1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
|
/* Alias analysis for GNU C
Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
Contributed by John Carr (jfc@mit.edu).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "output.h"
#include "toplev.h"
#include "splay-tree.h"
/* The alias sets assigned to MEMs assist the back-end in determining
which MEMs can alias which other MEMs. In general, two MEMs in
different alias sets to not alias each other. There is one
exception, however. Consider something like:
struct S {int i; double d; };
a store to an `S' can alias something of either type `int' or type
`double'. (However, a store to an `int' cannot alias a `double'
and vice versa.) We indicate this via a tree structure that looks
like:
struct S
/ \
/ \
|/_ _\|
int double
(The arrows are directed and point downwards.) If, when comparing
two alias sets, we can hold one set fixed, and trace the other set
downwards, and at some point find the first set, the two MEMs can
alias one another. In this situation we say the alias set for
`struct S' is the `superset' and that those for `int' and `double'
are `subsets'.
Alias set zero is implicitly a superset of all other alias sets.
However, this is no actual entry for alias set zero. It is an
error to attempt to explicitly construct a subset of zero. */
typedef struct alias_set_entry {
/* The alias set number, as stored in MEM_ALIAS_SET. */
int alias_set;
/* The children of the alias set. These are not just the immediate
children, but, in fact, all children. So, if we have:
struct T { struct S s; float f; }
continuing our example above, the children here will be all of
`int', `double', `float', and `struct S'. */
splay_tree children;
}* alias_set_entry;
static rtx canon_rtx PROTO((rtx));
static int rtx_equal_for_memref_p PROTO((rtx, rtx));
static rtx find_symbolic_term PROTO((rtx));
static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
HOST_WIDE_INT));
static void record_set PROTO((rtx, rtx));
static rtx find_base_term PROTO((rtx));
static int base_alias_check PROTO((rtx, rtx, enum machine_mode,
enum machine_mode));
static rtx find_base_value PROTO((rtx));
static int mems_in_disjoint_alias_sets_p PROTO((rtx, rtx));
static int insert_subset_children PROTO((splay_tree_node,
void*));
static alias_set_entry get_alias_set_entry PROTO((int));
static rtx fixed_scalar_and_varying_struct_p PROTO((rtx, rtx, int (*)(rtx)));
static int aliases_everything_p PROTO((rtx));
static int write_dependence_p PROTO((rtx, rtx, int));
/* Set up all info needed to perform alias analysis on memory references. */
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
different alias sets. We ignore alias sets in functions making use
of variable arguments because the va_arg macros on some systems are
not legal ANSI C. */
#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
mems_in_disjoint_alias_sets_p (MEM1, MEM2)
/* Cap the number of passes we make over the insns propagating alias
information through set chains.
10 is a completely arbitrary choice. */
#define MAX_ALIAS_LOOP_PASSES 10
/* reg_base_value[N] gives an address to which register N is related.
If all sets after the first add or subtract to the current value
or otherwise modify it so it does not point to a different top level
object, reg_base_value[N] is equal to the address part of the source
of the first set.
A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
expressions represent certain special values: function arguments and
the stack, frame, and argument pointers. The contents of an address
expression are not used (but they are descriptive for debugging);
only the address and mode matter. Pointer equality, not rtx_equal_p,
determines whether two ADDRESS expressions refer to the same base
address. The mode determines whether it is a function argument or
other special value. */
rtx *reg_base_value;
rtx *new_reg_base_value;
unsigned int reg_base_value_size; /* size of reg_base_value array */
#define REG_BASE_VALUE(X) \
((unsigned) REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
/* Vector of known invariant relationships between registers. Set in
loop unrolling. Indexed by register number, if nonzero the value
is an expression describing this register in terms of another.
The length of this array is REG_BASE_VALUE_SIZE.
