1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
|
/* Print values for GDB, the GNU debugger.
Copyright 1986, 1988, 1989, 1991 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include <string.h>
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "obstack.h"
#include "language.h"
#include "demangle.h"
#include <errno.h>
/* Prototypes for local functions */
static void
print_hex_chars PARAMS ((GDB_FILE *, unsigned char *, unsigned int));
static void
show_print PARAMS ((char *, int));
static void
set_print PARAMS ((char *, int));
static void
set_radix PARAMS ((char *, int));
static void
show_radix PARAMS ((char *, int));
static void
set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
static void
set_input_radix_1 PARAMS ((int, unsigned));
static void
set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
static void
set_output_radix_1 PARAMS ((int, unsigned));
static void value_print_array_elements PARAMS ((value_ptr, GDB_FILE *, int,
enum val_prettyprint));
/* Maximum number of chars to print for a string pointer value or vector
contents, or UINT_MAX for no limit. Note that "set print elements 0"
stores UINT_MAX in print_max, which displays in a show command as
"unlimited". */
unsigned int print_max;
#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
/* Default input and output radixes, and output format letter. */
unsigned input_radix = 10;
unsigned output_radix = 10;
int output_format = 0;
/* Print repeat counts if there are more than this many repetitions of an
element in an array. Referenced by the low level language dependent
print routines. */
unsigned int repeat_count_threshold = 10;
int prettyprint_structs; /* Controls pretty printing of structures */
int prettyprint_arrays; /* Controls pretty printing of arrays. */
/* If nonzero, causes unions inside structures or other unions to be
printed. */
int unionprint; /* Controls printing of nested unions. */
/* If nonzero, causes machine addresses to be printed in certain contexts. */
int addressprint; /* Controls printing of machine addresses */
/* Print data of type TYPE located at VALADDR (within GDB), which came from
the inferior at address ADDRESS, onto stdio stream STREAM according to
FORMAT (a letter, or 0 for natural format using TYPE).
If DEREF_REF is nonzero, then dereference references, otherwise just print
them like pointers.
The PRETTY parameter controls prettyprinting.
If the data are a string pointer, returns the number of string characters
printed.
FIXME: The data at VALADDR is in target byte order. If gdb is ever
enhanced to be able to debug more than the single target it was compiled
for (specific CPU type and thus specific target byte ordering), then
either the print routines are going to have to take this into account,
or the data is going to have to be passed into here already converted
to the host byte ordering, whichever is more convenient. */
int
val_print (type, valaddr, address, stream, format, deref_ref, recurse, pretty)
struct type *type;
char *valaddr;
CORE_ADDR address;
GDB_FILE *stream;
int format;
int deref_ref;
int recurse;
enum val_prettyprint pretty;
{
if (pretty == Val_pretty_default)
{
pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
}
QUIT;
/* Ensure that the type is complete and not just a stub. If the type is
only a stub and we can't find and substitute its complete type, then
print appropriate string and return. Typical types that my be stubs
are structs, unions, and C++ methods. */
check_stub_type (type);
if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
{
fprintf_filtered (stream, "<incomplete type>");
gdb_flush (stream);
return (0);
}
return (LA_VAL_PRINT (type, valaddr, address, stream, format, deref_ref,
recurse, pretty));
}
/* Print the value VAL in C-ish syntax on stream STREAM.
FORMAT is a format-letter, or 0 for print in natural format of data type.
If the object printed is a string pointer, returns
the number of string bytes printed. */
int
value_print (val, stream, format, pretty)
value_ptr val;
GDB_FILE *stream;
int format;
enum val_prettyprint pretty;
{
register unsigned int n, typelen;
if (val == 0)
{
printf_filtered ("<address of value unknown>");
return 0;
}
if (VALUE_OPTIMIZED_OUT (val))
{
printf_filtered ("<value optimized out>");
return 0;
}
/* A "repeated" value really contains several values in a row.
They are made by the @ operator.
