qualified_type (restype,
				    TYPE_QUALS (type)
				    | (constp * TYPE_QUAL_CONST)
				    | (volatilep * TYPE_QUAL_VOLATILE));

      if (TREE_CODE (exp) == INDIRECT_REF)
	return convert (build_pointer_type (restype),
			TREE_OPERAND (exp, 0));

      if (TREE_CODE (exp) == COMPOUND_EXPR)
	{
	  tree op1 = default_conversion (TREE_OPERAND (exp, 1));
	  return build (COMPOUND_EXPR, TREE_TYPE (op1),
			TREE_OPERAND (exp, 0), op1);
	}

      lvalue_array_p = !not_lvalue && lvalue_p (exp);
      if (!flag_isoc99 && !lvalue_array_p)
	{
	  /* Before C99, non-lvalue arrays do not decay to pointers.
	     Normally, using such an array would be invalid; but it can
	     be used correctly inside sizeof or as a statement expression.
	     Thus, do not give an error here; an error will result later.  */
	  return exp;
	}

      ptrtype = build_pointer_type (restype);

      if (TREE_CODE (exp) == VAR_DECL)
	{
	  /* We are making an ADDR_EXPR of ptrtype.  This is a valid
	     ADDR_EXPR because it's the best way of representing what
	     happens in C when we take the address of an array and place
	     it in a pointer to the element type.  */
	  adr = build1 (ADDR_EXPR, ptrtype, exp);
	  if (!c_mark_addressable (exp))
	    return error_mark_node;
	  TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
	  return adr;
	}
      /* This way is better for a COMPONENT_REF since it can
	 simplify the offset for a component.  */
      adr = build_unary_op (ADDR_EXPR, exp, 1);
      return convert (ptrtype, adr);
    }
  return exp;
}

/* Perform default promotions for C data used in expressions.
   Arrays and functions are converted to pointers;
   enumeral types or short or char, to int.
   In addition, manifest constants symbols are replaced by their values.  */

tree
default_conversion (tree exp)
{
  tree orig_exp;
  tree type = TREE_TYPE (exp);
  enum tree_code code = TREE_CODE (type);

  if (code == FUNCTION_TYPE || code == ARRAY_TYPE)
    return default_function_array_conversion (exp);

  /* Constants can be used directly unless they're not loadable.  */
  if (TREE_CODE (exp) == CONST_DECL)
    exp = DECL_INITIAL (exp);

  /* Replace a nonvolatile const static variable with its value unless
     it is an array, in which case we must be sure that taking the
     address of the array produces consistent results.  */
  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
    {
      exp = decl_constant_value_for_broken_optimization (exp);
      type = TREE_TYPE (exp);
    }

  /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
     an lvalue.

     Do not use STRIP_NOPS here!  It will remove conversions from pointer
     to integer and cause infinite recursion.  */
  orig_exp = exp;
  while (TREE_CODE (exp) == NON_LVALUE_EXPR
	 || (TREE_CODE (exp) == NOP_EXPR
	     && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
    exp = TREE_OPERAND (exp, 0);

  if (TREE_NO_WARNING (orig_exp))
    TREE_NO_WARNING (exp) = 1;

  /* Normally convert enums to int,
     but convert wide enums to something wider.  */
  if (code == ENUMERAL_TYPE)
    {
      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
					  TYPE_PRECISION (integer_type_node)),
				     ((TYPE_PRECISION (type)
				       >= TYPE_PRECISION (integer_type_node))
				      && TYPE_UNSIGNED (type)));

      return convert (type, exp);
    }

  if (TREE_CODE (exp) == COMPONENT_REF
      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
      /* If it's thinner than an int, promote it like a
	 c_promoting_integer_type_p, otherwise leave it alone.  */
      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
			       TYPE_PRECISION (integer_type_node)))
    return convert (integer_type_node, exp);

  if (c_promoting_integer_type_p (type))
    {
      /* Preserve unsignedness if not really getting any wider.  */
      if (TYPE_UNSIGNED (type)
	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
	return convert (unsigned_type_node, exp);

      return convert (integer_type_node, exp);
    }

  if (code == VOID_TYPE)
    {
      error ("void value not ignored as it ought to be");
      return error_mark_node;
    }
  return exp;
}

/* Look up COMPONENT in a structure or union DECL.

   If the component name is not found, returns NULL_TREE.  Otherwise,
   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
   stepping down the chain to the component, which is in the last
   TREE_VALUE of the list.  Normally the list is of length one, but if
   the component is embedded within (nested) anonymous structures or
   unions, the list steps down the chain to the component.  */

static tree
lookup_field (tree decl, tree component)
{
  tree type = TREE_TYPE (decl);
  tree field;

  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
     to the field elements.  Use a binary search on this array to quickly
     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
     will always be set for structures which have many elements.  */

  if (TYPE_LANG_SPECIFIC (type))
    {
      int bot, top, half;
      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];

      field = TYPE_FIELDS (type);
      bot = 0;
      top = TYPE_LANG_SPECIFIC (type)->s->len;
      while (top - bot > 1)
	{
	  half = (top - bot + 1) >> 1;
	  field = field_array[bot+half];

	  if (DECL_NAME (field) == NULL_TREE)
	    {
	      /* Step through all anon unions in linear fashion.  */
	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
		{
		  field = field_array[bot++];
		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
		    {
		      tree anon = lookup_field (field, component);

		      if (anon)
			return tree_cons (NULL_TREE, field, anon);
		    }
		}

	      /* Entire record is only anon unions.  */
	      if (bot > top)
		return NULL_TREE;

	      /* Restart the binary search, with new lower bound.  */
	      continue;
	    }

	  if (DECL_NAME (field) == component)
	    break;
	  if (DECL_NAME (field) < component)
	    bot += half;
	  else
	    top = bot + half;
	}

      if (DECL_NAME (field_array[bot]) == component)
	field = field_array[bot];
      else if (DECL_NAME (field) != component)
	return NULL_TREE;
    }
  else
    {
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	{
	  if (DECL_NAME (field) == NULL_TREE
	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
	    {
	      tree anon = lookup_field (field, component);

	      if (anon)
		return tree_cons (NULL_TREE, field, anon);
	    }

	  if (DECL_NAME (field) == component)
	    break;
	}

      if (field == NULL_TREE)
	return NULL_TREE;
    }

  return tree_cons (NULL_TREE, field, NULL_TREE);
}

/* Make an expression to refer to the COMPONENT field of
   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */

tree
build_component_ref (tree datum, tree component)
{
  tree type = TREE_TYPE (datum);
  enum tree_code code = TREE_CODE (type);
  tree field = NULL;
  tree ref;

  if (!objc_is_public (datum, component))
    return error_mark_node;

  /* If DATUM is a COMPOUND_EXPR, move our reference inside it.
     Ensure that the arguments are not lvalues; otherwise,
     if the component is an array, it would wrongly decay to a pointer in
     C89 mode.
     We cannot do this with a COND_EXPR, because in a conditional expression
     the default promotions are applied to both sides, and this would yield
     the wrong type of the result; for example, if the components have
     type "char".  */
  switch (TREE_CODE (datum))
    {
    case COMPOUND_EXPR:
      {
	tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
	return build (COMPOUND_EXPR, TREE_TYPE (value),
		      TREE_OPERAND (datum, 0), non_lvalue (value));
      }
    default:
      break;
    }

  /* See if there is a field or component with name COMPONENT.  */

  if (code == RECORD_TYPE || code == UNION_TYPE)
    {
      if (!COMPLETE_TYPE_P (type))
	{
	  c_incomplete_type_error (NULL_TREE, type);
	  return error_mark_node;
	}

      field = lookup_field (datum, component);

      if (!field)
	{
	  error ("%s has no member named `%s'",
		 code == RECORD_TYPE ? "structure" : "union",
		 IDENTIFIER_POINTER (component));
	  return error_mark_node;
	}

      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
	 This might be better solved in future the way the C++ front
	 end does it - by giving the anonymous entities each a
	 separate name and type, and then have build_component_ref
	 recursively call itself.  We can't do that here.  */
      do
	{
	  tree subdatum = TREE_VALUE (field);

	  if (TREE_TYPE (subdatum) == error_mark_node)
	    return error_mark_node;

	  ref = build (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum,
		       NULL_TREE);
	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
	    TREE_READONLY (ref) = 1;
	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
	    TREE_THIS_VOLATILE (ref) = 1;

	  if (TREE_DEPRECATED (subdatum))
	    warn_deprecated_use (subdatum);

	  datum = ref;

	  field = TREE_CHAIN (field);
	}
      while (field);

      return ref;
    }
  else if (code != ERROR_MARK)
    error ("request for member `%s' in something not a structure or union",
	    IDENTIFIER_POINTER (component));

  return error_mark_node;
}

/* Given an expression PTR for a pointer, return an expression
   for the value pointed to.
   ERRORSTRING is the name of the operator to appear in error messages.  */

tree
build_indirect_ref (tree ptr, const char *errorstring)
{
  tree pointer = default_conversion (ptr);
  tree type = TREE_TYPE (pointer);

  if (TREE_CODE (type) == POINTER_TYPE)
    {
      if (TREE_CODE (pointer) == ADDR_EXPR
	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
	      == TREE_TYPE (type)))
	return TREE_OPERAND (pointer, 0);
      else
	{
	  tree t = TREE_TYPE (type);
	  tree ref = build1 (INDIRECT_REF, TYPE_MAIN_VARIANT (t), pointer);

	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
	    {
	      error ("dereferencing pointer to incomplete type");
	      return error_mark_node;
	    }
	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
	    warning ("dereferencing `void *' pointer");

	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
	     so that we get the proper error message if the result is used
	     to assign to.  Also, &* is supposed to be a no-op.
	     And ANSI C seems to specify that the type of the result
	     should be the const type.  */
	  /* A de-reference of a pointer to const is not a const.  It is valid
	     to change it via some other pointer.  */
	  TREE_READONLY (ref) = TYPE_READONLY (t);
	  TREE_SIDE_EFFECTS (ref)
	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
	  return ref;
	}
    }
  else if (TREE_CODE (pointer) != ERROR_MARK)
    error ("invalid type argument of `%s'", errorstring);
  return error_mark_node;
}

/* This handles expressions of the form "a[i]", which denotes
   an array reference.

   This is logically equivalent in C to *(a+i), but we may do it differently.
   If A is a variable or a member, we generate a primitive ARRAY_REF.
   This avoids forcing the array out of registers, and can work on
   arrays that are not lvalues (for example, members of structures returned
   by functions).  */

tree
build_array_ref (tree array, tree index)
{
  if (index == 0)
    {
      error ("subscript missing in array reference");
      return error_mark_node;
    }

  if (TREE_TYPE (array) == error_mark_node
      || TREE_TYPE (index) == error_mark_node)
    return error_mark_node;

  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
    {
      tree rval, type;

      /* Subscripting with type char is likely to lose
	 on a machine where chars are signed.
	 So warn on any machine, but optionally.
	 Don't warn for unsigned char since that type is safe.
	 Don't warn for signed char because anyone who uses that
	 must have done so deliberately.  */
      if (warn_char_subscripts
	  && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
	warning ("array subscript has type `char'");

      /* Apply default promotions *after* noticing character types.  */
      index = default_conversion (index);

      /* Require integer *after* promotion, for sake of enums.  */
      if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
	{
	  error ("array subscript is not an integer");
	  return error_mark_node;
	}

      /* An array that is indexed by a non-constant
	 cannot be stored in a register; we must be able to do
	 address arithmetic on its address.
	 Likewise an array of elements of variable size.  */
      if (TREE_CODE (index) != INTEGER_CST
	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
	{
	  if (!c_mark_addressable (array))
	    return error_mark_node;
	}
      /* An array that is indexed by a constant value which is not within
	 the array bounds cannot be stored in a register either; because we
	 would get a crash in store_bit_field/extract_bit_field when trying
	 to access a non-existent part of the register.  */
      if (TREE_CODE (index) == INTEGER_CST
	  && TYPE_DOMAIN (TREE_TYPE (array))
	  && ! int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
	{
	  if (!c_mark_addressable (array))
	    return error_mark_node;
	}

      if (pedantic)
	{
	  tree foo = array;
	  while (TREE_CODE (foo) == COMPONENT_REF)
	    foo = TREE_OPERAND (foo, 0);
	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
	    pedwarn ("ISO C forbids subscripting `register' array");
	  else if (! flag_isoc99 && ! lvalue_p (foo))
	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
	}

      type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
      rval = build (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
      /* Array ref is const/volatile if the array elements are
         or if the array is.  */
      TREE_READONLY (rval)
	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
	    | TREE_READONLY (array));
      TREE_SIDE_EFFECTS (rval)
	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
	    | TREE_SIDE_EFFECTS (array));
      TREE_THIS_VOLATILE (rval)
	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
	    /* This was added by rms on 16 Nov 91.
	       It fixes  vol struct foo *a;  a->elts[1]
	       in an inline function.
	       Hope it doesn't break something else.  */
	    | TREE_THIS_VOLATILE (array));
      return require_complete_type (fold (rval));
    }

  {
    tree ar = default_conversion (array);
    tree ind = default_conversion (index);

    /* Do the same warning check as above, but only on the part that's
       syntactically the index and only if it is also semantically
       the index.  */
    if (warn_char_subscripts
	&& TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
	&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
      warning ("subscript has type `char'");

    /* Put the integer in IND to simplify error checking.  */
    if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
      {
	tree temp = ar;
	ar = ind;
	ind = temp;
      }

    if (ar == error_mark_node)
      return ar;

    if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
	|| TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
      {
	error ("subscripted value is neither array nor pointer");
	return error_mark_node;
      }
    if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
      {
	error ("array subscript is not an integer");
	return error_mark_node;
      }

    return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
			       "array indexing");
  }
}

/* Build an external reference to identifier ID.  FUN indicates
   whether this will be used for a function call.  */
tree
build_external_ref (tree id, int fun)
{
  tree ref;
  tree decl = lookup_name (id);
  tree objc_ivar = lookup_objc_ivar (id);

  if (decl && decl != error_mark_node)
    {
      /* Properly declared variable or function reference.  */
      if (!objc_ivar)
	ref = decl;
      else if (decl != objc_ivar && !DECL_FILE_SCOPE_P (decl))
	{
	  warning ("local declaration of `%s' hides instance variable",
		   IDENTIFIER_POINTER (id));
	  ref = decl;
	}
      else
	ref = objc_ivar;
    }
  else if (objc_ivar)
    ref = objc_ivar;
  else if (fun)
    /* Implicit function declaration.  */
    ref = implicitly_declare (id);
  else if (decl == error_mark_node)
    /* Don't complain about something that's already been
       complained about.  */
    return error_mark_node;
  else
    {
      undeclared_variable (id);
      return error_mark_node;
    }

  if (TREE_TYPE (ref) == error_mark_node)
    return error_mark_node;

  if (TREE_DEPRECATED (ref))
    warn_deprecated_use (ref);

  if (!skip_evaluation)
    assemble_external (ref);
  TREE_USED (ref) = 1;

  if (TREE_CODE (ref) == CONST_DECL)
    {
      ref = DECL_INITIAL (ref);
      TREE_CONSTANT (ref) = 1;
      TREE_INVARIANT (ref) = 1;
    }
  else if (current_function_decl != 0
	   && !DECL_FILE_SCOPE_P (current_function_decl)
	   && (TREE_CODE (ref) == VAR_DECL
	       || TREE_CODE (ref) == PARM_DECL
	       || TREE_CODE (ref) == FUNCTION_DECL))
    {
      tree context = decl_function_context (ref);

      if (context != 0 && context != current_function_decl)
	DECL_NONLOCAL (ref) = 1;
    }

  return ref;
}

/* Build a function call to function FUNCTION with parameters PARAMS.
   PARAMS is a list--a chain of TREE_LIST nodes--in which the
   TREE_VALUE of each node is a parameter-expression.
   FUNCTION's data type may be a function type or a pointer-to-function.  */

tree
build_function_call (tree function, tree params)
{
  tree fntype, fundecl = 0;
  tree coerced_params;
  tree name = NULL_TREE, result;
  tree tem;

  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
  STRIP_TYPE_NOPS (function);

  /* Convert anything with function type to a pointer-to-function.  */
  if (TREE_CODE (function) == FUNCTION_DECL)
    {
      name = DECL_NAME (function);

      /* Differs from default_conversion by not setting TREE_ADDRESSABLE
	 (because calling an inline function does not mean the function
	 needs to be separately compiled).  */
      fntype = build_type_variant (TREE_TYPE (function),
				   TREE_READONLY (function),
				   TREE_THIS_VOLATILE (function));
      fundecl = function;
      function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
    }
  else
    function = default_conversion (function);

  fntype = TREE_TYPE (function);

  if (TREE_CODE (fntype) == ERROR_MARK)
    return error_mark_node;

  if (!(TREE_CODE (fntype) == POINTER_TYPE
	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
    {
      error ("called object is not a function");
      return error_mark_node;
    }

  if (fundecl && TREE_THIS_VOLATILE (fundecl))
    current_function_returns_abnormally = 1;

  /* fntype now gets the type of function pointed to.  */
  fntype = TREE_TYPE (fntype);

  /* Check that the function is called through a compatible prototype.
     If it is not, replace the call by a trap, wrapped up in a compound
     expression if necessary.  This has the nice side-effect to prevent
     the tree-inliner from generating invalid assignment trees which may
     blow up in the RTL expander later.

     ??? This doesn't work for Objective-C because objc_comptypes
     refuses to compare function prototypes, yet the compiler appears
     to build calls that are flagged as invalid by C's comptypes.  */
  if (! c_dialect_objc ()
      && TREE_CODE (function) == NOP_EXPR
      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
      && ! comptypes (fntype, TREE_TYPE (tem)))
    {
      tree return_type = TREE_TYPE (fntype);
      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
				       NULL_TREE);

      /* This situation leads to run-time undefined behavior.  We can't,
	 therefore, simply error unless we can prove that all possible
	 executions of the program must execute the code.  */
      warning ("function called through a non-compatible type");

      /* We can, however, treat "undefined" any way we please.
	 Call abort to encourage the user to fix the program.  */
      inform ("if this code is reached, the program will abort");

      if (VOID_TYPE_P (return_type))
	return trap;
      else
	{
	  tree rhs;

	  if (AGGREGATE_TYPE_P (return_type))
	    rhs = build_compound_literal (return_type,
					  build_constructor (return_type,
							     NULL_TREE));
	  else
	    rhs = fold (build1 (NOP_EXPR, return_type, integer_zero_node));

	  return build (COMPOUND_EXPR, return_type, trap, rhs);
	}
    }

  /* Convert the parameters to the types declared in the
     function prototype, or apply default promotions.  */

  coerced_params
    = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);

  /* Check that the arguments to the function are valid.  */

  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params);

  result = build (CALL_EXPR, TREE_TYPE (fntype),
		  function, coerced_params, NULL_TREE);
  TREE_SIDE_EFFECTS (result) = 1;

  if (require_constant_value)
    {
      result = fold_initializer (result);

      if (TREE_CONSTANT (result)
	  && (name == NULL_TREE
	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
	pedwarn_init ("initializer element is not constant");
    }
  else
    result = fold (result);

  if (VOID_TYPE_P (TREE_TYPE (result)))
    return result;
  return require_complete_type (result);
}

/* Convert the argument expressions in the list VALUES
   to the types in the list TYPELIST.  The result is a list of converted
   argument expressions.

   If TYPELIST is exhausted, or when an element has NULL as its type,
   perform the default conversions.

   PARMLIST is the chain of parm decls for the function being called.
   It may be 0, if that info is not available.
   It is used only for generating error messages.

   NAME is an IDENTIFIER_NODE or 0.  It is used only for error messages.

   This is also where warnings about wrong number of args are generated.

