1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- S Y S T E M . E X N _ G E N --
-- --
-- B o d y --
-- --
-- --
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
package body System.Exn_Gen is
--------------------
-- Exn_Float_Type --
--------------------
function Exn_Float_Type
(Left : Type_Of_Base;
Right : Integer)
return Type_Of_Base
is
pragma Suppress (Division_Check);
pragma Suppress (Overflow_Check);
pragma Suppress (Range_Check);
Result : Type_Of_Base := 1.0;
Factor : Type_Of_Base := Left;
Exp : Integer := Right;
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2. For positive exponents we
-- multiply the result by this factor, for negative exponents, we
-- Division by this factor.
if Exp >= 0 then
loop
if Exp rem 2 /= 0 then
Result := Result * Factor;
end if;
Exp := Exp / 2;
exit when Exp = 0;
Factor := Factor * Factor;
end loop;
return Result;
-- Negative exponent. For a zero base, we should arguably return an
-- infinity of the right sign, but it is not clear that there is
-- proper authorization to do so, so for now raise Constraint_Error???
elsif Factor = 0.0 then
raise Constraint_Error;
-- Here we have a non-zero base and a negative exponent
else
-- For the negative exponent case, a constraint error during this
-- calculation happens if Factor gets too large, and the proper
-- response is to return 0.0, since what we essentially have is
-- 1.0 / infinity, and the closest model number will be zero.
begin
loop
if Exp rem 2 /= 0 then
Result := Result * Factor;
end if;
Exp := Exp / 2;
exit when Exp = 0;
Factor := Factor * Factor;
end loop;
return 1.0 / Result;
exception
when Constraint_Error =>
return 0.0;
end;
end if;
end Exn_Float_Type;
----------------------
-- Exn_Integer_Type --
----------------------
-- Note that negative exponents get a constraint error because the
-- subtype of the Right argument (the exponent) is Natural.
function Exn_Integer_Type
(Left : Type_Of_Base;
Right : Natural)
return Type_Of_Base
is
pragma Suppress (Division_Check);
pragma Suppress (Overflow_Check);
Result : Type_Of_Base := 1;
Factor : Type_Of_Base := Left;
Exp : Natural := Right;
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2.
-- Note: it is not worth special casing the cases of base values -1,0,+1
-- since the expander does this when the base is a literal, and other
-- cases will be extremely rare.
if Exp /= 0 then
loop
if Exp rem 2 /= 0 then
Result := Result * Factor;
end if;
Exp := Exp / 2;
exit when Exp = 0;
Factor := Factor * Factor;
end loop;
end if;
return Result;
end Exn_Integer_Type;
end System.Exn_Gen;
|