summaryrefslogtreecommitdiffstats
path: root/libstdc++-v3/include/bits/std_complex.h
diff options
context:
space:
mode:
Diffstat (limited to 'libstdc++-v3/include/bits/std_complex.h')
-rw-r--r--libstdc++-v3/include/bits/std_complex.h1058
1 files changed, 0 insertions, 1058 deletions
diff --git a/libstdc++-v3/include/bits/std_complex.h b/libstdc++-v3/include/bits/std_complex.h
deleted file mode 100644
index d07a6b791df..00000000000
--- a/libstdc++-v3/include/bits/std_complex.h
+++ /dev/null
@@ -1,1058 +0,0 @@
-// The template and inlines for the -*- C++ -*- complex number classes.
-
-// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-//
-// ISO C++ 14882: 26.2 Complex Numbers
-// Note: this is not a conforming implementation.
-// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
-// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
-//
-
-/** @file std_complex.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _CPP_COMPLEX
-#define _CPP_COMPLEX 1
-
-#pragma GCC system_header
-
-#include <bits/c++config.h>
-#include <bits/cpp_type_traits.h>
-#include <bits/std_cmath.h>
-#include <bits/std_sstream.h>
-
-namespace std
-{
- // Forward declarations
- template<typename _Tp> class complex;
- template<> class complex<float>;
- template<> class complex<double>;
- template<> class complex<long double>;
-
- template<typename _Tp> _Tp abs(const complex<_Tp>&);
- template<typename _Tp> _Tp arg(const complex<_Tp>&);
- template<typename _Tp> _Tp norm(const complex<_Tp>&);
-
- template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
-
- // Transcendentals:
- template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
- template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
- template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
- const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
- template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
-
-
- // 26.2.2 Primary template class complex
- template<typename _Tp>
- class complex
- {
- public:
- typedef _Tp value_type;
-
- complex(const _Tp& = _Tp(), const _Tp & = _Tp());
-
- // Let's the compiler synthetize the copy constructor
- // complex (const complex<_Tp>&);
- template<typename _Up>
- complex(const complex<_Up>&);
-
- _Tp real() const;
- _Tp imag() const;
-
- complex<_Tp>& operator=(const _Tp&);
- complex<_Tp>& operator+=(const _Tp&);
- complex<_Tp>& operator-=(const _Tp&);
- complex<_Tp>& operator*=(const _Tp&);
- complex<_Tp>& operator/=(const _Tp&);
-
- // Let's the compiler synthetize the
- // copy and assignment operator
- // complex<_Tp>& operator= (const complex<_Tp>&);
- template<typename _Up>
- complex<_Tp>& operator=(const complex<_Up>&);
- template<typename _Up>
- complex<_Tp>& operator+=(const complex<_Up>&);
- template<typename _Up>
- complex<_Tp>& operator-=(const complex<_Up>&);
- template<typename _Up>
- complex<_Tp>& operator*=(const complex<_Up>&);
- template<typename _Up>
- complex<_Tp>& operator/=(const complex<_Up>&);
-
- private:
- _Tp _M_real, _M_imag;
- };
-
- template<typename _Tp>
- inline _Tp
- complex<_Tp>::real() const { return _M_real; }
-
- template<typename _Tp>
- inline _Tp
- complex<_Tp>::imag() const { return _M_imag; }
-
- template<typename _Tp>
- inline
- complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)
- : _M_real(__r), _M_imag(__i) { }
-
- template<typename _Tp>
- template<typename _Up>
- inline
- complex<_Tp>::complex(const complex<_Up>& __z)
- : _M_real(__z.real()), _M_imag(__z.imag()) { }
-
- template<typename _Tp>
- complex<_Tp>&
- complex<_Tp>::operator=(const _Tp& __t)
- {
- _M_real = __t;
- _M_imag = _Tp();
- return *this;
- }
-
- // 26.2.5/1
- template<typename _Tp>
- inline complex<_Tp>&
- complex<_Tp>::operator+=(const _Tp& __t)
- {
- _M_real += __t;
- return *this;
- }
-
- // 26.2.5/3
- template<typename _Tp>
- inline complex<_Tp>&
- complex<_Tp>::operator-=(const _Tp& __t)
- {
- _M_real -= __t;
- return *this;
- }
-
- // 26.2.5/5
- template<typename _Tp>
- complex<_Tp>&