   Both VALUES and the returned value are chains of TREE_LIST nodes
   with the elements of the list in the TREE_VALUE slots of those nodes.  */

static tree
convert_arguments (tree typelist, tree values, tree name, tree fundecl)
{
  tree typetail, valtail;
  tree result = NULL;
  int parmnum;

  /* Scan the given expressions and types, producing individual
     converted arguments and pushing them on RESULT in reverse order.  */

  for (valtail = values, typetail = typelist, parmnum = 0;
       valtail;
       valtail = TREE_CHAIN (valtail), parmnum++)
    {
      tree type = typetail ? TREE_VALUE (typetail) : 0;
      tree val = TREE_VALUE (valtail);

      if (type == void_type_node)
	{
	  if (name)
	    error ("too many arguments to function `%s'",
		   IDENTIFIER_POINTER (name));
	  else
	    error ("too many arguments to function");
	  break;
	}

      /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
      /* Do not use STRIP_NOPS here!  We do not want an enumerator with value 0
	 to convert automatically to a pointer.  */
      if (TREE_CODE (val) == NON_LVALUE_EXPR)
	val = TREE_OPERAND (val, 0);

      val = default_function_array_conversion (val);

      val = require_complete_type (val);

      if (type != 0)
	{
	  /* Formal parm type is specified by a function prototype.  */
	  tree parmval;

	  if (!COMPLETE_TYPE_P (type))
	    {
	      error ("type of formal parameter %d is incomplete", parmnum + 1);
	      parmval = val;
	    }
	  else
	    {
	      /* Optionally warn about conversions that
		 differ from the default conversions.  */
	      if (warn_conversion || warn_traditional)
		{
		  int formal_prec = TYPE_PRECISION (type);

		  if (INTEGRAL_TYPE_P (type)
		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
		    warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
		  if (INTEGRAL_TYPE_P (type)
		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
		    warn_for_assignment ("%s as integer rather than complex due to prototype", (char *) 0, name, parmnum + 1);
		  else if (TREE_CODE (type) == COMPLEX_TYPE
			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
		    warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
		  else if (TREE_CODE (type) == REAL_TYPE
			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
		    warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
		  else if (TREE_CODE (type) == COMPLEX_TYPE
			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
		    warn_for_assignment ("%s as complex rather than integer due to prototype", (char *) 0, name, parmnum + 1);
		  else if (TREE_CODE (type) == REAL_TYPE
			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
		    warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
		  /* ??? At some point, messages should be written about
		     conversions between complex types, but that's too messy
		     to do now.  */
		  else if (TREE_CODE (type) == REAL_TYPE
			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
		    {
		      /* Warn if any argument is passed as `float',
			 since without a prototype it would be `double'.  */
		      if (formal_prec == TYPE_PRECISION (float_type_node))
			warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
		    }
		  /* Detect integer changing in width or signedness.
		     These warnings are only activated with
		     -Wconversion, not with -Wtraditional.  */
		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
		    {
		      tree would_have_been = default_conversion (val);
		      tree type1 = TREE_TYPE (would_have_been);

		      if (TREE_CODE (type) == ENUMERAL_TYPE
			  && (TYPE_MAIN_VARIANT (type)
			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
			/* No warning if function asks for enum
			   and the actual arg is that enum type.  */
			;
		      else if (formal_prec != TYPE_PRECISION (type1))
			warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
			;
		      /* Don't complain if the formal parameter type
			 is an enum, because we can't tell now whether
			 the value was an enum--even the same enum.  */
		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
			;
		      else if (TREE_CODE (val) == INTEGER_CST
			       && int_fits_type_p (val, type))
			/* Change in signedness doesn't matter
			   if a constant value is unaffected.  */
			;
		      /* Likewise for a constant in a NOP_EXPR.  */
		      else if (TREE_CODE (val) == NOP_EXPR
			       && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
			       && int_fits_type_p (TREE_OPERAND (val, 0), type))
			;
		      /* If the value is extended from a narrower
			 unsigned type, it doesn't matter whether we
			 pass it as signed or unsigned; the value
			 certainly is the same either way.  */
		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
			       && TYPE_UNSIGNED (TREE_TYPE (val)))
			;
		      else if (TYPE_UNSIGNED (type))
			warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
		      else
			warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
		    }
		}

	      parmval = convert_for_assignment (type, val,
					        (char *) 0, /* arg passing  */
						fundecl, name, parmnum + 1);

	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
		  && INTEGRAL_TYPE_P (type)
		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
		parmval = default_conversion (parmval);
	    }
	  result = tree_cons (NULL_TREE, parmval, result);
	}
      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
               && (TYPE_PRECISION (TREE_TYPE (val))
	           < TYPE_PRECISION (double_type_node)))
	/* Convert `float' to `double'.  */
	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
      else
	/* Convert `short' and `char' to full-size `int'.  */
	result = tree_cons (NULL_TREE, default_conversion (val), result);

      if (typetail)
	typetail = TREE_CHAIN (typetail);
    }

  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
    {
      if (name)
	error ("too few arguments to function `%s'",
	       IDENTIFIER_POINTER (name));
      else
	error ("too few arguments to function");
    }

  return nreverse (result);
}

/* This is the entry point used by the parser
   for binary operators in the input.
   In addition to constructing the expression,
   we check for operands that were written with other binary operators
   in a way that is likely to confuse the user.  */

struct c_expr
parser_build_binary_op (enum tree_code code, struct c_expr arg1,
			struct c_expr arg2)
{
  struct c_expr result;

  enum tree_code code1 = arg1.original_code;
  enum tree_code code2 = arg2.original_code;

  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
  result.original_code = code;

  if (TREE_CODE (result.value) == ERROR_MARK)
    return result;

  /* Check for cases such as x+y<<z which users are likely
     to misinterpret.  */
  if (warn_parentheses)
    {
      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
	{
	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
	    warning ("suggest parentheses around + or - inside shift");
	}

      if (code == TRUTH_ORIF_EXPR)
	{
	  if (code1 == TRUTH_ANDIF_EXPR
	      || code2 == TRUTH_ANDIF_EXPR)
	    warning ("suggest parentheses around && within ||");
	}

      if (code == BIT_IOR_EXPR)
	{
	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
	    warning ("suggest parentheses around arithmetic in operand of |");
	  /* Check cases like x|y==z */
	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
	    warning ("suggest parentheses around comparison in operand of |");
	}

      if (code == BIT_XOR_EXPR)
	{
	  if (code1 == BIT_AND_EXPR
	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
	      || code2 == BIT_AND_EXPR
	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
	    warning ("suggest parentheses around arithmetic in operand of ^");
	  /* Check cases like x^y==z */
	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
	    warning ("suggest parentheses around comparison in operand of ^");
	}

      if (code == BIT_AND_EXPR)
	{
	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
	    warning ("suggest parentheses around + or - in operand of &");
	  /* Check cases like x&y==z */
	  if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
	    warning ("suggest parentheses around comparison in operand of &");
	}
      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
      if (TREE_CODE_CLASS (code) == '<'
	  && (TREE_CODE_CLASS (code1) == '<'
	      || TREE_CODE_CLASS (code2) == '<'))
	warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");

    }

  unsigned_conversion_warning (result.value, arg1.value);
  unsigned_conversion_warning (result.value, arg2.value);
  overflow_warning (result.value);

  return result;
}

/* Return a tree for the difference of pointers OP0 and OP1.
   The resulting tree has type int.  */

static tree
pointer_diff (tree op0, tree op1)
{
  tree restype = ptrdiff_type_node;

  tree target_type = TREE_TYPE (TREE_TYPE (op0));
  tree con0, con1, lit0, lit1;
  tree orig_op1 = op1;

  if (pedantic || warn_pointer_arith)
    {
      if (TREE_CODE (target_type) == VOID_TYPE)
	pedwarn ("pointer of type `void *' used in subtraction");
      if (TREE_CODE (target_type) == FUNCTION_TYPE)
	pedwarn ("pointer to a function used in subtraction");
    }

  /* If the conversion to ptrdiff_type does anything like widening or
     converting a partial to an integral mode, we get a convert_expression
     that is in the way to do any simplifications.
     (fold-const.c doesn't know that the extra bits won't be needed.
     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
     different mode in place.)
     So first try to find a common term here 'by hand'; we want to cover
     at least the cases that occur in legal static initializers.  */
  con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
  con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;

  if (TREE_CODE (con0) == PLUS_EXPR)
    {
      lit0 = TREE_OPERAND (con0, 1);
      con0 = TREE_OPERAND (con0, 0);
    }
  else
    lit0 = integer_zero_node;

  if (TREE_CODE (con1) == PLUS_EXPR)
    {
      lit1 = TREE_OPERAND (con1, 1);
      con1 = TREE_OPERAND (con1, 0);
    }
  else
    lit1 = integer_zero_node;

  if (operand_equal_p (con0, con1, 0))
    {
      op0 = lit0;
      op1 = lit1;
    }


  /* First do the subtraction as integers;
     then drop through to build the divide operator.
     Do not do default conversions on the minus operator
     in case restype is a short type.  */

  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
			 convert (restype, op1), 0);
  /* This generates an error if op1 is pointer to incomplete type.  */
  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
    error ("arithmetic on pointer to an incomplete type");

  /* This generates an error if op0 is pointer to incomplete type.  */
  op1 = c_size_in_bytes (target_type);

  /* Divide by the size, in easiest possible way.  */
  return fold (build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1)));
}

/* Construct and perhaps optimize a tree representation
   for a unary operation.  CODE, a tree_code, specifies the operation
   and XARG is the operand.
   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
   the default promotions (such as from short to int).
   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
   allows non-lvalues; this is only used to handle conversion of non-lvalue
   arrays to pointers in C99.  */

tree
build_unary_op (enum tree_code code, tree xarg, int flag)
{
  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
  tree arg = xarg;
  tree argtype = 0;
  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
  tree val;
  int noconvert = flag;

  if (typecode == ERROR_MARK)
    return error_mark_node;
  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
    typecode = INTEGER_TYPE;

  switch (code)
    {
    case CONVERT_EXPR:
      /* This is used for unary plus, because a CONVERT_EXPR
	 is enough to prevent anybody from looking inside for
	 associativity, but won't generate any code.  */
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
	    || typecode == COMPLEX_TYPE
	    || typecode == VECTOR_TYPE))
	{
	  error ("wrong type argument to unary plus");
	  return error_mark_node;
	}
      else if (!noconvert)
	arg = default_conversion (arg);
      arg = non_lvalue (arg);
      break;

    case NEGATE_EXPR:
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
	    || typecode == COMPLEX_TYPE
	    || typecode == VECTOR_TYPE))
	{
	  error ("wrong type argument to unary minus");
	  return error_mark_node;
	}
      else if (!noconvert)
	arg = default_conversion (arg);
      break;

    case BIT_NOT_EXPR:
      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
	{
	  if (!noconvert)
	    arg = default_conversion (arg);
	}
      else if (typecode == COMPLEX_TYPE)
	{
	  code = CONJ_EXPR;
	  if (pedantic)
	    pedwarn ("ISO C does not support `~' for complex conjugation");
	  if (!noconvert)
	    arg = default_conversion (arg);
	}
      else
	{
	  error ("wrong type argument to bit-complement");
	  return error_mark_node;
	}
      break;

    case ABS_EXPR:
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
	{
	  error ("wrong type argument to abs");
	  return error_mark_node;
	}
      else if (!noconvert)
	arg = default_conversion (arg);
      break;

    case CONJ_EXPR:
      /* Conjugating a real value is a no-op, but allow it anyway.  */
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
	    || typecode == COMPLEX_TYPE))
	{
	  error ("wrong type argument to conjugation");
	  return error_mark_node;
	}
      else if (!noconvert)
	arg = default_conversion (arg);
      break;

    case TRUTH_NOT_EXPR:
      if (typecode != INTEGER_TYPE
	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
	  && typecode != COMPLEX_TYPE
	  /* These will convert to a pointer.  */
	  && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
	{
	  error ("wrong type argument to unary exclamation mark");
	  return error_mark_node;
	}
      arg = lang_hooks.truthvalue_conversion (arg);
      return invert_truthvalue (arg);

    case NOP_EXPR:
      break;

    case REALPART_EXPR:
      if (TREE_CODE (arg) == COMPLEX_CST)
	return TREE_REALPART (arg);
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
	return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
      else
	return arg;

    case IMAGPART_EXPR:
      if (TREE_CODE (arg) == COMPLEX_CST)
	return TREE_IMAGPART (arg);
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
	return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
      else
	return convert (TREE_TYPE (arg), integer_zero_node);

    case PREINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:

      /* Increment or decrement the real part of the value,
	 and don't change the imaginary part.  */
      if (typecode == COMPLEX_TYPE)
	{
	  tree real, imag;

	  if (pedantic)
	    pedwarn ("ISO C does not support `++' and `--' on complex types");

	  arg = stabilize_reference (arg);
	  real = build_unary_op (REALPART_EXPR, arg, 1);
	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
	  return build (COMPLEX_EXPR, TREE_TYPE (arg),
			build_unary_op (code, real, 1), imag);
	}

      /* Report invalid types.  */

      if (typecode != POINTER_TYPE
	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
	{
	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
            error ("wrong type argument to increment");
          else
            error ("wrong type argument to decrement");

	  return error_mark_node;
	}

      {
	tree inc;
	tree result_type = TREE_TYPE (arg);

	arg = get_unwidened (arg, 0);
	argtype = TREE_TYPE (arg);

	/* Compute the increment.  */

	if (typecode == POINTER_TYPE)
	  {
	    /* If pointer target is an undefined struct,
	       we just cannot know how to do the arithmetic.  */
	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
	      {
		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
		  error ("increment of pointer to unknown structure");
		else
		  error ("decrement of pointer to unknown structure");
	      }
	    else if ((pedantic || warn_pointer_arith)
		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
              {
		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
		  pedwarn ("wrong type argument to increment");
		else
		  pedwarn ("wrong type argument to decrement");
	      }

	    inc = c_size_in_bytes (TREE_TYPE (result_type));
	  }
	else
	  inc = integer_one_node;

	inc = convert (argtype, inc);

	/* Complain about anything else that is not a true lvalue.  */
	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
				    || code == POSTINCREMENT_EXPR)
				   ? "invalid lvalue in increment"
				   : "invalid lvalue in decrement")))
	  return error_mark_node;

	/* Report a read-only lvalue.  */
	if (TREE_READONLY (arg))
	  readonly_error (arg,
			  ((code == PREINCREMENT_EXPR
			    || code == POSTINCREMENT_EXPR)
			   ? "increment" : "decrement"));

	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
	  val = boolean_increment (code, arg);
	else
	  val = build (code, TREE_TYPE (arg), arg, inc);
	TREE_SIDE_EFFECTS (val) = 1;
	val = convert (result_type, val);
	if (TREE_CODE (val) != code)
	  TREE_NO_WARNING (val) = 1;
	return val;
      }

    case ADDR_EXPR:
      /* Note that this operation never does default_conversion.  */

      /* Let &* cancel out to simplify resulting code.  */
      if (TREE_CODE (arg) == INDIRECT_REF)
	{
	  /* Don't let this be an lvalue.  */
	  if (lvalue_p (TREE_OPERAND (arg, 0)))
	    return non_lvalue (TREE_OPERAND (arg, 0));
	  return TREE_OPERAND (arg, 0);
	}

      /* For &x[y], return x+y */
      if (TREE_CODE (arg) == ARRAY_REF)
	{
	  if (!c_mark_addressable (TREE_OPERAND (arg, 0)))
	    return error_mark_node;
	  return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
				  TREE_OPERAND (arg, 1), 1);
	}

      /* Anything not already handled and not a true memory reference
	 or a non-lvalue array is an error.  */
      else if (typecode != FUNCTION_TYPE && !flag
	       && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
	return error_mark_node;

      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
      argtype = TREE_TYPE (arg);

      /* If the lvalue is const or volatile, merge that into the type
         to which the address will point.  Note that you can't get a
	 restricted pointer by taking the address of something, so we
	 only have to deal with `const' and `volatile' here.  */
      if ((DECL_P (arg) || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
	  argtype = c_build_type_variant (argtype,
					  TREE_READONLY (arg),
					  TREE_THIS_VOLATILE (arg));

      argtype = build_pointer_type (argtype);

      if (!c_mark_addressable (arg))
	return error_mark_node;

      {
	tree addr;

	if (TREE_CODE (arg) == COMPONENT_REF)
	  {
	    tree field = TREE_OPERAND (arg, 1);

	    addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), flag);

	    if (DECL_C_BIT_FIELD (field))
	      {
		error ("attempt to take address of bit-field structure member `%s'",
		       IDENTIFIER_POINTER (DECL_NAME (field)));
		return error_mark_node;
	      }

	    addr = fold (build (PLUS_EXPR, argtype,
				convert (argtype, addr),
				convert (argtype, byte_position (field))));
	  }
	else
	  addr = build1 (code, argtype, arg);

	if (TREE_CODE (arg) == COMPOUND_LITERAL_EXPR)
	  TREE_INVARIANT (addr) = TREE_CONSTANT (addr) = 1;

	return addr;
      }

    default:
      break;
    }

  if (argtype == 0)
    argtype = TREE_TYPE (arg);
  val = build1 (code, argtype, arg);
  return require_constant_value ? fold_initializer (val) : fold (val);
}

/* Return nonzero if REF is an lvalue valid for this language.
   Lvalues can be assigned, unless their type has TYPE_READONLY.
   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */

int
lvalue_p (tree ref)
{
  enum tree_code code = TREE_CODE (ref);

  switch (code)
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case COMPONENT_REF:
      return lvalue_p (TREE_OPERAND (ref, 0));

    case COMPOUND_LITERAL_EXPR:
    case STRING_CST:
      return 1;

    case INDIRECT_REF:
    case ARRAY_REF:
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case ERROR_MARK:
      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);

    case BIND_EXPR:
      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;

    default:
      return 0;
    }
}

/* Return nonzero if REF is an lvalue valid for this language;
   otherwise, print an error message and return zero.  */

static int
lvalue_or_else (tree ref, const char *msgid)
{
  int win = lvalue_p (ref);

  if (! win)
    error ("%s", msgid);

  return win;
}


/* Warn about storing in something that is `const'.  */

void
readonly_error (tree arg, const char *msgid)
{
  if (TREE_CODE (arg) == COMPONENT_REF)
    {
      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
	readonly_error (TREE_OPERAND (arg, 0), msgid);
      else
	error ("%s of read-only member `%s'", _(msgid),
	       IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
    }
  else if (TREE_CODE (arg) == VAR_DECL)
    error ("%s of read-only variable `%s'", _(msgid),
	   IDENTIFIER_POINTER (DECL_NAME (arg)));
  else
    error ("%s of read-only location", _(msgid));
}

/* Mark EXP saying that we need to be able to take the
   address of it; it should not be allocated in a register.
   Returns true if successful.  */

bool
c_mark_addressable (tree exp)
{
  tree x = exp;

  while (1)
    switch (TREE_CODE (x))
      {
      case COMPONENT_REF:
	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
	  {
	    error ("cannot take address of bit-field `%s'",
		   IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
	    return false;
	  }

	/* ... fall through ...  */

      case ADDR_EXPR:
      case ARRAY_REF:
      case REALPART_EXPR:
      case IMAGPART_EXPR:
	x = TREE_OPERAND (x, 0);
	break;

      case COMPOUND_LITERAL_EXPR:
      case CONSTRUCTOR:
	TREE_ADDRESSABLE (x) = 1;
	return true;

      case VAR_DECL:
      case CONST_DECL:
      case PARM_DECL:
      case RESULT_DECL:
	if (C_DECL_REGISTER (x)
	    && DECL_NONLOCAL (x))
	  {
	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
	      {
		error ("global register variable `%s' used in nested function",
		       IDENTIFIER_POINTER (DECL_NAME (x)));
		return false;
	      }
	    pedwarn ("register variable `%s' used in nested function",
		     IDENTIFIER_POINTER (DECL_NAME (x)));
	  }
	else if (C_DECL_REGISTER (x))
	  {
	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
	      {
		error ("address of global register variable `%s' requested",
		       IDENTIFIER_POINTER (DECL_NAME (x)));
		return false;
	      }

	    pedwarn ("address of register variable `%s' requested",
		     IDENTIFIER_POINTER (DECL_NAME (x)));
	  }

	/* drops in */
      case FUNCTION_DECL:
	TREE_ADDRESSABLE (x) = 1;
	/* drops out */
      default:
	return true;
    }
}

/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */

tree
build_conditional_expr (tree ifexp, tree op1, tree op2)
{
  tree type1;
  tree type2;
  enum tree_code code1;
  enum tree_code code2;
  tree result_type = NULL;
  tree orig_op1 = op1, orig_op2 = op2;

  ifexp = lang_hooks.truthvalue_conversion (default_conversion (ifexp));

  /* Promote both alternatives.  */

  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
    op1 = default_conversion (op1);
  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
    op2 = default_conversion (op2);

  if (TREE_CODE (ifexp) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
    return error_mark_node;

  type1 = TREE_TYPE (op1);
  code1 = TREE_CODE (type1);
  type2 = TREE_TYPE (op2);
  code2 = TREE_CODE (type2);

  /* C90 does not permit non-lvalue arrays in conditional expressions.
     In C99 they will be pointers by now.  */
  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
    {
      error ("non-lvalue array in conditional expression");
      return error_mark_node;
    }

  /* Quickly detect the usual case where op1 and op2 have the same type
     after promotion.  */
  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
    {
      if (type1 == type2)
	result_type = type1;
      else
	result_type = TYPE_MAIN_VARIANT (type1);
    }
  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
            || code1 == COMPLEX_TYPE)
           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
               || code2 == COMPLEX_TYPE))
    {
      result_type = common_type (type1, type2);