Print such values as if they were arrays. */
if (VALUE_REPEATED (val))
{
n = VALUE_REPETITIONS (val);
typelen = TYPE_LENGTH (VALUE_TYPE (val));
fprintf_filtered (stream, "{");
/* Print arrays of characters using string syntax. */
if (typelen == 1 && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
&& format == 0)
LA_PRINT_STRING (stream, VALUE_CONTENTS (val), n, 0);
else
{
value_print_array_elements (val, stream, format, pretty);
}
fprintf_filtered (stream, "}");
return (n * typelen);
}
else
{
struct type *type = VALUE_TYPE (val);
/* If it is a pointer, indicate what it points to.
Print type also if it is a reference.
C++: if it is a member pointer, we will take care
of that when we print it. */
if (TYPE_CODE (type) == TYPE_CODE_PTR ||
TYPE_CODE (type) == TYPE_CODE_REF)
{
/* Hack: remove (char *) for char strings. Their
type is indicated by the quoted string anyway. */
if (TYPE_CODE (type) == TYPE_CODE_PTR &&
TYPE_LENGTH (TYPE_TARGET_TYPE (type)) == sizeof(char) &&
TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_INT &&
!TYPE_UNSIGNED (TYPE_TARGET_TYPE (type)))
{
/* Print nothing */
}
else
{
fprintf_filtered (stream, "(");
type_print (type, "", stream, -1);
fprintf_filtered (stream, ") ");
}
}
return (val_print (type, VALUE_CONTENTS (val),
VALUE_ADDRESS (val), stream, format, 1, 0, pretty));
}
}
/* Called by various <lang>_val_print routines to print TYPE_CODE_INT's */
void
val_print_type_code_int (type, valaddr, stream)
struct type *type;
char *valaddr;
GDB_FILE *stream;
{
char *p;
/* Pointer to first (i.e. lowest address) nonzero character. */
char *first_addr;
unsigned int len;
if (TYPE_LENGTH (type) > sizeof (LONGEST))
{
if (TYPE_UNSIGNED (type))
{
/* First figure out whether the number in fact has zeros
in all its bytes more significant than least significant
sizeof (LONGEST) ones. */
len = TYPE_LENGTH (type);
#if TARGET_BYTE_ORDER == BIG_ENDIAN
for (p = valaddr;
len > sizeof (LONGEST) && p < valaddr + TYPE_LENGTH (type);
p++)
#else /* Little endian. */
first_addr = valaddr;
for (p = valaddr + TYPE_LENGTH (type) - 1;
len > sizeof (LONGEST) && p >= valaddr;
p--)
#endif /* Little endian. */
{
if (*p == 0)
{
len--;
}
else
{
break;
}
}
#if TARGET_BYTE_ORDER == BIG_ENDIAN
first_addr = p;
#endif
if (len <= sizeof (LONGEST))
{
/* The most significant bytes are zero, so we can just get
the least significant sizeof (LONGEST) bytes and print it
in decimal. */
print_longest (stream, 'u', 0,
extract_unsigned_integer (first_addr,
sizeof (LONGEST)));
}
else
{
/* It is big, so print it in hex. */
print_hex_chars (stream, (unsigned char *) first_addr, len);
}
}
else
{
/* Signed. One could assume two's complement (a reasonable
assumption, I think) and do better than this. */
print_hex_chars (stream, (unsigned char *) valaddr,
TYPE_LENGTH (type));
}
}
else
{
#ifdef PRINT_TYPELESS_INTEGER
PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
#else
print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
unpack_long (type, valaddr));
#endif
}
}
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
The raison d'etre of this function is to consolidate printing of LONG_LONG's
into this one function. Some platforms have long longs but don't have a
printf() that supports "ll" in the format string. We handle these by seeing
if the number is actually a long, and if not we just bail out and print the
number in hex. The format chars b,h,w,g are from
print_scalar_formatted(). USE_LOCAL says whether or not to call the
local formatting routine to get the format. */
void
print_longest (stream, format, use_local, val_long)
GDB_FILE *stream;
int format;
int use_local;
LONGEST val_long;
{
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
long vtop, vbot;
vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
vbot = (long) val_long;
if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
|| ((format == 'u' || format == 'x') && (unsigned long long)val_long > UINT_MAX))
{
fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
return;
}
#endif
#ifdef PRINTF_HAS_LONG_LONG
switch (format)
{
case 'd':
fprintf_filtered (stream,
use_local ? local_decimal_format_custom ("ll")