- complex<_Tp>::operator*=(const _Tp& __t)
- {
- _M_real *= __t;
- _M_imag *= __t;
- return *this;
- }
-
- // 26.2.5/7
- template<typename _Tp>
- complex<_Tp>&
- complex<_Tp>::operator/=(const _Tp& __t)
- {
- _M_real /= __t;
- _M_imag /= __t;
- return *this;
- }
-
- template<typename _Tp>
- template<typename _Up>
- complex<_Tp>&
- complex<_Tp>::operator=(const complex<_Up>& __z)
- {
- _M_real = __z.real();
- _M_imag = __z.imag();
- return *this;
- }
-
- // 26.2.5/9
- template<typename _Tp>
- template<typename _Up>
- complex<_Tp>&
- complex<_Tp>::operator+=(const complex<_Up>& __z)
- {
- _M_real += __z.real();
- _M_imag += __z.imag();
- return *this;
- }
-
- // 26.2.5/11
- template<typename _Tp>
- template<typename _Up>
- complex<_Tp>&
- complex<_Tp>::operator-=(const complex<_Up>& __z)
- {
- _M_real -= __z.real();
- _M_imag -= __z.imag();
- return *this;
- }
-
- // 26.2.5/13
- // XXX: This is a grammar school implementation.
- template<typename _Tp>
- template<typename _Up>
- complex<_Tp>&
- complex<_Tp>::operator*=(const complex<_Up>& __z)
- {
- const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
- _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
- _M_real = __r;
- return *this;
- }
-
- // 26.2.5/15
- // XXX: This is a grammar school implementation.
- template<typename _Tp>
- template<typename _Up>
- complex<_Tp>&
- complex<_Tp>::operator/=(const complex<_Up>& __z)
- {
- const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag();
- const _Tp __n = norm(__z);
- _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
- _M_real = __r / __n;
- return *this;
- }
-
- // Operators:
- template<typename _Tp>
- inline complex<_Tp>
- operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) += __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator+(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) += __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator+(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__y) += __x; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) -= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator-(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) -= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator-(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) -= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) *= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator*(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) *= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator*(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__y) *= __x; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) /= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator/(const complex<_Tp>& __x, const _Tp& __y)
- { return complex<_Tp> (__x) /= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator/(const _Tp& __x, const complex<_Tp>& __y)
- { return complex<_Tp> (__x) /= __y; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator+(const complex<_Tp>& __x)
- { return __x; }
-
- template<typename _Tp>
- inline complex<_Tp>
- operator-(const complex<_Tp>& __x)
- { return complex<_Tp>(-__x.real(), -__x.imag()); }
-
- template<typename _Tp>
- inline bool
- operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return __x.real() == __y.real() && __x.imag() == __y.imag(); }
-
- template<typename _Tp>
- inline bool
- operator==(const complex<_Tp>& __x, const _Tp& __y)
- { return __x.real() == __y && __x.imag() == _Tp(); }
-
- template<typename _Tp>
- inline bool
- operator==(const _Tp& __x, const complex<_Tp>& __y)
- { return __x == __y.real() && _Tp() == __y.imag(); }
-
- template<typename _Tp>
- inline bool
- operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
- { return __x.real() != __y.real() || __x.imag() != __y.imag(); }
-
- template<typename _Tp>
- inline bool
- operator!=(const complex<_Tp>& __x, const _Tp& __y)
- { return __x.real() != __y || __x.imag() != _Tp(); }
-
- template<typename _Tp>
- inline bool
- operator!=(const _Tp& __x, const complex<_Tp>& __y)