      /* If -Wsign-compare, warn here if type1 and type2 have
	 different signedness.  We'll promote the signed to unsigned
	 and later code won't know it used to be different.
	 Do this check on the original types, so that explicit casts
	 will be considered, but default promotions won't.  */
      if (warn_sign_compare && !skip_evaluation)
	{
	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));

	  if (unsigned_op1 ^ unsigned_op2)
	    {
	      /* Do not warn if the result type is signed, since the
		 signed type will only be chosen if it can represent
		 all the values of the unsigned type.  */
	      if (! TYPE_UNSIGNED (result_type))
		/* OK */;
	      /* Do not warn if the signed quantity is an unsuffixed
		 integer literal (or some static constant expression
		 involving such literals) and it is non-negative.  */
	      else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
		       || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
		/* OK */;
	      else
		warning ("signed and unsigned type in conditional expression");
	    }
	}
    }
  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
    {
      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
	pedwarn ("ISO C forbids conditional expr with only one void side");
      result_type = void_type_node;
    }
  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
    {
      if (comp_target_types (type1, type2, 1))
	result_type = common_pointer_type (type1, type2);
      else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
	       && TREE_CODE (orig_op1) != NOP_EXPR)
	result_type = qualify_type (type2, type1);
      else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
	       && TREE_CODE (orig_op2) != NOP_EXPR)
	result_type = qualify_type (type1, type2);
      else if (VOID_TYPE_P (TREE_TYPE (type1)))
	{
	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
	    pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
							  TREE_TYPE (type2)));
	}
      else if (VOID_TYPE_P (TREE_TYPE (type2)))
	{
	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
	    pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
							  TREE_TYPE (type1)));
	}
      else
	{
	  pedwarn ("pointer type mismatch in conditional expression");
	  result_type = build_pointer_type (void_type_node);
	}
    }
  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
    {
      if (! integer_zerop (op2))
	pedwarn ("pointer/integer type mismatch in conditional expression");
      else
	{
	  op2 = null_pointer_node;
	}
      result_type = type1;
    }
  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
    {
      if (!integer_zerop (op1))
	pedwarn ("pointer/integer type mismatch in conditional expression");
      else
	{
	  op1 = null_pointer_node;
	}
      result_type = type2;
    }

  if (!result_type)
    {
      if (flag_cond_mismatch)
	result_type = void_type_node;
      else
	{
	  error ("type mismatch in conditional expression");
	  return error_mark_node;
	}
    }

  /* Merge const and volatile flags of the incoming types.  */
  result_type
    = build_type_variant (result_type,
			  TREE_READONLY (op1) || TREE_READONLY (op2),
			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));

  if (result_type != TREE_TYPE (op1))
    op1 = convert_and_check (result_type, op1);
  if (result_type != TREE_TYPE (op2))
    op2 = convert_and_check (result_type, op2);

  if (TREE_CODE (ifexp) == INTEGER_CST)
    return non_lvalue (integer_zerop (ifexp) ? op2 : op1);

  return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
}

/* Return a compound expression that performs two expressions and
   returns the value of the second of them.  */

tree
build_compound_expr (tree expr1, tree expr2)
{
  /* Convert arrays and functions to pointers.  */
  expr2 = default_function_array_conversion (expr2);

  /* Don't let (0, 0) be null pointer constant.  */
  if (integer_zerop (expr2))
    expr2 = non_lvalue (expr2);

  if (! TREE_SIDE_EFFECTS (expr1))
    {
      /* The left-hand operand of a comma expression is like an expression
         statement: with -Wextra or -Wunused, we should warn if it doesn't have
	 any side-effects, unless it was explicitly cast to (void).  */
      if (warn_unused_value
           && ! (TREE_CODE (expr1) == CONVERT_EXPR
                && VOID_TYPE_P (TREE_TYPE (expr1))))
        warning ("left-hand operand of comma expression has no effect");
    }

  /* With -Wunused, we should also warn if the left-hand operand does have
     side-effects, but computes a value which is not used.  For example, in
     `foo() + bar(), baz()' the result of the `+' operator is not used,
     so we should issue a warning.  */
  else if (warn_unused_value)
    warn_if_unused_value (expr1, input_location);

  return build (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
}

/* Build an expression representing a cast to type TYPE of expression EXPR.  */

tree
build_c_cast (tree type, tree expr)
{
  tree value = expr;

  if (type == error_mark_node || expr == error_mark_node)
    return error_mark_node;

  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
     only in <protocol> qualifications.  But when constructing cast expressions,
     the protocols do matter and must be kept around.  */
  if (!c_dialect_objc () || !objc_is_object_ptr (type))
    type = TYPE_MAIN_VARIANT (type);

  if (TREE_CODE (type) == ARRAY_TYPE)
    {
      error ("cast specifies array type");
      return error_mark_node;
    }

  if (TREE_CODE (type) == FUNCTION_TYPE)
    {
      error ("cast specifies function type");
      return error_mark_node;
    }

  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
    {
      if (pedantic)
	{
	  if (TREE_CODE (type) == RECORD_TYPE
	      || TREE_CODE (type) == UNION_TYPE)
	    pedwarn ("ISO C forbids casting nonscalar to the same type");
	}
    }
  else if (TREE_CODE (type) == UNION_TYPE)
    {
      tree field;
      value = default_function_array_conversion (value);

      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
	  break;

      if (field)
	{
	  tree t;

	  if (pedantic)
	    pedwarn ("ISO C forbids casts to union type");
	  t = digest_init (type,
			   build_constructor (type,
					      build_tree_list (field, value)),
			   0);
	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
	  return t;
	}
      error ("cast to union type from type not present in union");
      return error_mark_node;
    }
  else
    {
      tree otype, ovalue;

      /* If casting to void, avoid the error that would come
	 from default_conversion in the case of a non-lvalue array.  */
      if (type == void_type_node)
	return build1 (CONVERT_EXPR, type, value);

      /* Convert functions and arrays to pointers,
	 but don't convert any other types.  */
      value = default_function_array_conversion (value);
      otype = TREE_TYPE (value);

      /* Optionally warn about potentially worrisome casts.  */

      if (warn_cast_qual
	  && TREE_CODE (type) == POINTER_TYPE
	  && TREE_CODE (otype) == POINTER_TYPE)
	{
	  tree in_type = type;
	  tree in_otype = otype;
	  int added = 0;
	  int discarded = 0;

	  /* Check that the qualifiers on IN_TYPE are a superset of
	     the qualifiers of IN_OTYPE.  The outermost level of
	     POINTER_TYPE nodes is uninteresting and we stop as soon
	     as we hit a non-POINTER_TYPE node on either type.  */
	  do
	    {
	      in_otype = TREE_TYPE (in_otype);
	      in_type = TREE_TYPE (in_type);

	      /* GNU C allows cv-qualified function types.  'const'
		 means the function is very pure, 'volatile' means it
		 can't return.  We need to warn when such qualifiers
		 are added, not when they're taken away.  */
	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
		  && TREE_CODE (in_type) == FUNCTION_TYPE)
		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
	      else
		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
	    }
	  while (TREE_CODE (in_type) == POINTER_TYPE
		 && TREE_CODE (in_otype) == POINTER_TYPE);

	  if (added)
	    warning ("cast adds new qualifiers to function type");

	  if (discarded)
	    /* There are qualifiers present in IN_OTYPE that are not
	       present in IN_TYPE.  */
	    warning ("cast discards qualifiers from pointer target type");
	}

      /* Warn about possible alignment problems.  */
      if (STRICT_ALIGNMENT && warn_cast_align
	  && TREE_CODE (type) == POINTER_TYPE
	  && TREE_CODE (otype) == POINTER_TYPE
	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
	  /* Don't warn about opaque types, where the actual alignment
	     restriction is unknown.  */
	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
	warning ("cast increases required alignment of target type");

      if (TREE_CODE (type) == INTEGER_TYPE
	  && TREE_CODE (otype) == POINTER_TYPE
	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
	  && !TREE_CONSTANT (value))
	warning ("cast from pointer to integer of different size");

      if (warn_bad_function_cast
	  && TREE_CODE (value) == CALL_EXPR
	  && TREE_CODE (type) != TREE_CODE (otype))
	warning ("cast does not match function type");

      if (TREE_CODE (type) == POINTER_TYPE
	  && TREE_CODE (otype) == INTEGER_TYPE
	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
	  /* Don't warn about converting any constant.  */
	  && !TREE_CONSTANT (value))
	warning ("cast to pointer from integer of different size");

      if (TREE_CODE (type) == POINTER_TYPE
	  && TREE_CODE (otype) == POINTER_TYPE
	  && TREE_CODE (expr) == ADDR_EXPR
	  && DECL_P (TREE_OPERAND (expr, 0))
	  && flag_strict_aliasing && warn_strict_aliasing
	  && !VOID_TYPE_P (TREE_TYPE (type)))
	{
	  /* Casting the address of a decl to non void pointer. Warn
	     if the cast breaks type based aliasing.  */
	  if (!COMPLETE_TYPE_P (TREE_TYPE (type)))
	    warning ("type-punning to incomplete type might break strict-aliasing rules");
	  else
	    {
	      HOST_WIDE_INT set1 = get_alias_set (TREE_TYPE (TREE_OPERAND (expr, 0)));
	      HOST_WIDE_INT set2 = get_alias_set (TREE_TYPE (type));

	      if (!alias_sets_conflict_p (set1, set2))
		warning ("dereferencing type-punned pointer will break strict-aliasing rules");
	      else if (warn_strict_aliasing > 1
		       && !alias_sets_might_conflict_p (set1, set2))
		warning ("dereferencing type-punned pointer might break strict-aliasing rules");
	    }
	}

      /* If pedantic, warn for conversions between function and object
	 pointer types, except for converting a null pointer constant
	 to function pointer type.  */
      if (pedantic
	  && TREE_CODE (type) == POINTER_TYPE
	  && TREE_CODE (otype) == POINTER_TYPE
	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");

      if (pedantic
	  && TREE_CODE (type) == POINTER_TYPE
	  && TREE_CODE (otype) == POINTER_TYPE
	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
	  && !(integer_zerop (value) && TREE_TYPE (otype) == void_type_node
	       && TREE_CODE (expr) != NOP_EXPR))
	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");

      ovalue = value;
      /* Replace a nonvolatile const static variable with its value.  */
      if (optimize && TREE_CODE (value) == VAR_DECL)
	value = decl_constant_value (value);
      value = convert (type, value);

      /* Ignore any integer overflow caused by the cast.  */
      if (TREE_CODE (value) == INTEGER_CST)
	{
	  TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);

	  if (TREE_CODE_CLASS (TREE_CODE (ovalue)) == 'c')
	    TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
	}
    }

  /* Don't let (void *) (FOO *) 0 be a null pointer constant.  */
  if (TREE_CODE (value) == INTEGER_CST
      && TREE_CODE (expr) == INTEGER_CST
      && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
    value = non_lvalue (value);

  /* Don't let a cast be an lvalue.  */
  if (value == expr)
    value = non_lvalue (value);

  return value;
}

/* Interpret a cast of expression EXPR to type TYPE.  */
tree
c_cast_expr (tree type, tree expr)
{
  int saved_wsp = warn_strict_prototypes;

  /* This avoids warnings about unprototyped casts on
     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
  if (TREE_CODE (expr) == INTEGER_CST)
    warn_strict_prototypes = 0;
  type = groktypename (type);
  warn_strict_prototypes = saved_wsp;

  return build_c_cast (type, expr);
}


/* Build an assignment expression of lvalue LHS from value RHS.
   MODIFYCODE is the code for a binary operator that we use
   to combine the old value of LHS with RHS to get the new value.
   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */

tree
build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
{
  tree result;
  tree newrhs;
  tree lhstype = TREE_TYPE (lhs);
  tree olhstype = lhstype;

  /* Types that aren't fully specified cannot be used in assignments.  */
  lhs = require_complete_type (lhs);

  /* Avoid duplicate error messages from operands that had errors.  */
  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
    return error_mark_node;

  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
  /* Do not use STRIP_NOPS here.  We do not want an enumerator
     whose value is 0 to count as a null pointer constant.  */
  if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
    rhs = TREE_OPERAND (rhs, 0);

  newrhs = rhs;

  /* If a binary op has been requested, combine the old LHS value with the RHS
     producing the value we should actually store into the LHS.  */

  if (modifycode != NOP_EXPR)
    {
      lhs = stabilize_reference (lhs);
      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
    }

  if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
    return error_mark_node;

  /* Warn about storing in something that is `const'.  */

  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
      || ((TREE_CODE (lhstype) == RECORD_TYPE
	   || TREE_CODE (lhstype) == UNION_TYPE)
	  && C_TYPE_FIELDS_READONLY (lhstype)))
    readonly_error (lhs, "assignment");

  /* If storing into a structure or union member,
     it has probably been given type `int'.
     Compute the type that would go with
     the actual amount of storage the member occupies.  */

  if (TREE_CODE (lhs) == COMPONENT_REF
      && (TREE_CODE (lhstype) == INTEGER_TYPE
	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
	  || TREE_CODE (lhstype) == REAL_TYPE
	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
    lhstype = TREE_TYPE (get_unwidened (lhs, 0));

  /* If storing in a field that is in actuality a short or narrower than one,
     we must store in the field in its actual type.  */

  if (lhstype != TREE_TYPE (lhs))
    {
      lhs = copy_node (lhs);
      TREE_TYPE (lhs) = lhstype;
    }

  /* Convert new value to destination type.  */

  newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
				   NULL_TREE, NULL_TREE, 0);
  if (TREE_CODE (newrhs) == ERROR_MARK)
    return error_mark_node;

  /* Scan operands */

  result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
  TREE_SIDE_EFFECTS (result) = 1;

  /* If we got the LHS in a different type for storing in,
     convert the result back to the nominal type of LHS
     so that the value we return always has the same type
     as the LHS argument.  */

  if (olhstype == TREE_TYPE (result))
    return result;
  return convert_for_assignment (olhstype, result, _("assignment"),
				 NULL_TREE, NULL_TREE, 0);
}

/* Convert value RHS to type TYPE as preparation for an assignment
   to an lvalue of type TYPE.
   The real work of conversion is done by `convert'.
   The purpose of this function is to generate error messages
   for assignments that are not allowed in C.
   ERRTYPE is a string to use in error messages:
   "assignment", "return", etc.  If it is null, this is parameter passing
   for a function call (and different error messages are output).

   FUNNAME is the name of the function being called,
   as an IDENTIFIER_NODE, or null.
   PARMNUM is the number of the argument, for printing in error messages.  */

static tree
convert_for_assignment (tree type, tree rhs, const char *errtype,
			tree fundecl, tree funname, int parmnum)
{
  enum tree_code codel = TREE_CODE (type);
  tree rhstype;
  enum tree_code coder;

  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
  /* Do not use STRIP_NOPS here.  We do not want an enumerator
     whose value is 0 to count as a null pointer constant.  */
  if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
    rhs = TREE_OPERAND (rhs, 0);

  if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
      || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
    rhs = default_conversion (rhs);
  else if (optimize && TREE_CODE (rhs) == VAR_DECL)
    rhs = decl_constant_value_for_broken_optimization (rhs);

  rhstype = TREE_TYPE (rhs);
  coder = TREE_CODE (rhstype);

  if (coder == ERROR_MARK)
    return error_mark_node;

  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
    {
      overflow_warning (rhs);
      /* Check for Objective-C protocols.  This will automatically
	 issue a warning if there are protocol violations.  No need to
	 use the return value.  */
      if (c_dialect_objc ())
	objc_comptypes (type, rhstype, 0);
      return rhs;
    }

  if (coder == VOID_TYPE)
    {
      error ("void value not ignored as it ought to be");
      return error_mark_node;
    }
  /* A type converts to a reference to it.
     This code doesn't fully support references, it's just for the
     special case of va_start and va_copy.  */
  if (codel == REFERENCE_TYPE
      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
    {
      if (!lvalue_p (rhs))
	{
	  error ("cannot pass rvalue to reference parameter");
	  return error_mark_node;
	}
      if (!c_mark_addressable (rhs))
	return error_mark_node;
      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);

      /* We already know that these two types are compatible, but they
	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
	 likely to be va_list, a typedef to __builtin_va_list, which
	 is different enough that it will cause problems later.  */
      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);

      rhs = build1 (NOP_EXPR, type, rhs);
      return rhs;
    }
  /* Some types can interconvert without explicit casts.  */
  else if (codel == VECTOR_TYPE
           && vector_types_convertible_p (type, TREE_TYPE (rhs)))
    return convert (type, rhs);
  /* Arithmetic types all interconvert, and enum is treated like int.  */
  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
	    || codel == BOOLEAN_TYPE)
	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
	       || coder == BOOLEAN_TYPE))
    return convert_and_check (type, rhs);

  /* Conversion to a transparent union from its member types.
     This applies only to function arguments.  */
  else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
    {
      tree memb_types;
      tree marginal_memb_type = 0;

      for (memb_types = TYPE_FIELDS (type); memb_types;
	   memb_types = TREE_CHAIN (memb_types))
	{
	  tree memb_type = TREE_TYPE (memb_types);

	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
			 TYPE_MAIN_VARIANT (rhstype)))
	    break;

	  if (TREE_CODE (memb_type) != POINTER_TYPE)
	    continue;

	  if (coder == POINTER_TYPE)
	    {
	      tree ttl = TREE_TYPE (memb_type);
	      tree ttr = TREE_TYPE (rhstype);

	      /* Any non-function converts to a [const][volatile] void *
		 and vice versa; otherwise, targets must be the same.
		 Meanwhile, the lhs target must have all the qualifiers of
		 the rhs.  */
	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
		  || comp_target_types (memb_type, rhstype, 0))
		{
		  /* If this type won't generate any warnings, use it.  */
		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
			   && TREE_CODE (ttl) == FUNCTION_TYPE)
			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
			     == TYPE_QUALS (ttr))
			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
			     == TYPE_QUALS (ttl))))
		    break;

		  /* Keep looking for a better type, but remember this one.  */
		  if (! marginal_memb_type)
		    marginal_memb_type = memb_type;
		}
	    }

	  /* Can convert integer zero to any pointer type.  */
	  if (integer_zerop (rhs)
	      || (TREE_CODE (rhs) == NOP_EXPR
		  && integer_zerop (TREE_OPERAND (rhs, 0))))
	    {
	      rhs = null_pointer_node;
	      break;
	    }
	}

      if (memb_types || marginal_memb_type)
	{
	  if (! memb_types)
	    {
	      /* We have only a marginally acceptable member type;
		 it needs a warning.  */
	      tree ttl = TREE_TYPE (marginal_memb_type);
	      tree ttr = TREE_TYPE (rhstype);

	      /* Const and volatile mean something different for function
		 types, so the usual warnings are not appropriate.  */
	      if (TREE_CODE (ttr) == FUNCTION_TYPE
		  && TREE_CODE (ttl) == FUNCTION_TYPE)
		{
		  /* Because const and volatile on functions are
		     restrictions that say the function will not do
		     certain things, it is okay to use a const or volatile
		     function where an ordinary one is wanted, but not
		     vice-versa.  */
		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
		    warn_for_assignment ("%s makes qualified function pointer from unqualified",
					 errtype, funname, parmnum);
		}
	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
		warn_for_assignment ("%s discards qualifiers from pointer target type",
				     errtype, funname,
				     parmnum);
	    }

	  if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
	    pedwarn ("ISO C prohibits argument conversion to union type");

	  return build1 (NOP_EXPR, type, rhs);
	}
    }

  /* Conversions among pointers */
  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
	   && (coder == codel))
    {
      tree ttl = TREE_TYPE (type);
      tree ttr = TREE_TYPE (rhstype);
      bool is_opaque_pointer;
      int target_cmp = 0;   /* Cache comp_target_types () result.  */

      /* Opaque pointers are treated like void pointers.  */
      is_opaque_pointer = (targetm.vector_opaque_p (type)
                           || targetm.vector_opaque_p (rhstype))
        && TREE_CODE (ttl) == VECTOR_TYPE
        && TREE_CODE (ttr) == VECTOR_TYPE;

      /* Any non-function converts to a [const][volatile] void *
	 and vice versa; otherwise, targets must be the same.
	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
	  || (target_cmp = comp_target_types (type, rhstype, 0))
	  || is_opaque_pointer
	  || (c_common_unsigned_type (TYPE_MAIN_VARIANT (ttl))
	      == c_common_unsigned_type (TYPE_MAIN_VARIANT (ttr))))
	{
	  if (pedantic
	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
		  ||
		  (VOID_TYPE_P (ttr)
		   /* Check TREE_CODE to catch cases like (void *) (char *) 0
		      which are not ANSI null ptr constants.  */
		   && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
	    warn_for_assignment ("ISO C forbids %s between function pointer and `void *'",
				 errtype, funname, parmnum);
	  /* Const and volatile mean something different for function types,
	     so the usual warnings are not appropriate.  */
	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
		   && TREE_CODE (ttl) != FUNCTION_TYPE)
	    {
	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
		warn_for_assignment ("%s discards qualifiers from pointer target type",
				     errtype, funname, parmnum);
	      /* If this is not a case of ignoring a mismatch in signedness,
		 no warning.  */
	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
		       || target_cmp)
		;
	      /* If there is a mismatch, do warn.  */
	      else if (pedantic)
		warn_for_assignment ("pointer targets in %s differ in signedness",
				     errtype, funname, parmnum);
	    }
	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
		   && TREE_CODE (ttr) == FUNCTION_TYPE)
	    {
	      /* Because const and volatile on functions are restrictions
		 that say the function will not do certain things,
		 it is okay to use a const or volatile function
		 where an ordinary one is wanted, but not vice-versa.  */
	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
		warn_for_assignment ("%s makes qualified function pointer from unqualified",
				     errtype, funname, parmnum);
	    }
	}
      else
	warn_for_assignment ("%s from incompatible pointer type",
			     errtype, funname, parmnum);
      return convert (type, rhs);
    }
  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
    {
      error ("invalid use of non-lvalue array");
      return error_mark_node;
    }
  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
    {
      /* An explicit constant 0 can convert to a pointer,
	 or one that results from arithmetic, even including
	 a cast to integer type.  */
      if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
	  &&
	  ! (TREE_CODE (rhs) == NOP_EXPR
	     && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
	     && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
	     && integer_zerop (TREE_OPERAND (rhs, 0))))
	  warn_for_assignment ("%s makes pointer from integer without a cast",
			       errtype, funname, parmnum);

      return convert (type, rhs);
    }
  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
    {
      warn_for_assignment ("%s makes integer from pointer without a cast",
			   errtype, funname, parmnum);
      return convert (type, rhs);
    }
  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
    return convert (type, rhs);

  if (!errtype)
    {
      if (funname)
	{
	  tree selector = objc_message_selector ();

	  if (selector && parmnum > 2)
	    error ("incompatible type for argument %d of `%s'",
		   parmnum - 2, IDENTIFIER_POINTER (selector));
	  else
	    error ("incompatible type for argument %d of `%s'",
		   parmnum, IDENTIFIER_POINTER (funname));
	}
      else
	error ("incompatible type for argument %d of indirect function call",
	       parmnum);
    }
  else
    error ("incompatible types in %s", errtype);

  return error_mark_node;
}

/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
   is used for error and waring reporting and indicates which argument
   is being processed.  */

tree
c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
{
  tree ret, type;