: "%lld",
val_long);
break;
case 'u':
fprintf_filtered (stream, "%llu", val_long);
break;
case 'x':
fprintf_filtered (stream,
use_local ? local_hex_format_custom ("ll")
: "%llx",
val_long);
break;
case 'o':
fprintf_filtered (stream,
use_local ? local_octal_format_custom ("ll")
: "%llo",
break;
case 'b':
fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
break;
case 'h':
fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
break;
case 'w':
fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
break;
case 'g':
fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
break;
default:
abort ();
}
#else /* !PRINTF_HAS_LONG_LONG */
/* In the following it is important to coerce (val_long) to a long. It does
nothing if !LONG_LONG, but it will chop off the top half (which we know
we can ignore) if the host supports long longs. */
switch (format)
{
case 'd':
fprintf_filtered (stream,
use_local ? local_decimal_format_custom ("l")
: "%ld",
(long) val_long);
break;
case 'u':
fprintf_filtered (stream, "%lu", (unsigned long) val_long);
break;
case 'x':
fprintf_filtered (stream,
use_local ? local_hex_format_custom ("l")
: "%lx",
(long) val_long);
break;
case 'o':
fprintf_filtered (stream,
use_local ? local_octal_format_custom ("l")
: "%lo",
(long) val_long);
break;
case 'b':
fprintf_filtered (stream, local_hex_format_custom ("02l"),
(long) val_long);
break;
case 'h':
fprintf_filtered (stream, local_hex_format_custom ("04l"),
(long) val_long);
break;
case 'w':
fprintf_filtered (stream, local_hex_format_custom ("08l"),
(long) val_long);
break;
case 'g':
fprintf_filtered (stream, local_hex_format_custom ("016l"),
(long) val_long);
break;
default:
abort ();
}
#endif /* !PRINTF_HAS_LONG_LONG */
}
/* This used to be a macro, but I don't think it is called often enough
to merit such treatment. */
/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
arguments to a function, number in a value history, register number, etc.)
where the value must not be larger than can fit in an int. */
int
longest_to_int (arg)
LONGEST arg;
{
/* This check is in case a system header has botched the
definition of INT_MIN, like on BSDI. */
if (sizeof (LONGEST) <= sizeof (int))
return arg;
if (arg > INT_MAX || arg < INT_MIN)
error ("Value out of range.");
return arg;
}
/* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
on STREAM. */
void
print_floating (valaddr, type, stream)
char *valaddr;
struct type *type;
GDB_FILE *stream;
{
double doub;
int inv;
unsigned len = TYPE_LENGTH (type);
#if defined (IEEE_FLOAT)
/* Check for NaN's. Note that this code does not depend on us being
on an IEEE conforming system. It only depends on the target
machine using IEEE representation. This means (a)
cross-debugging works right, and (2) IEEE_FLOAT can (and should)
be defined for systems like the 68881, which uses IEEE
representation, but is not IEEE conforming. */
{
unsigned long low, high;
/* Is the sign bit 0? */
int nonnegative;
/* Is it is a NaN (i.e. the exponent is all ones and
the fraction is nonzero)? */
int is_nan;
if (len == 4)
{
/* It's single precision. */
/* Assume that floating point byte order is the same as
integer byte order. */
low = extract_unsigned_integer (valaddr, 4);
nonnegative = ((low & 0x80000000) == 0);
is_nan = ((((low >> 23) & 0xFF) == 0xFF)
&& 0 != (low & 0x7FFFFF));
low &= 0x7fffff;
high = 0;
}
else if (len == 8)
{
/* It's double precision. Get the high and low words. */
/* Assume that floating point byte order is the same as
integer byte order. */
#if TARGET_BYTE_ORDER == BIG_ENDIAN
low = extract_unsigned_integer (valaddr + 4, 4);
high = extract_unsigned_integer (valaddr, 4);
#else
low = extract_unsigned_integer (valaddr, 4);
high = extract_unsigned_integer (valaddr + 4, 4);
#endif
nonnegative = ((high & 0x80000000) == 0);
is_nan = (((high >> 20) & 0x7ff) == 0x7ff
&& ! ((((high & 0xfffff) == 0)) && (low == 0)));
high &= 0xfffff;
}
else
/* Extended. We can't detect NaNs for extendeds yet. Also note
that currently extendeds get nuked to double in
REGISTER_CONVERTIBLE. */
is_nan = 0;
if (is_nan)
{
/* The meaning of the sign and fraction is not defined by IEEE.
