diff options
author | tromey <tromey@138bc75d-0d04-0410-961f-82ee72b054a4> | 1999-06-24 20:06:09 +0000 |
---|---|---|
committer | tromey <tromey@138bc75d-0d04-0410-961f-82ee72b054a4> | 1999-06-24 20:06:09 +0000 |
commit | b75bafe5cbae7295b9131db3a6f5d96ed99f4b97 (patch) | |
tree | f577c36db61fa83932e1fd4b93c845f64b0d2b7a /libjava/java/lang/e_exp.c | |
parent | f27f59e4cf4f26bfb31e9f4ea4bc8a4a07d1b5c3 (diff) | |
download | ppe42-gcc-b75bafe5cbae7295b9131db3a6f5d96ed99f4b97.tar.gz ppe42-gcc-b75bafe5cbae7295b9131db3a6f5d96ed99f4b97.zip |
Fri May 28 22:20:03 1999 Anthony Green <green@cygnus.com>
* java/lang/fdlibm.h: Don't use __uint32_t. Include mprec.h.
* java/lang/e_log.c: Don't use __uint32_t.
1999-05-27 Eric Christopher <echristo@cygnus.com>
* configure: Rebuilt
* configure.in: Fixed ISO C9X and namespace collision with __uint32_t
* acconfig.h: Rebuilt
* include/config.h.in: Rebuilt
* java/lang/mprec.h, java/lang/e_acos.c, java/lang/e_asin.c,
java/lang/e_atan2.c, java/lang/e_exp.c, java/lang/e_fmod.c,
e_log.c, java/lang/e_pow.c, java/lang/e_rem_pio2.c,
java/lang/e_remainder.c, java/lang/e_sqrt.c, java/lang/fdlibm.h,
k_tan.c, java/lang/mprec.h, java/lang/s_atan.c,
java/lang/s_ceil.c, java/lang/s_copysign.c, java/lang/s_fabs.c,
s_floor.c, java/lang/s_rint.c, java/lang/sf_rint.c: Fixed ISO C9X
and namespace collision with __uint32_t
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@27729 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libjava/java/lang/e_exp.c')
-rw-r--r-- | libjava/java/lang/e_exp.c | 40 |
1 files changed, 20 insertions, 20 deletions
diff --git a/libjava/java/lang/e_exp.c b/libjava/java/lang/e_exp.c index ce093c61065..e11ca8b3856 100644 --- a/libjava/java/lang/e_exp.c +++ b/libjava/java/lang/e_exp.c @@ -6,7 +6,7 @@ * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice + * software is freely granted, provided that this notice * is preserved. * ==================================================== */ @@ -19,36 +19,36 @@ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * - * x = k*ln2 + r, |r| <= 0.5*ln2. + * x = k*ln2 + r, |r| <= 0.5*ln2. * - * Here r will be represented as r = hi-lo for better + * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - * We use a special Reme algorithm on [0,0.34658] to generate - * a polynomial of degree 5 to approximate R. The maximum error + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 - * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r - * r*R1(r) + * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). - * + * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) @@ -63,13 +63,13 @@ * 1 ulp (unit in the last place). * * Misc. info. - * For IEEE double + * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ @@ -109,8 +109,8 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ #endif { double y,hi,lo,c,t; - __int32_t k,xsb; - __uint32_t hx; + int32_t k,xsb; + uint32_t hx; GET_HIGH_WORD(hx,x); xsb = (hx>>31)&1; /* sign bit of x */ @@ -119,9 +119,9 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ /* filter out non-finite argument */ if(hx >= 0x40862E42) { /* if |x|>=709.78... */ if(hx>=0x7ff00000) { - __uint32_t lx; + uint32_t lx; GET_LOW_WORD(lx,x); - if(((hx&0xfffff)|lx)!=0) + if(((hx&0xfffff)|lx)!=0) return x+x; /* NaN */ else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ } @@ -130,7 +130,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ } /* argument reduction */ - if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; } else { @@ -140,7 +140,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ lo = t*ln2LO[0]; } x = hi - lo; - } + } else if(hx < 0x3e300000) { /* when |x|<2**-28 */ if(huge+x>one) return one+x;/* trigger inexact */ } @@ -149,15 +149,15 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ /* x is now in primary range */ t = x*x; c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - if(k==0) return one-((x*c)/(c-2.0)-x); + if(k==0) return one-((x*c)/(c-2.0)-x); else y = one-((lo-(x*c)/(2.0-c))-hi); if(k >= -1021) { - __uint32_t hy; + uint32_t hy; GET_HIGH_WORD(hy,y); SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ return y; } else { - __uint32_t hy; + uint32_t hy; GET_HIGH_WORD(hy,y); SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ return y*twom1000; |