  /* If FN was prototyped, the value has been converted already
     in convert_arguments.  */
  if (! value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
    return value;

  type = TREE_TYPE (parm);
  ret = convert_for_assignment (type, value,
				(char *) 0 /* arg passing  */, fn,
				DECL_NAME (fn), argnum);
  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
      && INTEGRAL_TYPE_P (type)
      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
    ret = default_conversion (ret);
  return ret;
}

/* Print a warning using MSGID.
   It gets OPNAME as its one parameter.
   if OPNAME is null and ARGNUM is 0, it is replaced by "passing arg of `FUNCTION'".
   Otherwise if OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
   FUNCTION and ARGNUM are handled specially if we are building an
   Objective-C selector.  */

static void
warn_for_assignment (const char *msgid, const char *opname, tree function,
		     int argnum)
{
  if (opname == 0)
    {
      tree selector = objc_message_selector ();
      char * new_opname;

      if (selector && argnum > 2)
	{
	  function = selector;
	  argnum -= 2;
	}
      if (argnum == 0)
	{
	  if (function)
	    {
	      /* Function name is known; supply it.  */
	      const char *const argstring = _("passing arg of `%s'");
	      new_opname = alloca (IDENTIFIER_LENGTH (function)
				   + strlen (argstring) + 1 + 1);
	      sprintf (new_opname, argstring,
		       IDENTIFIER_POINTER (function));
	    }
	  else
	    {
	      /* Function name unknown (call through ptr).  */
	      const char *const argnofun = _("passing arg of pointer to function");
	      new_opname = alloca (strlen (argnofun) + 1 + 1);
	      sprintf (new_opname, argnofun);
	    }
	}
      else if (function)
	{
	  /* Function name is known; supply it.  */
	  const char *const argstring = _("passing arg %d of `%s'");
	  new_opname = alloca (IDENTIFIER_LENGTH (function)
			       + strlen (argstring) + 1 + 25 /*%d*/ + 1);
	  sprintf (new_opname, argstring, argnum,
		   IDENTIFIER_POINTER (function));
	}
      else
	{
	  /* Function name unknown (call through ptr); just give arg number.  */
	  const char *const argnofun = _("passing arg %d of pointer to function");
	  new_opname = alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
	  sprintf (new_opname, argnofun, argnum);
	}
      opname = new_opname;
    }
  pedwarn (msgid, opname);
}

/* If VALUE is a compound expr all of whose expressions are constant, then
   return its value.  Otherwise, return error_mark_node.

   This is for handling COMPOUND_EXPRs as initializer elements
   which is allowed with a warning when -pedantic is specified.  */

static tree
valid_compound_expr_initializer (tree value, tree endtype)
{
  if (TREE_CODE (value) == COMPOUND_EXPR)
    {
      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
	  == error_mark_node)
	return error_mark_node;
      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
					      endtype);
    }
  else if (! TREE_CONSTANT (value)
	   && ! initializer_constant_valid_p (value, endtype))
    return error_mark_node;
  else
    return value;
}

/* Perform appropriate conversions on the initial value of a variable,
   store it in the declaration DECL,
   and print any error messages that are appropriate.
   If the init is invalid, store an ERROR_MARK.  */

void
store_init_value (tree decl, tree init)
{
  tree value, type;

  /* If variable's type was invalidly declared, just ignore it.  */

  type = TREE_TYPE (decl);
  if (TREE_CODE (type) == ERROR_MARK)
    return;

  /* Digest the specified initializer into an expression.  */

  value = digest_init (type, init, TREE_STATIC (decl));

  /* Store the expression if valid; else report error.  */

  if (warn_traditional && !in_system_header
      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && ! TREE_STATIC (decl))
    warning ("traditional C rejects automatic aggregate initialization");

  DECL_INITIAL (decl) = value;

  /* ANSI wants warnings about out-of-range constant initializers.  */
  STRIP_TYPE_NOPS (value);
  constant_expression_warning (value);

  /* Check if we need to set array size from compound literal size.  */
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_DOMAIN (type) == 0
      && value != error_mark_node)
    {
      tree inside_init = init;

      if (TREE_CODE (init) == NON_LVALUE_EXPR)
	inside_init = TREE_OPERAND (init, 0);
      inside_init = fold (inside_init);

      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
	{
	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);

	  if (TYPE_DOMAIN (TREE_TYPE (decl)))
	    {
	      /* For int foo[] = (int [3]){1}; we need to set array size
		 now since later on array initializer will be just the
		 brace enclosed list of the compound literal.  */
	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
	      layout_type (type);
	      layout_decl (decl, 0);
	    }
	}
    }
}

/* Methods for storing and printing names for error messages.  */

/* Implement a spelling stack that allows components of a name to be pushed
   and popped.  Each element on the stack is this structure.  */

struct spelling
{
  int kind;
  union
    {
      int i;
      const char *s;
    } u;
};

#define SPELLING_STRING 1
#define SPELLING_MEMBER 2
#define SPELLING_BOUNDS 3

static struct spelling *spelling;	/* Next stack element (unused).  */
static struct spelling *spelling_base;	/* Spelling stack base.  */
static int spelling_size;		/* Size of the spelling stack.  */

/* Macros to save and restore the spelling stack around push_... functions.
   Alternative to SAVE_SPELLING_STACK.  */

#define SPELLING_DEPTH() (spelling - spelling_base)
#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))

/* Push an element on the spelling stack with type KIND and assign VALUE
   to MEMBER.  */

#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
{									\
  int depth = SPELLING_DEPTH ();					\
									\
  if (depth >= spelling_size)						\
    {									\
      spelling_size += 10;						\
      if (spelling_base == 0)						\
	spelling_base = xmalloc (spelling_size * sizeof (struct spelling)); \
      else								\
        spelling_base = xrealloc (spelling_base,		\
				  spelling_size * sizeof (struct spelling)); \
      RESTORE_SPELLING_DEPTH (depth);					\
    }									\
									\
  spelling->kind = (KIND);						\
  spelling->MEMBER = (VALUE);						\
  spelling++;								\
}

/* Push STRING on the stack.  Printed literally.  */

static void
push_string (const char *string)
{
  PUSH_SPELLING (SPELLING_STRING, string, u.s);
}

/* Push a member name on the stack.  Printed as '.' STRING.  */

static void
push_member_name (tree decl)
{
  const char *const string
    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
}

/* Push an array bounds on the stack.  Printed as [BOUNDS].  */

static void
push_array_bounds (int bounds)
{
  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
}

/* Compute the maximum size in bytes of the printed spelling.  */

static int
spelling_length (void)
{
  int size = 0;
  struct spelling *p;

  for (p = spelling_base; p < spelling; p++)
    {
      if (p->kind == SPELLING_BOUNDS)
	size += 25;
      else
	size += strlen (p->u.s) + 1;
    }

  return size;
}

/* Print the spelling to BUFFER and return it.  */

static char *
print_spelling (char *buffer)
{
  char *d = buffer;
  struct spelling *p;

  for (p = spelling_base; p < spelling; p++)
    if (p->kind == SPELLING_BOUNDS)
      {
	sprintf (d, "[%d]", p->u.i);
	d += strlen (d);
      }
    else
      {
	const char *s;
	if (p->kind == SPELLING_MEMBER)
	  *d++ = '.';
	for (s = p->u.s; (*d = *s++); d++)
	  ;
      }
  *d++ = '\0';
  return buffer;
}

/* Issue an error message for a bad initializer component.
   MSGID identifies the message.
   The component name is taken from the spelling stack.  */

void
error_init (const char *msgid)
{
  char *ofwhat;

  error ("%s", _(msgid));
  ofwhat = print_spelling (alloca (spelling_length () + 1));
  if (*ofwhat)
    error ("(near initialization for `%s')", ofwhat);
}

/* Issue a pedantic warning for a bad initializer component.
   MSGID identifies the message.
   The component name is taken from the spelling stack.  */

void
pedwarn_init (const char *msgid)
{
  char *ofwhat;

  pedwarn ("%s", _(msgid));
  ofwhat = print_spelling (alloca (spelling_length () + 1));
  if (*ofwhat)
    pedwarn ("(near initialization for `%s')", ofwhat);
}

/* Issue a warning for a bad initializer component.
   MSGID identifies the message.
   The component name is taken from the spelling stack.  */

static void
warning_init (const char *msgid)
{
  char *ofwhat;

  warning ("%s", _(msgid));
  ofwhat = print_spelling (alloca (spelling_length () + 1));
  if (*ofwhat)
    warning ("(near initialization for `%s')", ofwhat);
}

/* Digest the parser output INIT as an initializer for type TYPE.
   Return a C expression of type TYPE to represent the initial value.

   REQUIRE_CONSTANT requests an error if non-constant initializers or
   elements are seen.  */

static tree
digest_init (tree type, tree init, int require_constant)
{
  enum tree_code code = TREE_CODE (type);
  tree inside_init = init;

  if (type == error_mark_node
      || init == error_mark_node
      || TREE_TYPE (init) == error_mark_node)
    return error_mark_node;

  /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue.  */
  /* Do not use STRIP_NOPS here.  We do not want an enumerator
     whose value is 0 to count as a null pointer constant.  */
  if (TREE_CODE (init) == NON_LVALUE_EXPR)
    inside_init = TREE_OPERAND (init, 0);

  inside_init = fold (inside_init);

  /* Initialization of an array of chars from a string constant
     optionally enclosed in braces.  */

  if (code == ARRAY_TYPE)
    {
      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
      if ((typ1 == char_type_node
	   || typ1 == signed_char_type_node
	   || typ1 == unsigned_char_type_node
	   || typ1 == unsigned_wchar_type_node
	   || typ1 == signed_wchar_type_node)
	  && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
	{
	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
			 TYPE_MAIN_VARIANT (type)))
	    return inside_init;

	  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
	       != char_type_node)
	      && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
	    {
	      error_init ("char-array initialized from wide string");
	      return error_mark_node;
	    }
	  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
	       == char_type_node)
	      && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
	    {
	      error_init ("int-array initialized from non-wide string");
	      return error_mark_node;
	    }

	  TREE_TYPE (inside_init) = type;
	  if (TYPE_DOMAIN (type) != 0
	      && TYPE_SIZE (type) != 0
	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
	      /* Subtract 1 (or sizeof (wchar_t))
		 because it's ok to ignore the terminating null char
		 that is counted in the length of the constant.  */
	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
				       TREE_STRING_LENGTH (inside_init)
				       - ((TYPE_PRECISION (typ1)
					   != TYPE_PRECISION (char_type_node))
					  ? (TYPE_PRECISION (wchar_type_node)
					     / BITS_PER_UNIT)
					  : 1)))
	    pedwarn_init ("initializer-string for array of chars is too long");

	  return inside_init;
	}
    }

  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
     below and handle as a constructor.  */
    if (code == VECTOR_TYPE
        && vector_types_convertible_p (TREE_TYPE (inside_init), type)
        && TREE_CONSTANT (inside_init))
      {
	if (TREE_CODE (inside_init) == VECTOR_CST
            && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
			  TYPE_MAIN_VARIANT (type)))
	  return inside_init;
	else
	  return build_vector (type, CONSTRUCTOR_ELTS (inside_init));
      }

  /* Any type can be initialized
     from an expression of the same type, optionally with braces.  */

  if (inside_init && TREE_TYPE (inside_init) != 0
      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
		     TYPE_MAIN_VARIANT (type))
	  || (code == ARRAY_TYPE
	      && comptypes (TREE_TYPE (inside_init), type))
	  || (code == VECTOR_TYPE
	      && comptypes (TREE_TYPE (inside_init), type))
	  || (code == POINTER_TYPE
	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
			    TREE_TYPE (type)))
	  || (code == POINTER_TYPE
	      && TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE
	      && comptypes (TREE_TYPE (inside_init),
			    TREE_TYPE (type)))))
    {
      if (code == POINTER_TYPE)
	{
	  inside_init = default_function_array_conversion (inside_init);

	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
	    {
	      error_init ("invalid use of non-lvalue array");
	      return error_mark_node;
	    }
	 }

      if (code == VECTOR_TYPE)
	/* Although the types are compatible, we may require a
	   conversion.  */
	inside_init = convert (type, inside_init);

      if (require_constant && !flag_isoc99
	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
	{
	  /* As an extension, allow initializing objects with static storage
	     duration with compound literals (which are then treated just as
	     the brace enclosed list they contain).  */
	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
	  inside_init = DECL_INITIAL (decl);
	}

      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
	  && TREE_CODE (inside_init) != CONSTRUCTOR)
	{
	  error_init ("array initialized from non-constant array expression");
	  return error_mark_node;
	}

      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
	inside_init = decl_constant_value_for_broken_optimization (inside_init);

      /* Compound expressions can only occur here if -pedantic or
	 -pedantic-errors is specified.  In the later case, we always want
	 an error.  In the former case, we simply want a warning.  */
      if (require_constant && pedantic
	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
	{
	  inside_init
	    = valid_compound_expr_initializer (inside_init,
					       TREE_TYPE (inside_init));
	  if (inside_init == error_mark_node)
	    error_init ("initializer element is not constant");
	  else
	    pedwarn_init ("initializer element is not constant");
	  if (flag_pedantic_errors)
	    inside_init = error_mark_node;
	}
      else if (require_constant
	       && (!TREE_CONSTANT (inside_init)
		   /* This test catches things like `7 / 0' which
		      result in an expression for which TREE_CONSTANT
		      is true, but which is not actually something
		      that is a legal constant.  We really should not
		      be using this function, because it is a part of
		      the back-end.  Instead, the expression should
		      already have been turned into ERROR_MARK_NODE.  */
		   || !initializer_constant_valid_p (inside_init,
						     TREE_TYPE (inside_init))))
	{
	  error_init ("initializer element is not constant");
	  inside_init = error_mark_node;
	}

      return inside_init;
    }

  /* Handle scalar types, including conversions.  */

  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
      || code == VECTOR_TYPE)
    {
      /* Note that convert_for_assignment calls default_conversion
	 for arrays and functions.  We must not call it in the
	 case where inside_init is a null pointer constant.  */
      inside_init
	= convert_for_assignment (type, init, _("initialization"),
				  NULL_TREE, NULL_TREE, 0);

      if (require_constant && ! TREE_CONSTANT (inside_init))
	{
	  error_init ("initializer element is not constant");
	  inside_init = error_mark_node;
	}
      else if (require_constant
	       && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
	{
	  error_init ("initializer element is not computable at load time");
	  inside_init = error_mark_node;
	}

      return inside_init;
    }

  /* Come here only for records and arrays.  */

  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    {
      error_init ("variable-sized object may not be initialized");
      return error_mark_node;
    }

  error_init ("invalid initializer");
  return error_mark_node;
}

/* Handle initializers that use braces.  */

/* Type of object we are accumulating a constructor for.
   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
static tree constructor_type;

/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
   left to fill.  */
static tree constructor_fields;

/* For an ARRAY_TYPE, this is the specified index
   at which to store the next element we get.  */
static tree constructor_index;

/* For an ARRAY_TYPE, this is the maximum index.  */
static tree constructor_max_index;

/* For a RECORD_TYPE, this is the first field not yet written out.  */
static tree constructor_unfilled_fields;

/* For an ARRAY_TYPE, this is the index of the first element
   not yet written out.  */
static tree constructor_unfilled_index;

/* In a RECORD_TYPE, the byte index of the next consecutive field.
   This is so we can generate gaps between fields, when appropriate.  */
static tree constructor_bit_index;

/* If we are saving up the elements rather than allocating them,
   this is the list of elements so far (in reverse order,
   most recent first).  */
static tree constructor_elements;

/* 1 if constructor should be incrementally stored into a constructor chain,
   0 if all the elements should be kept in AVL tree.  */
static int constructor_incremental;

/* 1 if so far this constructor's elements are all compile-time constants.  */
static int constructor_constant;

/* 1 if so far this constructor's elements are all valid address constants.  */
static int constructor_simple;

/* 1 if this constructor is erroneous so far.  */
static int constructor_erroneous;

/* Structure for managing pending initializer elements, organized as an
   AVL tree.  */

struct init_node
{
  struct init_node *left, *right;
  struct init_node *parent;
  int balance;
  tree purpose;
  tree value;
};

/* Tree of pending elements at this constructor level.
   These are elements encountered out of order
   which belong at places we haven't reached yet in actually
   writing the output.
   Will never hold tree nodes across GC runs.  */
static struct init_node *constructor_pending_elts;

/* The SPELLING_DEPTH of this constructor.  */
static int constructor_depth;

/* 0 if implicitly pushing constructor levels is allowed.  */
int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages.  */

/* DECL node for which an initializer is being read.
   0 means we are reading a constructor expression
   such as (struct foo) {...}.  */
static tree constructor_decl;

/* start_init saves the ASMSPEC arg here for really_start_incremental_init.  */
static const char *constructor_asmspec;

/* Nonzero if this is an initializer for a top-level decl.  */
static int constructor_top_level;

/* Nonzero if there were any member designators in this initializer.  */
static int constructor_designated;

/* Nesting depth of designator list.  */
static int designator_depth;

/* Nonzero if there were diagnosed errors in this designator list.  */
static int designator_errorneous;


/* This stack has a level for each implicit or explicit level of
   structuring in the initializer, including the outermost one.  It
   saves the values of most of the variables above.  */

struct constructor_range_stack;

struct constructor_stack
{
  struct constructor_stack *next;
  tree type;
  tree fields;
  tree index;
  tree max_index;
  tree unfilled_index;
  tree unfilled_fields;
  tree bit_index;
  tree elements;
  struct init_node *pending_elts;
  int offset;
  int depth;
  /* If nonzero, this value should replace the entire
     constructor at this level.  */
  tree replacement_value;
  struct constructor_range_stack *range_stack;
  char constant;
  char simple;
  char implicit;
  char erroneous;
  char outer;
  char incremental;
  char designated;
};

struct constructor_stack *constructor_stack;

/* This stack represents designators from some range designator up to
   the last designator in the list.  */

struct constructor_range_stack
{
  struct constructor_range_stack *next, *prev;
  struct constructor_stack *stack;
  tree range_start;
  tree index;
  tree range_end;
  tree fields;
};

struct constructor_range_stack *constructor_range_stack;

/* This stack records separate initializers that are nested.
   Nested initializers can't happen in ANSI C, but GNU C allows them
   in cases like { ... (struct foo) { ... } ... }.  */

struct initializer_stack
{
  struct initializer_stack *next;
  tree decl;
  const char *asmspec;
  struct constructor_stack *constructor_stack;
  struct constructor_range_stack *constructor_range_stack;
  tree elements;
  struct spelling *spelling;
  struct spelling *spelling_base;
  int spelling_size;
  char top_level;
  char require_constant_value;
  char require_constant_elements;
};

struct initializer_stack *initializer_stack;

/* Prepare to parse and output the initializer for variable DECL.  */

void
start_init (tree decl, tree asmspec_tree, int top_level)
{
  const char *locus;
  struct initializer_stack *p = xmalloc (sizeof (struct initializer_stack));
  const char *asmspec = 0;

  if (asmspec_tree)
    asmspec = TREE_STRING_POINTER (asmspec_tree);

  p->decl = constructor_decl;
  p->asmspec = constructor_asmspec;
  p->require_constant_value = require_constant_value;
  p->require_constant_elements = require_constant_elements;
  p->constructor_stack = constructor_stack;
  p->constructor_range_stack = constructor_range_stack;
  p->elements = constructor_elements;
  p->spelling = spelling;
  p->spelling_base = spelling_base;
  p->spelling_size = spelling_size;
  p->top_level = constructor_top_level;
  p->next = initializer_stack;
  initializer_stack = p;

  constructor_decl = decl;
  constructor_asmspec = asmspec;
  constructor_designated = 0;
  constructor_top_level = top_level;

  if (decl != 0)
    {
      require_constant_value = TREE_STATIC (decl);
      require_constant_elements
	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
	   /* For a scalar, you can always use any value to initialize,
	      even within braces.  */
	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
    }
  else
    {
      require_constant_value = 0;
      require_constant_elements = 0;
      locus = "(anonymous)";
    }

  constructor_stack = 0;
  constructor_range_stack = 0;

  missing_braces_mentioned = 0;

  spelling_base = 0;
  spelling_size = 0;
  RESTORE_SPELLING_DEPTH (0);

  if (locus)
    push_string (locus);
}

void
finish_init (void)
{
  struct initializer_stack *p = initializer_stack;

  /* Free the whole constructor stack of this initializer.  */
  while (constructor_stack)
    {
      struct constructor_stack *q = constructor_stack;
      constructor_stack = q->next;
      free (q);
    }

  if (constructor_range_stack)
    abort ();

  /* Pop back to the data of the outer initializer (if any).  */
  free (spelling_base);

  constructor_decl = p->decl;
  constructor_asmspec = p->asmspec;
  require_constant_value = p->require_constant_value;
  require_constant_elements = p->require_constant_elements;
  constructor_stack = p->constructor_stack;
  constructor_range_stack = p->constructor_range_stack;
  constructor_elements = p->elements;
  spelling = p->spelling;
  spelling_base = p->spelling_base;
  spelling_size = p->spelling_size;
  constructor_top_level = p->top_level;
  initializer_stack = p->next;
  free (p);
}

/* Call here when we see the initializer is surrounded by braces.
   This is instead of a call to push_init_level;
   it is matched by a call to pop_init_level.