But the user might know what they mean. For example, they
(in an implementation-defined manner) distinguish between
signaling and quiet NaN's. */
if (high)
fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + nonnegative,
high, low);
else
fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
return;
}
}
#endif /* IEEE_FLOAT. */
doub = unpack_double (type, valaddr, &inv);
if (inv)
fprintf_filtered (stream, "<invalid float value>");
else
fprintf_filtered (stream, len <= sizeof(float) ? "%.9g" : "%.17g", doub);
}
/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
static void
print_hex_chars (stream, valaddr, len)
GDB_FILE *stream;
unsigned char *valaddr;
unsigned len;
{
unsigned char *p;
/* FIXME: We should be not printing leading zeroes in most cases. */
fprintf_filtered (stream, local_hex_format_prefix ());
#if TARGET_BYTE_ORDER == BIG_ENDIAN
for (p = valaddr;
p < valaddr + len;
p++)
#else /* Little endian. */
for (p = valaddr + len - 1;
p >= valaddr;
p--)
#endif
{
fprintf_filtered (stream, "%02x", *p);
}
fprintf_filtered (stream, local_hex_format_suffix ());
}
/* Called by various <lang>_val_print routines to print elements of an
array in the form "<elem1>, <elem2>, <elem3>, ...".
(FIXME?) Assumes array element separator is a comma, which is correct
for all languages currently handled.
(FIXME?) Some languages have a notation for repeated array elements,
perhaps we should try to use that notation when appropriate.
*/
void
val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
recurse, pretty, i)
struct type *type;
char *valaddr;
CORE_ADDR address;
GDB_FILE *stream;
int format;
int deref_ref;
int recurse;
enum val_prettyprint pretty;
unsigned int i;
{
unsigned int things_printed = 0;
unsigned len;
struct type *elttype;
unsigned eltlen;
/* Position of the array element we are examining to see
whether it is repeated. */
unsigned int rep1;
/* Number of repetitions we have detected so far. */
unsigned int reps;
elttype = TYPE_TARGET_TYPE (type);
eltlen = TYPE_LENGTH (elttype);
len = TYPE_LENGTH (type) / eltlen;
for (; i < len && things_printed < print_max; i++)
{
if (i != 0)
{
if (prettyprint_arrays)
{
fprintf_filtered (stream, ",\n");
print_spaces_filtered (2 + 2 * recurse, stream);
}
else
{
fprintf_filtered (stream, ", ");
}
}
wrap_here (n_spaces (2 + 2 * recurse));
rep1 = i + 1;
reps = 1;
while ((rep1 < len) &&
!memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
{
++reps;
++rep1;
}
if (reps > repeat_count_threshold)
{
val_print (elttype, valaddr + i * eltlen, 0, stream, format,
deref_ref, recurse + 1, pretty);
fprintf_filtered (stream, " <repeats %u times>", reps);
i = rep1 - 1;
things_printed += repeat_count_threshold;
}
else
{
val_print (elttype, valaddr + i * eltlen, 0, stream, format,
deref_ref, recurse + 1, pretty);
things_printed++;
}
}
if (i < len)
{
fprintf_filtered (stream, "...");
}
}
static void
value_print_array_elements (val, stream, format, pretty)
value_ptr val;
GDB_FILE *stream;
int format;
enum val_prettyprint pretty;
{
unsigned int things_printed = 0;
register unsigned int i, n, typelen;
/* Position of the array elem we are examining to see if it is repeated. */
unsigned int rep1;
/* Number of repetitions we have detected so far. */
unsigned int reps;
n = VALUE_REPETITIONS (val);
typelen = TYPE_LENGTH (VALUE_TYPE (val));
for (i = 0; i < n && things_printed < print_max; i++)
{
if (i != 0)
{
fprintf_filtered (stream, ", ");
}
wrap_here ("");
rep1 = i + 1;
reps = 1;
while (rep1 < n && !memcmp (VALUE_CONTENTS (val) + typelen * i,