Because this array contains only pseudo registers it has no effect
after reload. */
static rtx *alias_invariant;
/* Vector indexed by N giving the initial (unchanging) value known
for pseudo-register N. */
rtx *reg_known_value;
/* Indicates number of valid entries in reg_known_value. */
static int reg_known_value_size;
/* Vector recording for each reg_known_value whether it is due to a
REG_EQUIV note. Future passes (viz., reload) may replace the
pseudo with the equivalent expression and so we account for the
dependences that would be introduced if that happens. */
/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
assign_parms mention the arg pointer, and there are explicit insns in the
RTL that modify the arg pointer. Thus we must ensure that such insns don't
get scheduled across each other because that would invalidate the REG_EQUIV
notes. One could argue that the REG_EQUIV notes are wrong, but solving
the problem in the scheduler will likely give better code, so we do it
here. */
char *reg_known_equiv_p;
/* True when scanning insns from the start of the rtl to the
NOTE_INSN_FUNCTION_BEG note. */
static int copying_arguments;
/* The splay-tree used to store the various alias set entries. */
static splay_tree alias_sets;
/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
such an entry, or NULL otherwise. */
static alias_set_entry
get_alias_set_entry (alias_set)
int alias_set;
{
splay_tree_node sn =
splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
return sn ? ((alias_set_entry) sn->value) : ((alias_set_entry) 0);
}
/* Returns nonzero value if the alias sets for MEM1 and MEM2 are such
that the two MEMs cannot alias each other. */
static int
mems_in_disjoint_alias_sets_p (mem1, mem2)
rtx mem1;
rtx mem2;
{
alias_set_entry ase;
#ifdef ENABLE_CHECKING
/* Perform a basic sanity check. Namely, that there are no alias sets
if we're not using strict aliasing. This helps to catch bugs
whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
where a MEM is allocated in some way other than by the use of
gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
use alias sets to indicate that spilled registers cannot alias each
other, we might need to remove this check. */
if (!flag_strict_aliasing &&
(MEM_ALIAS_SET (mem1) || MEM_ALIAS_SET (mem2)))
abort ();
#endif
/* The code used in varargs macros are often not conforming ANSI C,
which can trick the compiler into making incorrect aliasing
assumptions in these functions. So, we don't use alias sets in
such a function. FIXME: This should be moved into the front-end;
it is a language-dependent notion, and there's no reason not to
still use these checks to handle globals. */
if (current_function_stdarg || current_function_varargs)
return 0;
if (!MEM_ALIAS_SET (mem1) || !MEM_ALIAS_SET (mem2))
/* We have no alias set information for one of the MEMs, so we
have to assume it can alias anything. */
return 0;
if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
/* The two alias sets are the same, so they may alias. */
return 0;
/* Iterate through each of the children of the first alias set,
comparing it with the second alias set. */
ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
if (ase && splay_tree_lookup (ase->children,
(splay_tree_key) MEM_ALIAS_SET (mem2)))
return 0;
/* Now do the same, but with the alias sets reversed. */
ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
if (ase && splay_tree_lookup (ase->children,
(splay_tree_key) MEM_ALIAS_SET (mem1)))
return 0;
/* The two MEMs are in distinct alias sets, and neither one is the
child of the other. Therefore, they cannot alias. */
return 1;
}
/* Insert the NODE into the splay tree given by DATA. Used by
record_alias_subset via splay_tree_foreach. */
static int
insert_subset_children (node, data)
splay_tree_node node;
void *data;
{
splay_tree_insert ((splay_tree) data,
node->key,
node->value);
return 0;
}
/* Indicate that things in SUBSET can alias things in SUPERSET, but
not vice versa. For example, in C, a store to an `int' can alias a
structure containing an `int', but not vice versa. Here, the
structure would be the SUPERSET and `int' the SUBSET. This
function should be called only once per SUPERSET/SUBSET pair. At
present any given alias set may only be a subset of one superset.
It is illegal for SUPERSET to be zero; everything is implicitly a
subset of alias set zero. */
void
record_alias_subset (superset, subset)
int superset;
int subset;
{
alias_set_entry superset_entry;
alias_set_entry subset_entry;
if (superset == 0)
abort ();
superset_entry = get_alias_set_entry (superset);
if (!superset_entry)
{
/* Create an entry for the SUPERSET, so that we have a place to
attach the SUBSET. */
superset_entry =
(alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
superset_entry->alias_set = superset;
superset_entry->children
= splay_tree_new (splay_tree_compare_ints, 0, 0);
splay_tree_insert (alias_sets,
(splay_tree_key) superset,
(splay_tree_value) superset_entry);
}
subset_entry = get_alias_set_entry (subset);
if (subset_entry)
/* There is an entry for the subset. Enter all of its children
(if they are not already present) as children of the SUPERSET. */
splay_tree_foreach (subset_entry->children,
insert_subset_children,
superset_entry->children);
/* Enter the SUBSET itself as a child of the SUPERSET. */
splay_tree_insert (superset_entry->children,
(splay_tree_key) subset,
/*value=*/0);
}
/* Inside SRC, the source of a SET, find a base address. */
static rtx
find_base_value (src)
register rtx src;
{
switch (GET_CODE (src))
{
case SYMBOL_REF:
case LABEL_REF:
return src;
case REG:
/* At the start of a function argument registers have known base
values which may be lost later. Returning an ADDRESS
expression here allows optimization based on argument values
even when the argument registers are used for other purposes. */
if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
return new_reg_base_value[REGNO (src)];
/* If a pseudo has a known base value, return it. Do not do this
for hard regs since it can result in a circular dependency
chain for registers which have values at function entry.
The test above is not sufficient because the scheduler may move
a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
if (REGNO (src) >= FIRST_PSEUDO_REGISTER
&& (unsigned) REGNO (src) < reg_base_value_size
&& reg_base_value[REGNO (src)])
return reg_base_value[REGNO (src)];
return src;
case MEM:
/* Check for an argument passed in memory. Only record in the
copying-arguments block; it is too hard to track changes
otherwise. */
if (copying_arguments
&& (XEXP (src, 0) == arg_pointer_rtx
|| (GET_CODE (XEXP (src, 0)) == PLUS
&& XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
return gen_rtx_ADDRESS (VOIDmode, src);
return 0;
case CONST:
src = XEXP (src, 0);
if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
break;
/* fall through */
case PLUS:
case MINUS:
{
rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
/* If either operand is a REG, then see if we already have
a known value for it. */
if (GET_CODE (src_0) == REG)
{
temp = find_base_value (src_0);
if (temp)
src_0 = temp;
}
if (GET_CODE (src_1) == REG)
{
temp = find_base_value (src_1);
if (temp)
src_1 = temp;
}
/* Guess which operand is the base address.
