summaryrefslogtreecommitdiffstats
path: root/gcc/ada/namet.adb
blob: 2842dfd4e814b55528b969abe8d81b8991f61dc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                                N A M E T                                 --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2010, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  WARNING: There is a C version of this package. Any changes to this
--  source file must be properly reflected in the C header file namet.h
--  which is created manually from namet.ads and namet.adb.

with Debug;    use Debug;
with Opt;      use Opt;
with Output;   use Output;
with Tree_IO;  use Tree_IO;
with Widechar; use Widechar;

with Interfaces; use Interfaces;

package body Namet is

   Name_Chars_Reserve   : constant := 5000;
   Name_Entries_Reserve : constant := 100;
   --  The names table is locked during gigi processing, since gigi assumes
   --  that the table does not move. After returning from gigi, the names
   --  table is unlocked again, since writing library file information needs
   --  to generate some extra names. To avoid the inefficiency of always
   --  reallocating during this second unlocked phase, we reserve a bit of
   --  extra space before doing the release call.

   Hash_Num : constant Int := 2**16;
   --  Number of headers in the hash table. Current hash algorithm is closely
   --  tailored to this choice, so it can only be changed if a corresponding
   --  change is made to the hash algorithm.

   Hash_Max : constant Int := Hash_Num - 1;
   --  Indexes in the hash header table run from 0 to Hash_Num - 1

   subtype Hash_Index_Type is Int range 0 .. Hash_Max;
   --  Range of hash index values

   Hash_Table : array (Hash_Index_Type) of Name_Id;
   --  The hash table is used to locate existing entries in the names table.
   --  The entries point to the first names table entry whose hash value
   --  matches the hash code. Then subsequent names table entries with the
   --  same hash code value are linked through the Hash_Link fields.

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Hash return Hash_Index_Type;
   pragma Inline (Hash);
   --  Compute hash code for name stored in Name_Buffer (length in Name_Len)

   procedure Strip_Qualification_And_Suffixes;
   --  Given an encoded entity name in Name_Buffer, remove package body
   --  suffix as described for Strip_Package_Body_Suffix, and also remove
   --  all qualification, i.e. names followed by two underscores. The
   --  contents of Name_Buffer is modified by this call, and on return
   --  Name_Buffer and Name_Len reflect the stripped name.

   -----------------------------
   -- Add_Char_To_Name_Buffer --
   -----------------------------

   procedure Add_Char_To_Name_Buffer (C : Character) is
   begin
      if Name_Len < Name_Buffer'Last then
         Name_Len := Name_Len + 1;
         Name_Buffer (Name_Len) := C;
      end if;
   end Add_Char_To_Name_Buffer;

   ----------------------------
   -- Add_Nat_To_Name_Buffer --
   ----------------------------

   procedure Add_Nat_To_Name_Buffer (V : Nat) is
   begin
      if V >= 10 then
         Add_Nat_To_Name_Buffer (V / 10);
      end if;

      Add_Char_To_Name_Buffer (Character'Val (Character'Pos ('0') + V rem 10));
   end Add_Nat_To_Name_Buffer;

   ----------------------------
   -- Add_Str_To_Name_Buffer --
   ----------------------------

   procedure Add_Str_To_Name_Buffer (S : String) is
   begin
      for J in S'Range loop
         Add_Char_To_Name_Buffer (S (J));
      end loop;
   end Add_Str_To_Name_Buffer;

   --------------
   -- Finalize --
   --------------

   procedure Finalize is
      F : array (Int range 0 .. 50) of Int;
      --  N'th entry is the number of chains of length N, except last entry,
      --  which is the number of chains of length F'Last or more.

      Max_Chain_Length : Int := 0;
      --  Maximum length of all chains

      Probes : Int := 0;
      --  Used to compute average number of probes

      Nsyms : Int := 0;
      --  Number of symbols in table

      Verbosity : constant Int range 1 .. 3 := 1;
      pragma Warnings (Off, Verbosity);
      --  This constant indicates the level of verbosity in the output from
      --  this procedure. Currently this can only be changed by editing the
      --  declaration above and recompiling. That's good enough in practice,
      --  since we very rarely need to use this debug option. Settings are:
      --
      --    1 => print basic summary information
      --    2 => in addition print number of entries per hash chain
      --    3 => in addition print content of entries

      Zero : constant Int := Character'Pos ('0');

   begin
      if not Debug_Flag_H then
         return;
      end if;

      for J in F'Range loop
         F (J) := 0;
      end loop;

      for J in Hash_Index_Type loop
         if Hash_Table (J) = No_Name then
            F (0) := F (0) + 1;

         else
            declare
               C : Int;
               N : Name_Id;
               S : Int;

            begin
               C := 0;
               N := Hash_Table (J);

               while N /= No_Name loop
                  N := Name_Entries.Table (N).Hash_Link;
                  C := C + 1;
               end loop;