VALUE_CONTENTS (val) + typelen * rep1,
typelen))
{
++reps;
++rep1;
}
if (reps > repeat_count_threshold)
{
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
0, pretty);
fprintf_unfiltered (stream, " <repeats %u times>", reps);
i = rep1 - 1;
things_printed += repeat_count_threshold;
}
else
{
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val) + typelen * i,
VALUE_ADDRESS (val) + typelen * i, stream, format, 1,
0, pretty);
things_printed++;
}
}
if (i < n)
{
fprintf_filtered (stream, "...");
}
}
/* Print a string from the inferior, starting at ADDR and printing up to LEN
characters, to STREAM. If LEN is zero, printing stops at the first null
byte, otherwise printing proceeds (including null bytes) until either
print_max or LEN characters have been printed, whichever is smaller. */
/* FIXME: All callers supply LEN of zero. Supplying a non-zero LEN is
pointless, this routine just then becomes a convoluted version of
target_read_memory_partial. Removing all the LEN stuff would simplify
this routine enormously.
FIXME: Use target_read_string. */
int
val_print_string (addr, len, stream)
CORE_ADDR addr;
unsigned int len;
GDB_FILE *stream;
{
int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
int errcode; /* Errno returned from bad reads. */
unsigned int fetchlimit; /* Maximum number of bytes to fetch. */
unsigned int nfetch; /* Bytes to fetch / bytes fetched. */
unsigned int chunksize; /* Size of each fetch, in bytes. */
int bufsize; /* Size of current fetch buffer. */
char *buffer = NULL; /* Dynamically growable fetch buffer. */
char *bufptr; /* Pointer to next available byte in buffer. */
char *limit; /* First location past end of fetch buffer. */
struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
char peekchar; /* Place into which we can read one char. */
/* First we need to figure out the limit on the number of characters we are
going to attempt to fetch and print. This is actually pretty simple. If
LEN is nonzero, then the limit is the minimum of LEN and print_max. If
LEN is zero, then the limit is print_max. This is true regardless of
whether print_max is zero, UINT_MAX (unlimited), or something in between,
because finding the null byte (or available memory) is what actually
limits the fetch. */
fetchlimit = (len == 0 ? print_max : min (len, print_max));
/* Now decide how large of chunks to try to read in one operation. This
is also pretty simple. If LEN is nonzero, then we want fetchlimit bytes,
so we might as well read them all in one operation. If LEN is zero, we
are looking for a null terminator to end the fetching, so we might as
well read in blocks that are large enough to be efficient, but not so
large as to be slow if fetchlimit happens to be large. So we choose the
minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
200 is way too big for remote debugging over a serial line. */
chunksize = (len == 0 ? min (8, fetchlimit) : fetchlimit);
/* Loop until we either have all the characters to print, or we encounter
some error, such as bumping into the end of the address space. */
bufsize = 0;
do {
QUIT;
/* Figure out how much to fetch this time, and grow the buffer to fit. */
nfetch = min (chunksize, fetchlimit - bufsize);
bufsize += nfetch;
if (buffer == NULL)
{
buffer = (char *) xmalloc (bufsize);
bufptr = buffer;
}
else
{
discard_cleanups (old_chain);
buffer = (char *) xrealloc (buffer, bufsize);
bufptr = buffer + bufsize - nfetch;
}
old_chain = make_cleanup (free, buffer);