If either operand is a symbol, then it is the base. If
either operand is a CONST_INT, then the other is the base. */
if (GET_CODE (src_1) == CONST_INT
|| GET_CODE (src_0) == SYMBOL_REF
|| GET_CODE (src_0) == LABEL_REF
|| GET_CODE (src_0) == CONST)
return find_base_value (src_0);
if (GET_CODE (src_0) == CONST_INT
|| GET_CODE (src_1) == SYMBOL_REF
|| GET_CODE (src_1) == LABEL_REF
|| GET_CODE (src_1) == CONST)
return find_base_value (src_1);
/* This might not be necessary anymore.
If either operand is a REG that is a known pointer, then it
is the base. */
if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
return find_base_value (src_0);
if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
return find_base_value (src_1);
return 0;
}
case LO_SUM:
/* The standard form is (lo_sum reg sym) so look only at the
second operand. */
return find_base_value (XEXP (src, 1));
case AND:
/* If the second operand is constant set the base
address to the first operand. */
if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
return find_base_value (XEXP (src, 0));
return 0;
case ZERO_EXTEND:
case SIGN_EXTEND: /* used for NT/Alpha pointers */
case HIGH:
return find_base_value (XEXP (src, 0));
default:
break;
}
return 0;
}
/* Called from init_alias_analysis indirectly through note_stores. */
/* while scanning insns to find base values, reg_seen[N] is nonzero if
register N has been set in this function. */
static char *reg_seen;
/* Addresses which are known not to alias anything else are identified
by a unique integer. */
static int unique_id;
static void
record_set (dest, set)
rtx dest, set;
{
register int regno;
rtx src;
if (GET_CODE (dest) != REG)
return;
regno = REGNO (dest);
if (set)
{
/* A CLOBBER wipes out any old value but does not prevent a previously
unset register from acquiring a base address (i.e. reg_seen is not
set). */
if (GET_CODE (set) == CLOBBER)
{
new_reg_base_value[regno] = 0;
return;
}
src = SET_SRC (set);
}
else
{
if (reg_seen[regno])
{
new_reg_base_value[regno] = 0;
return;
}
reg_seen[regno] = 1;
new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
GEN_INT (unique_id++));
return;
}
/* This is not the first set. If the new value is not related to the
old value, forget the base value. Note that the following code is
not detected:
extern int x, y; int *p = &x; p += (&y-&x);
ANSI C does not allow computing the difference of addresses
of distinct top level objects. */
if (new_reg_base_value[regno])
switch (GET_CODE (src))
{
case LO_SUM:
case PLUS:
case MINUS:
if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
new_reg_base_value[regno] = 0;
break;
case AND:
if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
new_reg_base_value[regno] = 0;
break;
default:
new_reg_base_value[regno] = 0;
break;
}
/* If this is the first set of a register, record the value. */
else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
&& ! reg_seen[regno] && new_reg_base_value[regno] == 0)
new_reg_base_value[regno] = find_base_value (src);
reg_seen[regno] = 1;
}
/* Called from loop optimization when a new pseudo-register is created. */
void
record_base_value (regno, val, invariant)
int regno;
rtx val;
int invariant;
{
if ((unsigned) regno >= reg_base_value_size)
return;
/* If INVARIANT is true then this value also describes an invariant
relationship which can be used to deduce that two registers with
unknown values are different. */
if (invariant && alias_invariant)
alias_invariant[regno] = val;
if (GET_CODE (val) == REG)
{
if ((unsigned) REGNO (val) < reg_base_value_size)
{
reg_base_value[regno] = reg_base_value[REGNO (val)];
}
return;
}
reg_base_value[regno] = find_base_value (val);
}
static rtx
canon_rtx (x)
rtx x;
{
/* Recursively look for equivalences. */
if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
&& REGNO (x) < reg_known_value_size)
return reg_known_value[REGNO (x)] == x
? x : canon_rtx (reg_known_value[REGNO (x)]);
else if (GET_CODE (x) == PLUS)
{
rtx x0 = canon_rtx (XEXP (x, 0));
rtx x1 = canon_rtx (XEXP (x, 1));
if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
{
/* We can tolerate LO_SUMs being offset here; these
rtl are used for nothing other than comparisons. */
if (GET_CODE (x0) == CONST_INT)
return plus_constant_for_output (x1, INTVAL (x0));
else if (GET_CODE (x1) == CONST_INT)
return plus_constant_for_output (x0, INTVAL (x1));
return gen_rtx_PLUS (GET_MODE (x), x0, x1);
}
}
/* This gives us much better alias analysis when called from
the loop optimizer. Note we want to leave the original
MEM alone, but need to return the canonicalized MEM with
all the flags with their original values. */
else if (GET_CODE (x) == MEM)
{
rtx addr = canon_rtx (XEXP (x, 0));
if (addr != XEXP (x, 0))
{
rtx new = gen_rtx_MEM (GET_MODE (x), addr);
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
MEM_COPY_ATTRIBUTES (new, x);
MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
x = new;
}
}
return x;
}
/* Return 1 if X and Y are identical-looking rtx's.