   TYPE is the type to initialize, for a constructor expression.
   For an initializer for a decl, TYPE is zero.  */

void
really_start_incremental_init (tree type)
{
  struct constructor_stack *p = xmalloc (sizeof (struct constructor_stack));

  if (type == 0)
    type = TREE_TYPE (constructor_decl);

  if (targetm.vector_opaque_p (type))
    error ("opaque vector types cannot be initialized");

  p->type = constructor_type;
  p->fields = constructor_fields;
  p->index = constructor_index;
  p->max_index = constructor_max_index;
  p->unfilled_index = constructor_unfilled_index;
  p->unfilled_fields = constructor_unfilled_fields;
  p->bit_index = constructor_bit_index;
  p->elements = constructor_elements;
  p->constant = constructor_constant;
  p->simple = constructor_simple;
  p->erroneous = constructor_erroneous;
  p->pending_elts = constructor_pending_elts;
  p->depth = constructor_depth;
  p->replacement_value = 0;
  p->implicit = 0;
  p->range_stack = 0;
  p->outer = 0;
  p->incremental = constructor_incremental;
  p->designated = constructor_designated;
  p->next = 0;
  constructor_stack = p;

  constructor_constant = 1;
  constructor_simple = 1;
  constructor_depth = SPELLING_DEPTH ();
  constructor_elements = 0;
  constructor_pending_elts = 0;
  constructor_type = type;
  constructor_incremental = 1;
  constructor_designated = 0;
  designator_depth = 0;
  designator_errorneous = 0;

  if (TREE_CODE (constructor_type) == RECORD_TYPE
      || TREE_CODE (constructor_type) == UNION_TYPE)
    {
      constructor_fields = TYPE_FIELDS (constructor_type);
      /* Skip any nameless bit fields at the beginning.  */
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
	     && DECL_NAME (constructor_fields) == 0)
	constructor_fields = TREE_CHAIN (constructor_fields);

      constructor_unfilled_fields = constructor_fields;
      constructor_bit_index = bitsize_zero_node;
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      if (TYPE_DOMAIN (constructor_type))
	{
	  constructor_max_index
	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));

	  /* Detect non-empty initializations of zero-length arrays.  */
	  if (constructor_max_index == NULL_TREE
	      && TYPE_SIZE (constructor_type))
	    constructor_max_index = build_int_2 (-1, -1);

	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
	     to initialize VLAs will cause a proper error; avoid tree
	     checking errors as well by setting a safe value.  */
	  if (constructor_max_index
	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
	    constructor_max_index = build_int_2 (-1, -1);

	  constructor_index
	    = convert (bitsizetype,
		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
	}
      else
	constructor_index = bitsize_zero_node;

      constructor_unfilled_index = constructor_index;
    }
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
    {
      /* Vectors are like simple fixed-size arrays.  */
      constructor_max_index =
	build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
      constructor_index = convert (bitsizetype, bitsize_zero_node);
      constructor_unfilled_index = constructor_index;
    }
  else
    {
      /* Handle the case of int x = {5}; */
      constructor_fields = constructor_type;
      constructor_unfilled_fields = constructor_type;
    }
}

/* Push down into a subobject, for initialization.
   If this is for an explicit set of braces, IMPLICIT is 0.
   If it is because the next element belongs at a lower level,
   IMPLICIT is 1 (or 2 if the push is because of designator list).  */

void
push_init_level (int implicit)
{
  struct constructor_stack *p;
  tree value = NULL_TREE;

  /* If we've exhausted any levels that didn't have braces,
     pop them now.  */
  while (constructor_stack->implicit)
    {
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
	   || TREE_CODE (constructor_type) == UNION_TYPE)
	  && constructor_fields == 0)
	process_init_element (pop_init_level (1));
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
	       && constructor_max_index
	       && tree_int_cst_lt (constructor_max_index, constructor_index))
	process_init_element (pop_init_level (1));
      else
	break;
    }

  /* Unless this is an explicit brace, we need to preserve previous
     content if any.  */
  if (implicit)
    {
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
	   || TREE_CODE (constructor_type) == UNION_TYPE)
	  && constructor_fields)
	value = find_init_member (constructor_fields);
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
	value = find_init_member (constructor_index);
    }

  p = xmalloc (sizeof (struct constructor_stack));
  p->type = constructor_type;
  p->fields = constructor_fields;
  p->index = constructor_index;
  p->max_index = constructor_max_index;
  p->unfilled_index = constructor_unfilled_index;
  p->unfilled_fields = constructor_unfilled_fields;
  p->bit_index = constructor_bit_index;
  p->elements = constructor_elements;
  p->constant = constructor_constant;
  p->simple = constructor_simple;
  p->erroneous = constructor_erroneous;
  p->pending_elts = constructor_pending_elts;
  p->depth = constructor_depth;
  p->replacement_value = 0;
  p->implicit = implicit;
  p->outer = 0;
  p->incremental = constructor_incremental;
  p->designated = constructor_designated;
  p->next = constructor_stack;
  p->range_stack = 0;
  constructor_stack = p;

  constructor_constant = 1;
  constructor_simple = 1;
  constructor_depth = SPELLING_DEPTH ();
  constructor_elements = 0;
  constructor_incremental = 1;
  constructor_designated = 0;
  constructor_pending_elts = 0;
  if (!implicit)
    {
      p->range_stack = constructor_range_stack;
      constructor_range_stack = 0;
      designator_depth = 0;
      designator_errorneous = 0;
    }

  /* Don't die if an entire brace-pair level is superfluous
     in the containing level.  */
  if (constructor_type == 0)
    ;
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
	   || TREE_CODE (constructor_type) == UNION_TYPE)
    {
      /* Don't die if there are extra init elts at the end.  */
      if (constructor_fields == 0)
	constructor_type = 0;
      else
	{
	  constructor_type = TREE_TYPE (constructor_fields);
	  push_member_name (constructor_fields);
	  constructor_depth++;
	}
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      constructor_type = TREE_TYPE (constructor_type);
      push_array_bounds (tree_low_cst (constructor_index, 0));
      constructor_depth++;
    }

  if (constructor_type == 0)
    {
      error_init ("extra brace group at end of initializer");
      constructor_fields = 0;
      constructor_unfilled_fields = 0;
      return;
    }

  if (value && TREE_CODE (value) == CONSTRUCTOR)
    {
      constructor_constant = TREE_CONSTANT (value);
      constructor_simple = TREE_STATIC (value);
      constructor_elements = CONSTRUCTOR_ELTS (value);
      if (constructor_elements
	  && (TREE_CODE (constructor_type) == RECORD_TYPE
	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
	set_nonincremental_init ();
    }

  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
    {
      missing_braces_mentioned = 1;
      warning_init ("missing braces around initializer");
    }

  if (TREE_CODE (constructor_type) == RECORD_TYPE
	   || TREE_CODE (constructor_type) == UNION_TYPE)
    {
      constructor_fields = TYPE_FIELDS (constructor_type);
      /* Skip any nameless bit fields at the beginning.  */
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
	     && DECL_NAME (constructor_fields) == 0)
	constructor_fields = TREE_CHAIN (constructor_fields);

      constructor_unfilled_fields = constructor_fields;
      constructor_bit_index = bitsize_zero_node;
    }
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
    {
      /* Vectors are like simple fixed-size arrays.  */
      constructor_max_index =
	build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
      constructor_index = convert (bitsizetype, integer_zero_node);
      constructor_unfilled_index = constructor_index;
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      if (TYPE_DOMAIN (constructor_type))
	{
	  constructor_max_index
	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));

	  /* Detect non-empty initializations of zero-length arrays.  */
	  if (constructor_max_index == NULL_TREE
	      && TYPE_SIZE (constructor_type))
	    constructor_max_index = build_int_2 (-1, -1);

	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
	     to initialize VLAs will cause a proper error; avoid tree
	     checking errors as well by setting a safe value.  */
	  if (constructor_max_index
	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
	    constructor_max_index = build_int_2 (-1, -1);

	  constructor_index
	    = convert (bitsizetype,
		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
	}
      else
	constructor_index = bitsize_zero_node;

      constructor_unfilled_index = constructor_index;
      if (value && TREE_CODE (value) == STRING_CST)
	{
	  /* We need to split the char/wchar array into individual
	     characters, so that we don't have to special case it
	     everywhere.  */
	  set_nonincremental_init_from_string (value);
	}
    }
  else
    {
      warning_init ("braces around scalar initializer");
      constructor_fields = constructor_type;
      constructor_unfilled_fields = constructor_type;
    }
}

/* At the end of an implicit or explicit brace level,
   finish up that level of constructor.
   If we were outputting the elements as they are read, return 0
   from inner levels (process_init_element ignores that),
   but return error_mark_node from the outermost level
   (that's what we want to put in DECL_INITIAL).
   Otherwise, return a CONSTRUCTOR expression.  */

tree
pop_init_level (int implicit)
{
  struct constructor_stack *p;
  tree constructor = 0;

  if (implicit == 0)
    {
      /* When we come to an explicit close brace,
	 pop any inner levels that didn't have explicit braces.  */
      while (constructor_stack->implicit)
	process_init_element (pop_init_level (1));

      if (constructor_range_stack)
	abort ();
    }

  /* Now output all pending elements.  */
  constructor_incremental = 1;
  output_pending_init_elements (1);

  p = constructor_stack;

  /* Error for initializing a flexible array member, or a zero-length
     array member in an inappropriate context.  */
  if (constructor_type && constructor_fields
      && TREE_CODE (constructor_type) == ARRAY_TYPE
      && TYPE_DOMAIN (constructor_type)
      && ! TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
    {
      /* Silently discard empty initializations.  The parser will
	 already have pedwarned for empty brackets.  */
      if (integer_zerop (constructor_unfilled_index))
	constructor_type = NULL_TREE;
      else if (! TYPE_SIZE (constructor_type))
	{
	  if (constructor_depth > 2)
	    error_init ("initialization of flexible array member in a nested context");
	  else if (pedantic)
	    pedwarn_init ("initialization of a flexible array member");

	  /* We have already issued an error message for the existence
	     of a flexible array member not at the end of the structure.
	     Discard the initializer so that we do not abort later.  */
	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
	    constructor_type = NULL_TREE;
	}
      else
	/* Zero-length arrays are no longer special, so we should no longer
	   get here.  */
	abort ();
    }

  /* Warn when some struct elements are implicitly initialized to zero.  */
  if (extra_warnings
      && constructor_type
      && TREE_CODE (constructor_type) == RECORD_TYPE
      && constructor_unfilled_fields)
    {
	/* Do not warn for flexible array members or zero-length arrays.  */
	while (constructor_unfilled_fields
	       && (! DECL_SIZE (constructor_unfilled_fields)
		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);

	/* Do not warn if this level of the initializer uses member
	   designators; it is likely to be deliberate.  */
	if (constructor_unfilled_fields && !constructor_designated)
	  {
	    push_member_name (constructor_unfilled_fields);
	    warning_init ("missing initializer");
	    RESTORE_SPELLING_DEPTH (constructor_depth);
	  }
    }

  /* Pad out the end of the structure.  */
  if (p->replacement_value)
    /* If this closes a superfluous brace pair,
       just pass out the element between them.  */
    constructor = p->replacement_value;
  else if (constructor_type == 0)
    ;
  else if (TREE_CODE (constructor_type) != RECORD_TYPE
	   && TREE_CODE (constructor_type) != UNION_TYPE
	   && TREE_CODE (constructor_type) != ARRAY_TYPE
	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
    {
      /* A nonincremental scalar initializer--just return
	 the element, after verifying there is just one.  */
      if (constructor_elements == 0)
	{
	  if (!constructor_erroneous)
	    error_init ("empty scalar initializer");
	  constructor = error_mark_node;
	}
      else if (TREE_CHAIN (constructor_elements) != 0)
	{
	  error_init ("extra elements in scalar initializer");
	  constructor = TREE_VALUE (constructor_elements);
	}
      else
	constructor = TREE_VALUE (constructor_elements);
    }
  else
    {
      if (constructor_erroneous)
	constructor = error_mark_node;
      else
	{
	  constructor = build_constructor (constructor_type,
					   nreverse (constructor_elements));
	  if (constructor_constant)
	    TREE_CONSTANT (constructor) = TREE_INVARIANT (constructor) = 1;
	  if (constructor_constant && constructor_simple)
	    TREE_STATIC (constructor) = 1;
	}
    }

  constructor_type = p->type;
  constructor_fields = p->fields;
  constructor_index = p->index;
  constructor_max_index = p->max_index;
  constructor_unfilled_index = p->unfilled_index;
  constructor_unfilled_fields = p->unfilled_fields;
  constructor_bit_index = p->bit_index;
  constructor_elements = p->elements;
  constructor_constant = p->constant;
  constructor_simple = p->simple;
  constructor_erroneous = p->erroneous;
  constructor_incremental = p->incremental;
  constructor_designated = p->designated;
  constructor_pending_elts = p->pending_elts;
  constructor_depth = p->depth;
  if (!p->implicit)
    constructor_range_stack = p->range_stack;
  RESTORE_SPELLING_DEPTH (constructor_depth);

  constructor_stack = p->next;
  free (p);

  if (constructor == 0)
    {
      if (constructor_stack == 0)
	return error_mark_node;
      return NULL_TREE;
    }
  return constructor;
}

/* Common handling for both array range and field name designators.
   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */

static int
set_designator (int array)
{
  tree subtype;
  enum tree_code subcode;

  /* Don't die if an entire brace-pair level is superfluous
     in the containing level.  */
  if (constructor_type == 0)
    return 1;

  /* If there were errors in this designator list already, bail out silently.  */
  if (designator_errorneous)
    return 1;

  if (!designator_depth)
    {
      if (constructor_range_stack)
	abort ();

      /* Designator list starts at the level of closest explicit
	 braces.  */
      while (constructor_stack->implicit)
	process_init_element (pop_init_level (1));
      constructor_designated = 1;
      return 0;
    }

  if (constructor_no_implicit)
    {
      error_init ("initialization designators may not nest");
      return 1;
    }

  if (TREE_CODE (constructor_type) == RECORD_TYPE
      || TREE_CODE (constructor_type) == UNION_TYPE)
    {
      subtype = TREE_TYPE (constructor_fields);
      if (subtype != error_mark_node)
	subtype = TYPE_MAIN_VARIANT (subtype);
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
    }
  else
    abort ();

  subcode = TREE_CODE (subtype);
  if (array && subcode != ARRAY_TYPE)
    {
      error_init ("array index in non-array initializer");
      return 1;
    }
  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
    {
      error_init ("field name not in record or union initializer");
      return 1;
    }

  constructor_designated = 1;
  push_init_level (2);
  return 0;
}

/* If there are range designators in designator list, push a new designator
   to constructor_range_stack.  RANGE_END is end of such stack range or
   NULL_TREE if there is no range designator at this level.  */

static void
push_range_stack (tree range_end)
{
  struct constructor_range_stack *p;

  p = ggc_alloc (sizeof (struct constructor_range_stack));
  p->prev = constructor_range_stack;
  p->next = 0;
  p->fields = constructor_fields;
  p->range_start = constructor_index;
  p->index = constructor_index;
  p->stack = constructor_stack;
  p->range_end = range_end;
  if (constructor_range_stack)
    constructor_range_stack->next = p;
  constructor_range_stack = p;
}

/* Within an array initializer, specify the next index to be initialized.
   FIRST is that index.  If LAST is nonzero, then initialize a range
   of indices, running from FIRST through LAST.  */

void
set_init_index (tree first, tree last)
{
  if (set_designator (1))
    return;

  designator_errorneous = 1;

  while ((TREE_CODE (first) == NOP_EXPR
	  || TREE_CODE (first) == CONVERT_EXPR
	  || TREE_CODE (first) == NON_LVALUE_EXPR)
	 && (TYPE_MODE (TREE_TYPE (first))
	     == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
    first = TREE_OPERAND (first, 0);

  if (last)
    while ((TREE_CODE (last) == NOP_EXPR
	    || TREE_CODE (last) == CONVERT_EXPR
	    || TREE_CODE (last) == NON_LVALUE_EXPR)
	   && (TYPE_MODE (TREE_TYPE (last))
	       == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
      last = TREE_OPERAND (last, 0);

  if (TREE_CODE (first) != INTEGER_CST)
    error_init ("nonconstant array index in initializer");
  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
    error_init ("nonconstant array index in initializer");
  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
    error_init ("array index in non-array initializer");
  else if (tree_int_cst_sgn (first) == -1)
    error_init ("array index in initializer exceeds array bounds");
  else if (constructor_max_index
	   && tree_int_cst_lt (constructor_max_index, first))
    error_init ("array index in initializer exceeds array bounds");
  else
    {
      constructor_index = convert (bitsizetype, first);

      if (last)
	{
	  if (tree_int_cst_equal (first, last))
	    last = 0;
	  else if (tree_int_cst_lt (last, first))
	    {
	      error_init ("empty index range in initializer");
	      last = 0;
	    }
	  else
	    {
	      last = convert (bitsizetype, last);
	      if (constructor_max_index != 0
		  && tree_int_cst_lt (constructor_max_index, last))
		{
		  error_init ("array index range in initializer exceeds array bounds");
		  last = 0;
		}
	    }
	}

      designator_depth++;
      designator_errorneous = 0;
      if (constructor_range_stack || last)
	push_range_stack (last);
    }
}

/* Within a struct initializer, specify the next field to be initialized.  */

void
set_init_label (tree fieldname)
{
  tree tail;

  if (set_designator (0))
    return;

  designator_errorneous = 1;

  if (TREE_CODE (constructor_type) != RECORD_TYPE
      && TREE_CODE (constructor_type) != UNION_TYPE)
    {
      error_init ("field name not in record or union initializer");
      return;
    }

  for (tail = TYPE_FIELDS (constructor_type); tail;
       tail = TREE_CHAIN (tail))
    {
      if (DECL_NAME (tail) == fieldname)
	break;
    }

  if (tail == 0)
    error ("unknown field `%s' specified in initializer",
	   IDENTIFIER_POINTER (fieldname));
  else
    {
      constructor_fields = tail;
      designator_depth++;
      designator_errorneous = 0;
      if (constructor_range_stack)
	push_range_stack (NULL_TREE);
    }
}

/* Add a new initializer to the tree of pending initializers.  PURPOSE
   identifies the initializer, either array index or field in a structure.
   VALUE is the value of that index or field.  */

static void
add_pending_init (tree purpose, tree value)
{
  struct init_node *p, **q, *r;

  q = &constructor_pending_elts;
  p = 0;

  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      while (*q != 0)
	{
	  p = *q;
	  if (tree_int_cst_lt (purpose, p->purpose))
	    q = &p->left;
	  else if (tree_int_cst_lt (p->purpose, purpose))
	    q = &p->right;
	  else
	    {
	      if (TREE_SIDE_EFFECTS (p->value))
		warning_init ("initialized field with side-effects overwritten");
	      p->value = value;
	      return;
	    }
	}
    }
  else
    {
      tree bitpos;

      bitpos = bit_position (purpose);
      while (*q != NULL)
	{
	  p = *q;
	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
	    q = &p->left;
	  else if (p->purpose != purpose)
	    q = &p->right;
	  else
	    {
	      if (TREE_SIDE_EFFECTS (p->value))
		warning_init ("initialized field with side-effects overwritten");
	      p->value = value;
	      return;
	    }
	}
    }

  r = ggc_alloc (sizeof (struct init_node));
  r->purpose = purpose;
  r->value = value;

