diff options
Diffstat (limited to 'libstdc++-v3/include/bits/std_complex.h')
-rw-r--r-- | libstdc++-v3/include/bits/std_complex.h | 1058 |
1 files changed, 0 insertions, 1058 deletions
diff --git a/libstdc++-v3/include/bits/std_complex.h b/libstdc++-v3/include/bits/std_complex.h deleted file mode 100644 index d07a6b791df..00000000000 --- a/libstdc++-v3/include/bits/std_complex.h +++ /dev/null @@ -1,1058 +0,0 @@ -// The template and inlines for the -*- C++ -*- complex number classes. - -// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. -// -// This file is part of the GNU ISO C++ Library. This library is free -// software; you can redistribute it and/or modify it under the -// terms of the GNU General Public License as published by the -// Free Software Foundation; either version 2, or (at your option) -// any later version. - -// This library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU General Public License for more details. - -// You should have received a copy of the GNU General Public License along -// with this library; see the file COPYING. If not, write to the Free -// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, -// USA. - -// As a special exception, you may use this file as part of a free software -// library without restriction. Specifically, if other files instantiate -// templates or use macros or inline functions from this file, or you compile -// this file and link it with other files to produce an executable, this -// file does not by itself cause the resulting executable to be covered by -// the GNU General Public License. This exception does not however -// invalidate any other reasons why the executable file might be covered by -// the GNU General Public License. - -// -// ISO C++ 14882: 26.2 Complex Numbers -// Note: this is not a conforming implementation. -// Initially implemented by Ulrich Drepper <drepper@cygnus.com> -// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr> -// - -/** @file std_complex.h - * This is an internal header file, included by other library headers. - * You should not attempt to use it directly. - */ - -#ifndef _CPP_COMPLEX -#define _CPP_COMPLEX 1 - -#pragma GCC system_header - -#include <bits/c++config.h> -#include <bits/cpp_type_traits.h> -#include <bits/std_cmath.h> -#include <bits/std_sstream.h> - -namespace std -{ - // Forward declarations - template<typename _Tp> class complex; - template<> class complex<float>; - template<> class complex<double>; - template<> class complex<long double>; - - template<typename _Tp> _Tp abs(const complex<_Tp>&); - template<typename _Tp> _Tp arg(const complex<_Tp>&); - template<typename _Tp> _Tp norm(const complex<_Tp>&); - - template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0); - - // Transcendentals: - template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> log(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int); - template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&); - template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, - const complex<_Tp>&); - template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&); - template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&); - template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&); - - - // 26.2.2 Primary template class complex - template<typename _Tp> - class complex - { - public: - typedef _Tp value_type; - - complex(const _Tp& = _Tp(), const _Tp & = _Tp()); - - // Let's the compiler synthetize the copy constructor - // complex (const complex<_Tp>&); - template<typename _Up> - complex(const complex<_Up>&); - - _Tp real() const; - _Tp imag() const; - - complex<_Tp>& operator=(const _Tp&); - complex<_Tp>& operator+=(const _Tp&); - complex<_Tp>& operator-=(const _Tp&); - complex<_Tp>& operator*=(const _Tp&); - complex<_Tp>& operator/=(const _Tp&); - - // Let's the compiler synthetize the - // copy and assignment operator - // complex<_Tp>& operator= (const complex<_Tp>&); - template<typename _Up> - complex<_Tp>& operator=(const complex<_Up>&); - template<typename _Up> - complex<_Tp>& operator+=(const complex<_Up>&); - template<typename _Up> - complex<_Tp>& operator-=(const complex<_Up>&); - template<typename _Up> - complex<_Tp>& operator*=(const complex<_Up>&); - template<typename _Up> - complex<_Tp>& operator/=(const