- { return __x != __y.real() || _Tp() != __y.imag(); }
-
- template<typename _Tp, typename _CharT, class _Traits>
- basic_istream<_CharT, _Traits>&
- operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
- {
- _Tp __re_x, __im_x;
- _CharT __ch;
- __is >> __ch;
- if (__ch == '(')
- {
- __is >> __re_x >> __ch;
- if (__ch == ',')
- {
- __is >> __im_x >> __ch;
- if (__ch == ')')
- __x = complex<_Tp>(__re_x, __im_x);
- else
- __is.setstate(ios_base::failbit);
- }
- else if (__ch == ')')
- __x = complex<_Tp>(__re_x, _Tp(0));
- else
- __is.setstate(ios_base::failbit);
- }
- else
- {
- __is.putback(__ch);
- __is >> __re_x;
- __x = complex<_Tp>(__re_x, _Tp(0));
- }
- return __is;
- }
-
- template<typename _Tp, typename _CharT, class _Traits>
- basic_ostream<_CharT, _Traits>&
- operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
- {
- basic_ostringstream<_CharT, _Traits> __s;
- __s.flags(__os.flags());
- __s.imbue(__os.getloc());
- __s.precision(__os.precision());
- __s << '(' << __x.real() << "," << __x.imag() << ')';
- return __os << __s.str();
- }
-
- // Values
- template<typename _Tp>
- inline _Tp
- real(const complex<_Tp>& __z)
- { return __z.real(); }
-
- template<typename _Tp>
- inline _Tp
- imag(const complex<_Tp>& __z)
- { return __z.imag(); }
-
- template<typename _Tp>
- inline _Tp
- abs(const complex<_Tp>& __z)
- {
- _Tp __x = __z.real();
- _Tp __y = __z.imag();
- const _Tp __s = max(abs(__x), abs(__y));
- if (__s == _Tp()) // well ...
- return __s;
- __x /= __s;
- __y /= __s;
- return __s * sqrt(__x * __x + __y * __y);
- }
-
- template<typename _Tp>
- inline _Tp
- arg(const complex<_Tp>& __z)
- { return atan2(__z.imag(), __z.real()); }
-
- // 26.2.7/5: norm(__z) returns the squared magintude of __z.
- // As defined, norm() is -not- a norm is the common mathematical
- // sens used in numerics. The helper class _Norm_helper<> tries to
- // distinguish between builtin floating point and the rest, so as
- // to deliver an answer as close as possible to the real value.
- template<bool>
- struct _Norm_helper
- {
- template<typename _Tp>
- static inline _Tp _S_do_it(const complex<_Tp>& __z)
- {
- const _Tp __x = __z.real();
- const _Tp __y = __z.imag();
- return __x * __x + __y * __y;
- }
- };
-
- template<>
- struct _Norm_helper<true>
- {
- template<typename _Tp>
- static inline _Tp _S_do_it(const complex<_Tp>& __z)
- {
- _Tp __res = abs(__z);
- return __res * __res;
- }
- };
-
- template<typename _Tp>
- inline _Tp
- norm(const complex<_Tp>& __z)
- {
- return _Norm_helper<__is_floating<_Tp>::_M_type>::_S_do_it(__z);
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- polar(const _Tp& __rho, const _Tp& __theta)
- { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
-
- template<typename _Tp>
- inline complex<_Tp>
- conj(const complex<_Tp>& __z)
- { return complex<_Tp>(__z.real(), -__z.imag()); }
-
- // Transcendentals
- template<typename _Tp>
- inline complex<_Tp>
- cos(const complex<_Tp>& __z)
- {
- const _Tp __x = __z.real();
- const _Tp __y = __z.imag();
- return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- cosh(const complex<_Tp>& __z)
- {
- const _Tp __x = __z.real();
- const _Tp __y = __z.imag();
- return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- exp(const complex<_Tp>& __z)
- { return polar(exp(__z.real()), __z.imag()); }
-
- template<typename _Tp>
- inline complex<_Tp>
- log(const complex<_Tp>& __z)
- { return complex<_Tp>(log(abs(__z)), arg(__z)); }
-
- template<typename _Tp>
- inline complex<_Tp>
- log10(const complex<_Tp>& __z)
- { return log(__z) / log(_Tp(10.0)); }
-
- template<typename _Tp>
- inline complex<_Tp>
- sin(const complex<_Tp>& __z)
- {
- const _Tp __x = __z.real();
- const _Tp __y = __z.imag();
- return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- sinh(const complex<_Tp>& __z)
- {
- const _Tp __x = __z.real();
- const _Tp __y = __z.imag();
- return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
- }
-
- template<typename _Tp>