  *q = r;
  r->parent = p;
  r->left = 0;
  r->right = 0;
  r->balance = 0;

  while (p)
    {
      struct init_node *s;

      if (r == p->left)
	{
	  if (p->balance == 0)
	    p->balance = -1;
	  else if (p->balance < 0)
	    {
	      if (r->balance < 0)
		{
		  /* L rotation.  */
		  p->left = r->right;
		  if (p->left)
		    p->left->parent = p;
		  r->right = p;

		  p->balance = 0;
		  r->balance = 0;

		  s = p->parent;
		  p->parent = r;
		  r->parent = s;
		  if (s)
		    {
		      if (s->left == p)
			s->left = r;
		      else
			s->right = r;
		    }
		  else
		    constructor_pending_elts = r;
		}
	      else
		{
		  /* LR rotation.  */
		  struct init_node *t = r->right;

		  r->right = t->left;
		  if (r->right)
		    r->right->parent = r;
		  t->left = r;

		  p->left = t->right;
		  if (p->left)
		    p->left->parent = p;
		  t->right = p;

		  p->balance = t->balance < 0;
		  r->balance = -(t->balance > 0);
		  t->balance = 0;

		  s = p->parent;
		  p->parent = t;
		  r->parent = t;
		  t->parent = s;
		  if (s)
		    {
		      if (s->left == p)
			s->left = t;
		      else
			s->right = t;
		    }
		  else
		    constructor_pending_elts = t;
		}
	      break;
	    }
	  else
	    {
	      /* p->balance == +1; growth of left side balances the node.  */
	      p->balance = 0;
	      break;
	    }
	}
      else /* r == p->right */
	{
	  if (p->balance == 0)
	    /* Growth propagation from right side.  */
	    p->balance++;
	  else if (p->balance > 0)
	    {
	      if (r->balance > 0)
		{
		  /* R rotation.  */
		  p->right = r->left;
		  if (p->right)
		    p->right->parent = p;
		  r->left = p;

		  p->balance = 0;
		  r->balance = 0;

		  s = p->parent;
		  p->parent = r;
		  r->parent = s;
		  if (s)
		    {
		      if (s->left == p)
			s->left = r;
		      else
			s->right = r;
		    }
		  else
		    constructor_pending_elts = r;
		}
	      else /* r->balance == -1 */
		{
		  /* RL rotation */
		  struct init_node *t = r->left;

		  r->left = t->right;
		  if (r->left)
		    r->left->parent = r;
		  t->right = r;

		  p->right = t->left;
		  if (p->right)
		    p->right->parent = p;
		  t->left = p;

		  r->balance = (t->balance < 0);
		  p->balance = -(t->balance > 0);
		  t->balance = 0;

		  s = p->parent;
		  p->parent = t;
		  r->parent = t;
		  t->parent = s;
		  if (s)
		    {
		      if (s->left == p)
			s->left = t;
		      else
			s->right = t;
		    }
		  else
		    constructor_pending_elts = t;
		}
	      break;
	    }
	  else
	    {
	      /* p->balance == -1; growth of right side balances the node.  */
	      p->balance = 0;
	      break;
	    }
	}

      r = p;
      p = p->parent;
    }
}

/* Build AVL tree from a sorted chain.  */

static void
set_nonincremental_init (void)
{
  tree chain;

  if (TREE_CODE (constructor_type) != RECORD_TYPE
      && TREE_CODE (constructor_type) != ARRAY_TYPE)
    return;

  for (chain = constructor_elements; chain; chain = TREE_CHAIN (chain))
    add_pending_init (TREE_PURPOSE (chain), TREE_VALUE (chain));
  constructor_elements = 0;
  if (TREE_CODE (constructor_type) == RECORD_TYPE)
    {
      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
      /* Skip any nameless bit fields at the beginning.  */
      while (constructor_unfilled_fields != 0
	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
	     && DECL_NAME (constructor_unfilled_fields) == 0)
	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);

    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      if (TYPE_DOMAIN (constructor_type))
	constructor_unfilled_index
	    = convert (bitsizetype,
		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
      else
	constructor_unfilled_index = bitsize_zero_node;
    }
  constructor_incremental = 0;
}

/* Build AVL tree from a string constant.  */

static void
set_nonincremental_init_from_string (tree str)
{
  tree value, purpose, type;
  HOST_WIDE_INT val[2];
  const char *p, *end;
  int byte, wchar_bytes, charwidth, bitpos;

  if (TREE_CODE (constructor_type) != ARRAY_TYPE)
    abort ();

  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
      == TYPE_PRECISION (char_type_node))
    wchar_bytes = 1;
  else if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
	   == TYPE_PRECISION (wchar_type_node))
    wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
  else
    abort ();

  charwidth = TYPE_PRECISION (char_type_node);
  type = TREE_TYPE (constructor_type);
  p = TREE_STRING_POINTER (str);
  end = p + TREE_STRING_LENGTH (str);

  for (purpose = bitsize_zero_node;
       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
    {
      if (wchar_bytes == 1)
	{
	  val[1] = (unsigned char) *p++;
	  val[0] = 0;
	}
      else
	{
	  val[0] = 0;
	  val[1] = 0;
	  for (byte = 0; byte < wchar_bytes; byte++)
	    {
	      if (BYTES_BIG_ENDIAN)
		bitpos = (wchar_bytes - byte - 1) * charwidth;
	      else
		bitpos = byte * charwidth;
	      val[bitpos < HOST_BITS_PER_WIDE_INT]
		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
		   << (bitpos % HOST_BITS_PER_WIDE_INT);
	    }
	}

      if (!TYPE_UNSIGNED (type))
	{
	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
	  if (bitpos < HOST_BITS_PER_WIDE_INT)
	    {
	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
		{
		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
		  val[0] = -1;
		}
	    }
	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
	    {
	      if (val[1] < 0)
	        val[0] = -1;
	    }
	  else if (val[0] & (((HOST_WIDE_INT) 1)
			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
	    val[0] |= ((HOST_WIDE_INT) -1)
		      << (bitpos - HOST_BITS_PER_WIDE_INT);
	}

      value = build_int_2 (val[1], val[0]);
      TREE_TYPE (value) = type;
      add_pending_init (purpose, value);
    }

  constructor_incremental = 0;
}

/* Return value of FIELD in pending initializer or zero if the field was
   not initialized yet.  */

static tree
find_init_member (tree field)
{
  struct init_node *p;

  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
      if (constructor_incremental
	  && tree_int_cst_lt (field, constructor_unfilled_index))
	set_nonincremental_init ();

      p = constructor_pending_elts;
      while (p)
	{
	  if (tree_int_cst_lt (field, p->purpose))
	    p = p->left;
	  else if (tree_int_cst_lt (p->purpose, field))
	    p = p->right;
	  else
	    return p->value;
	}
    }
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
    {
      tree bitpos = bit_position (field);

      if (constructor_incremental
	  && (!constructor_unfilled_fields
	      || tree_int_cst_lt (bitpos,
				  bit_position (constructor_unfilled_fields))))
	set_nonincremental_init ();

      p = constructor_pending_elts;
      while (p)
	{
	  if (field == p->purpose)
	    return p->value;
	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
	    p = p->left;
	  else
	    p = p->right;
	}
    }
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
    {
      if (constructor_elements
	  && TREE_PURPOSE (constructor_elements) == field)
	return TREE_VALUE (constructor_elements);
    }
  return 0;
}

/* "Output" the next constructor element.
   At top level, really output it to assembler code now.
   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
   TYPE is the data type that the containing data type wants here.
   FIELD is the field (a FIELD_DECL) or the index that this element fills.

   PENDING if non-nil means output pending elements that belong
   right after this element.  (PENDING is normally 1;
   it is 0 while outputting pending elements, to avoid recursion.)  */

static void
output_init_element (tree value, tree type, tree field, int pending)
{
  if (type == error_mark_node)
    {
      constructor_erroneous = 1;
      return;
    }
  if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
      || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
	  && !(TREE_CODE (value) == STRING_CST
	       && TREE_CODE (type) == ARRAY_TYPE
	       && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
	  && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
			 TYPE_MAIN_VARIANT (type))))
    value = default_conversion (value);

  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
      && require_constant_value && !flag_isoc99 && pending)
    {
      /* As an extension, allow initializing objects with static storage
	 duration with compound literals (which are then treated just as
	 the brace enclosed list they contain).  */
      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
      value = DECL_INITIAL (decl);
    }

  if (value == error_mark_node)
    constructor_erroneous = 1;
  else if (!TREE_CONSTANT (value))
    constructor_constant = 0;
  else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
		|| TREE_CODE (constructor_type) == UNION_TYPE)
	       && DECL_C_BIT_FIELD (field)
	       && TREE_CODE (value) != INTEGER_CST))
    constructor_simple = 0;

  if (require_constant_value && ! TREE_CONSTANT (value))
    {
      error_init ("initializer element is not constant");
      value = error_mark_node;
    }
  else if (require_constant_elements
	   && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
    pedwarn ("initializer element is not computable at load time");

  /* If this field is empty (and not at the end of structure),
     don't do anything other than checking the initializer.  */
  if (field
      && (TREE_TYPE (field) == error_mark_node
	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
		  || TREE_CHAIN (field)))))
    return;

  value = digest_init (type, value, require_constant_value);
  if (value == error_mark_node)
    {
      constructor_erroneous = 1;
      return;
    }

  /* If this element doesn't come next in sequence,
     put it on constructor_pending_elts.  */
  if (TREE_CODE (constructor_type) == ARRAY_TYPE
      && (!constructor_incremental
	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
    {
      if (constructor_incremental
	  && tree_int_cst_lt (field, constructor_unfilled_index))
	set_nonincremental_init ();

      add_pending_init (field, value);
      return;
    }
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
	   && (!constructor_incremental
	       || field != constructor_unfilled_fields))
    {
      /* We do this for records but not for unions.  In a union,
	 no matter which field is specified, it can be initialized
	 right away since it starts at the beginning of the union.  */
      if (constructor_incremental)
	{
	  if (!constructor_unfilled_fields)
	    set_nonincremental_init ();
	  else
	    {
	      tree bitpos, unfillpos;

	      bitpos = bit_position (field);
	      unfillpos = bit_position (constructor_unfilled_fields);

	      if (tree_int_cst_lt (bitpos, unfillpos))
		set_nonincremental_init ();
	    }
	}

      add_pending_init (field, value);
      return;
    }
  else if (TREE_CODE (constructor_type) == UNION_TYPE
	   && constructor_elements)
    {
      if (TREE_SIDE_EFFECTS (TREE_VALUE (constructor_elements)))
	warning_init ("initialized field with side-effects overwritten");

      /* We can have just one union field set.  */
      constructor_elements = 0;
    }

  /* Otherwise, output this element either to
     constructor_elements or to the assembler file.  */

  if (field && TREE_CODE (field) == INTEGER_CST)
    field = copy_node (field);
  constructor_elements
    = tree_cons (field, value, constructor_elements);

  /* Advance the variable that indicates sequential elements output.  */
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    constructor_unfilled_index
      = size_binop (PLUS_EXPR, constructor_unfilled_index,
		    bitsize_one_node);
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
    {
      constructor_unfilled_fields
	= TREE_CHAIN (constructor_unfilled_fields);

      /* Skip any nameless bit fields.  */
      while (constructor_unfilled_fields != 0
	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
	     && DECL_NAME (constructor_unfilled_fields) == 0)
	constructor_unfilled_fields =
	  TREE_CHAIN (constructor_unfilled_fields);
    }
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
    constructor_unfilled_fields = 0;

  /* Now output any pending elements which have become next.  */
  if (pending)
    output_pending_init_elements (0);
}

/* Output any pending elements which have become next.
   As we output elements, constructor_unfilled_{fields,index}
   advances, which may cause other elements to become next;
   if so, they too are output.

   If ALL is 0, we return when there are
   no more pending elements to output now.

   If ALL is 1, we output space as necessary so that
   we can output all the pending elements.  */

static void
output_pending_init_elements (int all)
{
  struct init_node *elt = constructor_pending_elts;
  tree next;

 retry:

  /* Look through the whole pending tree.
     If we find an element that should be output now,
     output it.  Otherwise, set NEXT to the element
     that comes first among those still pending.  */

  next = 0;
  while (elt)
    {
      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
	{
	  if (tree_int_cst_equal (elt->purpose,
				  constructor_unfilled_index))
	    output_init_element (elt->value,
				 TREE_TYPE (constructor_type),
				 constructor_unfilled_index, 0);
	  else if (tree_int_cst_lt (constructor_unfilled_index,
				    elt->purpose))
	    {
	      /* Advance to the next smaller node.  */
	      if (elt->left)
		elt = elt->left;
	      else
		{
		  /* We have reached the smallest node bigger than the
		     current unfilled index.  Fill the space first.  */
		  next = elt->purpose;
		  break;
		}
	    }
	  else
	    {
	      /* Advance to the next bigger node.  */
	      if (elt->right)
		elt = elt->right;
	      else
		{
		  /* We have reached the biggest node in a subtree.  Find
		     the parent of it, which is the next bigger node.  */
		  while (elt->parent && elt->parent->right == elt)
		    elt = elt->parent;
		  elt = elt->parent;
		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
					      elt->purpose))
		    {
		      next = elt->purpose;
		      break;
		    }
		}
	    }
	}
      else if (TREE_CODE (constructor_type) == RECORD_TYPE
	       || TREE_CODE (constructor_type) == UNION_TYPE)
	{
	  tree ctor_unfilled_bitpos, elt_bitpos;

	  /* If the current record is complete we are done.  */
	  if (constructor_unfilled_fields == 0)
	    break;

	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
	  elt_bitpos = bit_position (elt->purpose);
	  /* We can't compare fields here because there might be empty
	     fields in between.  */
	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
	    {
	      constructor_unfilled_fields = elt->purpose;
	      output_init_element (elt->value, TREE_TYPE (elt->purpose),
				   elt->purpose, 0);
	    }
	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
	    {
	      /* Advance to the next smaller node.  */
	      if (elt->left)
		elt = elt->left;
	      else
		{
		  /* We have reached the smallest node bigger than the
		     current unfilled field.  Fill the space first.  */
		  next = elt->purpose;
		  break;
		}
	    }
	  else
	    {
	      /* Advance to the next bigger node.  */
	      if (elt->right)
		elt = elt->right;
	      else
		{
		  /* We have reached the biggest node in a subtree.  Find
		     the parent of it, which is the next bigger node.  */
		  while (elt->parent && elt->parent->right == elt)
		    elt = elt->parent;
		  elt = elt->parent;
		  if (elt
		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
					   bit_position (elt->purpose))))
		    {
		      next = elt->purpose;
		      break;
		    }
		}
	    }
	}
    }

  /* Ordinarily return, but not if we want to output all
     and there are elements left.  */
  if (! (all && next != 0))
    return;

  /* If it's not incremental, just skip over the gap, so that after
     jumping to retry we will output the next successive element.  */
  if (TREE_CODE (constructor_type) == RECORD_TYPE
      || TREE_CODE (constructor_type) == UNION_TYPE)
    constructor_unfilled_fields = next;
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    constructor_unfilled_index = next;

  /* ELT now points to the node in the pending tree with the next
     initializer to output.  */
  goto retry;
}

/* Add one non-braced element to the current constructor level.
   This adjusts the current position within the constructor's type.
   This may also start or terminate implicit levels
   to handle a partly-braced initializer.

   Once this has found the correct level for the new element,
   it calls output_init_element.  */

void
process_init_element (tree value)
{
  tree orig_value = value;
  int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;

  designator_depth = 0;
  designator_errorneous = 0;

  /* Handle superfluous braces around string cst as in
     char x[] = {"foo"}; */
  if (string_flag
      && constructor_type
      && TREE_CODE (constructor_type) == ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
      && integer_zerop (constructor_unfilled_index))
    {
      if (constructor_stack->replacement_value)
        error_init ("excess elements in char array initializer");
      constructor_stack->replacement_value = value;
      return;
    }

  if (constructor_stack->replacement_value != 0)
    {
      error_init ("excess elements in struct initializer");
      return;
    }

  /* Ignore elements of a brace group if it is entirely superfluous
     and has already been diagnosed.  */
  if (constructor_type == 0)
    return;

  /* If we've exhausted any levels that didn't have braces,
     pop them now.  */
  while (constructor_stack->implicit)
    {
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
	   || TREE_CODE (constructor_type) == UNION_TYPE)
	  && constructor_fields == 0)
	process_init_element (pop_init_level (1));
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
	       && (constructor_max_index == 0
		   || tree_int_cst_lt (constructor_max_index,
				       constructor_index)))
	process_init_element (pop_init_level (1));
      else
	break;
    }

  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
  if (constructor_range_stack)
    {
      /* If value is a compound literal and we'll be just using its
	 content, don't put it into a SAVE_EXPR.  */
      if (TREE_CODE (value) != COMPOUND_LITERAL_EXPR
	  || !require_constant_value
	  || flag_isoc99)
	value = save_expr (value);
    }

  while (1)
    {
      if (TREE_CODE (constructor_type) == RECORD_TYPE)
	{
	  tree fieldtype;
	  enum tree_code fieldcode;

	  if (constructor_fields == 0)
	    {
	      pedwarn_init ("excess elements in struct initializer");
	      break;
	    }

	  fieldtype = TREE_TYPE (constructor_fields);
	  if (fieldtype != error_mark_node)
	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
	  fieldcode = TREE_CODE (fieldtype);

	  /* Error for non-static initialization of a flexible array member.  */
	  if (fieldcode == ARRAY_TYPE
	      && !require_constant_value
	      && TYPE_SIZE (fieldtype) == NULL_TREE
	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
	    {
	      error_init ("non-static initialization of a flexible array member");
	      break;
	    }

	  /* Accept a string constant to initialize a subarray.  */
	  if (value != 0
	      && fieldcode == ARRAY_TYPE
	      && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
	      && string_flag)
	    value = orig_value;
	  /* Otherwise, if we have come to a subaggregate,
	     and we don't have an element of its type, push into it.  */
	  else if (value != 0 && !constructor_no_implicit
		   && value != error_mark_node
		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
		       || fieldcode == UNION_TYPE))
	    {
	      push_init_level (1);
	      continue;
	    }

	  if (value)
	    {
	      push_member_name (constructor_fields);
	      output_init_element (value, fieldtype, constructor_fields, 1);
	      RESTORE_SPELLING_DEPTH (constructor_depth);
	    }
	  else
	    /* Do the bookkeeping for an element that was
	       directly output as a constructor.  */
	    {
	      /* For a record, keep track of end position of last field.  */
	      if (DECL_SIZE (constructor_fields))
	        constructor_bit_index
		  = size_binop (PLUS_EXPR,
			        bit_position (constructor_fields),
			        DECL_SIZE (constructor_fields));

	      /* If the current field was the first one not yet written out,
		 it isn't now, so update.  */
	      if (constructor_unfilled_fields == constructor_fields)
		{
		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
		  /* Skip any nameless bit fields.  */
		  while (constructor_unfilled_fields != 0
			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
			 && DECL_NAME (constructor_unfilled_fields) == 0)
		    constructor_unfilled_fields =
		      TREE_CHAIN (constructor_unfilled_fields);
		}
	    }

	  constructor_fields = TREE_CHAIN (constructor_fields);
	  /* Skip any nameless bit fields at the beginning.  */
	  while (constructor_fields != 0
		 && DECL_C_BIT_FIELD (constructor_fields)
		 && DECL_NAME (constructor_fields) == 0)
	    constructor_fields = TREE_CHAIN (constructor_fields);
	}
      else if (TREE_CODE (constructor_type) == UNION_TYPE)
	{
	  tree fieldtype;
	  enum tree_code fieldcode;

	  if (constructor_fields == 0)
	    {
	      pedwarn_init ("excess elements in union initializer");
	      break;
	    }

	  fieldtype = TREE_TYPE (constructor_fields);
	  if (fieldtype != error_mark_node)
	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
	  fieldcode = TREE_CODE (fieldtype);

	  /* Warn that traditional C rejects initialization of unions.
	     We skip the warning if the value is zero.  This is done
	     under the assumption that the zero initializer in user
	     code appears conditioned on e.g. __STDC__ to avoid
	     "missing initializer" warnings and relies on default
	     initialization to zero in the traditional C case.
	     We also skip the warning if the initializer is designated,
	     again on the assumption that this must be conditional on
	     __STDC__ anyway (and we've already complained about the
	     member-designator already).  */
	  if (warn_traditional && !in_system_header && !constructor_designated
	      && !(value && (integer_zerop (value) || real_zerop (value))))
	    warning ("traditional C rejects initialization of unions");

	  /* Accept a string constant to initialize a subarray.  */
	  if (value != 0
	      && fieldcode == ARRAY_TYPE
	      && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
	      && string_flag)
	    value = orig_value;
	  /* Otherwise, if we have come to a subaggregate,
	     and we don't have an element of its type, push into it.  */
	  else if (value != 0 && !constructor_no_implicit
		   && value != error_mark_node
		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
		       || fieldcode == UNION_TYPE))
	    {
	      push_init_level (1);
	      continue;
	    }

	  if (value)
	    {
	      push_member_name (constructor_fields);
	      output_init_element (value, fieldtype, constructor_fields, 1);
	      RESTORE_SPELLING_DEPTH (constructor_depth);
	    }
	  else
	    /* Do the bookkeeping for an element that was
	       directly output as a constructor.  */
	    {
	      constructor_bit_index = DECL_SIZE (constructor_fields);
	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
	    }

	  constructor_fields = 0;
	}
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
	{
	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
	  enum tree_code eltcode = TREE_CODE (elttype);