               Nsyms := Nsyms + 1;
               Probes := Probes + (1 + C) * 100;

               if C > Max_Chain_Length then
                  Max_Chain_Length := C;
               end if;

               if Verbosity >= 2 then
                  Write_Str ("Hash_Table (");
                  Write_Int (J);
                  Write_Str (") has ");
                  Write_Int (C);
                  Write_Str (" entries");
                  Write_Eol;
               end if;

               if C < F'Last then
                  F (C) := F (C) + 1;
               else
                  F (F'Last) := F (F'Last) + 1;
               end if;

               if Verbosity >= 3 then
                  N := Hash_Table (J);
                  while N /= No_Name loop
                     S := Name_Entries.Table (N).Name_Chars_Index;

                     Write_Str ("      ");

                     for J in 1 .. Name_Entries.Table (N).Name_Len loop
                        Write_Char (Name_Chars.Table (S + Int (J)));
                     end loop;

                     Write_Eol;

                     N := Name_Entries.Table (N).Hash_Link;
                  end loop;
               end if;
            end;
         end if;
      end loop;

      Write_Eol;

      for J in F'Range loop
         if F (J) /= 0 then
            Write_Str ("Number of hash chains of length ");

            if J < 10 then
               Write_Char (' ');
            end if;

            Write_Int (J);

            if J = F'Last then
               Write_Str (" or greater");
            end if;

            Write_Str (" = ");
            Write_Int (F (J));
            Write_Eol;
         end if;
      end loop;

      --  Print out average number of probes, in the case where Name_Find is
      --  called for a string that is already in the table.

      Write_Eol;
      Write_Str ("Average number of probes for lookup = ");
      Probes := Probes / Nsyms;
      Write_Int (Probes / 200);
      Write_Char ('.');
      Probes := (Probes mod 200) / 2;
      Write_Char (Character'Val (Zero + Probes / 10));
      Write_Char (Character'Val (Zero + Probes mod 10));
      Write_Eol;

      Write_Str ("Max_Chain_Length = ");
      Write_Int (Max_Chain_Length);
      Write_Eol;
      Write_Str ("Name_Chars'Length = ");
      Write_Int (Name_Chars.Last - Name_Chars.First + 1);
      Write_Eol;
      Write_Str ("Name_Entries'Length = ");
      Write_Int (Int (Name_Entries.Last - Name_Entries.First + 1));
      Write_Eol;
      Write_Str ("Nsyms = ");
      Write_Int (Nsyms);
      Write_Eol;
   end Finalize;

   -----------------------------
   -- Get_Decoded_Name_String --
   -----------------------------

   procedure Get_Decoded_Name_String (Id : Name_Id) is
      C : Character;
      P : Natural;

   begin
      Get_Name_String (Id);

      --  Skip scan if we already know there are no encodings

      if Name_Entries.Table (Id).Name_Has_No_Encodings then
         return;
      end if;

      --  Quick loop to see if there is anything special to do

      P := 1;
      loop
         if P = Name_Len then
            Name_Entries.Table (Id).Name_Has_No_Encodings := True;
            return;

         else
            C := Name_Buffer (P);

            exit when
              C = 'U' or else
              C = 'W' or else
              C = 'Q' or else
              C = 'O';

            P := P + 1;
         end if;
      end loop;

      --  Here we have at least some encoding that we must decode

      Decode : declare
         New_Len : Natural;
         Old     : Positive;
         New_Buf : String (1 .. Name_Buffer'Last);

         procedure Copy_One_Character;
         --  Copy a character from Name_Buffer to New_Buf. Includes case
         --  of copying a Uhh,Whhhh,WWhhhhhhhh sequence and decoding it.

         function Hex (N : Natural) return Word;
         --  Scans past N digits using Old pointer and returns hex value

         procedure Insert_Character (C : Character);
         --  Insert a new character into output decoded name

         ------------------------
         -- Copy_One_Character --
         ------------------------

         procedure Copy_One_Character is
            C : Character;

         begin
            C := Name_Buffer (Old);

            --  U (upper half insertion case)

            if C = 'U'
              and then Old < Name_Len
              and then Name_Buffer (Old + 1) not in 'A' .. 'Z'
              and then Name_Buffer (Old + 1) /= '_'
            then
               Old := Old + 1;

               --  If we have upper half encoding, then we have to set an
               --  appropriate wide character sequence for this character.

               if Upper_Half_Encoding then
                  Widechar.Set_Wide (Char_Code (Hex (2)), New_Buf, New_Len);

