diff options
| author | bernds <bernds@138bc75d-0d04-0410-961f-82ee72b054a4> | 2000-12-03 16:11:45 +0000 | 
|---|---|---|
| committer | bernds <bernds@138bc75d-0d04-0410-961f-82ee72b054a4> | 2000-12-03 16:11:45 +0000 | 
| commit | 6adce0fb141c20b2defcda42f2f78783b671e75b (patch) | |
| tree | ba0266e2403479ce69ad386bc15adc36568cbd8b /gcc/sched-deps.c | |
| parent | 10c0611466c6e2c29a7c300cdd22ed4be0217e32 (diff) | |
| download | ppe42-gcc-6adce0fb141c20b2defcda42f2f78783b671e75b.tar.gz ppe42-gcc-6adce0fb141c20b2defcda42f2f78783b671e75b.zip | |
Move dependency code out of haifa-sched.c
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@37975 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/sched-deps.c')
| -rw-r--r-- | gcc/sched-deps.c | 1399 | 
1 files changed, 1399 insertions, 0 deletions
| diff --git a/gcc/sched-deps.c b/gcc/sched-deps.c new file mode 100644 index 00000000000..7f9914cdd82 --- /dev/null +++ b/gcc/sched-deps.c @@ -0,0 +1,1399 @@ +/* Instruction scheduling pass.  This file computes dependencies between +   instructions. +   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, +   1999, 2000 Free Software Foundation, Inc. +   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by, +   and currently maintained by, Jim Wilson (wilson@cygnus.com) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 2, or (at your option) any +later version. + +GNU CC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING.  If not, write to the Free +the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA +02111-1307, USA.  */ + +#include "config.h" +#include "system.h" +#include "toplev.h" +#include "rtl.h" +#include "tm_p.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "regs.h" +#include "function.h" +#include "flags.h" +#include "insn-config.h" +#include "insn-attr.h" +#include "except.h" +#include "toplev.h" +#include "recog.h" +#include "sched-int.h" + +extern char *reg_known_equiv_p; +extern rtx *reg_known_value; + +static regset_head reg_pending_sets_head; +static regset_head reg_pending_clobbers_head; + +static regset reg_pending_sets; +static regset reg_pending_clobbers; +static int reg_pending_sets_all; + +/* To speed up the test for duplicate dependency links we keep a +   record of dependencies created by add_dependence when the average +   number of instructions in a basic block is very large. + +   Studies have shown that there is typically around 5 instructions between +   branches for typical C code.  So we can make a guess that the average +   basic block is approximately 5 instructions long; we will choose 100X +   the average size as a very large basic block. + +   Each insn has associated bitmaps for its dependencies.  Each bitmap +   has enough entries to represent a dependency on any other insn in +   the insn chain.  All bitmap for true dependencies cache is +   allocated then the rest two ones are also allocated. */ +static sbitmap *true_dependency_cache; +static sbitmap *anti_dependency_cache; +static sbitmap *output_dependency_cache; + +/* To speed up checking consistency of formed forward insn +   dependencies we use the following cache.  Another possible solution +   could be switching off checking duplication of insns in forward +   dependencies. */ +#ifdef ENABLE_CHECKING +static sbitmap *forward_dependency_cache; +#endif + +static void remove_dependence PARAMS ((rtx, rtx)); +static void set_sched_group_p PARAMS ((rtx)); + +static void flush_pending_lists PARAMS ((struct deps *, rtx, int)); +static void sched_analyze_1 PARAMS ((struct deps *, rtx, rtx)); +static void sched_analyze_2 PARAMS ((struct deps *, rtx, rtx)); +static void sched_analyze_insn PARAMS ((struct deps *, rtx, rtx, rtx)); +static rtx group_leader PARAMS ((rtx)); + +/* Return the INSN_LIST containing INSN in LIST, or NULL +   if LIST does not contain INSN.  */ + +HAIFA_INLINE rtx +find_insn_list (insn, list) +     rtx insn; +     rtx list; +{ +  while (list) +    { +      if (XEXP (list, 0) == insn) +	return list; +      list = XEXP (list, 1); +    } +  return 0; +} + +/* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0 +   otherwise.  */ + +HAIFA_INLINE int +find_insn_mem_list (insn, x, list, list1) +     rtx insn, x; +     rtx list, list1; +{ +  while (list) +    { +      if (XEXP (list, 0) == insn +	  && XEXP (list1, 0) == x) +	return 1; +      list = XEXP (list, 1); +      list1 = XEXP (list1, 1); +    } +  return 0; +} + +/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the +   LOG_LINKS of INSN, if not already there.  DEP_TYPE indicates the type +   of dependence that this link represents.  */ + +void +add_dependence (insn, elem, dep_type) +     rtx insn; +     rtx elem; +     enum reg_note dep_type; +{ +  rtx link, next; +  int present_p; +  enum reg_note present_dep_type; + +  /* Don't depend an insn on itself.  */ +  if (insn == elem) +    return; + +  /* We can get a dependency on deleted insns due to optimizations in +     the register allocation and reloading or due to splitting.  Any +     such dependency is useless and can be ignored.  */ +  if (GET_CODE (elem) == NOTE) +    return; + +  /* If elem is part of a sequence that must be scheduled together, then +     make the dependence point to the last insn of the sequence. +     When HAVE_cc0, it is possible for NOTEs to exist between users and +     setters of the condition codes, so we must skip past notes here. +     Otherwise, NOTEs are impossible here.  */ +  next = next_nonnote_insn (elem); +  if (next && SCHED_GROUP_P (next) +      && GET_CODE (next) != CODE_LABEL) +    { +      /* Notes will never intervene here though, so don't bother checking +         for them.  */ +      /* Hah!  Wrong.  */ +      /* We must reject CODE_LABELs, so that we don't get confused by one +         that has LABEL_PRESERVE_P set, which is represented by the same +         bit in the rtl as SCHED_GROUP_P.  A CODE_LABEL can never be +         SCHED_GROUP_P.  */ + +      rtx nnext; +      while ((nnext = next_nonnote_insn (next)) != NULL +	     && SCHED_GROUP_P (nnext) +	     && GET_CODE (nnext) != CODE_LABEL) +	next = nnext; + +      /* Again, don't depend an insn on itself.  */ +      if (insn == next) +	return; + +      /* Make the dependence to NEXT, the last insn of the group, instead +         of the original ELEM.  */ +      elem = next; +    } + +  present_p = 1; +#ifdef INSN_SCHEDULING +  /* ??? No good way to tell from here whether we're doing interblock +     scheduling.  Possibly add another callback.  */ +#if 0 +  /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.) +     No need for interblock dependences with calls, since +     calls are not moved between blocks.   Note: the edge where +     elem is a CALL is still required.  */ +  if (GET_CODE (insn) == CALL_INSN +      && (INSN_BB (elem) != INSN_BB (insn))) +    return; +#endif + +  /* If we already have a dependency for ELEM, then we do not need to +     do anything.  Avoiding the list walk below can cut compile times +     dramatically for some code.  */ +  if (true_dependency_cache != NULL) +    { +      if (anti_dependency_cache == NULL || output_dependency_cache == NULL) +	abort (); +      if (TEST_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) +	present_dep_type = 0; +      else if (TEST_BIT (anti_dependency_cache[INSN_LUID (insn)], +			 INSN_LUID (elem))) +	present_dep_type = REG_DEP_ANTI; +      else if (TEST_BIT (output_dependency_cache[INSN_LUID (insn)], +			 INSN_LUID (elem))) +	present_dep_type = REG_DEP_OUTPUT; +      else  +	present_p = 0; +      if (present_p && (int) dep_type >= (int) present_dep_type) +	return; +    } +#endif + +  /* Check that we don't already have this dependence.  */ +  if (present_p) +    for (link = LOG_LINKS (insn); link; link = XEXP (link, 1)) +      if (XEXP (link, 0) == elem) +	{ +#ifdef INSN_SCHEDULING +	  /* Clear corresponding cache entry because type of the link +             may be changed. */ +	  if (true_dependency_cache != NULL) +	    { +	      if (REG_NOTE_KIND (link) == REG_DEP_ANTI) +		RESET_BIT (anti_dependency_cache[INSN_LUID (insn)], +			   INSN_LUID (elem)); +	      else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT +		       && output_dependency_cache) +		RESET_BIT (output_dependency_cache[INSN_LUID (insn)], +			   INSN_LUID (elem)); +	      else +		abort (); +	    } +#endif + +	  /* If this is a more restrictive type of dependence than the existing +	     one, then change the existing dependence to this type.  */ +	  if ((int) dep_type < (int) REG_NOTE_KIND (link)) +	    PUT_REG_NOTE_KIND (link, dep_type); +	   +#ifdef INSN_SCHEDULING +	  /* If we are adding a dependency to INSN's LOG_LINKs, then +	     note that in the bitmap caches of dependency information. */ +	  if (true_dependency_cache != NULL) +	    { +	      if ((int)REG_NOTE_KIND (link) == 0) +		SET_BIT (true_dependency_cache[INSN_LUID (insn)], +			 INSN_LUID (elem)); +	      else if (REG_NOTE_KIND (link) == REG_DEP_ANTI) +		SET_BIT (anti_dependency_cache[INSN_LUID (insn)], +			 INSN_LUID (elem)); +	      else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT) +		SET_BIT (output_dependency_cache[INSN_LUID (insn)], +			 INSN_LUID (elem)); +	    } +#endif +	  return; +      } +  /* Might want to check one level of transitivity to save conses.  */ + +  link = alloc_INSN_LIST (elem, LOG_LINKS (insn)); +  LOG_LINKS (insn) = link; + +  /* Insn dependency, not data dependency.  */ +  PUT_REG_NOTE_KIND (link, dep_type); + +#ifdef INSN_SCHEDULING +  /* If we are adding a dependency to INSN's LOG_LINKs, then note that +     in the bitmap caches of dependency information. */ +  if (true_dependency_cache != NULL) +    { +      if ((int)dep_type == 0) +	SET_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); +      else if (dep_type == REG_DEP_ANTI) +	SET_BIT (anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); +      else if (dep_type == REG_DEP_OUTPUT) +	SET_BIT (output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); +    } +#endif +} + +/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS +   of INSN.  Abort if not found.  */ + +static void +remove_dependence (insn, elem) +     rtx insn; +     rtx elem; +{ +  rtx prev, link, next; +  int found = 0; + +  for (prev = 0, link = LOG_LINKS (insn); link; link = next) +    { +      next = XEXP (link, 1); +      if (XEXP (link, 0) == elem) +	{ +	  if (prev) +	    XEXP (prev, 1) = next; +	  else +	    LOG_LINKS (insn) = next; + +#ifdef INSN_SCHEDULING +	  /* If we are removing a dependency from the LOG_LINKS list, +	     make sure to remove it from the cache too.  */ +	  if (true_dependency_cache != NULL) +	    { +	      if (REG_NOTE_KIND (link) == 0) +		RESET_BIT (true_dependency_cache[INSN_LUID (insn)], +			   INSN_LUID (elem)); +	      else if (REG_NOTE_KIND (link) == REG_DEP_ANTI) +		RESET_BIT (anti_dependency_cache[INSN_LUID (insn)], +			   INSN_LUID (elem)); +	      else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT) +		RESET_BIT (output_dependency_cache[INSN_LUID (insn)], +			   INSN_LUID (elem)); +	    } +#endif + +	  free_INSN_LIST_node (link); + +	  found = 1; +	} +      else +	prev = link; +    } + +  if (!found) +    abort (); +  return; +} + +/* Return an insn which represents a SCHED_GROUP, which is +   the last insn in the group.  */ + +static rtx +group_leader (insn) +     rtx insn; +{ +  rtx prev; + +  do +    { +      prev = insn; +      insn = next_nonnote_insn (insn); +    } +  while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL)); + +  return prev; +} + +/* Set SCHED_GROUP_P and care for the rest of the bookkeeping that +   goes along with that.  */ + +static void +set_sched_group_p (insn) +     rtx insn; +{ +  rtx link, prev; + +  SCHED_GROUP_P (insn) = 1; + +  /* There may be a note before this insn now, but all notes will +     be removed before we actually try to schedule the insns, so +     it won't cause a problem later.  We must avoid it here though.  */ +  prev = prev_nonnote_insn (insn); + +  /* Make a copy of all dependencies on the immediately previous insn, +     and add to this insn.  This is so that all the dependencies will +     apply to the group.  Remove an explicit dependence on this insn +     as SCHED_GROUP_P now represents it.  */ + +  if (find_insn_list (prev, LOG_LINKS (insn))) +    remove_dependence (insn, prev); + +  for (link = LOG_LINKS (prev); link; link = XEXP (link, 1)) +    add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link)); +} + +/* Process an insn's memory dependencies.  There are four kinds of +   dependencies: + +   (0) read dependence: read follows read +   (1) true dependence: read follows write +   (2) anti dependence: write follows read +   (3) output dependence: write follows write + +   We are careful to build only dependencies which actually exist, and +   use transitivity to avoid building too many links.  */ + +/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST. +   The MEM is a memory reference contained within INSN, which we are saving +   so that we can do memory aliasing on it.  */ + +void +add_insn_mem_dependence (deps, insn_list, mem_list, insn, mem) +     struct deps *deps; +     rtx *insn_list, *mem_list, insn, mem; +{ +  register rtx link; + +  link = alloc_INSN_LIST (insn, *insn_list); +  *insn_list = link; + +  link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list); +  *mem_list = link; + +  deps->pending_lists_length++; +} + +/* Make a dependency between every memory reference on the pending lists +   and INSN, thus flushing the pending lists.  If ONLY_WRITE, don't flush +   the read list.  */ + +static void +flush_pending_lists (deps, insn, only_write) +     struct deps *deps; +     rtx insn; +     int only_write; +{ +  rtx u; +  rtx link; + +  while (deps->pending_read_insns && ! only_write) +    { +      add_dependence (insn, XEXP (deps->pending_read_insns, 0), +		      REG_DEP_ANTI); + +      link = deps->pending_read_insns; +      deps->pending_read_insns = XEXP (deps->pending_read_insns, 1); +      free_INSN_LIST_node (link); + +      link = deps->pending_read_mems; +      deps->pending_read_mems = XEXP (deps->pending_read_mems, 1); +      free_EXPR_LIST_node (link); +    } +  while (deps->pending_write_insns) +    { +      add_dependence (insn, XEXP (deps->pending_write_insns, 0), +		      REG_DEP_ANTI); + +      link = deps->pending_write_insns; +      deps->pending_write_insns = XEXP (deps->pending_write_insns, 1); +      free_INSN_LIST_node (link); + +      link = deps->pending_write_mems; +      deps->pending_write_mems = XEXP (deps->pending_write_mems, 1); +      free_EXPR_LIST_node (link); +    } +  deps->pending_lists_length = 0; + +  /* last_pending_memory_flush is now a list of insns.  */ +  for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1)) +    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +  free_INSN_LIST_list (&deps->last_pending_memory_flush); +  deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX); +} + +/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC +   rtx, X, creating all dependencies generated by the write to the +   destination of X, and reads of everything mentioned.  */ + +static void +sched_analyze_1 (deps, x, insn) +     struct deps *deps; +     rtx x; +     rtx insn; +{ +  register int regno; +  register rtx dest = XEXP (x, 0); +  enum rtx_code code = GET_CODE (x); + +  if (dest == 0) +    return; + +  if (GET_CODE (dest) == PARALLEL +      && GET_MODE (dest) == BLKmode) +    { +      register int i; +      for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) +	sched_analyze_1 (deps, XVECEXP (dest, 0, i), insn); +      if (GET_CODE (x) == SET) +	sched_analyze_2 (deps, SET_SRC (x), insn); +      return; +    } + +  while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG +	 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT) +    { +      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT) +	{ +	  /* The second and third arguments are values read by this insn.  */ +	  sched_analyze_2 (deps, XEXP (dest, 1), insn); +	  sched_analyze_2 (deps, XEXP (dest, 2), insn); +	} +      dest = XEXP (dest, 0); +    } + +  if (GET_CODE (dest) == REG) +    { +      register int i; + +      regno = REGNO (dest); + +      /* A hard reg in a wide mode may really be multiple registers. +         If so, mark all of them just like the first.  */ +      if (regno < FIRST_PSEUDO_REGISTER) +	{ +	  i = HARD_REGNO_NREGS (regno, GET_MODE (dest)); +	  while (--i >= 0) +	    { +	      int r = regno + i; +	      rtx u; + +	      for (u = deps->reg_last_uses[r]; u; u = XEXP (u, 1)) +		add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +	      for (u = deps->reg_last_sets[r]; u; u = XEXP (u, 1)) +		add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT); + +	      /* Clobbers need not be ordered with respect to one +		 another, but sets must be ordered with respect to a +		 pending clobber.  */ +	      if (code == SET) +		{ +		  free_INSN_LIST_list (&deps->reg_last_uses[r]); +		  for (u = deps->reg_last_clobbers[r]; u; u = XEXP (u, 1)) +		    add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT); +		  SET_REGNO_REG_SET (reg_pending_sets, r); +		} +	      else +		SET_REGNO_REG_SET (reg_pending_clobbers, r); + +	      /* Function calls clobber all call_used regs.  */ +	      if (global_regs[r] || (code == SET && call_used_regs[r])) +		for (u = deps->last_function_call; u; u = XEXP (u, 1)) +		  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); +	    } +	} +      else +	{ +	  rtx u; + +	  for (u = deps->reg_last_uses[regno]; u; u = XEXP (u, 1)) +	    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +	  for (u = deps->reg_last_sets[regno]; u; u = XEXP (u, 1)) +	    add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT); + +	  if (code == SET) +	    { +	      free_INSN_LIST_list (&deps->reg_last_uses[regno]); +	      for (u = deps->reg_last_clobbers[regno]; u; u = XEXP (u, 1)) +		add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT); +	      SET_REGNO_REG_SET (reg_pending_sets, regno); +	    } +	  else +	    SET_REGNO_REG_SET (reg_pending_clobbers, regno); + +	  /* Pseudos that are REG_EQUIV to something may be replaced +	     by that during reloading.  We need only add dependencies for +	     the address in the REG_EQUIV note.  */ +	  if (!reload_completed +	      && reg_known_equiv_p[regno] +	      && GET_CODE (reg_known_value[regno]) == MEM) +	    sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn); + +	  /* Don't let it cross a call after scheduling if it doesn't +	     already cross one.  */ + +	  if (REG_N_CALLS_CROSSED (regno) == 0) +	    for (u = deps->last_function_call; u; u = XEXP (u, 1)) +	      add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); +	} +    } +  else if (GET_CODE (dest) == MEM) +    { +      /* Writing memory.  */ + +      if (deps->pending_lists_length > 32) +	{ +	  /* Flush all pending reads and writes to prevent the pending lists +	     from getting any larger.  Insn scheduling runs too slowly when +	     these lists get long.  The number 32 was chosen because it +	     seems like a reasonable number.  When compiling GCC with itself, +	     this flush occurs 8 times for sparc, and 10 times for m88k using +	     the number 32.  */ +	  flush_pending_lists (deps, insn, 0); +	} +      else +	{ +	  rtx u; +	  rtx pending, pending_mem; + +	  pending = deps->pending_read_insns; +	  pending_mem = deps->pending_read_mems; +	  while (pending) +	    { +	      if (anti_dependence (XEXP (pending_mem, 0), dest)) +		add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI); + +	      pending = XEXP (pending, 1); +	      pending_mem = XEXP (pending_mem, 1); +	    } + +	  pending = deps->pending_write_insns; +	  pending_mem = deps->pending_write_mems; +	  while (pending) +	    { +	      if (output_dependence (XEXP (pending_mem, 0), dest)) +		add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT); + +	      pending = XEXP (pending, 1); +	      pending_mem = XEXP (pending_mem, 1); +	    } + +	  for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1)) +	    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +	  add_insn_mem_dependence (deps, &deps->pending_write_insns, +				   &deps->pending_write_mems, insn, dest); +	} +      sched_analyze_2 (deps, XEXP (dest, 0), insn); +    } + +  /* Analyze reads.  */ +  if (GET_CODE (x) == SET) +    sched_analyze_2 (deps, SET_SRC (x), insn); +} + +/* Analyze the uses of memory and registers in rtx X in INSN.  */ + +static void +sched_analyze_2 (deps, x, insn) +     struct deps *deps; +     rtx x; +     rtx insn; +{ +  register int i; +  register int j; +  register enum rtx_code code; +  register const char *fmt; + +  if (x == 0) +    return; + +  code = GET_CODE (x); + +  switch (code) +    { +    case CONST_INT: +    case CONST_DOUBLE: +    case SYMBOL_REF: +    case CONST: +    case LABEL_REF: +      /* Ignore constants.  Note that we must handle CONST_DOUBLE here +         because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but +         this does not mean that this insn is using cc0.  */ +      return; + +#ifdef HAVE_cc0 +    case CC0: +      /* User of CC0 depends on immediately preceding insn.  */ +      set_sched_group_p (insn); +      return; +#endif + +    case REG: +      { +	rtx u; +	int regno = REGNO (x); +	if (regno < FIRST_PSEUDO_REGISTER) +	  { +	    int i; + +	    i = HARD_REGNO_NREGS (regno, GET_MODE (x)); +	    while (--i >= 0) +	      { +		int r = regno + i; +		deps->reg_last_uses[r] +		  = alloc_INSN_LIST (insn, deps->reg_last_uses[r]); + +		for (u = deps->reg_last_sets[r]; u; u = XEXP (u, 1)) +		  add_dependence (insn, XEXP (u, 0), 0); + +		/* ??? This should never happen.  */ +		for (u = deps->reg_last_clobbers[r]; u; u = XEXP (u, 1)) +		  add_dependence (insn, XEXP (u, 0), 0); + +		if (call_used_regs[r] || global_regs[r]) +		  /* Function calls clobber all call_used regs.  */ +		  for (u = deps->last_function_call; u; u = XEXP (u, 1)) +		    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); +	      } +	  } +	else +	  { +	    deps->reg_last_uses[regno] +	      = alloc_INSN_LIST (insn, deps->reg_last_uses[regno]); + +	    for (u = deps->reg_last_sets[regno]; u; u = XEXP (u, 1)) +	      add_dependence (insn, XEXP (u, 0), 0); + +	    /* ??? This should never happen.  */ +	    for (u = deps->reg_last_clobbers[regno]; u; u = XEXP (u, 1)) +	      add_dependence (insn, XEXP (u, 0), 0); + +	    /* Pseudos that are REG_EQUIV to something may be replaced +	       by that during reloading.  We need only add dependencies for +	       the address in the REG_EQUIV note.  */ +	    if (!reload_completed +		&& reg_known_equiv_p[regno] +		&& GET_CODE (reg_known_value[regno]) == MEM) +	      sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn); + +	    /* If the register does not already cross any calls, then add this +	       insn to the sched_before_next_call list so that it will still +	       not cross calls after scheduling.  */ +	    if (REG_N_CALLS_CROSSED (regno) == 0) +	      add_dependence (deps->sched_before_next_call, insn, +			      REG_DEP_ANTI); +	  } +	return; +      } + +    case MEM: +      { +	/* Reading memory.  */ +	rtx u; +	rtx pending, pending_mem; + +	pending = deps->pending_read_insns; +	pending_mem = deps->pending_read_mems; +	while (pending) +	  { +	    if (read_dependence (XEXP (pending_mem, 0), x)) +	      add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI); + +	    pending = XEXP (pending, 1); +	    pending_mem = XEXP (pending_mem, 1); +	  } + +	pending = deps->pending_write_insns; +	pending_mem = deps->pending_write_mems; +	while (pending) +	  { +	    if (true_dependence (XEXP (pending_mem, 0), VOIDmode, +				 x, rtx_varies_p)) +	      add_dependence (insn, XEXP (pending, 0), 0); + +	    pending = XEXP (pending, 1); +	    pending_mem = XEXP (pending_mem, 1); +	  } + +	for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1)) +	  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +	/* Always add these dependencies to pending_reads, since +	   this insn may be followed by a write.  */ +	add_insn_mem_dependence (deps, &deps->pending_read_insns, +				 &deps->pending_read_mems, insn, x); + +	/* Take advantage of tail recursion here.  */ +	sched_analyze_2 (deps, XEXP (x, 0), insn); +	return; +      } + +    /* Force pending stores to memory in case a trap handler needs them.  */ +    case TRAP_IF: +      flush_pending_lists (deps, insn, 1); +      break; + +    case ASM_OPERANDS: +    case ASM_INPUT: +    case UNSPEC_VOLATILE: +      { +	rtx u; + +	/* Traditional and volatile asm instructions must be considered to use +	   and clobber all hard registers, all pseudo-registers and all of +	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations. + +	   Consider for instance a volatile asm that changes the fpu rounding +	   mode.  An insn should not be moved across this even if it only uses +	   pseudo-regs because it might give an incorrectly rounded result.  */ +	if (code != ASM_OPERANDS || MEM_VOLATILE_P (x)) +	  { +	    int max_reg = max_reg_num (); +	    for (i = 0; i < max_reg; i++) +	      { +		for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1)) +		  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); +		free_INSN_LIST_list (&deps->reg_last_uses[i]); + +		for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1)) +		  add_dependence (insn, XEXP (u, 0), 0); + +		for (u = deps->reg_last_clobbers[i]; u; u = XEXP (u, 1)) +		  add_dependence (insn, XEXP (u, 0), 0); +	      } +	    reg_pending_sets_all = 1; + +	    flush_pending_lists (deps, insn, 0); +	  } + +	/* For all ASM_OPERANDS, we must traverse the vector of input operands. +	   We can not just fall through here since then we would be confused +	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate +	   traditional asms unlike their normal usage.  */ + +	if (code == ASM_OPERANDS) +	  { +	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++) +	      sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn); +	    return; +	  } +	break; +      } + +    case PRE_DEC: +    case POST_DEC: +    case PRE_INC: +    case POST_INC: +      /* These both read and modify the result.  We must handle them as writes +         to get proper dependencies for following instructions.  We must handle +         them as reads to get proper dependencies from this to previous +         instructions.  Thus we need to pass them to both sched_analyze_1 +         and sched_analyze_2.  We must call sched_analyze_2 first in order +         to get the proper antecedent for the read.  */ +      sched_analyze_2 (deps, XEXP (x, 0), insn); +      sched_analyze_1 (deps, x, insn); +      return; + +    case POST_MODIFY: +    case PRE_MODIFY: +      /* op0 = op0 + op1 */ +      sched_analyze_2 (deps, XEXP (x, 0), insn); +      sched_analyze_2 (deps, XEXP (x, 1), insn); +      sched_analyze_1 (deps, x, insn); +      return; + +    default: +      break; +    } + +  /* Other cases: walk the insn.  */ +  fmt = GET_RTX_FORMAT (code); +  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) +    { +      if (fmt[i] == 'e') +	sched_analyze_2 (deps, XEXP (x, i), insn); +      else if (fmt[i] == 'E') +	for (j = 0; j < XVECLEN (x, i); j++) +	  sched_analyze_2 (deps, XVECEXP (x, i, j), insn); +    } +} + +/* Analyze an INSN with pattern X to find all dependencies.  */ + +static void +sched_analyze_insn (deps, x, insn, loop_notes) +     struct deps *deps; +     rtx x, insn; +     rtx loop_notes; +{ +  register RTX_CODE code = GET_CODE (x); +  rtx link; +  int maxreg = max_reg_num (); +  int i; + +  if (code == COND_EXEC) +    { +      sched_analyze_2 (deps, COND_EXEC_TEST (x), insn); + +      /* ??? Should be recording conditions so we reduce the number of +	 false dependancies.  */ +      x = COND_EXEC_CODE (x); +      code = GET_CODE (x); +    } +  if (code == SET || code == CLOBBER) +    sched_analyze_1 (deps, x, insn); +  else if (code == PARALLEL) +    { +      register int i; +      for (i = XVECLEN (x, 0) - 1; i >= 0; i--) +	{ +	  rtx sub = XVECEXP (x, 0, i); +	  code = GET_CODE (sub); + +	  if (code == COND_EXEC) +	    { +	      sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn); +	      sub = COND_EXEC_CODE (sub); +	      code = GET_CODE (sub); +	    } +	  if (code == SET || code == CLOBBER) +	    sched_analyze_1 (deps, sub, insn); +	  else +	    sched_analyze_2 (deps, sub, insn); +	} +    } +  else +    sched_analyze_2 (deps, x, insn); + +  /* Mark registers CLOBBERED or used by called function.  */ +  if (GET_CODE (insn) == CALL_INSN) +    for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) +      { +	if (GET_CODE (XEXP (link, 0)) == CLOBBER) +	  sched_analyze_1 (deps, XEXP (link, 0), insn); +	else +	  sched_analyze_2 (deps, XEXP (link, 0), insn); +      } + +  /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic +     block, then we must be sure that no instructions are scheduled across it. +     Otherwise, the reg_n_refs info (which depends on loop_depth) would +     become incorrect.  */ + +  if (loop_notes) +    { +      int max_reg = max_reg_num (); +      int schedule_barrier_found = 0; +      rtx link; + +      /* Update loop_notes with any notes from this insn.  Also determine +	 if any of the notes on the list correspond to instruction scheduling +	 barriers (loop, eh & setjmp notes, but not range notes.  */ +      link = loop_notes; +      while (XEXP (link, 1)) +	{ +	  if (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG +	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END +	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_BEG +	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_END +	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_SETJMP) +	    schedule_barrier_found = 1; + +	  link = XEXP (link, 1); +	} +      XEXP (link, 1) = REG_NOTES (insn); +      REG_NOTES (insn) = loop_notes; + +      /* Add dependencies if a scheduling barrier was found.  */ +      if (schedule_barrier_found) +	{ +	  for (i = 0; i < max_reg; i++) +	    { +	      rtx u; +	      for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1)) +		add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); +	      free_INSN_LIST_list (&deps->reg_last_uses[i]); + +	      for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1)) +		add_dependence (insn, XEXP (u, 0), 0); + +	      for (u = deps->reg_last_clobbers[i]; u; u = XEXP (u, 1)) +		add_dependence (insn, XEXP (u, 0), 0); +	    } +	  reg_pending_sets_all = 1; + +	  flush_pending_lists (deps, insn, 0); +	} + +    } + +  /* Accumulate clobbers until the next set so that it will be output dependent +     on all of them.  At the next set we can clear the clobber list, since +     subsequent sets will be output dependent on it.  */ +  EXECUTE_IF_SET_IN_REG_SET +    (reg_pending_sets, 0, i, +     { +       free_INSN_LIST_list (&deps->reg_last_sets[i]); +       free_INSN_LIST_list (&deps->reg_last_clobbers[i]); +       deps->reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX); +     }); +  EXECUTE_IF_SET_IN_REG_SET +    (reg_pending_clobbers, 0, i, +     { +       deps->reg_last_clobbers[i] +	 = alloc_INSN_LIST (insn, deps->reg_last_clobbers[i]); +     }); +  CLEAR_REG_SET (reg_pending_sets); +  CLEAR_REG_SET (reg_pending_clobbers); + +  if (reg_pending_sets_all) +    { +      for (i = 0; i < maxreg; i++) +	{ +	  free_INSN_LIST_list (&deps->reg_last_sets[i]); +	  free_INSN_LIST_list (&deps->reg_last_clobbers[i]); +	  deps->reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX); +	} + +      reg_pending_sets_all = 0; +    } + +  /* If a post-call group is still open, see if it should remain so. +     This insn must be a simple move of a hard reg to a pseudo or +     vice-versa. + +     We must avoid moving these insns for correctness on +     SMALL_REGISTER_CLASS machines, and for special registers like +     PIC_OFFSET_TABLE_REGNUM.  For simplicity, extend this to all +     hard regs for all targets.  */ + +  if (deps->in_post_call_group_p) +    { +      rtx tmp, set = single_set (insn); +      int src_regno, dest_regno; + +      if (set == NULL) +	goto end_call_group; + +      tmp = SET_DEST (set); +      if (GET_CODE (tmp) == SUBREG) +	tmp = SUBREG_REG (tmp); +      if (GET_CODE (tmp) == REG) +	dest_regno = REGNO (tmp); +      else +	goto end_call_group; + +      tmp = SET_SRC (set); +      if (GET_CODE (tmp) == SUBREG) +	tmp = SUBREG_REG (tmp); +      if (GET_CODE (tmp) == REG) +	src_regno = REGNO (tmp); +      else +	goto end_call_group; + +      if (src_regno < FIRST_PSEUDO_REGISTER +	  || dest_regno < FIRST_PSEUDO_REGISTER) +	{ +	  set_sched_group_p (insn); +	  CANT_MOVE (insn) = 1; +	} +      else +	{ +	end_call_group: +	  deps->in_post_call_group_p = 0; +	} +    } +} + +/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS +   for every dependency.  */ + +void +sched_analyze (deps, head, tail) +     struct deps *deps; +     rtx head, tail; +{ +  register rtx insn; +  register rtx u; +  rtx loop_notes = 0; + +  for (insn = head;; insn = NEXT_INSN (insn)) +    { +      if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) +	{ +	  /* Clear out the stale LOG_LINKS from flow.  */ +	  free_INSN_LIST_list (&LOG_LINKS (insn)); + +	  /* Clear out stale SCHED_GROUP_P.  */ +	  SCHED_GROUP_P (insn) = 0; + +	  /* Make each JUMP_INSN a scheduling barrier for memory +             references.  */ +	  if (GET_CODE (insn) == JUMP_INSN) +	    deps->last_pending_memory_flush +	      = alloc_INSN_LIST (insn, deps->last_pending_memory_flush); +	  sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes); +	  loop_notes = 0; +	} +      else if (GET_CODE (insn) == CALL_INSN) +	{ +	  rtx x; +	  register int i; + +	  /* Clear out stale SCHED_GROUP_P.  */ +	  SCHED_GROUP_P (insn) = 0; + +	  CANT_MOVE (insn) = 1; + +	  /* Clear out the stale LOG_LINKS from flow.  */ +	  free_INSN_LIST_list (&LOG_LINKS (insn)); + +	  /* Any instruction using a hard register which may get clobbered +	     by a call needs to be marked as dependent on this call. +	     This prevents a use of a hard return reg from being moved +	     past a void call (i.e. it does not explicitly set the hard +	     return reg).  */ + +	  /* If this call is followed by a NOTE_INSN_SETJMP, then assume that +	     all registers, not just hard registers, may be clobbered by this +	     call.  */ + +	  /* Insn, being a CALL_INSN, magically depends on +	     `last_function_call' already.  */ + +	  if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE +	      && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP) +	    { +	      int max_reg = max_reg_num (); +	      for (i = 0; i < max_reg; i++) +		{ +		  for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1)) +		    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); +		  free_INSN_LIST_list (&deps->reg_last_uses[i]); + +		  for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1)) +		    add_dependence (insn, XEXP (u, 0), 0); + +		  for (u = deps->reg_last_clobbers[i]; u; u = XEXP (u, 1)) +		    add_dependence (insn, XEXP (u, 0), 0); +		} +	      reg_pending_sets_all = 1; + +	      /* Add a pair of REG_SAVE_NOTEs which we will later +		 convert back into a NOTE_INSN_SETJMP note.  See +		 reemit_notes for why we use a pair of NOTEs.  */ +	      REG_NOTES (insn) = alloc_EXPR_LIST (REG_SAVE_NOTE, +						  GEN_INT (0), +						  REG_NOTES (insn)); +	      REG_NOTES (insn) = alloc_EXPR_LIST (REG_SAVE_NOTE, +						  GEN_INT (NOTE_INSN_SETJMP), +						  REG_NOTES (insn)); +	    } +	  else +	    { +	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) +		if (call_used_regs[i] || global_regs[i]) +		  { +		    for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1)) +		      add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +		    for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1)) +		      add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); + +		    SET_REGNO_REG_SET (reg_pending_clobbers, i); +		  } +	    } + +	  /* For each insn which shouldn't cross a call, add a dependence +	     between that insn and this call insn.  */ +	  x = LOG_LINKS (deps->sched_before_next_call); +	  while (x) +	    { +	      add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI); +	      x = XEXP (x, 1); +	    } +	  free_INSN_LIST_list (&LOG_LINKS (deps->sched_before_next_call)); + +	  sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes); +	  loop_notes = 0; + +	  /* In the absence of interprocedural alias analysis, we must flush +	     all pending reads and writes, and start new dependencies starting +	     from here.  But only flush writes for constant calls (which may +	     be passed a pointer to something we haven't written yet).  */ +	  flush_pending_lists (deps, insn, CONST_CALL_P (insn)); + +	  /* Depend this function call (actually, the user of this +	     function call) on all hard register clobberage.  */ + +	  /* last_function_call is now a list of insns.  */ +	  free_INSN_LIST_list (&deps->last_function_call); +	  deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX); + +	  /* Before reload, begin a post-call group, so as to keep the +	     lifetimes of hard registers correct.  */ +	  if (! reload_completed) +	    deps->in_post_call_group_p = 1; +	} + +      /* See comments on reemit_notes as to why we do this. +	 ??? Actually, the reemit_notes just say what is done, not why.  */ + +      else if (GET_CODE (insn) == NOTE +	       && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_BEG +		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END)) +	{ +	  loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE, NOTE_RANGE_INFO (insn), +					loop_notes); +	  loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE, +					GEN_INT (NOTE_LINE_NUMBER (insn)), +					loop_notes); +	} +      else if (GET_CODE (insn) == NOTE +	       && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG +		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END +		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG +		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END +		   || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP +		       && GET_CODE (PREV_INSN (insn)) != CALL_INSN))) +	{ +	  rtx rtx_region; + +	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG +	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) +	    rtx_region = GEN_INT (NOTE_EH_HANDLER (insn)); +	  else +	    rtx_region = GEN_INT (0); + +	  loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE, +					rtx_region, +					loop_notes); +	  loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE, +					GEN_INT (NOTE_LINE_NUMBER (insn)), +					loop_notes); +	  CONST_CALL_P (loop_notes) = CONST_CALL_P (insn); +	} + +      if (insn == tail) +	return; +    } +  abort (); +} + +/* Examine insns in the range [ HEAD, TAIL ] and Use the backward +   dependences from LOG_LINKS to build forward dependences in +   INSN_DEPEND.  */ + +void +compute_forward_dependences (head, tail) +     rtx head, tail; +{ +  rtx insn, link; +  rtx next_tail; +  enum reg_note dep_type; + +  next_tail = NEXT_INSN (tail); +  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn)) +    { +      if (! INSN_P (insn)) +	continue; + +      insn = group_leader (insn); + +      for (link = LOG_LINKS (insn); link; link = XEXP (link, 1)) +	{ +	  rtx x = group_leader (XEXP (link, 0)); +	  rtx new_link; + +	  if (x != XEXP (link, 0)) +	    continue; + +#ifdef ENABLE_CHECKING +	  /* If add_dependence is working properly there should never +	     be notes, deleted insns or duplicates in the backward +	     links.  Thus we need not check for them here. + +	     However, if we have enabled checking we might as well go +	     ahead and verify that add_dependence worked properly.  */ +	  if (GET_CODE (x) == NOTE +	      || INSN_DELETED_P (x) +	      || (forward_dependency_cache != NULL +		  && TEST_BIT (forward_dependency_cache[INSN_LUID (x)], +			       INSN_LUID (insn))) +	      || (forward_dependency_cache == NULL +		  && find_insn_list (insn, INSN_DEPEND (x)))) +	    abort (); +	  if (forward_dependency_cache != NULL) +	    SET_BIT (forward_dependency_cache[INSN_LUID (x)], +		     INSN_LUID (insn)); +#endif + +	  new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x)); + +	  dep_type = REG_NOTE_KIND (link); +	  PUT_REG_NOTE_KIND (new_link, dep_type); + +	  INSN_DEPEND (x) = new_link; +	  INSN_DEP_COUNT (insn) += 1; +	} +    } +} + +/* Initialize variables for region data dependence analysis. +   n_bbs is the number of region blocks.  */ + +void +init_deps (deps) +     struct deps *deps; +{ +  int maxreg = max_reg_num (); +  deps->reg_last_uses = (rtx *) xcalloc (maxreg, sizeof (rtx)); +  deps->reg_last_sets = (rtx *) xcalloc (maxreg, sizeof (rtx)); +  deps->reg_last_clobbers = (rtx *) xcalloc (maxreg, sizeof (rtx)); + +  deps->pending_read_insns = 0; +  deps->pending_read_mems = 0; +  deps->pending_write_insns = 0; +  deps->pending_write_mems = 0; +  deps->pending_lists_length = 0; +  deps->last_pending_memory_flush = 0; +  deps->last_function_call = 0; +  deps->in_post_call_group_p = 0; + +  deps->sched_before_next_call +    = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX, +		    NULL_RTX, 0, NULL_RTX, NULL_RTX); +  LOG_LINKS (deps->sched_before_next_call) = 0; +} + +/* Free insn lists found in DEPS.  */ + +void +free_deps (deps) +     struct deps *deps; +{ +  int max_reg = max_reg_num (); +  int i; + +  /* Note this loop is executed max_reg * nr_regions times.  It's first +     implementation accounted for over 90% of the calls to free_INSN_LIST_list. +     The list was empty for the vast majority of those calls.  On the PA, not +     calling free_INSN_LIST_list in those cases improves -O2 compile times by +     3-5% on average.  */ +  for (i = 0; i < max_reg; ++i) +    { +      if (deps->reg_last_clobbers[i]) +	free_INSN_LIST_list (&deps->reg_last_clobbers[i]); +      if (deps->reg_last_sets[i]) +	free_INSN_LIST_list (&deps->reg_last_sets[i]); +      if (deps->reg_last_uses[i]) +	free_INSN_LIST_list (&deps->reg_last_uses[i]); +    } +} + +/* If it is profitable to use them, initialize caches for tracking +   dependency informatino.  LUID is the number of insns to be scheduled, +   it is used in the estimate of profitability.  */ + +void +init_dependency_caches (luid) +     int luid; +{ +  /* ?!? We could save some memory by computing a per-region luid mapping +     which could reduce both the number of vectors in the cache and the size +     of each vector.  Instead we just avoid the cache entirely unless the +     average number of instructions in a basic block is very high.  See +     the comment before the declaration of true_dependency_cache for +     what we consider "very high".  */ +  if (luid / n_basic_blocks > 100 * 5) +    { +      true_dependency_cache = sbitmap_vector_alloc (luid, luid); +      sbitmap_vector_zero (true_dependency_cache, luid); +      anti_dependency_cache = sbitmap_vector_alloc (luid, luid); +      sbitmap_vector_zero (anti_dependency_cache, luid); +      output_dependency_cache = sbitmap_vector_alloc (luid, luid); +      sbitmap_vector_zero (output_dependency_cache, luid); +#ifdef ENABLE_CHECKING +      forward_dependency_cache = sbitmap_vector_alloc (luid, luid); +      sbitmap_vector_zero (forward_dependency_cache, luid); +#endif +    } +} + +/* Free the caches allocated in init_dependency_caches.  */ + +void +free_dependency_caches () +{ +  if (true_dependency_cache) +    { +      free (true_dependency_cache); +      true_dependency_cache = NULL; +      free (anti_dependency_cache); +      anti_dependency_cache = NULL; +      free (output_dependency_cache); +      output_dependency_cache = NULL; +#ifdef ENABLE_CHECKING +      free (forward_dependency_cache); +      forward_dependency_cache = NULL; +#endif +    } +} + +/* Initialize some global variables needed by the dependency analysis +   code.  */ + +void +init_deps_global () +{ +  reg_pending_sets = INITIALIZE_REG_SET (reg_pending_sets_head); +  reg_pending_clobbers = INITIALIZE_REG_SET (reg_pending_clobbers_head); +  reg_pending_sets_all = 0; +} + +/* Free everything used by the dependency analysis code.  */ + +void +finish_deps_global () +{ +  FREE_REG_SET (reg_pending_sets); +  FREE_REG_SET (reg_pending_clobbers); +} | 