	  /* Accept a string constant to initialize a subarray.  */
	  if (value != 0
	      && eltcode == ARRAY_TYPE
	      && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
	      && string_flag)
	    value = orig_value;
	  /* Otherwise, if we have come to a subaggregate,
	     and we don't have an element of its type, push into it.  */
	  else if (value != 0 && !constructor_no_implicit
		   && value != error_mark_node
		   && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
		       || eltcode == UNION_TYPE))
	    {
	      push_init_level (1);
	      continue;
	    }

	  if (constructor_max_index != 0
	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
		  || integer_all_onesp (constructor_max_index)))
	    {
	      pedwarn_init ("excess elements in array initializer");
	      break;
	    }

	  /* Now output the actual element.  */
	  if (value)
	    {
	      push_array_bounds (tree_low_cst (constructor_index, 0));
	      output_init_element (value, elttype, constructor_index, 1);
	      RESTORE_SPELLING_DEPTH (constructor_depth);
	    }

	  constructor_index
	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);

	  if (! value)
	    /* If we are doing the bookkeeping for an element that was
	       directly output as a constructor, we must update
	       constructor_unfilled_index.  */
	    constructor_unfilled_index = constructor_index;
	}
      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
	{
	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));

         /* Do a basic check of initializer size.  Note that vectors
            always have a fixed size derived from their type.  */
	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
	    {
	      pedwarn_init ("excess elements in vector initializer");
	      break;
	    }

	  /* Now output the actual element.  */
	  if (value)
	    output_init_element (value, elttype, constructor_index, 1);

	  constructor_index
	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);

	  if (! value)
	    /* If we are doing the bookkeeping for an element that was
	       directly output as a constructor, we must update
	       constructor_unfilled_index.  */
	    constructor_unfilled_index = constructor_index;
	}

      /* Handle the sole element allowed in a braced initializer
	 for a scalar variable.  */
      else if (constructor_fields == 0)
	{
	  pedwarn_init ("excess elements in scalar initializer");
	  break;
	}
      else
	{
	  if (value)
	    output_init_element (value, constructor_type, NULL_TREE, 1);
	  constructor_fields = 0;
	}

      /* Handle range initializers either at this level or anywhere higher
	 in the designator stack.  */
      if (constructor_range_stack)
	{
	  struct constructor_range_stack *p, *range_stack;
	  int finish = 0;

	  range_stack = constructor_range_stack;
	  constructor_range_stack = 0;
	  while (constructor_stack != range_stack->stack)
	    {
	      if (!constructor_stack->implicit)
		abort ();
	      process_init_element (pop_init_level (1));
	    }
	  for (p = range_stack;
	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
	       p = p->prev)
	    {
	      if (!constructor_stack->implicit)
		abort ();
	      process_init_element (pop_init_level (1));
	    }

	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
	    finish = 1;

	  while (1)
	    {
	      constructor_index = p->index;
	      constructor_fields = p->fields;
	      if (finish && p->range_end && p->index == p->range_start)
		{
		  finish = 0;
		  p->prev = 0;
		}
	      p = p->next;
	      if (!p)
		break;
	      push_init_level (2);
	      p->stack = constructor_stack;
	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
		p->index = p->range_start;
	    }

	  if (!finish)
	    constructor_range_stack = range_stack;
	  continue;
	}

      break;
    }

  constructor_range_stack = 0;
}

/* Build a complete asm-statement, whose components are a CV_QUALIFIER
   (guaranteed to be 'volatile' or null) and ARGS (represented using
   an ASM_EXPR node).  */
tree
build_asm_stmt (tree cv_qualifier, tree args)
{
  if (!ASM_VOLATILE_P (args) && cv_qualifier)
    ASM_VOLATILE_P (args) = 1;
  return add_stmt (args);
}

/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
   SIMPLE indicates whether there was anything at all after the
   string in the asm expression -- asm("blah") and asm("blah" : )
   are subtly different.  We use a ASM_EXPR node to represent this.  */
tree
build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
		bool simple)
{
  tree tail;
  tree args;
  int i;
  const char *constraint;
  bool allows_mem, allows_reg, is_inout;
  int ninputs;
  int noutputs;

  ninputs = list_length (inputs);
  noutputs = list_length (outputs);

  /* Remove output conversions that change the type but not the mode.  */
  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
    {
      tree output = TREE_VALUE (tail);
      STRIP_NOPS (output);
      TREE_VALUE (tail) = output;
      lvalue_or_else (output, "invalid lvalue in asm statement");

      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));

      if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
                                    &allows_mem, &allows_reg, &is_inout))
        {
          /* By marking this operand as erroneous, we will not try
          to process this operand again in expand_asm_operands.  */
          TREE_VALUE (tail) = error_mark_node;
          continue;
        }

      /* If the operand is a DECL that is going to end up in
        memory, assume it is addressable.  This is a bit more
        conservative than it would ideally be; the exact test is
        buried deep in expand_asm_operands and depends on the
        DECL_RTL for the OPERAND -- which we don't have at this
        point.  */
      if (!allows_reg && DECL_P (output))
        c_mark_addressable (output);
    }

  /* Perform default conversions on array and function inputs.
     Don't do this for other types as it would screw up operands
     expected to be in memory.  */
  for (tail = inputs; tail; tail = TREE_CHAIN (tail))
    TREE_VALUE (tail) = default_function_array_conversion (TREE_VALUE (tail));

  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);

  /* Simple asm statements are treated as volatile.  */
  if (simple)
    {
      ASM_VOLATILE_P (args) = 1;
      ASM_INPUT_P (args) = 1;
    }
  return args;
}

/* Generate a goto statement to LABEL.  */

tree
c_finish_goto_label (tree label)
{
  tree decl = lookup_label (label);
  if (!decl)
    return NULL_TREE;

  TREE_USED (decl) = 1;
  return add_stmt (build (GOTO_EXPR, void_type_node, decl));
}

/* Generate a computed goto statement to EXPR.  */

tree
c_finish_goto_ptr (tree expr)
{
  if (pedantic)
    pedwarn ("ISO C forbids `goto *expr;'");
  expr = convert (ptr_type_node, expr);
  return add_stmt (build (GOTO_EXPR, void_type_node, expr));
}

/* Generate a C `return' statement.  RETVAL is the expression for what
   to return, or a null pointer for `return;' with no value.  */

tree
c_finish_return (tree retval)
{
  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));

  if (TREE_THIS_VOLATILE (current_function_decl))
    warning ("function declared `noreturn' has a `return' statement");

  if (!retval)
    {
      current_function_returns_null = 1;
      if ((warn_return_type || flag_isoc99)
	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
	pedwarn_c99 ("`return' with no value, in function returning non-void");
    }
  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
    {
      current_function_returns_null = 1;
      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
	pedwarn ("`return' with a value, in function returning void");
    }
  else
    {
      tree t = convert_for_assignment (valtype, retval, _("return"),
				       NULL_TREE, NULL_TREE, 0);
      tree res = DECL_RESULT (current_function_decl);
      tree inner;

      current_function_returns_value = 1;
      if (t == error_mark_node)
	return NULL_TREE;

      inner = t = convert (TREE_TYPE (res), t);

      /* Strip any conversions, additions, and subtractions, and see if
	 we are returning the address of a local variable.  Warn if so.  */
      while (1)
	{
	  switch (TREE_CODE (inner))
	    {
	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
	    case PLUS_EXPR:
	      inner = TREE_OPERAND (inner, 0);
	      continue;

	    case MINUS_EXPR:
	      /* If the second operand of the MINUS_EXPR has a pointer
		 type (or is converted from it), this may be valid, so
		 don't give a warning.  */
	      {
		tree op1 = TREE_OPERAND (inner, 1);

		while (! POINTER_TYPE_P (TREE_TYPE (op1))
		       && (TREE_CODE (op1) == NOP_EXPR
			   || TREE_CODE (op1) == NON_LVALUE_EXPR
			   || TREE_CODE (op1) == CONVERT_EXPR))
		  op1 = TREE_OPERAND (op1, 0);

		if (POINTER_TYPE_P (TREE_TYPE (op1)))
		  break;

		inner = TREE_OPERAND (inner, 0);
		continue;
	      }

	    case ADDR_EXPR:
	      inner = TREE_OPERAND (inner, 0);

	      while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
		inner = TREE_OPERAND (inner, 0);

	      if (DECL_P (inner)
		  && ! DECL_EXTERNAL (inner)
		  && ! TREE_STATIC (inner)
		  && DECL_CONTEXT (inner) == current_function_decl)
		warning ("function returns address of local variable");
	      break;

	    default:
	      break;
	    }

	  break;
	}

      retval = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
    }

  return add_stmt (build_stmt (RETURN_EXPR, retval));
}

struct c_switch {
  /* The SWITCH_STMT being built.  */
  tree switch_stmt;
  /* A splay-tree mapping the low element of a case range to the high
     element, or NULL_TREE if there is no high element.  Used to
     determine whether or not a new case label duplicates an old case
     label.  We need a tree, rather than simply a hash table, because
     of the GNU case range extension.  */
  splay_tree cases;
  /* The next node on the stack.  */
  struct c_switch *next;
};

/* A stack of the currently active switch statements.  The innermost
   switch statement is on the top of the stack.  There is no need to
   mark the stack for garbage collection because it is only active
   during the processing of the body of a function, and we never
   collect at that point.  */

struct c_switch *c_switch_stack;

/* Start a C switch statement, testing expression EXP.  Return the new
   SWITCH_STMT.  */

tree
c_start_case (tree exp)
{
  enum tree_code code;
  tree type, orig_type = error_mark_node;
  struct c_switch *cs;

  if (exp != error_mark_node)
    {
      code = TREE_CODE (TREE_TYPE (exp));
      orig_type = TREE_TYPE (exp);

      if (! INTEGRAL_TYPE_P (orig_type)
	  && code != ERROR_MARK)
	{
	  error ("switch quantity not an integer");
	  exp = integer_zero_node;
	}
      else
	{
	  type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));

	  if (warn_traditional && !in_system_header
	      && (type == long_integer_type_node
		  || type == long_unsigned_type_node))
	    warning ("`long' switch expression not converted to `int' in ISO C");

	  exp = default_conversion (exp);
	  type = TREE_TYPE (exp);
	}
    }

  /* Add this new SWITCH_STMT to the stack.  */
  cs = xmalloc (sizeof (*cs));
  cs->switch_stmt = build_stmt (SWITCH_STMT, exp, NULL_TREE, orig_type);
  cs->cases = splay_tree_new (case_compare, NULL, NULL);
  cs->next = c_switch_stack;
  c_switch_stack = cs;

  return add_stmt (cs->switch_stmt);
}

/* Process a case label.  */

tree
do_case (tree low_value, tree high_value)
{
  tree label = NULL_TREE;

  if (c_switch_stack)
    {
      label = c_add_case_label (c_switch_stack->cases,
				SWITCH_COND (c_switch_stack->switch_stmt),
				low_value, high_value);
      if (label == error_mark_node)
	label = NULL_TREE;
    }
  else if (low_value)
    error ("case label not within a switch statement");
  else
    error ("`default' label not within a switch statement");

  return label;
}

/* Finish the switch statement.  */

void
c_finish_case (tree body)
{
  struct c_switch *cs = c_switch_stack;

  SWITCH_BODY (cs->switch_stmt) = body;

  /* Emit warnings as needed.  */
  c_do_switch_warnings (cs->cases, cs->switch_stmt);

  /* Pop the stack.  */
  c_switch_stack = cs->next;
  splay_tree_delete (cs->cases);
  free (cs);
}

/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
   statement, and was not surrounded with parenthesis.  */

void
c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
		  tree else_block, bool nested_if)
{
  tree stmt;

  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
  if (warn_parentheses && nested_if && else_block == NULL)
    {
      tree inner_if = then_block;

      /* We know from the grammar productions that there is an IF nested
	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
	 it might not be exactly THEN_BLOCK, but should be the last
	 non-container statement within.  */
      while (1)
	switch (TREE_CODE (inner_if))
	  {
	  case COND_EXPR:
	    goto found;
	  case BIND_EXPR:
	    inner_if = BIND_EXPR_BODY (inner_if);
	    break;
	  case STATEMENT_LIST:
	    inner_if = expr_last (then_block);
	    break;
	  case TRY_FINALLY_EXPR:
	  case TRY_CATCH_EXPR:
	    inner_if = TREE_OPERAND (inner_if, 0);
	    break;
	  default:
	    abort ();
	  }
    found:

      if (COND_EXPR_ELSE (inner_if))
	 warning ("%Hsuggest explicit braces to avoid ambiguous `else'",
		  &if_locus);
    }

  /* Diagnose ";" via the special empty statement node that we create.  */
  if (extra_warnings)
    {
      if (TREE_CODE (then_block) == NOP_EXPR && !TREE_TYPE (then_block))
	{
	  if (!else_block)
	    warning ("%Hempty body in an if-statement",
		     EXPR_LOCUS (then_block));
	  then_block = alloc_stmt_list ();
	}
      if (else_block
	  && TREE_CODE (else_block) == NOP_EXPR
	  && !TREE_TYPE (else_block))
	{
	  warning ("%Hempty body in an else-statement",
		   EXPR_LOCUS (else_block));
	  else_block = alloc_stmt_list ();
	}
    }

  stmt = build3 (COND_EXPR, NULL_TREE, cond, then_block, else_block);
  SET_EXPR_LOCATION (stmt, if_locus);
  add_stmt (stmt);
}

/* Emit a general-purpose loop construct.  START_LOCUS is the location of
   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
   is false for DO loops.  INCR is the FOR increment expression.  BODY is
   the statement controlled by the loop.  BLAB is the break label.  CLAB is
   the continue label.  Everything is allowed to be NULL.  */

void
c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
	       tree blab, tree clab, bool cond_is_first)
{
  tree entry = NULL, exit = NULL, t;

  /* Detect do { ... } while (0) and don't generate loop construct.  */
  if (cond && !cond_is_first && integer_zerop (cond))
    cond = NULL;
  if (cond_is_first || cond)
    {
      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
 
      /* If we have an exit condition, then we build an IF with gotos either
         out of the loop, or to the top of it.  If there's no exit condition,
         then we just build a jump back to the top.  */
      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
 
      if (cond)
        {
          /* Canonicalize the loop condition to the end.  This means
             generating a branch to the loop condition.  Reuse the
             continue label, if possible.  */
          if (cond_is_first)
            {
              if (incr || !clab)
                {
                  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
                  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
                }
              else
                t = build1 (GOTO_EXPR, void_type_node, clab);
	      SET_EXPR_LOCATION (t, start_locus);
              add_stmt (t);
            }
 
	  t = build_and_jump (&blab);
          exit = build (COND_EXPR, void_type_node, cond, exit, t);
          exit = fold (exit);
	  if (cond_is_first)
            SET_EXPR_LOCATION (exit, start_locus);
	  else
            SET_EXPR_LOCATION (exit, input_location);
        }
 
      add_stmt (top);
    }
 
  if (body)
    add_stmt (body);
  if (clab)
    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
  if (incr)
    add_stmt (incr);
  if (entry)
    add_stmt (entry);
  if (exit)
    add_stmt (exit);
  if (blab)
    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
}

tree
c_finish_bc_stmt (tree *label_p, bool is_break)
{
  tree label = *label_p;

  if (!label)
    *label_p = label = create_artificial_label ();
  else if (TREE_CODE (label) != LABEL_DECL)
    {
      if (is_break)
	error ("break statement not within loop or switch");
      else
        error ("continue statement not within a loop");
      return NULL_TREE;
    }

  return add_stmt (build (GOTO_EXPR, void_type_node, label));
}

/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */

static void
emit_side_effect_warnings (tree expr)
{
  if (expr == error_mark_node)
    ;
  else if (!TREE_SIDE_EFFECTS (expr))
    {
      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
	warning ("%Hstatement with no effect",
		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
    }
  else if (warn_unused_value)
    warn_if_unused_value (expr, input_location);
}

/* Process an expression as if it were a complete statement.  Emit
   diagnostics, but do not call ADD_STMT.  */

tree
c_process_expr_stmt (tree expr)
{
  if (!expr)
    return NULL_TREE;

  /* Do default conversion if safe and possibly important,
     in case within ({...}).  */
  if ((TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE
       && (flag_isoc99 || lvalue_p (expr)))
      || TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE)
    expr = default_conversion (expr);

  if (warn_sequence_point)
    verify_sequence_points (expr);

  if (TREE_TYPE (expr) != error_mark_node
      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
    error ("expression statement has incomplete type");

  /* If we're not processing a statement expression, warn about unused values.
     Warnings for statement expressions will be emitted later, once we figure
     out which is the result.  */
  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
      && (extra_warnings || warn_unused_value))
    emit_side_effect_warnings (expr);

  /* If the expression is not of a type to which we cannot assign a line
     number, wrap the thing in a no-op NOP_EXPR.  */
  if (DECL_P (expr) || TREE_CODE_CLASS (TREE_CODE (expr)) == 'c')
    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);

  if (EXPR_P (expr))
    SET_EXPR_LOCATION (expr, input_location);

  return expr;
}

/* Emit an expression as a statement.  */

tree
c_finish_expr_stmt (tree expr)
{
  if (expr)
    return add_stmt (c_process_expr_stmt (expr));
  else
    return NULL;
}

/* Do the opposite and emit a statement as an expression.  To begin,
   create a new binding level and return it.  */

tree
c_begin_stmt_expr (void)
{
  tree ret;

  /* We must force a BLOCK for this level so that, if it is not expanded
     later, there is a way to turn off the entire subtree of blocks that
     are contained in it.  */
  keep_next_level ();
  ret = c_begin_compound_stmt (true);

  /* Mark the current statement list as belonging to a statement list.  */
  STATEMENT_LIST_STMT_EXPR (ret) = 1;

  return ret;
}

tree
c_finish_stmt_expr (tree body)
{
  tree last, type, tmp, val;
  tree *last_p;

  body = c_end_compound_stmt (body, true);

  /* Locate the last statement in BODY.  See c_end_compound_stmt
     about always returning a BIND_EXPR.  */
  last_p = &BIND_EXPR_BODY (body);
  last = BIND_EXPR_BODY (body);

 continue_searching:
  if (TREE_CODE (last) == STATEMENT_LIST)
    {
      tree_stmt_iterator i;

      /* This can happen with degenerate cases like ({ }).  No value.  */
      if (!TREE_SIDE_EFFECTS (last))
	return body;

      /* If we're supposed to generate side effects warnings, process
	 all of the statements except the last.  */
      if (extra_warnings || warn_unused_value)
	{
	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
	    emit_side_effect_warnings (tsi_stmt (i));
	}
      else
	i = tsi_last (last);
      last_p = tsi_stmt_ptr (i);
      last = *last_p;
    }

  /* If the end of the list is exception related, then the list was split
     by a call to push_cleanup.  Continue searching.  */
  if (TREE_CODE (last) == TRY_FINALLY_EXPR
      || TREE_CODE (last) == TRY_CATCH_EXPR)
    {
      last_p = &TREE_OPERAND (last, 0);
      last = *last_p;
      goto continue_searching;
    }

  /* In the case that the BIND_EXPR is not necessary, return the
     expression out from inside it.  */
  if (last == error_mark_node
      || (last == BIND_EXPR_BODY (body)
	  && BIND_EXPR_VARS (body) == NULL))
    return last;

  /* Extract the type of said expression.  */
  type = TREE_TYPE (last);

  /* If we're not returning a value at all, then the BIND_EXPR that
     we already have is a fine expression to return.  */
  if (!type || VOID_TYPE_P (type))
    return body;

  /* Now that we've located the expression containing the value, it seems
     silly to make voidify_wrapper_expr repeat the process.  Create a
     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
  tmp = create_tmp_var_raw (type, NULL);

  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
     tree_expr_nonnegative_p giving up immediately.  */
  val = last;
  if (TREE_CODE (val) == NOP_EXPR
      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
    val = TREE_OPERAND (val, 0);

  *last_p = build (MODIFY_EXPR, void_type_node, tmp, val);
  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));

  return build (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
}

/* Begin and end compound statements.  This is as simple as pushing
   and popping new statement lists from the tree.  */

tree
c_begin_compound_stmt (bool do_scope)
{
  tree stmt = push_stmt_list ();
  if (do_scope)
    push_scope ();
  return stmt;
}

tree
c_end_compound_stmt (tree stmt, bool do_scope)
{
  tree block = NULL;

  if (do_scope)
    {
      if (c_dialect_objc ())
	objc_clear_super_receiver ();
      block = pop_scope ();
    }

  stmt = pop_stmt_list (stmt);
  stmt = c_build_bind_expr (block, stmt);

  /* If this compound statement is nested immediately inside a statement
     expression, then force a BIND_EXPR to be created.  Otherwise we'll
     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
     STATEMENT_LISTs merge, and thus we can lose track of what statement
     was really last.  */
  if (cur_stmt_list
      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
      && TREE_CODE (stmt) != BIND_EXPR)
    {
      stmt = build (BIND_EXPR, void_type_node, NULL, stmt, NULL);
      TREE_SIDE_EFFECTS (stmt) = 1;
    }

  return stmt;
}

/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
   when the current scope is exited.  EH_ONLY is true when this is not
   meant to apply to normal control flow transfer.  */

void
push_cleanup (tree decl ATTRIBUTE_UNUSED, tree cleanup, bool eh_only)
{
  enum tree_code code;
  tree stmt, list;
  bool stmt_expr;

  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
  stmt = build_stmt (code, NULL, cleanup);
  add_stmt (stmt);
  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
  list = push_stmt_list ();
  TREE_OPERAND (stmt, 0) = list;
  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
}

/* Build a binary-operation expression without default conversions.
   CODE is the kind of expression to build.
   This function differs from `build' in several ways:
   the data type of the result is computed and recorded in it,
   warnings are generated if arg data types are invalid,
   special handling for addition and subtraction of pointers is known,
   and some optimization is done (operations on narrow ints
   are done in the narrower type when that gives the same result).
   Constant folding is also done before the result is returned.