                  --  For other encoding methods, upper half characters can
                  --  simply use their normal representation.

               else
                  Insert_Character (Character'Val (Hex (2)));
               end if;

            --  WW (wide wide character insertion)

            elsif C = 'W'
              and then Old < Name_Len
              and then Name_Buffer (Old + 1) = 'W'
            then
               Old := Old + 2;
               Widechar.Set_Wide (Char_Code (Hex (8)), New_Buf, New_Len);

            --  W (wide character insertion)

            elsif C = 'W'
              and then Old < Name_Len
              and then Name_Buffer (Old + 1) not in 'A' .. 'Z'
              and then Name_Buffer (Old + 1) /= '_'
            then
               Old := Old + 1;
               Widechar.Set_Wide (Char_Code (Hex (4)), New_Buf, New_Len);

            --  Any other character is copied unchanged

            else
               Insert_Character (C);
               Old := Old + 1;
            end if;
         end Copy_One_Character;

         ---------
         -- Hex --
         ---------

         function Hex (N : Natural) return Word is
            T : Word := 0;
            C : Character;

         begin
            for J in 1 .. N loop
               C := Name_Buffer (Old);
               Old := Old + 1;

               pragma Assert (C in '0' .. '9' or else C in 'a' .. 'f');

               if C <= '9' then
                  T := 16 * T + Character'Pos (C) - Character'Pos ('0');
               else -- C in 'a' .. 'f'
                  T := 16 * T + Character'Pos (C) - (Character'Pos ('a') - 10);
               end if;
            end loop;

            return T;
         end Hex;

         ----------------------
         -- Insert_Character --
         ----------------------

         procedure Insert_Character (C : Character) is
         begin
            New_Len := New_Len + 1;
            New_Buf (New_Len) := C;
         end Insert_Character;

      --  Start of processing for Decode

      begin
         New_Len := 0;
         Old := 1;

         --  Loop through characters of name

         while Old <= Name_Len loop

            --  Case of character literal, put apostrophes around character

            if Name_Buffer (Old) = 'Q'
              and then Old < Name_Len
            then
               Old := Old + 1;
               Insert_Character (''');
               Copy_One_Character;
               Insert_Character (''');

            --  Case of operator name

            elsif Name_Buffer (Old) = 'O'
              and then Old < Name_Len
              and then Name_Buffer (Old + 1) not in 'A' .. 'Z'
              and then Name_Buffer (Old + 1) /= '_'
            then
               Old := Old + 1;

               declare
                  --  This table maps the 2nd and 3rd characters of the name
                  --  into the required output. Two blanks means leave the
                  --  name alone

                  Map : constant String :=
                     "ab  " &               --  Oabs         => "abs"
                     "ad+ " &               --  Oadd         => "+"
                     "an  " &               --  Oand         => "and"
                     "co& " &               --  Oconcat      => "&"
                     "di/ " &               --  Odivide      => "/"
                     "eq= " &               --  Oeq          => "="
                     "ex**" &               --  Oexpon       => "**"
                     "gt> " &               --  Ogt          => ">"
                     "ge>=" &               --  Oge          => ">="
                     "le<=" &               --  Ole          => "<="
                     "lt< " &               --  Olt          => "<"
                     "mo  " &               --  Omod         => "mod"
                     "mu* " &               --  Omutliply    => "*"
                     "ne/=" &               --  One          => "/="
                     "no  " &               --  Onot         => "not"
                     "or  " &               --  Oor          => "or"
                     "re  " &               --  Orem         => "rem"
                     "su- " &               --  Osubtract    => "-"
                     "xo  ";                --  Oxor         => "xor"

                  J : Integer;

               begin
                  Insert_Character ('"');

                  --  Search the map. Note that this loop must terminate, if
                  --  not we have some kind of internal error, and a constraint
                  --  error may be raised.

                  J := Map'First;
                  loop
                     exit when Name_Buffer (Old) = Map (J)
                       and then Name_Buffer (Old + 1) = Map (J + 1);
                     J := J + 4;
                  end loop;

                  --  Special operator name

                  if Map (J + 2) /= ' ' then
                     Insert_Character (Map (J + 2));

                     if Map (J + 3) /= ' ' then
                        Insert_Character (Map (J + 3));
                     end if;

                     Insert_Character ('"');

                     --  Skip past original operator name in input

                     while Old <= Name_Len
                       and then Name_Buffer (Old) in 'a' .. 'z'
                     loop
                        Old := Old + 1;
                     end loop;