complex<_Up>&); - - private: - _Tp _M_real, _M_imag; - }; - - template<typename _Tp> - inline _Tp - complex<_Tp>::real() const { return _M_real; } - - template<typename _Tp> - inline _Tp - complex<_Tp>::imag() const { return _M_imag; } - - template<typename _Tp> - inline - complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) - : _M_real(__r), _M_imag(__i) { } - - template<typename _Tp> - template<typename _Up> - inline - complex<_Tp>::complex(const complex<_Up>& __z) - : _M_real(__z.real()), _M_imag(__z.imag()) { } - - template<typename _Tp> - complex<_Tp>& - complex<_Tp>::operator=(const _Tp& __t) - { - _M_real = __t; - _M_imag = _Tp(); - return *this; - } - - // 26.2.5/1 - template<typename _Tp> - inline complex<_Tp>& - complex<_Tp>::operator+=(const _Tp& __t) - { - _M_real += __t; - return *this; - } - - // 26.2.5/3 - template<typename _Tp> - inline complex<_Tp>& - complex<_Tp>::operator-=(const _Tp& __t) - { - _M_real -= __t; - return *this; - } - - // 26.2.5/5 - template<typename _Tp> - complex<_Tp>& - complex<_Tp>::operator*=(const _Tp& __t) - { - _M_real *= __t; - _M_imag *= __t; - return *this; - } - - // 26.2.5/7 - template<typename _Tp> - complex<_Tp>& - complex<_Tp>::operator/=(const _Tp& __t) - { - _M_real /= __t; - _M_imag /= __t; - return *this; - } - - template<typename _Tp> - template<typename _Up> - complex<_Tp>& - complex<_Tp>::operator=(const complex<_Up>& __z) - { - _M_real = __z.real(); - _M_imag = __z.imag(); - return *this; - } - - // 26.2.5/9 - template<typename _Tp> - template<typename _Up> - complex<_Tp>& - complex<_Tp>::operator+=(const complex<_Up>& __z) - { - _M_real += __z.real(); - _M_imag += __z.imag(); - return *this; - } - - // 26.2.5/11 - template<typename _Tp> - template<typename _Up> - complex<_Tp>& - complex<_Tp>::operator-=(const complex<_Up>& __z) - { - _M_real -= __z.real(); - _M_imag -= __z.imag(); - return *this; - } - - // 26.2.5/13 - // XXX: This is a grammar school implementation. - template<typename _Tp> - template<typename _Up> - complex<_Tp>& - complex<_Tp>::operator*=(const complex<_Up>& __z) - { - const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); - _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); - _M_real = __r; - return *this; - } - - // 26.2.5/15 - // XXX: This is a grammar school implementation. - template<typename _Tp> - template<typename _Up> - complex<_Tp>& - complex<_Tp>::operator/=(const complex<_Up>& __z) - { - const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); - const _Tp __n = norm(__z); - _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; - _M_real = __r / __n; - return *this; - } - - // Operators: - template<typename _Tp> - inline complex<_Tp> - operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__x) += __y; } - - template<typename _Tp> - inline complex<_Tp> - operator+(const complex<_Tp>& __x, const _Tp& __y) - { return complex<_Tp> (__x) += __y; } - - template<typename _Tp> - inline complex<_Tp> - operator+(const _Tp& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__y) += __x; } - - template<typename _Tp> - inline complex<_Tp> - operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__x) -= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator-(const complex<_Tp>& __x, const _Tp& __y) - { return complex<_Tp> (__x) -= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator-(const _Tp& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__x) -= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__x) *= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator*(const complex<_Tp>& __x, const _Tp& __y) - { return complex<_Tp> (__x) *= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator*(const _Tp& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__y) *= __x; } - - template<typename _Tp> - inline complex<_Tp> - operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__x) /= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator/(const complex<_Tp>& __x, const _Tp& __y) - { return complex<_Tp> (__x) /= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator/(const _Tp& __x, const complex<_Tp>& __y) - { return complex<_Tp> (__x) /= __y; } - - template<typename _Tp> - inline complex<_Tp> - operator+(const complex<_Tp>& __x) - { return __x; } - - template<typename _Tp> - inline