summaryrefslogtreecommitdiffstats
path: root/libjava/java/awt/geom/CubicCurve2D.java
diff options
context:
space:
mode:
authormkoch <mkoch@138bc75d-0d04-0410-961f-82ee72b054a4>2004-01-05 19:19:29 +0000
committermkoch <mkoch@138bc75d-0d04-0410-961f-82ee72b054a4>2004-01-05 19:19:29 +0000
commit51510efaee031b53bcf01fec41fceab67504e334 (patch)
tree8383df7e144c69b16c9ccfb5c030244096639ecc /libjava/java/awt/geom/CubicCurve2D.java
parent6ea1f6948e99a3161728ba0f5886534ac5478042 (diff)
downloadppe42-gcc-51510efaee031b53bcf01fec41fceab67504e334.tar.gz
ppe42-gcc-51510efaee031b53bcf01fec41fceab67504e334.zip
2004-01-05 Sascha Brawer <brawer@dandelis.ch>
Thanks to Brian Gough <bjg@network-theory.com> * java/awt/geom/CubicCurve2D.java (solveCubic): Implemented. * java/awt/geom/QuadCurve2D.java (solveQuadratic): Re-written. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@75437 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libjava/java/awt/geom/CubicCurve2D.java')
-rw-r--r--libjava/java/awt/geom/CubicCurve2D.java166
1 files changed, 163 insertions, 3 deletions
diff --git a/libjava/java/awt/geom/CubicCurve2D.java b/libjava/java/awt/geom/CubicCurve2D.java
index 1e38d3ada9a..096e7ad9772 100644
--- a/libjava/java/awt/geom/CubicCurve2D.java
+++ b/libjava/java/awt/geom/CubicCurve2D.java
@@ -624,17 +624,115 @@ public abstract class CubicCurve2D
}
+ /**
+ * Finds the non-complex roots of a cubic equation, placing the
+ * results into the same array as the equation coefficients. The
+ * following equation is being solved:
+ *
+ * <blockquote><code>eqn[3]</code> &#xb7; <i>x</i><sup>3</sup>
+ * + <code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving cubic equations, see the
+ * article <a
+ * href="http://planetmath.org/encyclopedia/CubicFormula.html"
+ * >&#x201c;Cubic Formula&#x201d;</a> in <a
+ * href="http://planetmath.org/" >PlanetMath</a>. For an extensive
+ * library of numerical algorithms written in the C programming
+ * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
+ * Scientific Library</a>, from which this implementation was
+ * adapted.
+ *
+ * @param eqn an array with the coefficients of the equation. When
+ * this procedure has returned, <code>eqn</code> will contain the
+ * non-complex solutions of the equation, in no particular order.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @see #solveCubic(double[], double[])
+ * @see QuadCurve2D#solveQuadratic(double[],double[])
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveCubic(double[] eqn)
{
return solveCubic(eqn, eqn);
}
+ /**
+ * Finds the non-complex roots of a cubic equation. The following
+ * equation is being solved:
+ *
+ * <blockquote><code>eqn[3]</code> &#xb7; <i>x</i><sup>3</sup>
+ * + <code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
+ * + <code>eqn[1]</code> &#xb7; <i>x</i>
+ * + <code>eqn[0]</code>
+ * = 0
+ * </blockquote>
+ *
+ * <p>For some background about solving cubic equations, see the
+ * article <a
+ * href="http://planetmath.org/encyclopedia/CubicFormula.html"
+ * >&#x201c;Cubic Formula&#x201d;</a> in <a
+ * href="http://planetmath.org/" >PlanetMath</a>. For an extensive
+ * library of numerical algorithms written in the C programming
+ * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
+ * Scientific Library</a>, from which this implementation was
+ * adapted.
+ *
+ * @see QuadCurve2D#solveQuadratic(double[],double[])
+ *
+ * @param eqn an array with the coefficients of the equation.
+ *
+ * @param res an array into which the non-complex roots will be
+ * stored. The results may be in an arbitrary order. It is safe to
+ * pass the same array object reference for both <code>eqn</code>
+ * and <code>res</code>.
+ *
+ * @return the number of non-complex solutions. A result of 0
+ * indicates that the equation has no non-complex solutions. A
+ * result of -1 indicates that the equation is constant (i.e.,
+ * always or never zero).
+ *
+ * @author <a href="mailto:bjg@network-theory.com">Brian Gough</a>
+ * (original C implementation in the <a href=
+ * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
+ *
+ * @author <a href="mailto:brawer@dandelis.ch">Sascha Brawer</a>
+ * (adaptation to Java)
+ */
public static int solveCubic(double[] eqn, double[] res)
{
+ // Adapted from poly/solve_cubic.c in the GNU Scientific Library
+ // (GSL), revision 1.7 of 2003-07-26. For the original source, see
+ // http://www.gnu.org/software/gsl/
+ //
+ // Brian Gough, the author of that code, has granted the
+ // permission to use it in GNU Classpath under the GNU Classpath
+ // license, and has assigned the copyright to the Free Software
+ // Foundation.
+ //
+ // The Java implementation is very similar to the GSL code, but
+ // not a strict one-to-one copy. For example, GSL would sort the
+ // result.
+
double a, b, c, q, r, Q, R;
-
- double c3 = eqn[3];
+ double c3, Q3, R2, CR2, CQ3;
+
+ // If the cubic coefficient is zero, we have a quadratic equation.
+ c3 = eqn[3];
if (c3 == 0)
return QuadCurve2D.solveQuadratic(eqn, res);
@@ -644,7 +742,69 @@ public abstract class CubicCurve2D
a = eqn[2] / c3;
// We now need to solve x^3 + ax^2 + bx + c = 0.
- throw new Error("not implemented"); // FIXME
+ q = a * a - 3 * b;
+ r = 2 * a * a * a - 9 * a * b + 27 * c;
+
+ Q = q / 9;
+ R = r / 54;
+
+ Q3 = Q * Q * Q;
+ R2 = R * R;
+
+ CR2 = 729 * r * r;
+ CQ3 = 2916 * q * q * q;
+
+ if (R == 0 && Q == 0)
+ {
+ // The GNU Scientific Library would return three identical
+ // solutions in this case.
+ res[0] = -a/3;
+ return 1;
+ }
+
+ if (CR2 == CQ3)
+ {
+ /* this test is actually R2 == Q3, written in a form suitable
+ for exact computation with integers */
+
+ /* Due to finite precision some double roots may be missed, and
+ considered to be a pair of complex roots z = x +/- epsilon i
+ close to the real axis. */
+
+ double sqrtQ = Math.sqrt(Q);
+
+ if (R > 0)
+ {
+ res[0] = -2 * sqrtQ - a/3;
+ res[1] = sqrtQ - a/3;
+ }
+ else
+ {
+ res[0] = -sqrtQ - a/3;
+ res[1] = 2 * sqrtQ - a/3;
+ }
+ return 2;
+ }
+
+ if (CR2 < CQ3) /* equivalent to R2 < Q3 */
+ {
+ double sqrtQ = Math.sqrt(Q);
+ double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
+ double theta = Math.acos(R / sqrtQ3);
+ double norm = -2 * sqrtQ;
+ res[0] = norm * Math.cos(theta / 3) - a / 3;
+ res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a/3;
+ res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a/3;
+
+ // The GNU Scientific Library sorts the results. We don't.
+ return 3;
+ }
+
+ double sgnR = (R >= 0 ? 1 : -1);
+ double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0/3.0);
+ double B = Q / A ;
+ res[0] = A + B - a/3;
+ return 1;
}
OpenPOWER on IntegriCloud