                  --  For other operator names, leave them in lower case,
                  --  surrounded by apostrophes

                  else
                     --  Copy original operator name from input to output

                     while Old <= Name_Len
                        and then Name_Buffer (Old) in 'a' .. 'z'
                     loop
                        Copy_One_Character;
                     end loop;

                     Insert_Character ('"');
                  end if;
               end;

            --  Else copy one character and keep going

            else
               Copy_One_Character;
            end if;
         end loop;

         --  Copy new buffer as result

         Name_Len := New_Len;
         Name_Buffer (1 .. New_Len) := New_Buf (1 .. New_Len);
      end Decode;
   end Get_Decoded_Name_String;

   -------------------------------------------
   -- Get_Decoded_Name_String_With_Brackets --
   -------------------------------------------

   procedure Get_Decoded_Name_String_With_Brackets (Id : Name_Id) is
      P : Natural;

   begin
      --  Case of operator name, normal decoding is fine

      if Name_Buffer (1) = 'O' then
         Get_Decoded_Name_String (Id);

      --  For character literals, normal decoding is fine

      elsif Name_Buffer (1) = 'Q' then
         Get_Decoded_Name_String (Id);

      --  Only remaining issue is U/W/WW sequences

      else
         Get_Name_String (Id);

         P := 1;
         while P < Name_Len loop
            if Name_Buffer (P + 1) in 'A' .. 'Z' then
               P := P + 1;

            --  Uhh encoding

            elsif Name_Buffer (P) = 'U' then
               for J in reverse P + 3 .. P + Name_Len loop
                  Name_Buffer (J + 3) := Name_Buffer (J);
               end loop;

               Name_Len := Name_Len + 3;
               Name_Buffer (P + 3) := Name_Buffer (P + 2);
               Name_Buffer (P + 2) := Name_Buffer (P + 1);
               Name_Buffer (P)     := '[';
               Name_Buffer (P + 1) := '"';
               Name_Buffer (P + 4) := '"';
               Name_Buffer (P + 5) := ']';
               P := P + 6;

            --  WWhhhhhhhh encoding

            elsif Name_Buffer (P) = 'W'
              and then P + 9 <= Name_Len
              and then Name_Buffer (P + 1) = 'W'
              and then Name_Buffer (P + 2) not in 'A' .. 'Z'
              and then Name_Buffer (P + 2) /= '_'
            then
               Name_Buffer (P + 12 .. Name_Len + 2) :=
                 Name_Buffer (P + 10 .. Name_Len);
               Name_Buffer (P)     := '[';
               Name_Buffer (P + 1) := '"';
               Name_Buffer (P + 10) := '"';
               Name_Buffer (P + 11) := ']';
               Name_Len := Name_Len + 2;
               P := P + 12;

            --  Whhhh encoding

            elsif Name_Buffer (P) = 'W'
              and then P < Name_Len
              and then Name_Buffer (P + 1) not in 'A' .. 'Z'
              and then Name_Buffer (P + 1) /= '_'
            then
               Name_Buffer (P + 8 .. P + Name_Len + 3) :=
                 Name_Buffer (P + 5 .. Name_Len);
               Name_Buffer (P + 2 .. P + 5) := Name_Buffer (P + 1 .. P + 4);
               Name_Buffer (P)     := '[';
               Name_Buffer (P + 1) := '"';
               Name_Buffer (P + 6) := '"';
               Name_Buffer (P + 7) := ']';
               Name_Len := Name_Len + 3;
               P := P + 8;

            else
               P := P + 1;
            end if;
         end loop;
      end if;
   end Get_Decoded_Name_String_With_Brackets;

   ------------------------
   -- Get_Last_Two_Chars --
   ------------------------

   procedure Get_Last_Two_Chars (N : Name_Id; C1, C2 : out Character) is
      NE  : Name_Entry renames Name_Entries.Table (N);
      NEL : constant Int := Int (NE.Name_Len);

   begin
      if NEL >= 2 then
         C1 := Name_Chars.Table (NE.Name_Chars_Index + NEL - 1);
         C2 := Name_Chars.Table (NE.Name_Chars_Index + NEL - 0);
      else
         C1 := ASCII.NUL;
         C2 := ASCII.NUL;
      end if;
   end Get_Last_Two_Chars;

   ---------------------
   -- Get_Name_String --
   ---------------------

   --  Procedure version leaving result in Name_Buffer, length in Name_Len

   procedure Get_Name_String (Id : Name_Id) is
      S : Int;

   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);

      S := Name_Entries.Table (Id).Name_Chars_Index;
      Name_Len := Natural (Name_Entries.Table (Id).Name_Len);

      for J in 1 .. Name_Len loop
         Name_Buffer (J) := Name_Chars.Table (S + Int (J));
      end loop;
   end Get_Name_String;