complex<_Tp> - operator-(const complex<_Tp>& __x) - { return complex<_Tp>(-__x.real(), -__x.imag()); } - - template<typename _Tp> - inline bool - operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) - { return __x.real() == __y.real() && __x.imag() == __y.imag(); } - - template<typename _Tp> - inline bool - operator==(const complex<_Tp>& __x, const _Tp& __y) - { return __x.real() == __y && __x.imag() == _Tp(); } - - template<typename _Tp> - inline bool - operator==(const _Tp& __x, const complex<_Tp>& __y) - { return __x == __y.real() && _Tp() == __y.imag(); } - - template<typename _Tp> - inline bool - operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) - { return __x.real() != __y.real() || __x.imag() != __y.imag(); } - - template<typename _Tp> - inline bool - operator!=(const complex<_Tp>& __x, const _Tp& __y) - { return __x.real() != __y || __x.imag() != _Tp(); } - - template<typename _Tp> - inline bool - operator!=(const _Tp& __x, const complex<_Tp>& __y) - { return __x != __y.real() || _Tp() != __y.imag(); } - - template<typename _Tp, typename _CharT, class _Traits> - basic_istream<_CharT, _Traits>& - operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) - { - _Tp __re_x, __im_x; - _CharT __ch; - __is >> __ch; - if (__ch == '(') - { - __is >> __re_x >> __ch; - if (__ch == ',') - { - __is >> __im_x >> __ch; - if (__ch == ')') - __x = complex<_Tp>(__re_x, __im_x); - else - __is.setstate(ios_base::failbit); - } - else if (__ch == ')') - __x = complex<_Tp>(__re_x, _Tp(0)); - else - __is.setstate(ios_base::failbit); - } - else - { - __is.putback(__ch); - __is >> __re_x; - __x = complex<_Tp>(__re_x, _Tp(0)); - } - return __is; - } - - template<typename _Tp, typename _CharT, class _Traits> - basic_ostream<_CharT, _Traits>& - operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) - { - basic_ostringstream<_CharT, _Traits> __s; - __s.flags(__os.flags()); - __s.imbue(__os.getloc()); - __s.precision(__os.precision()); - __s << '(' << __x.real() << "," << __x.imag() << ')'; - return __os << __s.str(); - } - - // Values - template<typename _Tp> - inline _Tp - real(const complex<_Tp>& __z) - { return __z.real(); } - - template<typename _Tp> - inline _Tp - imag(const complex<_Tp>& __z) - { return __z.imag(); } - - template<typename _Tp> - inline _Tp - abs(const complex<_Tp>& __z) - { - _Tp __x = __z.real(); - _Tp __y = __z.imag(); - const _Tp __s = max(abs(__x), abs(__y)); - if (__s == _Tp()) // well ... - return __s; - __x /= __s; - __y /= __s; - return __s * sqrt(__x * __x + __y * __y); - } - - template<typename _Tp> - inline _Tp - arg(const complex<_Tp>& __z) - { return atan2(__z.imag(), __z.real()); } - - // 26.2.7/5: norm(__z) returns the squared magintude of __z. - // As defined, norm() is -not- a norm is the common mathematical - // sens used in numerics. The helper class _Norm_helper<> tries to - // distinguish between builtin floating point and the rest, so as - // to deliver an answer as close as possible to the real value. - template<bool> - struct _Norm_helper - { - template<typename _Tp> - static inline _Tp _S_do_it(const complex<_Tp>& __z) - { - const _Tp __x = __z.real(); - const _Tp __y = __z.imag(); - return __x * __x + __y * __y; - } - }; - - template<> - struct _Norm_helper<true> - { - template<typename _Tp> - static inline _Tp _S_do_it(const complex<_Tp>& __z) - { - _Tp __res = abs(__z); - return __res * __res; - } - }; - - template<typename _Tp> - inline _Tp - norm(const complex<_Tp>& __z) - { - return _Norm_helper<__is_floating<_Tp>::_M_type>::_S_do_it(__z); - } - - template<typename _Tp> - inline complex<_Tp> - polar(const _Tp& __rho, const _Tp& __theta) - { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } - - template<typename _Tp> - inline complex<_Tp> - conj(const complex<_Tp>& __z) - { return complex<_Tp>(__z.real(), -__z.imag()); } - - // Transcendentals - template<typename _Tp> - inline complex<_Tp> - cos(const complex<_Tp>& __z) - { - const _Tp __x = __z.real(); - const _Tp __y = __z.imag(); - return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); - } - - template<typename _Tp> - inline complex<_Tp> - cosh(const complex<_Tp>& __z) - { - const _Tp __x = __z.real(); - const _Tp __y = __z.imag(); - return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); - } - - template<typename _Tp> - inline complex<_Tp> - exp(const complex<_Tp>& __z) - { return polar(exp(__z.real()), __z.imag()); } - - template<typename _Tp> - inline complex<_Tp> - log(const complex<_Tp>& __z) - { return complex<_Tp>(log(abs(__z)), arg(__z)); } - - template<typename _Tp> - inline complex<_Tp> - log10(const complex<_Tp>& __z) - { return log(__z) / log(_Tp(10.0)); } - - template<typename _Tp> - inline complex<_Tp> - sin(const complex<_Tp>& __z) - { - const _Tp __x = __z.real(); - const _Tp __y = __z.imag(); - return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); - } - - template<typename _Tp> - inline complex<_Tp> - sinh(const complex<_Tp>& __z) - { - const _Tp __x = __z.real(); - const _Tp __y = __z.imag(); - return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); - } - - template<typename _Tp> - complex<_Tp> - sqrt(const complex<_Tp>& __z) - { - _Tp __x = __z.real(); - _Tp __y = __z.imag(); - - if (__x == _Tp()) - { - _Tp __t = sqrt(abs(__y) / 2); - return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); - } - else - { - _Tp __t = sqrt(2 * (abs(__z) + abs(__x))); - _Tp __u = __t / 2; - return __x > _Tp() - ? complex<_Tp>(__u, __y / __t) - : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); - } - } - - template<typename _Tp> - inline complex<_Tp> - tan(const complex<_Tp>& __z) - { - return sin(__z) / cos(__z); - } - - template<typename _Tp> - inline complex<_Tp> - tanh(const complex<_Tp>& __z) - { - return sinh(__z) / cosh(__z); - } - - template<typename _Tp> - inline complex<_Tp> - pow(const complex<_Tp>& __z, int __n) - { - return __pow_helper(__z, __n); - } - - template<typename _Tp> - inline complex<_Tp> - pow(const complex<_Tp>& __x, const _Tp& __y) - { - return exp(__y * log(__x)); - } - - template<typename _Tp> - inline complex<_Tp> - pow(const complex<_Tp>& __x, const complex<_Tp>& __y) - { - return exp(__y * log(__x)); - } - - template<typename _Tp> - inline complex<_Tp> - pow(const _Tp& __x, const complex<_Tp>& __y) - { - return exp(__y * log(__x)); - } - - // 26.2.3 complex specializations - // complex<float> specialization - template<> class complex<float> - { - public: - typedef float value_type; - - complex(float = 0.0f, float = 0.0f); -#ifdef _GLIBCPP_BUGGY_COMPLEX - complex(const complex& __z) : _M_value(__z._M_value) { } -#endif - explicit complex(const complex<double>&); - explicit complex(const complex<long double>&); - - float real() const; - float imag() const; - - complex<float>& operator=(float); - complex<float>& operator+=(float); - complex<float>& operator-=(float); - complex<float>& operator*=(float); - complex<float>& operator/=(float); - - // Let's the compiler synthetize the copy and assignment - // operator. It always does a pretty good job. - // complex& operator= (const complex&); - template<typename _Tp> - complex<float>&operator=(const complex<_Tp>&); - template<typename _Tp> - complex<float>& operator+=(const complex<_Tp>&); - template<class _Tp> - complex<float>& operator-=(const complex<_Tp>&); - template<class _Tp> - complex<float>& operator*=(const complex<_Tp>&); - template<class _Tp> - complex<float>&operator/=(const complex<_Tp>&); - - private: - typedef __complex__ float _ComplexT; - _ComplexT _M_value; - - complex(_ComplexT __z) : _M_value(__z) { } - - friend class complex<double>; - friend class complex<long double>; - }; - - inline float - complex<float>::real() const - { return __real__ _M_value; } - - inline float - complex<float>::imag() const - { return __imag__ _M_value; } - - inline - complex<float>::complex(float r, float i) - { - __real__ _M_value = r; - __imag__ _M_value = i; - } - - inline complex<float>& - complex<float>::operator=(float __f) - { - __real__ _M_value = __f; - __imag__ _M_value = 0.0f; - return *this; - } - - inline complex<float>& - complex<float>::operator+=(float __f) - { - __real__ _M_value += __f; - return *this; - } - - inline complex<float>& - complex<float>::operator-=(float __f) - { - __real__ _M_value -= __f; - return *this; - } - - inline complex<float>& - complex<float>::operator*=(float __f) - { - _M_value *= __f; - return *this; - } - - inline complex<float>& - complex<float>::operator/=(float __f) - { - _M_value /= __f; - return *this; - } - - template<typename _Tp> - inline