1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- I T Y P E S --
-- --
-- S p e c --
-- --
-- --
-- Copyright (C) 1992,1993,1994,1995,1996 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package contains declarations for handling of implicit types
with Einfo; use Einfo;
with Sem_Util; use Sem_Util;
with Types; use Types;
package Itypes is
--------------------
-- Implicit Types --
--------------------
-- Implicit types are types and subtypes created by the semantic phase
-- or the expander to reflect the underlying semantics. These could be
-- generated by building trees for corresponding declarations and then
-- analyzing these trees, but there are three reasons for not doing this:
-- 1. The declarations would require more tree nodes
-- 2. In some cases, the elaboration of these types is associated
-- with internal nodes in the tree.
-- 3. For some types, notably class wide types, there is no Ada
-- declaration that would correspond to the desired entity.
-- So instead, implicit types are constructed by simply creating an
-- appropriate entity with the help of routines in this package. These
-- entities are fully decorated, as described in Einfo (just as though
-- they had been created by the normal analysis procedure).
-- The type declaration declaring an Itype must be analyzed with checks
-- off because this declaration has not been inserted in the tree (if it
-- has been then it is not an itype), and hence checks that would be
-- generated during the analysis cannot be inserted in the tree. At any
-- rate, itype analysis should always be done with checks off, otherwise
-- duplicate checks will most likely be emitted.
-- Unlike types declared explicitly, implicit types are defined on first
-- use, which means that Gigi detects the use of such types, and defines
-- them at the point of the first use automatically.
-- Although Itypes are not explicitly declared, they are associated with
-- a specific node in the tree (roughly the node that caused them to be
-- created), via the Associated_Node_For_Itype field. This association is
-- used particularly by New_Copy_Tree, which uses it to determine whether
-- or not to copy a referenced Itype. If the associated node is part of
-- the tree to be copied by New_Copy_Tree, then (since the idea of the
-- call to New_Copy_Tree is to create a complete duplicate of a tree,
-- as though it had appeared separately int he source), the Itype in
-- question is duplicated as part of the New_Copy_Tree processing.
-----------------
-- Subprograms --
-----------------
function Create_Itype
(Ekind : Entity_Kind;
Related_Nod : Node_Id;
Related_Id : Entity_Id := Empty;
Suffix : Character := ' ';
Suffix_Index : Nat := 0;
Scope_Id : Entity_Id := Current_Scope)
return Entity_Id;
-- Used to create a new Itype.
--
-- Related_Nod is the node for which this Itype was created. It is
-- set as the Associated_Node_For_Itype of the new itype. The Sloc of
-- the new Itype is that of this node.
--
-- Related_Id is present only if the implicit type name may be referenced
-- as a public symbol, and thus needs a unique external name. The name
-- is created by a call to:
--
-- New_External_Name (Chars (Related_Id), Suffix, Suffix_Index, 'T')
--
-- If the implicit type does not need an external name, then the
-- Related_Id parameter is omitted (and hence Empty). In this case
-- Suffix and Suffix_Index are ignored and the implicit type name is
-- created by a call to New_Internal_Name ('T').
--
-- Note that in all cases, the name starts with "T". This is used
-- to identify implicit types in the error message handling circuits.
--
-- The Scope_Id parameter specifies the scope of the created type, and
-- is normally the Current_Scope as shown, but can be set otherwise.
end Itypes;
|