We use the data in reg_known_value above to see if two registers with
different numbers are, in fact, equivalent. */
static int
rtx_equal_for_memref_p (x, y)
rtx x, y;
{
register int i;
register int j;
register enum rtx_code code;
register const char *fmt;
if (x == 0 && y == 0)
return 1;
if (x == 0 || y == 0)
return 0;
x = canon_rtx (x);
y = canon_rtx (y);
if (x == y)
return 1;
code = GET_CODE (x);
/* Rtx's of different codes cannot be equal. */
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
(REG:SI x) and (REG:HI x) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
if (code == REG)
return REGNO (x) == REGNO (y);
if (code == LABEL_REF)
return XEXP (x, 0) == XEXP (y, 0);
if (code == SYMBOL_REF)
return XSTR (x, 0) == XSTR (y, 0);
if (code == CONST_INT)
return INTVAL (x) == INTVAL (y);
if (code == ADDRESSOF)
return REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0)) && XINT (x, 1) == XINT (y, 1);
/* For commutative operations, the RTX match if the operand match in any
order. Also handle the simple binary and unary cases without a loop. */
if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
|| (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
else if (GET_RTX_CLASS (code) == '1')
return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things.
Limit cases to types which actually appear in addresses. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'E':
/* Two vectors must have the same length. */
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
/* And the corresponding elements must match. */
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
return 0;
break;
case 'e':
if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
return 0;
break;
/* This can happen for an asm which clobbers memory. */
case '0':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return 1;
}
/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
X and return it, or return 0 if none found. */
static rtx
find_symbolic_term (x)
rtx x;
{
register int i;
register enum rtx_code code;
register const char *fmt;
code = GET_CODE (x);
if (code == SYMBOL_REF || code == LABEL_REF)
return x;
if (GET_RTX_CLASS (code) == 'o')
return 0;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
rtx t;
if (fmt[i] == 'e')
{
t = find_symbolic_term (XEXP (x, i));
if (t != 0)
return t;
}
else if (fmt[i] == 'E')
break;
}
return 0;
}
static rtx
find_base_term (x)
register rtx x;
{
switch (GET_CODE (x))
{
case REG:
return REG_BASE_VALUE (x);
case ZERO_EXTEND:
case SIGN_EXTEND: /* Used for Alpha/NT pointers */
case HIGH:
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
return find_base_term (XEXP (x, 0));
case CONST:
x = XEXP (x, 0);
if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
return 0;
/* fall through */
case LO_SUM:
case PLUS:
case MINUS:
{
rtx tmp1 = XEXP (x, 0);
rtx tmp2 = XEXP (x, 1);
/* This is a litle bit tricky since we have to determine which of
the two operands represents the real base address. Otherwise this
routine may return the index register instead of the base register.
That may cause us to believe no aliasing was possible, when in
fact aliasing is possible.
We use a few simple tests to guess the base register. Additional
tests can certainly be added. For example, if one of the operands
is a shift or multiply, then it must be the index register and the
other operand is the base register. */
/* If either operand is known to be a pointer, then use it
to determine the base term. */
if (REG_P (tmp1) && REGNO_POINTER_FLAG (REGNO (tmp1)))
return find_base_term (tmp1);
if (REG_P (tmp2) && REGNO_POINTER_FLAG (REGNO (tmp2)))
return find_base_term (tmp2);
/* Neither operand was known to be a pointer. Go ahead and find the
base term for both operands. */
tmp1 = find_base_term (tmp1);
tmp2 = find_base_term (tmp2);
/* If either base term is named object or a special address
(like an argument or stack reference), then use it for the
base term. */
if (tmp1
&& (GET_CODE (tmp1) == SYMBOL_REF
|| GET_CODE (tmp1) == LABEL_REF
|| (GET_CODE (tmp1) == ADDRESS
&& GET_MODE (tmp1) != VOIDmode)))
return tmp1;
if (tmp2
&& (GET_CODE (tmp2) == SYMBOL_REF
|| GET_CODE (tmp2) == LABEL_REF
|| (GET_CODE (tmp2) == ADDRESS
&& GET_MODE (tmp2) != VOIDmode)))
return tmp2;
/* We could not determine which of the two operands was the
base register and which was the index. So we can determine
nothing from the base alias check. */
return 0;
}
case AND:
if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
return REG_BASE_VALUE (XEXP (x, 0));
return 0;
case SYMBOL_REF:
case LABEL_REF:
return x;
default:
return 0;
}
}
/* Return 0 if the addresses X and Y are known to point to different
objects, 1 if they might be pointers to the same object. */
static int
base_alias_check (x, y, x_mode, y_mode)
rtx x, y;
enum machine_mode x_mode, y_mode;
{
rtx x_base = find_base_term (x);
rtx y_base = find_base_term (y);
/* If the address itself has no known base see if a known equivalent
value has one. If either address still has no known base, nothing
is known about aliasing. */
if (x_base == 0)
{
rtx x_c;
if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
return 1;
x_base = find_base_term (x_c);
if (x_base == 0)
return 1;
}
if (y_base == 0)
{
rtx y_c;
if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
return 1;
y_base = find_base_term (y_c);
if (y_base == 0)
return 1;
}
/* If the base addresses are equal nothing is known about aliasing. */
if (rtx_equal_p (x_base, y_base))
return 1;
/* The base addresses of the read and write are different expressions.