complex<float>& - complex<float>::operator=(const complex<_Tp>& __z) - { - __real__ _M_value = __z.real(); - __imag__ _M_value = __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<float>& - complex<float>::operator+=(const complex<_Tp>& __z) - { - __real__ _M_value += __z.real(); - __imag__ _M_value += __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<float>& - complex<float>::operator-=(const complex<_Tp>& __z) - { - __real__ _M_value -= __z.real(); - __imag__ _M_value -= __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<float>& - complex<float>::operator*=(const complex<_Tp>& __z) - { - _ComplexT __t; - __real__ __t = __z.real(); - __imag__ __t = __z.imag(); - _M_value *= __t; - return *this; - } - - template<typename _Tp> - inline complex<float>& - complex<float>::operator/=(const complex<_Tp>& __z) - { - _ComplexT __t; - __real__ __t = __z.real(); - __imag__ __t = __z.imag(); - _M_value /= __t; - return *this; - } - - // 26.2.3 complex specializations - // complex<double> specialization - template<> class complex<double> - { - public: - typedef double value_type; - - complex(double =0.0, double =0.0); -#ifdef _GLIBCPP_BUGGY_COMPLEX - complex(const complex& __z) : _M_value(__z._M_value) { } -#endif - complex(const complex<float>&); - explicit complex(const complex<long double>&); - - double real() const; - double imag() const; - - complex<double>& operator=(double); - complex<double>& operator+=(double); - complex<double>& operator-=(double); - complex<double>& operator*=(double); - complex<double>& operator/=(double); - - // The compiler will synthetize this, efficiently. - // complex& operator= (const complex&); - template<typename _Tp> - complex<double>& operator=(const complex<_Tp>&); - template<typename _Tp> - complex<double>& operator+=(const complex<_Tp>&); - template<typename _Tp> - complex<double>& operator-=(const complex<_Tp>&); - template<typename _Tp> - complex<double>& operator*=(const complex<_Tp>&); - template<typename _Tp> - complex<double>& operator/=(const complex<_Tp>&); - - private: - typedef __complex__ double _ComplexT; - _ComplexT _M_value; - - complex(_ComplexT __z) : _M_value(__z) { } - - friend class complex<float>; - friend class complex<long double>; - }; - - inline double - complex<double>::real() const - { return __real__ _M_value; } - - inline double - complex<double>::imag() const - { return __imag__ _M_value; } - - inline - complex<double>::complex(double __r, double __i) - { - __real__ _M_value = __r; - __imag__ _M_value = __i; - } - - inline complex<double>& - complex<double>::operator=(double __d) - { - __real__ _M_value = __d; - __imag__ _M_value = 0.0; - return *this; - } - - inline complex<double>& - complex<double>::operator+=(double __d) - { - __real__ _M_value += __d; - return *this; - } - - inline complex<double>& - complex<double>::operator-=(double __d) - { - __real__ _M_value -= __d; - return *this; - } - - inline complex<double>& - complex<double>::operator*=(double __d) - { - _M_value *= __d; - return *this; - } - - inline complex<double>& - complex<double>::operator/=(double __d) - { - _M_value /= __d; - return *this; - } - - template<typename _Tp> - inline complex<double>& - complex<double>::operator=(const complex<_Tp>& __z) - { - __real__ _M_value = __z.real(); - __imag__ _M_value = __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<double>& - complex<double>::operator+=(const complex<_Tp>& __z) - { - __real__ _M_value += __z.real(); - __imag__ _M_value += __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<double>& - complex<double>::operator-=(const complex<_Tp>& __z) - { - __real__ _M_value -= __z.real(); - __imag__ _M_value -= __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<double>& - complex<double>::operator*=(const complex<_Tp>& __z) - { - _ComplexT __t; - __real__ __t = __z.real(); - __imag__ __t = __z.imag(); - _M_value *= __t; - return *this; - } - - template<typename _Tp> - inline complex<double>& - complex<double>::operator/=(const complex<_Tp>& __z) - { - _ComplexT __t; - __real__ __t = __z.real(); - __imag__ __t = __z.imag(); - _M_value /= __t; - return *this; - } - - // 26.2.3 complex specializations - // complex<long double> specialization - template<> class complex<long double> - { - public: - typedef long double value_type; - - complex(long