- complex<_Tp>
- sqrt(const complex<_Tp>& __z)
- {
- _Tp __x = __z.real();
- _Tp __y = __z.imag();
-
- if (__x == _Tp())
- {
- _Tp __t = sqrt(abs(__y) / 2);
- return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
- }
- else
- {
- _Tp __t = sqrt(2 * (abs(__z) + abs(__x)));
- _Tp __u = __t / 2;
- return __x > _Tp()
- ? complex<_Tp>(__u, __y / __t)
- : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
- }
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- tan(const complex<_Tp>& __z)
- {
- return sin(__z) / cos(__z);
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- tanh(const complex<_Tp>& __z)
- {
- return sinh(__z) / cosh(__z);
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- pow(const complex<_Tp>& __z, int __n)
- {
- return __pow_helper(__z, __n);
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- pow(const complex<_Tp>& __x, const _Tp& __y)
- {
- return exp(__y * log(__x));
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
- {
- return exp(__y * log(__x));
- }
-
- template<typename _Tp>
- inline complex<_Tp>
- pow(const _Tp& __x, const complex<_Tp>& __y)
- {
- return exp(__y * log(__x));
- }
-
- // 26.2.3 complex specializations
- // complex<float> specialization
- template<> class complex<float>
- {
- public:
- typedef float value_type;
-
- complex(float = 0.0f, float = 0.0f);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
- complex(const complex& __z) : _M_value(__z._M_value) { }
-#endif
- explicit complex(const complex<double>&);
- explicit complex(const complex<long double>&);
-
- float real() const;
- float imag() const;
-
- complex<float>& operator=(float);
- complex<float>& operator+=(float);
- complex<float>& operator-=(float);
- complex<float>& operator*=(float);
- complex<float>& operator/=(float);
-
- // Let's the compiler synthetize the copy and assignment
- // operator. It always does a pretty good job.
- // complex& operator= (const complex&);
- template<typename _Tp>
- complex<float>&operator=(const complex<_Tp>&);
- template<typename _Tp>
- complex<float>& operator+=(const complex<_Tp>&);
- template<class _Tp>
- complex<float>& operator-=(const complex<_Tp>&);
- template<class _Tp>
- complex<float>& operator*=(const complex<_Tp>&);
- template<class _Tp>
- complex<float>&operator/=(const complex<_Tp>&);
-
- private:
- typedef __complex__ float _ComplexT;
- _ComplexT _M_value;
-
- complex(_ComplexT __z) : _M_value(__z) { }
-
- friend class complex<double>;
- friend class complex<long double>;
- };
-
- inline float
- complex<float>::real() const
- { return __real__ _M_value; }
-
- inline float
- complex<float>::imag() const
- { return __imag__ _M_value; }
-
- inline
- complex<float>::complex(float r, float i)
- {
- __real__ _M_value = r;
- __imag__ _M_value = i;
- }
-
- inline complex<float>&
- complex<float>::operator=(float __f)
- {
- __real__ _M_value = __f;
- __imag__ _M_value = 0.0f;
- return *this;
- }
-
- inline complex<float>&
- complex<float>::operator+=(float __f)
- {
- __real__ _M_value += __f;
- return *this;
- }
-
- inline complex<float>&
- complex<float>::operator-=(float __f)
- {
- __real__ _M_value -= __f;
- return *this;
- }
-
- inline complex<float>&
- complex<float>::operator*=(float __f)
- {
- _M_value *= __f;
- return *this;
- }
-
- inline complex<float>&
- complex<float>::operator/=(float __f)
- {
- _M_value /= __f;
- return *this;
- }
-
- template<typename _Tp>
- inline complex<float>&
- complex<float>::operator=(const complex<_Tp>& __z)
- {
- __real__ _M_value = __z.real();
- __imag__ _M_value = __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<float>&
- complex<float>::operator+=(const complex<_Tp>& __z)
- {
- __real__ _M_value += __z.real();
- __imag__ _M_value += __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<float>&
- complex<float>::operator-=(const complex<_Tp>& __z)
- {
- __real__ _M_value -= __z.real();
- __imag__ _M_value -= __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<float>&