If they are both symbols and they are not accessed via AND, there is
no conflict. We can bring knowledge of object alignment into play
here. For example, on alpha, "char a, b;" can alias one another,
though "char a; long b;" cannot. */
if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
{
if (GET_CODE (x) == AND && GET_CODE (y) == AND)
return 1;
if (GET_CODE (x) == AND
&& (GET_CODE (XEXP (x, 1)) != CONST_INT
|| GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
return 1;
if (GET_CODE (y) == AND
&& (GET_CODE (XEXP (y, 1)) != CONST_INT
|| GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
return 1;
/* Differing symbols never alias. */
return 0;
}
/* If one address is a stack reference there can be no alias:
stack references using different base registers do not alias,
a stack reference can not alias a parameter, and a stack reference
can not alias a global. */
if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
|| (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
return 0;
if (! flag_argument_noalias)
return 1;
if (flag_argument_noalias > 1)
return 0;
/* Weak noalias assertion (arguments are distinct, but may match globals). */
return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
}
/* Return the address of the (N_REFS + 1)th memory reference to ADDR
where SIZE is the size in bytes of the memory reference. If ADDR
is not modified by the memory reference then ADDR is returned. */
rtx
addr_side_effect_eval (addr, size, n_refs)
rtx addr;
int size;
int n_refs;
{
int offset = 0;
switch (GET_CODE (addr))
{
case PRE_INC:
offset = (n_refs + 1) * size;
break;
case PRE_DEC:
offset = -(n_refs + 1) * size;
break;
case POST_INC:
offset = n_refs * size;
break;
case POST_DEC:
offset = -n_refs * size;
break;
default:
return addr;
}
if (offset)
addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
else
addr = XEXP (addr, 0);
return addr;
}
/* Return nonzero if X and Y (memory addresses) could reference the
same location in memory. C is an offset accumulator. When
C is nonzero, we are testing aliases between X and Y + C.
XSIZE is the size in bytes of the X reference,
similarly YSIZE is the size in bytes for Y.
If XSIZE or YSIZE is zero, we do not know the amount of memory being
referenced (the reference was BLKmode), so make the most pessimistic
assumptions.
If XSIZE or YSIZE is negative, we may access memory outside the object
being referenced as a side effect. This can happen when using AND to
align memory references, as is done on the Alpha.
Nice to notice that varying addresses cannot conflict with fp if no
local variables had their addresses taken, but that's too hard now. */
static int
memrefs_conflict_p (xsize, x, ysize, y, c)
register rtx x, y;
int xsize, ysize;
HOST_WIDE_INT c;
{
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
else if (GET_CODE (x) == LO_SUM)
x = XEXP (x, 1);
else
x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
if (GET_CODE (y) == HIGH)
y = XEXP (y, 0);
else if (GET_CODE (y) == LO_SUM)
y = XEXP (y, 1);
else
y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
if (rtx_equal_for_memref_p (x, y))
{
if (xsize <= 0 || ysize <= 0)
return 1;
if (c >= 0 && xsize > c)
return 1;
if (c < 0 && ysize+c > 0)
return 1;
return 0;
}
/* This code used to check for conflicts involving stack references and
globals but the base address alias code now handles these cases. */
if (GET_CODE (x) == PLUS)
{
/* The fact that X is canonicalized means that this
PLUS rtx is canonicalized. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (rtx_equal_for_memref_p (x1, y1))
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
if (rtx_equal_for_memref_p (x0, y0))
return memrefs_conflict_p (xsize, x1, ysize, y1, c);
if (GET_CODE (x1) == CONST_INT)
{
if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x0, ysize, y0,
c - INTVAL (x1) + INTVAL (y1));
else
return memrefs_conflict_p (xsize, x0, ysize, y,
c - INTVAL (x1));
}
else if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
return 1;
}
else if (GET_CODE (x1) == CONST_INT)
return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
}
else if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (GET_CODE (y1) == CONST_INT)
return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
else
return 1;
}
if (GET_CODE (x) == GET_CODE (y))
switch (GET_CODE (x))
{
case MULT:
{
/* Handle cases where we expect the second operands to be the
same, and check only whether the first operand would conflict
or not. */
rtx x0, y0;
rtx x1 = canon_rtx (XEXP (x, 1));
rtx y1 = canon_rtx (XEXP (y, 1));
if (! rtx_equal_for_memref_p (x1, y1))
return 1;
x0 = canon_rtx (XEXP (x, 0));
y0 = canon_rtx (XEXP (y, 0));
if (rtx_equal_for_memref_p (x0, y0))
return (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
/* Can't properly adjust our sizes. */
if (GET_CODE (x1) != CONST_INT)
return 1;
xsize /= INTVAL (x1);
ysize /= INTVAL (x1);
c /= INTVAL (x1);
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
}
case REG:
/* Are these registers known not to be equal? */
if (alias_invariant)
{
unsigned int r_x = REGNO (x), r_y = REGNO (y);
rtx i_x, i_y; /* invariant relationships of X and Y */
i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
if (i_x == 0 && i_y == 0)
break;
if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
ysize, i_y ? i_y : y, c))
return 0;
}
break;
default:
break;
}
/* Treat an access through an AND (e.g. a subword access on an Alpha)
as an access with indeterminate size. Assume that references
besides AND are aligned, so if the size of the other reference is
at least as large as the alignment, assume no other overlap. */
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
{
if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
xsize = -1;
return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
}
if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
{
/* ??? If we are indexing far enough into the array/structure, we
may yet be able to determine that we can not overlap. But we
also need to that we are far enough from the end not to overlap
a following reference, so we do nothing with that for now. */
if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
ysize = -1;
return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
}
if (CONSTANT_P (x))
{
if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
{
c += (INTVAL (y) - INTVAL (x));
return (xsize <= 0 || ysize <= 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
}
if (GET_CODE (x) == CONST)
{
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, canon_rtx (XEXP (y, 0)), c);
else
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, y, c);
}
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, x, ysize,
canon_rtx (XEXP (y, 0)), c);
if (CONSTANT_P (y))
return (xsize < 0 || ysize < 0
|| (rtx_equal_for_memref_p (x, y)
&& (xsize == 0 || ysize == 0
|| (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
return 1;
}
return 1;
}
/* Functions to compute memory dependencies.