   ---------------------
   -- Get_Name_String --
   ---------------------

   --  Function version returning a string

   function Get_Name_String (Id : Name_Id) return String is
      S : Int;

   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
      S := Name_Entries.Table (Id).Name_Chars_Index;

      declare
         R : String (1 .. Natural (Name_Entries.Table (Id).Name_Len));

      begin
         for J in R'Range loop
            R (J) := Name_Chars.Table (S + Int (J));
         end loop;

         return R;
      end;
   end Get_Name_String;

   --------------------------------
   -- Get_Name_String_And_Append --
   --------------------------------

   procedure Get_Name_String_And_Append (Id : Name_Id) is
      S : Int;

   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);

      S := Name_Entries.Table (Id).Name_Chars_Index;

      for J in 1 .. Natural (Name_Entries.Table (Id).Name_Len) loop
         Name_Len := Name_Len + 1;
         Name_Buffer (Name_Len) := Name_Chars.Table (S + Int (J));
      end loop;
   end Get_Name_String_And_Append;

   -------------------------
   -- Get_Name_Table_Byte --
   -------------------------

   function Get_Name_Table_Byte (Id : Name_Id) return Byte is
   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
      return Name_Entries.Table (Id).Byte_Info;
   end Get_Name_Table_Byte;

   -------------------------
   -- Get_Name_Table_Info --
   -------------------------

   function Get_Name_Table_Info (Id : Name_Id) return Int is
   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
      return Name_Entries.Table (Id).Int_Info;
   end Get_Name_Table_Info;

   -----------------------------------------
   -- Get_Unqualified_Decoded_Name_String --
   -----------------------------------------

   procedure Get_Unqualified_Decoded_Name_String (Id : Name_Id) is
   begin
      Get_Decoded_Name_String (Id);
      Strip_Qualification_And_Suffixes;
   end Get_Unqualified_Decoded_Name_String;

   ---------------------------------
   -- Get_Unqualified_Name_String --
   ---------------------------------

   procedure Get_Unqualified_Name_String (Id : Name_Id) is
   begin
      Get_Name_String (Id);
      Strip_Qualification_And_Suffixes;
   end Get_Unqualified_Name_String;

   ----------
   -- Hash --
   ----------

   function Hash return Hash_Index_Type is

      --  This hash function looks at every character, in order to make it
      --  likely that similar strings get different hash values. The rotate by
      --  7 bits has been determined empirically to be good, and it doesn't
      --  lose bits like a shift would. The final conversion can't overflow,
      --  because the table is 2**16 in size. This function probably needs to
      --  be changed if the hash table size is changed.

      --  Note that we could get some speed improvement by aligning the string
      --  to 32 or 64 bits, and doing word-wise xor's. We could also implement
      --  a growable table. It doesn't seem worth the trouble to do those
      --  things, for now.

      Result : Unsigned_16 := 0;

   begin
      for J in 1 .. Name_Len loop
         Result := Rotate_Left (Result, 7) xor Character'Pos (Name_Buffer (J));
      end loop;

      return Hash_Index_Type (Result);
   end Hash;

   ----------------
   -- Initialize --
   ----------------

   procedure Initialize is
   begin
      null;
   end Initialize;

   -------------------------------
   -- Insert_Str_In_Name_Buffer --
   -------------------------------

   procedure Insert_Str_In_Name_Buffer (S : String; Index : Positive) is
      SL : constant Natural := S'Length;
   begin
      Name_Buffer (Index + SL .. Name_Len + SL) :=
        Name_Buffer (Index .. Name_Len);
      Name_Buffer (Index .. Index + SL - 1) := S;
      Name_Len := Name_Len + SL;
   end Insert_Str_In_Name_Buffer;

   ----------------------
   -- Is_Internal_Name --
   ----------------------

   --  Version taking an argument

   function Is_Internal_Name (Id : Name_Id) return Boolean is
   begin
      Get_Name_String (Id);
      return Is_Internal_Name;
   end Is_Internal_Name;

   ----------------------
   -- Is_Internal_Name --
   ----------------------

   --  Version taking its input from Name_Buffer

   function Is_Internal_Name return Boolean is
   begin
      if Name_Buffer (1) = '_'
        or else Name_Buffer (Name_Len) = '_'
      then
         return True;

      else
         --  Test backwards, because we only want to test the last entity
         --  name if the name we have is qualified with other entities.

         for J in reverse 1 .. Name_Len loop
            if Is_OK_Internal_Letter (Name_Buffer (J)) then
               return True;

            --  Quit if we come to terminating double underscore (note that
            --  if the current character is an underscore, we know that
            --  there is a previous character present, since we already
            --  filtered out the case of Name_Buffer (1) = '_' above.