double = 0.0L, long double = 0.0L); -#ifdef _GLIBCPP_BUGGY_COMPLEX - complex(const complex& __z) : _M_value(__z._M_value) { } -#endif - complex(const complex<float>&); - complex(const complex<double>&); - - long double real() const; - long double imag() const; - - complex<long double>& operator= (long double); - complex<long double>& operator+= (long double); - complex<long double>& operator-= (long double); - complex<long double>& operator*= (long double); - complex<long double>& operator/= (long double); - - // The compiler knows how to do this efficiently - // complex& operator= (const complex&); - template<typename _Tp> - complex<long double>& operator=(const complex<_Tp>&); - template<typename _Tp> - complex<long double>& operator+=(const complex<_Tp>&); - template<typename _Tp> - complex<long double>& operator-=(const complex<_Tp>&); - template<typename _Tp> - complex<long double>& operator*=(const complex<_Tp>&); - template<typename _Tp> - complex<long double>& operator/=(const complex<_Tp>&); - - private: - typedef __complex__ long double _ComplexT; - _ComplexT _M_value; - - complex(_ComplexT __z) : _M_value(__z) { } - - friend class complex<float>; - friend class complex<double>; - }; - - inline - complex<long double>::complex(long double __r, long double __i) - { - __real__ _M_value = __r; - __imag__ _M_value = __i; - } - - inline long double - complex<long double>::real() const - { return __real__ _M_value; } - - inline long double - complex<long double>::imag() const - { return __imag__ _M_value; } - - inline complex<long double>& - complex<long double>::operator=(long double __r) - { - __real__ _M_value = __r; - __imag__ _M_value = 0.0L; - return *this; - } - - inline complex<long double>& - complex<long double>::operator+=(long double __r) - { - __real__ _M_value += __r; - return *this; - } - - inline complex<long double>& - complex<long double>::operator-=(long double __r) - { - __real__ _M_value -= __r; - return *this; - } - - inline complex<long double>& - complex<long double>::operator*=(long double __r) - { - _M_value *= __r; - return *this; - } - - inline complex<long double>& - complex<long double>::operator/=(long double __r) - { - _M_value /= __r; - return *this; - } - - template<typename _Tp> - inline complex<long double>& - complex<long double>::operator=(const complex<_Tp>& __z) - { - __real__ _M_value = __z.real(); - __imag__ _M_value = __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<long double>& - complex<long double>::operator+=(const complex<_Tp>& __z) - { - __real__ _M_value += __z.real(); - __imag__ _M_value += __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<long double>& - complex<long double>::operator-=(const complex<_Tp>& __z) - { - __real__ _M_value -= __z.real(); - __imag__ _M_value -= __z.imag(); - return *this; - } - - template<typename _Tp> - inline complex<long double>& - complex<long double>::operator*=(const complex<_Tp>& __z) - { - _ComplexT __t; - __real__ __t = __z.real(); - __imag__ __t = __z.imag(); - _M_value *= __t; - return *this; - } - - template<typename _Tp> - inline complex<long double>& - complex<long double>::operator/=(const complex<_Tp>& __z) - { - _ComplexT __t; - __real__ __t = __z.real(); - __imag__ __t = __z.imag(); - _M_value /= __t; - return *this; - } - - // These bits have to be at the end of this file, so that the - // specializations have all been defined. - // ??? No, they have to be there because of compiler limitation at - // inlining. It suffices that class specializations be defined. - inline - complex<float>::complex(const complex<double>& __z) - : _M_value(_ComplexT(__z._M_value)) { } - - inline - complex<float>::complex(const complex<long double>& __z) - : _M_value(_ComplexT(__z._M_value)) { } - - inline - complex<double>::complex(const complex<float>& __z) - : _M_value(_ComplexT(__z._M_value)) { } - - inline - complex<double>::complex(const complex<long double>& __z) - { - __real__ _M_value = __z.real(); - __imag__ _M_value = __z.imag(); - } - - inline - complex<long double>::complex(const complex<float>& __z) - : _M_value(_ComplexT(__z._M_value)) { } - - inline - complex<long double>::complex(const complex<double>& __z) - : _M_value(_ComplexT(__z._M_value)) { } -} // namespace std - -#endif /* _CPP_COMPLEX */ |