Since we process the insns in execution order, we can build tables
to keep track of what registers are fixed (and not aliased), what registers
are varying in known ways, and what registers are varying in unknown
ways.
If both memory references are volatile, then there must always be a
dependence between the two references, since their order can not be
changed. A volatile and non-volatile reference can be interchanged
though.
A MEM_IN_STRUCT reference at a non-QImode non-AND varying address can never
conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
allow QImode aliasing because the ANSI C standard allows character
pointers to alias anything. We are assuming that characters are
always QImode here. We also must allow AND addresses, because they may
generate accesses outside the object being referenced. This is used to
generate aligned addresses from unaligned addresses, for instance, the
alpha storeqi_unaligned pattern. */
/* Read dependence: X is read after read in MEM takes place. There can
only be a dependence here if both reads are volatile. */
int
read_dependence (mem, x)
rtx mem;
rtx x;
{
return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
}
/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
MEM2 is a reference to a structure at a varying address, or returns
MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
value is returned MEM1 and MEM2 can never alias. VARIES_P is used
to decide whether or not an address may vary; it should return
nozero whenever variation is possible. */
static rtx
fixed_scalar_and_varying_struct_p (mem1, mem2, varies_p)
rtx mem1;
rtx mem2;
int (*varies_p) PROTO((rtx));
{
rtx mem1_addr = XEXP (mem1, 0);
rtx mem2_addr = XEXP (mem2, 0);
if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
&& !varies_p (mem1_addr) && varies_p (mem2_addr))
/* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
varying address. */
return mem1;
if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
&& varies_p (mem1_addr) && !varies_p (mem2_addr))
/* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
varying address. */
return mem2;
return NULL_RTX;
}
/* Returns nonzero if something about the mode or address format MEM1
indicates that it might well alias *anything*. */
static int
aliases_everything_p (mem)
rtx mem;
{
if (GET_MODE (mem) == QImode)
/* ANSI C says that a `char*' can point to anything. */
return 1;
if (GET_CODE (XEXP (mem, 0)) == AND)
/* If the address is an AND, its very hard to know at what it is
actually pointing. */
return 1;
return 0;
}
/* True dependence: X is read after store in MEM takes place. */
int
true_dependence (mem, mem_mode, x, varies)
rtx mem;
enum machine_mode mem_mode;
rtx x;
int (*varies) PROTO((rtx));
{
register rtx x_addr, mem_addr;
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
return 1;
if (DIFFERENT_ALIAS_SETS_P (x, mem))
return 0;
/* If X is an unchanging read, then it can't possibly conflict with any
non-unchanging store. It may conflict with an unchanging write though,
because there may be a single store to this address to initialize it.