            elsif Name_Buffer (J) = '_'
              and then Name_Buffer (J - 1) = '_'
              and then Name_Buffer (J - 2) /= '_'
            then
               return False;
            end if;
         end loop;
      end if;

      return False;
   end Is_Internal_Name;

   ---------------------------
   -- Is_OK_Internal_Letter --
   ---------------------------

   function Is_OK_Internal_Letter (C : Character) return Boolean is
   begin
      return C in 'A' .. 'Z'
        and then C /= 'O'
        and then C /= 'Q'
        and then C /= 'U'
        and then C /= 'W'
        and then C /= 'X';
   end Is_OK_Internal_Letter;

   ----------------------
   -- Is_Operator_Name --
   ----------------------

   function Is_Operator_Name (Id : Name_Id) return Boolean is
      S : Int;
   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
      S := Name_Entries.Table (Id).Name_Chars_Index;
      return Name_Chars.Table (S + 1) = 'O';
   end Is_Operator_Name;

   -------------------
   -- Is_Valid_Name --
   -------------------

   function Is_Valid_Name (Id : Name_Id) return Boolean is
   begin
      return Id in Name_Entries.First .. Name_Entries.Last;
   end Is_Valid_Name;

   --------------------
   -- Length_Of_Name --
   --------------------

   function Length_Of_Name (Id : Name_Id) return Nat is
   begin
      return Int (Name_Entries.Table (Id).Name_Len);
   end Length_Of_Name;

   ----------
   -- Lock --
   ----------

   procedure Lock is
   begin
      Name_Chars.Set_Last (Name_Chars.Last + Name_Chars_Reserve);
      Name_Entries.Set_Last (Name_Entries.Last + Name_Entries_Reserve);
      Name_Chars.Locked := True;
      Name_Entries.Locked := True;
      Name_Chars.Release;
      Name_Entries.Release;
   end Lock;

   ------------------------
   -- Name_Chars_Address --
   ------------------------

   function Name_Chars_Address return System.Address is
   begin
      return Name_Chars.Table (0)'Address;
   end Name_Chars_Address;

   ----------------
   -- Name_Enter --
   ----------------

   function Name_Enter return Name_Id is
   begin
      Name_Entries.Append
        ((Name_Chars_Index      => Name_Chars.Last,
          Name_Len              => Short (Name_Len),
          Byte_Info             => 0,
          Int_Info              => 0,
          Name_Has_No_Encodings => False,
          Hash_Link             => No_Name));

      --  Set corresponding string entry in the Name_Chars table

      for J in 1 .. Name_Len loop
         Name_Chars.Append (Name_Buffer (J));
      end loop;

      Name_Chars.Append (ASCII.NUL);

      return Name_Entries.Last;
   end Name_Enter;

   --------------------------
   -- Name_Entries_Address --
   --------------------------

   function Name_Entries_Address return System.Address is
   begin
      return Name_Entries.Table (First_Name_Id)'Address;
   end Name_Entries_Address;

   ------------------------
   -- Name_Entries_Count --
   ------------------------

   function Name_Entries_Count return Nat is
   begin
      return Int (Name_Entries.Last - Name_Entries.First + 1);
   end Name_Entries_Count;

   ---------------
   -- Name_Find --
   ---------------

   function Name_Find return Name_Id is
      New_Id : Name_Id;
      --  Id of entry in hash search, and value to be returned

      S : Int;
      --  Pointer into string table

      Hash_Index : Hash_Index_Type;
      --  Computed hash index

   begin
      --  Quick handling for one character names

      if Name_Len = 1 then
         return Name_Id (First_Name_Id + Character'Pos (Name_Buffer (1)));

      --  Otherwise search hash table for existing matching entry

      else
         Hash_Index := Namet.Hash;
         New_Id := Hash_Table (Hash_Index);

         if New_Id = No_Name then
            Hash_Table (Hash_Index) := Name_Entries.Last + 1;

         else
            Search : loop
               if Name_Len /=
                 Integer (Name_Entries.Table (New_Id).Name_Len)
               then
                  goto No_Match;
               end if;

               S := Name_Entries.Table (New_Id).Name_Chars_Index;

               for J in 1 .. Name_Len loop
                  if Name_Chars.Table (S + Int (J)) /= Name_Buffer (J) then
                     goto No_Match;
                  end if;
               end loop;

               return New_Id;

               --  Current entry in hash chain does not match

               <<No_Match>>
                  if Name_Entries.Table (New_Id).Hash_Link /= No_Name then
                     New_Id := Name_Entries.Table (New_Id).Hash_Link;
                  else
                     Name_Entries.Table (New_Id).Hash_Link :=
                       Name_Entries.Last + 1;
                     exit Search;
                  end if;
            end loop Search;
         end if;

         --  We fall through here only if a matching entry was not found in the
         --  hash table. We now create a new entry in the names table. The hash
         --  link pointing to the new entry (Name_Entries.Last+1) has been set.