- complex<float>::operator*=(const complex<_Tp>& __z)
- {
- _ComplexT __t;
- __real__ __t = __z.real();
- __imag__ __t = __z.imag();
- _M_value *= __t;
- return *this;
- }
-
- template<typename _Tp>
- inline complex<float>&
- complex<float>::operator/=(const complex<_Tp>& __z)
- {
- _ComplexT __t;
- __real__ __t = __z.real();
- __imag__ __t = __z.imag();
- _M_value /= __t;
- return *this;
- }
-
- // 26.2.3 complex specializations
- // complex<double> specialization
- template<> class complex<double>
- {
- public:
- typedef double value_type;
-
- complex(double =0.0, double =0.0);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
- complex(const complex& __z) : _M_value(__z._M_value) { }
-#endif
- complex(const complex<float>&);
- explicit complex(const complex<long double>&);
-
- double real() const;
- double imag() const;
-
- complex<double>& operator=(double);
- complex<double>& operator+=(double);
- complex<double>& operator-=(double);
- complex<double>& operator*=(double);
- complex<double>& operator/=(double);
-
- // The compiler will synthetize this, efficiently.
- // complex& operator= (const complex&);
- template<typename _Tp>
- complex<double>& operator=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator+=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator-=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator*=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator/=(const complex<_Tp>&);
-
- private:
- typedef __complex__ double _ComplexT;
- _ComplexT _M_value;
-
- complex(_ComplexT __z) : _M_value(__z) { }
-
- friend class complex<float>;
- friend class complex<long double>;
- };
-
- inline double
- complex<double>::real() const
- { return __real__ _M_value; }
-
- inline double
- complex<double>::imag() const
- { return __imag__ _M_value; }
-
- inline
- complex<double>::complex(double __r, double __i)
- {
- __real__ _M_value = __r;
- __imag__ _M_value = __i;
- }
-
- inline complex<double>&
- complex<double>::operator=(double __d)
- {
- __real__ _M_value = __d;
- __imag__ _M_value = 0.0;
- return *this;
- }
-
- inline complex<double>&
- complex<double>::operator+=(double __d)
- {
- __real__ _M_value += __d;
- return *this;
- }
-
- inline complex<double>&
- complex<double>::operator-=(double __d)
- {
- __real__ _M_value -= __d;
- return *this;
- }
-
- inline complex<double>&
- complex<double>::operator*=(double __d)
- {
- _M_value *= __d;
- return *this;
- }
-
- inline complex<double>&
- complex<double>::operator/=(double __d)
- {
- _M_value /= __d;
- return *this;
- }
-
- template<typename _Tp>
- inline complex<double>&
- complex<double>::operator=(const complex<_Tp>& __z)
- {
- __real__ _M_value = __z.real();
- __imag__ _M_value = __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<double>&
- complex<double>::operator+=(const complex<_Tp>& __z)
- {
- __real__ _M_value += __z.real();
- __imag__ _M_value += __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<double>&
- complex<double>::operator-=(const complex<_Tp>& __z)
- {
- __real__ _M_value -= __z.real();
- __imag__ _M_value -= __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<double>&
- complex<double>::operator*=(const complex<_Tp>& __z)
- {
- _ComplexT __t;
- __real__ __t = __z.real();
- __imag__ __t = __z.imag();
- _M_value *= __t;
- return *this;
- }
-
- template<typename _Tp>
- inline complex<double>&
- complex<double>::operator/=(const complex<_Tp>& __z)
- {
- _ComplexT __t;
- __real__ __t = __z.real();
- __imag__ __t = __z.imag();
- _M_value /= __t;
- return *this;
- }
-
- // 26.2.3 complex specializations
- // complex<long double> specialization
- template<> class complex<long double>
- {
- public:
- typedef long double value_type;
-
- complex(long double = 0.0L, long double = 0.0L);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
- complex(const complex& __z) : _M_value(__z._M_value) { }
-#endif
- complex(const complex<float>&);
- complex(const complex<double>&);
-
- long double real() const;
- long double imag() const;