Just fall through to the code below to resolve the case where we have
both an unchanging read and an unchanging write. This won't handle all
cases optimally, but the possible performance loss should be
negligible. */
if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
return 0;
if (mem_mode == VOIDmode)
mem_mode = GET_MODE (mem);
if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x), mem_mode))
return 0;
x_addr = canon_rtx (XEXP (x, 0));
mem_addr = canon_rtx (XEXP (mem, 0));
if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
SIZE_FOR_MODE (x), x_addr, 0))
return 0;
if (aliases_everything_p (x))
return 1;
/* We cannot use aliases_everyting_p to test MEM, since we must look
at MEM_MODE, rather than GET_MODE (MEM). */
if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
return 1;
/* In true_dependence we also allow BLKmode to alias anything. Why
don't we do this in anti_dependence and output_dependence? */
if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
return 1;
return !fixed_scalar_and_varying_struct_p (mem, x, varies);
}
/* Returns non-zero if a write to X might alias a previous read from
(or, if WRITEP is non-zero, a write to) MEM. */
static int
write_dependence_p (mem, x, writep)
rtx mem;
rtx x;
int writep;
{
rtx x_addr, mem_addr;
rtx fixed_scalar;
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
return 1;
/* If MEM is an unchanging read, then it can't possibly conflict with
the store to X, because there is at most one store to MEM, and it must
have occurred somewhere before MEM. */
if (!writep && RTX_UNCHANGING_P (mem))
return 0;
if (! base_alias_check (XEXP (x, 0), XEXP (mem, 0), GET_MODE (x),
GET_MODE (mem)))
return 0;
x = canon_rtx (x);
mem = canon_rtx (mem);
if (DIFFERENT_ALIAS_SETS_P (x, mem))
return 0;
x_addr = XEXP (x, 0);
mem_addr = XEXP (mem, 0);
if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
SIZE_FOR_MODE (x), x_addr, 0))
return 0;
fixed_scalar
= fixed_scalar_and_varying_struct_p (mem, x, rtx_addr_varies_p);
return (!(fixed_scalar == mem && !aliases_everything_p (x))
&& !(fixed_scalar == x && !aliases_everything_p (mem)));
}
/* Anti dependence: X is written after read in MEM takes place. */
int
anti_dependence (mem, x)
rtx mem;
rtx x;
{
return write_dependence_p (mem, x, /*writep=*/0);
}
/* Output dependence: X is written after store in MEM takes place. */
int
output_dependence (mem, x)
register rtx mem;
register rtx x;
{
return write_dependence_p (mem, x, /*writep=*/1);
}
/* Returns non-zero if X might refer to something which is not
local to the function and is not constant. */
static int
nonlocal_reference_p (x)
rtx x;
{
rtx base;
register RTX_CODE code;
int regno;
code = GET_CODE (x);
if (GET_RTX_CLASS (code) == 'i')
{
/* Constant functions are constant. */
if (code == CALL_INSN && CONST_CALL_P (x))
return 0;
x = PATTERN (x);
code = GET_CODE (x);
}
switch (code)
{
case SUBREG:
if (GET_CODE (SUBREG_REG (x)) == REG)
{
/* Global registers are not local. */
if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
&& global_regs[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)])
return 1;
return 0;
}
break;
case REG:
regno = REGNO (x);
/* Global registers are not local. */
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
return 1;
return 0;
case SCRATCH:
case PC:
case CC0:
case CONST_INT:
case CONST_DOUBLE:
case CONST:
case LABEL_REF:
return 0;
case SYMBOL_REF:
/* Constants in the function's constants pool are constant. */
if (CONSTANT_POOL_ADDRESS_P (x))
return 0;
return 1;
case CALL:
/* Recursion introduces no additional considerations. */
if (GET_CODE (XEXP (x, 0)) == MEM
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& strcmp(XSTR (XEXP (XEXP (x, 0), 0), 0),
IDENTIFIER_POINTER (
DECL_ASSEMBLER_NAME (current_function_decl))) == 0)
return 0;
return 1;
case MEM:
/* Be overly conservative and consider any volatile memory
reference as not local. */
if (MEM_VOLATILE_P (x))
return 1;
base = find_base_term (XEXP (x, 0));
if (base)
{
/* Stack references are local. */
if (GET_CODE (base) == ADDRESS && GET_MODE (base) == Pmode)
return 0;
/* Constants in the function's constant pool are constant. */
if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
return 0;
}
return 1;
case ASM_INPUT:
case ASM_OPERANDS:
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
register char *fmt = GET_RTX_FORMAT (code);
register int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (nonlocal_reference_p (XEXP (x, i)))
return 1;
}
if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (nonlocal_reference_p (XVECEXP (x, i, j)))
return 1;
}
}
}
return 0;
}
/* Mark the function if it is constant. */
void
mark_constant_function ()
{
rtx insn;
if (TREE_PUBLIC (current_function_decl)
|| TREE_READONLY (current_function_decl)
|| TREE_THIS_VOLATILE (current_function_decl)
|| TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode)
return;
/* Determine if this is a constant function. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& nonlocal_reference_p (insn))
return;
/* Mark the function. */
TREE_READONLY (current_function_decl) = 1;
}
static HARD_REG_SET argument_registers;
void
init_alias_once ()
{
register int i;
#ifndef OUTGOING_REGNO
#define OUTGOING_REGNO(N) N
#endif
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
/* Check whether this register can hold an incoming pointer
argument. FUNCTION_ARG_REGNO_P tests outgoing register
numbers, so translate if necessary due to register windows. */
if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
&& HARD_REGNO_MODE_OK (i, Pmode))
SET_HARD_REG_BIT (argument_registers, i);
alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
}
void
init_alias_analysis ()
{
int maxreg = max_reg_num ();
int changed, pass;
register int i;
register unsigned int ui;
register rtx insn;
reg_known_value_size = maxreg;
reg_known_value
= (rtx *) oballoc ((maxreg - FIRST_PSEUDO_REGISTER) * sizeof (rtx))
- FIRST_PSEUDO_REGISTER;
reg_known_equiv_p =
oballoc (maxreg - FIRST_PSEUDO_REGISTER) - FIRST_PSEUDO_REGISTER;
bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER),
(maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER,
(maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char));
/* Overallocate reg_base_value to allow some growth during loop
optimization. Loop unrolling can create a large number of
registers. */
reg_base_value_size = maxreg * 2;
reg_base_value = (rtx *)oballoc (reg_base_value_size * sizeof (rtx));
new_reg_base_value = (rtx *)alloca (reg_base_value_size * sizeof (rtx));
reg_seen = (char *)alloca (reg_base_value_size);
bzero ((char *) reg_base_value, reg_base_value_size * sizeof (rtx));
if (! reload_completed && flag_unroll_loops)
{
alias_invariant = (rtx *)xrealloc (alias_invariant,
reg_base_value_size * sizeof (rtx));
bzero ((char *)alias_invariant, reg_base_value_size * sizeof (rtx));
}
/* The basic idea is that each pass through this loop will use the
"constant" information from the previous pass to propagate alias
information through another level of assignments.