         Name_Entries.Append
           ((Name_Chars_Index      => Name_Chars.Last,
             Name_Len              => Short (Name_Len),
             Hash_Link             => No_Name,
             Name_Has_No_Encodings => False,
             Int_Info              => 0,
             Byte_Info             => 0));

         --  Set corresponding string entry in the Name_Chars table

         for J in 1 .. Name_Len loop
            Name_Chars.Append (Name_Buffer (J));
         end loop;

         Name_Chars.Append (ASCII.NUL);

         return Name_Entries.Last;
      end if;
   end Name_Find;

   ------------------
   -- Reinitialize --
   ------------------

   procedure Reinitialize is
   begin
      Name_Chars.Init;
      Name_Entries.Init;

      --  Initialize entries for one character names

      for C in Character loop
         Name_Entries.Append
           ((Name_Chars_Index      => Name_Chars.Last,
             Name_Len              => 1,
             Byte_Info             => 0,
             Int_Info              => 0,
             Name_Has_No_Encodings => True,
             Hash_Link             => No_Name));

         Name_Chars.Append (C);
         Name_Chars.Append (ASCII.NUL);
      end loop;

      --  Clear hash table

      for J in Hash_Index_Type loop
         Hash_Table (J) := No_Name;
      end loop;
   end Reinitialize;

   ----------------------
   -- Reset_Name_Table --
   ----------------------

   procedure Reset_Name_Table is
   begin
      for J in First_Name_Id .. Name_Entries.Last loop
         Name_Entries.Table (J).Int_Info  := 0;
         Name_Entries.Table (J).Byte_Info := 0;
      end loop;
   end Reset_Name_Table;

   --------------------------------
   -- Set_Character_Literal_Name --
   --------------------------------

   procedure Set_Character_Literal_Name (C : Char_Code) is
   begin
      Name_Buffer (1) := 'Q';
      Name_Len := 1;
      Store_Encoded_Character (C);
   end Set_Character_Literal_Name;

   -------------------------
   -- Set_Name_Table_Byte --
   -------------------------

   procedure Set_Name_Table_Byte (Id : Name_Id; Val : Byte) is
   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
      Name_Entries.Table (Id).Byte_Info := Val;
   end Set_Name_Table_Byte;

   -------------------------
   -- Set_Name_Table_Info --
   -------------------------

   procedure Set_Name_Table_Info (Id : Name_Id; Val : Int) is
   begin
      pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
      Name_Entries.Table (Id).Int_Info := Val;
   end Set_Name_Table_Info;

   -----------------------------
   -- Store_Encoded_Character --
   -----------------------------

   procedure Store_Encoded_Character (C : Char_Code) is

      procedure Set_Hex_Chars (C : Char_Code);
      --  Stores given value, which is in the range 0 .. 255, as two hex
      --  digits (using lower case a-f) in Name_Buffer, incrementing Name_Len.

      -------------------
      -- Set_Hex_Chars --
      -------------------

      procedure Set_Hex_Chars (C : Char_Code) is
         Hexd : constant String := "0123456789abcdef";
         N    : constant Natural := Natural (C);
      begin
         Name_Buffer (Name_Len + 1) := Hexd (N / 16 + 1);
         Name_Buffer (Name_Len + 2) := Hexd (N mod 16 + 1);
         Name_Len := Name_Len + 2;
      end Set_Hex_Chars;

   --  Start of processing for Store_Encoded_Character

   begin
      Name_Len := Name_Len + 1;

      if In_Character_Range (C) then
         declare
            CC : constant Character := Get_Character (C);
         begin
            if CC in 'a' .. 'z' or else CC in '0' .. '9' then
               Name_Buffer (Name_Len) := CC;
            else
               Name_Buffer (Name_Len) := 'U';
               Set_Hex_Chars (C);
            end if;
         end;

      elsif In_Wide_Character_Range (C) then
         Name_Buffer (Name_Len) := 'W';
         Set_Hex_Chars (C / 256);
         Set_Hex_Chars (C mod 256);

      else
         Name_Buffer (Name_Len) := 'W';
         Name_Len := Name_Len + 1;
         Name_Buffer (Name_Len) := 'W';
         Set_Hex_Chars (C / 2 ** 24);
         Set_Hex_Chars ((C / 2 ** 16) mod 256);
         Set_Hex_Chars ((C / 256) mod 256);
         Set_Hex_Chars (C mod 256);
      end if;
   end Store_Encoded_Character;