-
- complex<long double>& operator= (long double);
- complex<long double>& operator+= (long double);
- complex<long double>& operator-= (long double);
- complex<long double>& operator*= (long double);
- complex<long double>& operator/= (long double);
-
- // The compiler knows how to do this efficiently
- // complex& operator= (const complex&);
- template<typename _Tp>
- complex<long double>& operator=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator+=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator-=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator*=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator/=(const complex<_Tp>&);
-
- private:
- typedef __complex__ long double _ComplexT;
- _ComplexT _M_value;
-
- complex(_ComplexT __z) : _M_value(__z) { }
-
- friend class complex<float>;
- friend class complex<double>;
- };
-
- inline
- complex<long double>::complex(long double __r, long double __i)
- {
- __real__ _M_value = __r;
- __imag__ _M_value = __i;
- }
-
- inline long double
- complex<long double>::real() const
- { return __real__ _M_value; }
-
- inline long double
- complex<long double>::imag() const
- { return __imag__ _M_value; }
-
- inline complex<long double>&
- complex<long double>::operator=(long double __r)
- {
- __real__ _M_value = __r;
- __imag__ _M_value = 0.0L;
- return *this;
- }
-
- inline complex<long double>&
- complex<long double>::operator+=(long double __r)
- {
- __real__ _M_value += __r;
- return *this;
- }
-
- inline complex<long double>&
- complex<long double>::operator-=(long double __r)
- {
- __real__ _M_value -= __r;
- return *this;
- }
-
- inline complex<long double>&
- complex<long double>::operator*=(long double __r)
- {
- _M_value *= __r;
- return *this;
- }
-
- inline complex<long double>&
- complex<long double>::operator/=(long double __r)
- {
- _M_value /= __r;
- return *this;
- }
-
- template<typename _Tp>
- inline complex<long double>&
- complex<long double>::operator=(const complex<_Tp>& __z)
- {
- __real__ _M_value = __z.real();
- __imag__ _M_value = __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<long double>&
- complex<long double>::operator+=(const complex<_Tp>& __z)
- {
- __real__ _M_value += __z.real();
- __imag__ _M_value += __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<long double>&
- complex<long double>::operator-=(const complex<_Tp>& __z)
- {
- __real__ _M_value -= __z.real();
- __imag__ _M_value -= __z.imag();
- return *this;
- }
-
- template<typename _Tp>
- inline complex<long double>&
- complex<long double>::operator*=(const complex<_Tp>& __z)
- {
- _ComplexT __t;
- __real__ __t = __z.real();
- __imag__ __t = __z.imag();
- _M_value *= __t;
- return *this;
- }
-
- template<typename _Tp>
- inline complex<long double>&
- complex<long double>::operator/=(const complex<_Tp>& __z)
- {
- _ComplexT __t;
- __real__ __t = __z.real();
- __imag__ __t = __z.imag();
- _M_value /= __t;
- return *this;
- }
-
- // These bits have to be at the end of this file, so that the
- // specializations have all been defined.
- // ??? No, they have to be there because of compiler limitation at
- // inlining. It suffices that class specializations be defined.
- inline
- complex<float>::complex(const complex<double>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
-
- inline
- complex<float>::complex(const complex<long double>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
-
- inline
- complex<double>::complex(const complex<float>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
-
- inline
- complex<double>::complex(const complex<long double>& __z)
- {
- __real__ _M_value = __z.real();
- __imag__ _M_value = __z.imag();
- }
-
- inline
- complex<long double>::complex(const complex<float>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
-
- inline
- complex<long double>::complex(const complex<double>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
-} // namespace std
-
-#endif /* _CPP_COMPLEX */
OpenPOWER on IntegriCloud