summaryrefslogtreecommitdiffstats
path: root/libgo/go/image/jpeg/reader.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/image/jpeg/reader.go')
-rw-r--r--libgo/go/image/jpeg/reader.go154
1 files changed, 80 insertions, 74 deletions
diff --git a/libgo/go/image/jpeg/reader.go b/libgo/go/image/jpeg/reader.go
index fb9cb11bb7f..21a6fff9698 100644
--- a/libgo/go/image/jpeg/reader.go
+++ b/libgo/go/image/jpeg/reader.go
@@ -2,18 +2,22 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
-// The jpeg package implements a decoder for JPEG images, as defined in ITU-T T.81.
+// Package jpeg implements a JPEG image decoder and encoder.
+//
+// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
package jpeg
-// See http://www.w3.org/Graphics/JPEG/itu-t81.pdf
-
import (
"bufio"
"image"
+ "image/ycbcr"
"io"
"os"
)
+// TODO(nigeltao): fix up the doc comment style so that sentences start with
+// the name of the type or function that they annotate.
+
// A FormatError reports that the input is not a valid JPEG.
type FormatError string
@@ -26,12 +30,14 @@ func (e UnsupportedError) String() string { return "unsupported JPEG feature: "
// Component specification, specified in section B.2.2.
type component struct {
+ h int // Horizontal sampling factor.
+ v int // Vertical sampling factor.
c uint8 // Component identifier.
- h uint8 // Horizontal sampling factor.
- v uint8 // Vertical sampling factor.
tq uint8 // Quantization table destination selector.
}
+type block [blockSize]int
+
const (
blockSize = 64 // A DCT block is 8x8.
@@ -84,13 +90,13 @@ type Reader interface {
type decoder struct {
r Reader
width, height int
- image *image.RGBA
+ img *ycbcr.YCbCr
ri int // Restart Interval.
comps [nComponent]component
huff [maxTc + 1][maxTh + 1]huffman
- quant [maxTq + 1][blockSize]int
+ quant [maxTq + 1]block
b bits
- blocks [nComponent][maxH * maxV][blockSize]int
+ blocks [nComponent][maxH * maxV]block
tmp [1024]byte
}
@@ -130,9 +136,9 @@ func (d *decoder) processSOF(n int) os.Error {
}
for i := 0; i < nComponent; i++ {
hv := d.tmp[7+3*i]
+ d.comps[i].h = int(hv >> 4)
+ d.comps[i].v = int(hv & 0x0f)
d.comps[i].c = d.tmp[6+3*i]
- d.comps[i].h = hv >> 4
- d.comps[i].v = hv & 0x0f
d.comps[i].tq = d.tmp[8+3*i]
// We only support YCbCr images, and 4:4:4, 4:2:2 or 4:2:0 chroma downsampling ratios. This implies that
// the (h, v) values for the Y component are either (1, 1), (2, 1) or (2, 2), and the
@@ -176,71 +182,47 @@ func (d *decoder) processDQT(n int) os.Error {
return nil
}
-// Set the Pixel (px, py)'s RGB value, based on its YCbCr value.
-func (d *decoder) calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex int) {
- y, cb, cr := d.blocks[0][lumaBlock][lumaIndex], d.blocks[1][0][chromaIndex], d.blocks[2][0][chromaIndex]
- // The JFIF specification (http://www.w3.org/Graphics/JPEG/jfif3.pdf, page 3) gives the formula
- // for translating YCbCr to RGB as:
- // R = Y + 1.402 (Cr-128)
- // G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128)
- // B = Y + 1.772 (Cb-128)
- yPlusHalf := 100000*y + 50000
- cb -= 128
- cr -= 128
- r := (yPlusHalf + 140200*cr) / 100000
- g := (yPlusHalf - 34414*cb - 71414*cr) / 100000
- b := (yPlusHalf + 177200*cb) / 100000
- if r < 0 {
- r = 0
- } else if r > 255 {
- r = 255
+// Clip x to the range [0, 255] inclusive.
+func clip(x int) uint8 {
+ if x < 0 {
+ return 0
}
- if g < 0 {
- g = 0
- } else if g > 255 {
- g = 255
+ if x > 255 {
+ return 255
}
- if b < 0 {
- b = 0
- } else if b > 255 {
- b = 255
- }
- d.image.Pix[py*d.image.Stride+px] = image.RGBAColor{uint8(r), uint8(g), uint8(b), 0xff}
+ return uint8(x)
}
-// Convert the MCU from YCbCr to RGB.
-func (d *decoder) convertMCU(mx, my, h0, v0 int) {
- lumaBlock := 0
+// Store the MCU to the image.