   --------------------------------------
   -- Strip_Qualification_And_Suffixes --
   --------------------------------------

   procedure Strip_Qualification_And_Suffixes is
      J : Integer;

   begin
      --  Strip package body qualification string off end

      for J in reverse 2 .. Name_Len loop
         if Name_Buffer (J) = 'X' then
            Name_Len := J - 1;
            exit;
         end if;

         exit when Name_Buffer (J) /= 'b'
           and then Name_Buffer (J) /= 'n'
           and then Name_Buffer (J) /= 'p';
      end loop;

      --  Find rightmost __ or $ separator if one exists. First we position
      --  to start the search. If we have a character constant, position
      --  just before it, otherwise position to last character but one

      if Name_Buffer (Name_Len) = ''' then
         J := Name_Len - 2;
         while J > 0 and then Name_Buffer (J) /= ''' loop
            J := J - 1;
         end loop;

      else
         J := Name_Len - 1;
      end if;

      --  Loop to search for rightmost __ or $ (homonym) separator

      while J > 1 loop

         --  If $ separator, homonym separator, so strip it and keep looking

         if Name_Buffer (J) = '$' then
            Name_Len := J - 1;
            J := Name_Len - 1;

         --  Else check for __ found

         elsif Name_Buffer (J) = '_' and then Name_Buffer (J + 1) = '_' then

            --  Found __ so see if digit follows, and if so, this is a
            --  homonym separator, so strip it and keep looking.

            if Name_Buffer (J + 2) in '0' .. '9' then
               Name_Len := J - 1;
               J := Name_Len - 1;

            --  If not a homonym separator, then we simply strip the
            --  separator and everything that precedes it, and we are done

            else
               Name_Buffer (1 .. Name_Len - J - 1) :=
                 Name_Buffer (J + 2 .. Name_Len);
               Name_Len := Name_Len - J - 1;
               exit;
            end if;

         else
            J := J - 1;
         end if;
      end loop;
   end Strip_Qualification_And_Suffixes;

   ---------------
   -- Tree_Read --
   ---------------

   procedure Tree_Read is
   begin
      Name_Chars.Tree_Read;
      Name_Entries.Tree_Read;

      Tree_Read_Data
        (Hash_Table'Address,
         Hash_Table'Length * (Hash_Table'Component_Size / Storage_Unit));
   end Tree_Read;

   ----------------
   -- Tree_Write --
   ----------------

   procedure Tree_Write is
   begin
      Name_Chars.Tree_Write;
      Name_Entries.Tree_Write;

      Tree_Write_Data
        (Hash_Table'Address,
         Hash_Table'Length * (Hash_Table'Component_Size / Storage_Unit));
   end Tree_Write;

   ------------
   -- Unlock --
   ------------

   procedure Unlock is
   begin
      Name_Chars.Set_Last (Name_Chars.Last - Name_Chars_Reserve);
      Name_Entries.Set_Last (Name_Entries.Last - Name_Entries_Reserve);
      Name_Chars.Locked := False;
      Name_Entries.Locked := False;
      Name_Chars.Release;
      Name_Entries.Release;
   end Unlock;

   --------
   -- wn --
   --------

   procedure wn (Id : Name_Id) is
      S : Int;

   begin
      if not Id'Valid then
         Write_Str ("<invalid name_id>");

      elsif Id = No_Name then
         Write_Str ("<No_Name>");

      elsif Id = Error_Name then
         Write_Str ("<Error_Name>");

      else
         S := Name_Entries.Table (Id).Name_Chars_Index;
         Name_Len := Natural (Name_Entries.Table (Id).Name_Len);

         for J in 1 .. Name_Len loop
            Write_Char (Name_Chars.Table (S + Int (J)));
         end loop;
      end if;

      Write_Eol;
   end wn;

   ----------------
   -- Write_Name --
   ----------------

   procedure Write_Name (Id : Name_Id) is
   begin
      if Id >= First_Name_Id then
         Get_Name_String (Id);
         Write_Str (Name_Buffer (1 .. Name_Len));
      end if;
   end Write_Name;

   ------------------------
   -- Write_Name_Decoded --
   ------------------------

   procedure Write_Name_Decoded (Id : Name_Id) is
   begin
      if Id >= First_Name_Id then
         Get_Decoded_Name_String (Id);
         Write_Str (Name_Buffer (1 .. Name_Len));
      end if;
   end Write_Name_Decoded;

--  Package initialization, initialize tables

begin
   Reinitialize;
end Namet;
OpenPOWER on IntegriCloud