This could get expensive if the assignment chains are long. Maybe
we should throttle the number of iterations, possibly based on
the optimization level or flag_expensive_optimizations.
We could propagate more information in the first pass by making use
of REG_N_SETS to determine immediately that the alias information
for a pseudo is "constant".
A program with an uninitialized variable can cause an infinite loop
here. Instead of doing a full dataflow analysis to detect such problems
we just cap the number of iterations for the loop.
The state of the arrays for the set chain in question does not matter
since the program has undefined behavior. */
pass = 0;
do
{
/* Assume nothing will change this iteration of the loop. */
changed = 0;
/* We want to assign the same IDs each iteration of this loop, so
start counting from zero each iteration of the loop. */
unique_id = 0;
/* We're at the start of the funtion each iteration through the
loop, so we're copying arguments. */
copying_arguments = 1;
/* Wipe the potential alias information clean for this pass. */
bzero ((char *) new_reg_base_value, reg_base_value_size * sizeof (rtx));
/* Wipe the reg_seen array clean. */
bzero ((char *) reg_seen, reg_base_value_size);
/* Mark all hard registers which may contain an address.
The stack, frame and argument pointers may contain an address.
An argument register which can hold a Pmode value may contain
an address even if it is not in BASE_REGS.
The address expression is VOIDmode for an argument and
Pmode for other registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (argument_registers, i))
new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
gen_rtx_REG (Pmode, i));
new_reg_base_value[STACK_POINTER_REGNUM]
= gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
new_reg_base_value[ARG_POINTER_REGNUM]
= gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
new_reg_base_value[FRAME_POINTER_REGNUM]
= gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
= gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
#endif
if (struct_value_incoming_rtx
&& GET_CODE (struct_value_incoming_rtx) == REG)
new_reg_base_value[REGNO (struct_value_incoming_rtx)]
= gen_rtx_ADDRESS (Pmode, struct_value_incoming_rtx);
if (static_chain_rtx
&& GET_CODE (static_chain_rtx) == REG)
new_reg_base_value[REGNO (static_chain_rtx)]
= gen_rtx_ADDRESS (Pmode, static_chain_rtx);
/* Walk the insns adding values to the new_reg_base_value array. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
if (prologue_epilogue_contains (insn))
continue;
#endif
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx note, set;
/* If this insn has a noalias note, process it, Otherwise,
scan for sets. A simple set will have no side effects
which could change the base value of any other register. */
if (GET_CODE (PATTERN (insn)) == SET
&& (find_reg_note (insn, REG_NOALIAS, NULL_RTX)))
record_set (SET_DEST (PATTERN (insn)), NULL_RTX);
else
note_stores (PATTERN (insn), record_set);
set = single_set (insn);
if (set != 0
&& GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
&& (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
&& REG_N_SETS (REGNO (SET_DEST (set))) == 1)
|| (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
&& GET_CODE (XEXP (note, 0)) != EXPR_LIST
&& ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
{
int regno = REGNO (SET_DEST (set));
reg_known_value[regno] = XEXP (note, 0);
reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
}
}
else if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
copying_arguments = 0;
}
/* Now propagate values from new_reg_base_value to reg_base_value. */
for (ui = 0; ui < reg_base_value_size; ui++)
{
if (new_reg_base_value[ui]
&& new_reg_base_value[ui] != reg_base_value[ui]
&& ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
{
reg_base_value[ui] = new_reg_base_value[ui];
changed = 1;
}
}
}
while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
/* Fill in the remaining entries. */
for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
if (reg_known_value[i] == 0)
reg_known_value[i] = regno_reg_rtx[i];
/* Simplify the reg_base_value array so that no register refers to
another register, except to special registers indirectly through
ADDRESS expressions.
In theory this loop can take as long as O(registers^2), but unless
there are very long dependency chains it will run in close to linear
time.
This loop may not be needed any longer now that the main loop does
a better job at propagating alias information. */
pass = 0;
do
{
changed = 0;
pass++;
for (ui = 0; ui < reg_base_value_size; ui++)
{
rtx base = reg_base_value[ui];
if (base && GET_CODE (base) == REG)
{
unsigned int base_regno = REGNO (base);
if (base_regno == ui) /* register set from itself */
reg_base_value[ui] = 0;
else
reg_base_value[ui] = reg_base_value[base_regno];
changed = 1;
}
}
}
while (changed && pass < MAX_ALIAS_LOOP_PASSES);
new_reg_base_value = 0;
reg_seen = 0;
}
void
end_alias_analysis ()
{
reg_known_value = 0;
reg_base_value = 0;
reg_base_value_size = 0;
if (alias_invariant)
{
free ((char *)alias_invariant);
alias_invariant = 0;
}
}
|