+func (d *decoder) storeMCU(mx, my int) {
+ h0, v0 := d.comps[0].h, d.comps[0].v
+ // Store the luma blocks.
for v := 0; v < v0; v++ {
for h := 0; h < h0; h++ {
- chromaBase := 8*4*v + 4*h
- py := 8 * (v0*my + v)
- for y := 0; y < 8 && py < d.height; y++ {
- px := 8 * (h0*mx + h)
- lumaIndex := 8 * y
- chromaIndex := chromaBase + 8*(y/v0)
- for x := 0; x < 8 && px < d.width; x++ {
- d.calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex)
- if h0 == 1 {
- chromaIndex += 1
- } else {
- chromaIndex += x % 2
- }
- lumaIndex++
- px++
+ p := 8 * ((v0*my+v)*d.img.YStride + (h0*mx + h))
+ for y := 0; y < 8; y++ {
+ for x := 0; x < 8; x++ {
+ d.img.Y[p] = clip(d.blocks[0][h0*v+h][8*y+x])
+ p++
}
- py++
+ p += d.img.YStride - 8
}
- lumaBlock++
}
}
+ // Store the chroma blocks.
+ p := 8 * (my*d.img.CStride + mx)
+ for y := 0; y < 8; y++ {
+ for x := 0; x < 8; x++ {
+ d.img.Cb[p] = clip(d.blocks[1][0][8*y+x])
+ d.img.Cr[p] = clip(d.blocks[2][0][8*y+x])
+ p++
+ }
+ p += d.img.CStride - 8
+ }
}
// Specified in section B.2.3.
func (d *decoder) processSOS(n int) os.Error {
- if d.image == nil {
- d.image = image.NewRGBA(d.width, d.height)
- }
if n != 4+2*nComponent {
return UnsupportedError("SOS has wrong length")
}
@@ -255,7 +237,6 @@ func (d *decoder) processSOS(n int) os.Error {
td uint8 // DC table selector.
ta uint8 // AC table selector.
}
- h0, v0 := int(d.comps[0].h), int(d.comps[0].v) // The h and v values from the Y components.
for i := 0; i < nComponent; i++ {
cs := d.tmp[1+2*i] // Component selector.
if cs != d.comps[i].c {
@@ -265,17 +246,42 @@ func (d *decoder) processSOS(n int) os.Error {
scanComps[i].ta = d.tmp[2+2*i] & 0x0f
}
// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
- mxx := (d.width + 8*int(h0) - 1) / (8 * int(h0))
- myy := (d.height + 8*int(v0) - 1) / (8 * int(v0))
+ h0, v0 := d.comps[0].h, d.comps[0].v // The h and v values from the Y components.
+ mxx := (d.width + 8*h0 - 1) / (8 * h0)
+ myy := (d.height + 8*v0 - 1) / (8 * v0)
+ if d.img == nil {
+ var subsampleRatio ycbcr.SubsampleRatio
+ n := h0 * v0
+ switch n {
+ case 1:
+ subsampleRatio = ycbcr.SubsampleRatio444
+ case 2:
+ subsampleRatio = ycbcr.SubsampleRatio422
+ case 4:
+ subsampleRatio = ycbcr.SubsampleRatio420
+ default:
+ panic("unreachable")
+ }
+ b := make([]byte, mxx*myy*(1*8*8*n+2*8*8))
+ d.img = &ycbcr.YCbCr{
+ Y: b[mxx*myy*(0*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+0*8*8)],
+ Cb: b[mxx*myy*(1*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+1*8*8)],
+ Cr: b[mxx*myy*(1*8*8*n+1*8*8) : mxx*myy*(1*8*8*n+2*8*8)],
+ SubsampleRatio: subsampleRatio,
+ YStride: mxx * 8 * h0,
+ CStride: mxx * 8,
+ Rect: image.Rect(0, 0, d.width, d.height),
+ }
+ }
mcu, expectedRST := 0, uint8(rst0Marker)
- var allZeroes [blockSize]int
+ var allZeroes block
var dc [nComponent]int
for my := 0; my < myy; my++ {
for mx := 0; mx < mxx; mx++ {
for i := 0; i < nComponent; i++ {
qt := &d.quant[d.comps[i].tq]
- for j := 0; j < int(d.comps[i].h*d.comps[i].v); j++ {
+ for j := 0; j < d.comps[i].h*d.comps[i].v; j++ {
d.blocks[i][j] = allZeroes
// Decode the DC coefficient, as specified in section F.2.2.1.
@@ -299,20 +305,20 @@ func (d *decoder) processSOS(n int) os.Error {
if err != nil {
return err
}
- v0 := value >> 4
- v1 := value & 0x0f
- if v1 != 0 {
- k += int(v0)
+ val0 := value >> 4
+ val1 := value & 0x0f
+ if val1 != 0 {
+ k += int(val0)
if k > blockSize {
return FormatError("bad DCT index")
}
- ac, err := d.receiveExtend(v1)
+ ac, err := d.receiveExtend(val1)
if err != nil {
return err
}
d.blocks[i][j][unzig[k]] = ac * qt[k]
} else {
- if v0 != 0x0f {
+ if val0 != 0x0f {
break
}
k += 0x0f
@@ -322,7 +328,7 @@ func (d *decoder) processSOS(n int) os.Error {
idct(&d.blocks[i][j])
} // for j
} // for i
- d.convertMCU(mx, my, int(d.comps[0].h), int(d.comps[0].v))
+ d.storeMCU(mx, my)
mcu++
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
@@ -431,7 +437,7 @@ func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) {
return nil, err
}
}
- return d.image, nil
+ return d.img, nil
}
// Decode reads a JPEG image from r and returns it as an image.Image.
OpenPOWER on IntegriCloud