   Note that the operands will never have enumeral types, or function
   or array types, because either they will have the default conversions
   performed or they have both just been converted to some other type in which
   the arithmetic is to be done.  */

tree
build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
		 int convert_p)
{
  tree type0, type1;
  enum tree_code code0, code1;
  tree op0, op1;

  /* Expression code to give to the expression when it is built.
     Normally this is CODE, which is what the caller asked for,
     but in some special cases we change it.  */
  enum tree_code resultcode = code;

  /* Data type in which the computation is to be performed.
     In the simplest cases this is the common type of the arguments.  */
  tree result_type = NULL;

  /* Nonzero means operands have already been type-converted
     in whatever way is necessary.
     Zero means they need to be converted to RESULT_TYPE.  */
  int converted = 0;

  /* Nonzero means create the expression with this type, rather than
     RESULT_TYPE.  */
  tree build_type = 0;

  /* Nonzero means after finally constructing the expression
     convert it to this type.  */
  tree final_type = 0;

  /* Nonzero if this is an operation like MIN or MAX which can
     safely be computed in short if both args are promoted shorts.
     Also implies COMMON.
     -1 indicates a bitwise operation; this makes a difference
     in the exact conditions for when it is safe to do the operation
     in a narrower mode.  */
  int shorten = 0;

  /* Nonzero if this is a comparison operation;
     if both args are promoted shorts, compare the original shorts.
     Also implies COMMON.  */
  int short_compare = 0;

  /* Nonzero if this is a right-shift operation, which can be computed on the
     original short and then promoted if the operand is a promoted short.  */
  int short_shift = 0;

  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
  int common = 0;

  if (convert_p)
    {
      op0 = default_conversion (orig_op0);
      op1 = default_conversion (orig_op1);
    }
  else
    {
      op0 = orig_op0;
      op1 = orig_op1;
    }

  type0 = TREE_TYPE (op0);
  type1 = TREE_TYPE (op1);

  /* The expression codes of the data types of the arguments tell us
     whether the arguments are integers, floating, pointers, etc.  */
  code0 = TREE_CODE (type0);
  code1 = TREE_CODE (type1);

  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
  STRIP_TYPE_NOPS (op0);
  STRIP_TYPE_NOPS (op1);

  /* If an error was already reported for one of the arguments,
     avoid reporting another error.  */

  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
    return error_mark_node;

  switch (code)
    {
    case PLUS_EXPR:
      /* Handle the pointer + int case.  */
      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
	return pointer_int_sum (PLUS_EXPR, op0, op1);
      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
	return pointer_int_sum (PLUS_EXPR, op1, op0);
      else
	common = 1;
      break;

    case MINUS_EXPR:
      /* Subtraction of two similar pointers.
	 We must subtract them as integers, then divide by object size.  */
      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
	  && comp_target_types (type0, type1, 1))
	return pointer_diff (op0, op1);
      /* Handle pointer minus int.  Just like pointer plus int.  */
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
	return pointer_int_sum (MINUS_EXPR, op0, op1);
      else
	common = 1;
      break;

    case MULT_EXPR:
      common = 1;
      break;

    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* Floating point division by zero is a legitimate way to obtain
	 infinities and NaNs.  */
      if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
	warning ("division by zero");

      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
	{
	  if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
	    resultcode = RDIV_EXPR;
	  else
	    /* Although it would be tempting to shorten always here, that
	       loses on some targets, since the modulo instruction is
	       undefined if the quotient can't be represented in the
	       computation mode.  We shorten only if unsigned or if
	       dividing by something we know != -1.  */
	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
		       || (TREE_CODE (op1) == INTEGER_CST
			   && ! integer_all_onesp (op1)));
	  common = 1;
	}
      break;

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
	shorten = -1;
      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
	common = 1;
      break;

    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
      if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
	warning ("division by zero");

      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
	{
	  /* Although it would be tempting to shorten always here, that loses
	     on some targets, since the modulo instruction is undefined if the
	     quotient can't be represented in the computation mode.  We shorten
	     only if unsigned or if dividing by something we know != -1.  */
	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
		     || (TREE_CODE (op1) == INTEGER_CST
			 && ! integer_all_onesp (op1)));
	  common = 1;
	}
      break;

    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
	{
	  /* Result of these operations is always an int,
	     but that does not mean the operands should be
	     converted to ints!  */
	  result_type = integer_type_node;
	  op0 = lang_hooks.truthvalue_conversion (op0);
	  op1 = lang_hooks.truthvalue_conversion (op1);
	  converted = 1;
	}
      break;

      /* Shift operations: result has same type as first operand;
	 always convert second operand to int.
	 Also set SHORT_SHIFT if shifting rightward.  */

    case RSHIFT_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
	{
	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
	    {
	      if (tree_int_cst_sgn (op1) < 0)
		warning ("right shift count is negative");
	      else
		{
		  if (! integer_zerop (op1))
		    short_shift = 1;

		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
		    warning ("right shift count >= width of type");
		}
	    }

	  /* Use the type of the value to be shifted.  */
	  result_type = type0;
	  /* Convert the shift-count to an integer, regardless of size
	     of value being shifted.  */
	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
	    op1 = convert (integer_type_node, op1);
	  /* Avoid converting op1 to result_type later.  */
	  converted = 1;
	}
      break;

    case LSHIFT_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
	{
	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
	    {
	      if (tree_int_cst_sgn (op1) < 0)
		warning ("left shift count is negative");

	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
		warning ("left shift count >= width of type");
	    }

	  /* Use the type of the value to be shifted.  */
	  result_type = type0;
	  /* Convert the shift-count to an integer, regardless of size
	     of value being shifted.  */
	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
	    op1 = convert (integer_type_node, op1);
	  /* Avoid converting op1 to result_type later.  */
	  converted = 1;
	}
      break;

    case RROTATE_EXPR:
    case LROTATE_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
	{
	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
	    {
	      if (tree_int_cst_sgn (op1) < 0)
		warning ("shift count is negative");
	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
		warning ("shift count >= width of type");
	    }

	  /* Use the type of the value to be shifted.  */
	  result_type = type0;
	  /* Convert the shift-count to an integer, regardless of size
	     of value being shifted.  */
	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
	    op1 = convert (integer_type_node, op1);
	  /* Avoid converting op1 to result_type later.  */
	  converted = 1;
	}
      break;

    case EQ_EXPR:
    case NE_EXPR:
      if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
	warning ("comparing floating point with == or != is unsafe");
      /* Result of comparison is always int,
	 but don't convert the args to int!  */
      build_type = integer_type_node;
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
	   || code0 == COMPLEX_TYPE)
	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
	      || code1 == COMPLEX_TYPE))
	short_compare = 1;
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
	{
	  tree tt0 = TREE_TYPE (type0);
	  tree tt1 = TREE_TYPE (type1);
	  /* Anything compares with void *.  void * compares with anything.
	     Otherwise, the targets must be compatible
	     and both must be object or both incomplete.  */
	  if (comp_target_types (type0, type1, 1))
	    result_type = common_pointer_type (type0, type1);
	  else if (VOID_TYPE_P (tt0))
	    {
	      /* op0 != orig_op0 detects the case of something
		 whose value is 0 but which isn't a valid null ptr const.  */
	      if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
		  && TREE_CODE (tt1) == FUNCTION_TYPE)
		pedwarn ("ISO C forbids comparison of `void *' with function pointer");
	    }
	  else if (VOID_TYPE_P (tt1))
	    {
	      if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
		  && TREE_CODE (tt0) == FUNCTION_TYPE)
		pedwarn ("ISO C forbids comparison of `void *' with function pointer");
	    }
	  else
	    pedwarn ("comparison of distinct pointer types lacks a cast");

	  if (result_type == NULL_TREE)
	    result_type = ptr_type_node;
	}
      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
	       && integer_zerop (op1))
	result_type = type0;
      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
	       && integer_zerop (op0))
	result_type = type1;
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
	{
	  result_type = type0;
	  pedwarn ("comparison between pointer and integer");
	}
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
	{
	  result_type = type1;
	  pedwarn ("comparison between pointer and integer");
	}
      break;

    case MAX_EXPR:
    case MIN_EXPR:
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
	shorten = 1;
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
	{
	  if (comp_target_types (type0, type1, 1))
	    {
	      result_type = common_pointer_type (type0, type1);
	      if (pedantic
		  && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
	    }
	  else
	    {
	      result_type = ptr_type_node;
	      pedwarn ("comparison of distinct pointer types lacks a cast");
	    }
	}
      break;

    case LE_EXPR:
    case GE_EXPR:
    case LT_EXPR:
    case GT_EXPR:
      build_type = integer_type_node;
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
	short_compare = 1;
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
	{
	  if (comp_target_types (type0, type1, 1))
	    {
	      result_type = common_pointer_type (type0, type1);
	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
		pedwarn ("comparison of complete and incomplete pointers");
	      else if (pedantic
		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
	    }
	  else
	    {
	      result_type = ptr_type_node;
	      pedwarn ("comparison of distinct pointer types lacks a cast");
	    }
	}
      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
	       && integer_zerop (op1))
	{
	  result_type = type0;
	  if (pedantic || extra_warnings)
	    pedwarn ("ordered comparison of pointer with integer zero");
	}
      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
	       && integer_zerop (op0))
	{
	  result_type = type1;
	  if (pedantic)
	    pedwarn ("ordered comparison of pointer with integer zero");
	}
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
	{
	  result_type = type0;
	  pedwarn ("comparison between pointer and integer");
	}
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
	{
	  result_type = type1;
	  pedwarn ("comparison between pointer and integer");
	}
      break;

    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
      build_type = integer_type_node;
      if (code0 != REAL_TYPE || code1 != REAL_TYPE)
	{
	  error ("unordered comparison on non-floating point argument");
	  return error_mark_node;
	}
      common = 1;
      break;

    default:
      break;
    }

  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
    return error_mark_node;

  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
       || code0 == VECTOR_TYPE)
      &&
      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
       || code1 == VECTOR_TYPE))
    {
      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);

      if (shorten || common || short_compare)
	result_type = common_type (type0, type1);

      /* For certain operations (which identify themselves by shorten != 0)
	 if both args were extended from the same smaller type,
	 do the arithmetic in that type and then extend.

	 shorten !=0 and !=1 indicates a bitwise operation.
	 For them, this optimization is safe only if
	 both args are zero-extended or both are sign-extended.
	 Otherwise, we might change the result.
	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
	 but calculated in (unsigned short) it would be (unsigned short)-1.  */

      if (shorten && none_complex)
	{
	  int unsigned0, unsigned1;
	  tree arg0 = get_narrower (op0, &unsigned0);
	  tree arg1 = get_narrower (op1, &unsigned1);
	  /* UNS is 1 if the operation to be done is an unsigned one.  */
	  int uns = TYPE_UNSIGNED (result_type);
	  tree type;

	  final_type = result_type;

	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
	     but it *requires* conversion to FINAL_TYPE.  */

	  if ((TYPE_PRECISION (TREE_TYPE (op0))
	       == TYPE_PRECISION (TREE_TYPE (arg0)))
	      && TREE_TYPE (op0) != final_type)
	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
	  if ((TYPE_PRECISION (TREE_TYPE (op1))
	       == TYPE_PRECISION (TREE_TYPE (arg1)))
	      && TREE_TYPE (op1) != final_type)
	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));

	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */

	  /* For bitwise operations, signedness of nominal type
	     does not matter.  Consider only how operands were extended.  */
	  if (shorten == -1)
	    uns = unsigned0;

	  /* Note that in all three cases below we refrain from optimizing
	     an unsigned operation on sign-extended args.
	     That would not be valid.  */

	  /* Both args variable: if both extended in same way
	     from same width, do it in that width.
	     Do it unsigned if args were zero-extended.  */
	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
	       < TYPE_PRECISION (result_type))
	      && (TYPE_PRECISION (TREE_TYPE (arg1))
		  == TYPE_PRECISION (TREE_TYPE (arg0)))
	      && unsigned0 == unsigned1
	      && (unsigned0 || !uns))
	    result_type
	      = c_common_signed_or_unsigned_type
	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
	  else if (TREE_CODE (arg0) == INTEGER_CST
		   && (unsigned1 || !uns)
		   && (TYPE_PRECISION (TREE_TYPE (arg1))
		       < TYPE_PRECISION (result_type))
		   && (type
		       = c_common_signed_or_unsigned_type (unsigned1,
							   TREE_TYPE (arg1)),
		       int_fits_type_p (arg0, type)))
	    result_type = type;
	  else if (TREE_CODE (arg1) == INTEGER_CST
		   && (unsigned0 || !uns)
		   && (TYPE_PRECISION (TREE_TYPE (arg0))
		       < TYPE_PRECISION (result_type))
		   && (type
		       = c_common_signed_or_unsigned_type (unsigned0,
							   TREE_TYPE (arg0)),
		       int_fits_type_p (arg1, type)))
	    result_type = type;
	}

      /* Shifts can be shortened if shifting right.  */

      if (short_shift)
	{
	  int unsigned_arg;
	  tree arg0 = get_narrower (op0, &unsigned_arg);

	  final_type = result_type;

	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));

	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
	      /* We can shorten only if the shift count is less than the
		 number of bits in the smaller type size.  */
	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
	      /* We cannot drop an unsigned shift after sign-extension.  */
	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
	    {
	      /* Do an unsigned shift if the operand was zero-extended.  */
	      result_type
		= c_common_signed_or_unsigned_type (unsigned_arg,
						    TREE_TYPE (arg0));
	      /* Convert value-to-be-shifted to that type.  */
	      if (TREE_TYPE (op0) != result_type)
		op0 = convert (result_type, op0);
	      converted = 1;
	    }
	}

      /* Comparison operations are shortened too but differently.
	 They identify themselves by setting short_compare = 1.  */

      if (short_compare)
	{
	  /* Don't write &op0, etc., because that would prevent op0
	     from being kept in a register.
	     Instead, make copies of the our local variables and
	     pass the copies by reference, then copy them back afterward.  */
	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
	  enum tree_code xresultcode = resultcode;
	  tree val
	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);

	  if (val != 0)
	    return val;

	  op0 = xop0, op1 = xop1;
	  converted = 1;
	  resultcode = xresultcode;

	  if (warn_sign_compare && skip_evaluation == 0)
	    {
	      int op0_signed = ! TYPE_UNSIGNED (TREE_TYPE (orig_op0));
	      int op1_signed = ! TYPE_UNSIGNED (TREE_TYPE (orig_op1));
	      int unsignedp0, unsignedp1;
	      tree primop0 = get_narrower (op0, &unsignedp0);
	      tree primop1 = get_narrower (op1, &unsignedp1);

	      xop0 = orig_op0;
	      xop1 = orig_op1;
	      STRIP_TYPE_NOPS (xop0);
	      STRIP_TYPE_NOPS (xop1);

	      /* Give warnings for comparisons between signed and unsigned
		 quantities that may fail.

		 Do the checking based on the original operand trees, so that
		 casts will be considered, but default promotions won't be.

		 Do not warn if the comparison is being done in a signed type,
		 since the signed type will only be chosen if it can represent
		 all the values of the unsigned type.  */
	      if (! TYPE_UNSIGNED (result_type))
		/* OK */;
              /* Do not warn if both operands are the same signedness.  */
              else if (op0_signed == op1_signed)
                /* OK */;
	      else
		{
		  tree sop, uop;

		  if (op0_signed)
		    sop = xop0, uop = xop1;
		  else
		    sop = xop1, uop = xop0;

		  /* Do not warn if the signed quantity is an
		     unsuffixed integer literal (or some static
		     constant expression involving such literals or a
		     conditional expression involving such literals)
		     and it is non-negative.  */
		  if (tree_expr_nonnegative_p (sop))
		    /* OK */;
		  /* Do not warn if the comparison is an equality operation,
		     the unsigned quantity is an integral constant, and it
		     would fit in the result if the result were signed.  */
		  else if (TREE_CODE (uop) == INTEGER_CST
			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
			   && int_fits_type_p
			   (uop, c_common_signed_type (result_type)))
		    /* OK */;
		  /* Do not warn if the unsigned quantity is an enumeration
		     constant and its maximum value would fit in the result
		     if the result were signed.  */
		  else if (TREE_CODE (uop) == INTEGER_CST
			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
			   && int_fits_type_p
			   (TYPE_MAX_VALUE (TREE_TYPE(uop)),
			    c_common_signed_type (result_type)))
		    /* OK */;
		  else
		    warning ("comparison between signed and unsigned");
		}

	      /* Warn if two unsigned values are being compared in a size
		 larger than their original size, and one (and only one) is the
		 result of a `~' operator.  This comparison will always fail.

		 Also warn if one operand is a constant, and the constant
		 does not have all bits set that are set in the ~ operand
		 when it is extended.  */

	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
		{
		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
					    &unsignedp0);
		  else
		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
					    &unsignedp1);

		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
		    {
		      tree primop;
		      HOST_WIDE_INT constant, mask;
		      int unsignedp, bits;

		      if (host_integerp (primop0, 0))
			{
			  primop = primop1;
			  unsignedp = unsignedp1;
			  constant = tree_low_cst (primop0, 0);
			}
		      else
			{
			  primop = primop0;
			  unsignedp = unsignedp0;
			  constant = tree_low_cst (primop1, 0);
			}

		      bits = TYPE_PRECISION (TREE_TYPE (primop));
		      if (bits < TYPE_PRECISION (result_type)
			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
			{
			  mask = (~ (HOST_WIDE_INT) 0) << bits;
			  if ((mask & constant) != mask)
			    warning ("comparison of promoted ~unsigned with constant");
			}
		    }
		  else if (unsignedp0 && unsignedp1
			   && (TYPE_PRECISION (TREE_TYPE (primop0))
			       < TYPE_PRECISION (result_type))
			   && (TYPE_PRECISION (TREE_TYPE (primop1))
			       < TYPE_PRECISION (result_type)))
		    warning ("comparison of promoted ~unsigned with unsigned");
		}
	    }
	}
    }

  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
     Then the expression will be built.
     It will be given type FINAL_TYPE if that is nonzero;
     otherwise, it will be given type RESULT_TYPE.  */

  if (!result_type)
    {
      binary_op_error (code);
      return error_mark_node;
    }

  if (! converted)
    {
      if (TREE_TYPE (op0) != result_type)
	op0 = convert (result_type, op0);
      if (TREE_TYPE (op1) != result_type)
	op1 = convert (result_type, op1);
    }

  if (build_type == NULL_TREE)
    build_type = result_type;

  {
    tree result = build (resultcode, build_type, op0, op1);

    /* Treat expressions in initializers specially as they can't trap.  */
    result = require_constant_value ? fold_initializer (result)
				    : fold (result);

    if (final_type != 0)
      result = convert (final_type, result);
    return result;
  }
}

/* Build the result of __builtin_offsetof.  TYPE is the first argument to
   offsetof, i.e. a type.  LIST is a tree_list that encodes component and
   array references; PURPOSE is set for the former and VALUE is set for
   the later.  */

tree
build_offsetof (tree type, tree list)
{
  tree t;

  /* Build "*(type *)0".  */
  t = convert (build_pointer_type (type), null_pointer_node);
  t = build_indirect_ref (t, "");

  /* Build COMPONENT and ARRAY_REF expressions as needed.  */
  for (list = nreverse (list); list ; list = TREE_CHAIN (list))
    if (TREE_PURPOSE (list))
      t = build_component_ref (t, TREE_PURPOSE (list));
    else
      t = build_array_ref (t, TREE_VALUE (list));

  /* Finalize the offsetof expression.  For now all we need to do is take
     the address of the expression we created, and cast that to an integer
     type; this mirrors the traditional macro implementation of offsetof.  */
  t = build_unary_op (ADDR_EXPR, t, 0);
  return convert (size_type_node, t);
}
OpenPOWER on IntegriCloud