/* Read as much as we can. */
nfetch = target_read_memory_partial (addr, bufptr, nfetch, &errcode);
if (len != 0)
{
addr += nfetch;
bufptr += nfetch;
}
else
{
/* Scan this chunk for the null byte that terminates the string
to print. If found, we don't need to fetch any more. Note
that bufptr is explicitly left pointing at the next character
after the null byte, or at the next character after the end of
the buffer. */
limit = bufptr + nfetch;
while (bufptr < limit)
{
++addr;
++bufptr;
if (bufptr[-1] == '\0')
break;
}
}
} while (errcode == 0 /* no error */
&& bufsize < fetchlimit /* no overrun */
&& !(len == 0 && *(bufptr - 1) == '\0')); /* no null term */
/* bufptr and addr now point immediately beyond the last byte which we
consider part of the string (including a '\0' which ends the string). */
/* We now have either successfully filled the buffer to fetchlimit, or
terminated early due to an error or finding a null byte when LEN is
zero. */
if (len == 0 && bufptr > buffer && *(bufptr - 1) != '\0')
{
/* We didn't find a null terminator we were looking for. Attempt
to peek at the next character. If not successful, or it is not
a null byte, then force ellipsis to be printed. */
if (target_read_memory (addr, &peekchar, 1) != 0 || peekchar != '\0')
{
force_ellipsis = 1;
}
}
else if ((len != 0 && errcode != 0) || (len > bufptr - buffer))
{
/* Getting an error when we have a requested length, or fetching less
than the number of characters actually requested, always make us
print ellipsis. */
force_ellipsis = 1;
}
QUIT;
/* If we get an error before fetching anything, don't print a string.
But if we fetch something and then get an error, print the string
and then the error message. */
if (errcode == 0 || bufptr > buffer)
{
if (addressprint)
{
fputs_filtered (" ", stream);
}
LA_PRINT_STRING (stream, buffer, bufptr - buffer, force_ellipsis);
}
if (errcode != 0)
{
if (errcode == EIO)
{
fprintf_filtered (stream, " <Address ");
print_address_numeric (addr, stream);
fprintf_filtered (stream, " out of bounds>");
}
else
{
fprintf_filtered (stream, " <Error reading address ");
print_address_numeric (addr, stream);
fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
}
}
gdb_flush (stream);
do_cleanups (old_chain);
return (bufptr - buffer);
}
/* Validate an input or output radix setting, and make sure the user
knows what they really did here. Radix setting is confusing, e.g.
setting the input radix to "10" never changes it! */
/* ARGSUSED */
static void
set_input_radix (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
set_input_radix_1 (from_tty, *(unsigned *)c->var);
}
/* ARGSUSED */
static void
set_input_radix_1 (from_tty, radix)
int from_tty;
unsigned radix;
{
/* We don't currently disallow any input radix except 0 or 1, which don't
make any mathematical sense. In theory, we can deal with any input
radix greater than 1, even if we don't have unique digits for every
value from 0 to radix-1, but in practice we lose on large radix values.
We should either fix the lossage or restrict the radix range more.
(FIXME). */
if (radix < 2)
{
error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
radix);
}
input_radix = radix;
if (from_tty)
{
printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
radix, radix, radix);
}
}
/* ARGSUSED */
static void
set_output_radix (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
set_output_radix_1 (from_tty, *(unsigned *)c->var);
}
static void
set_output_radix_1 (from_tty, radix)
int from_tty;
unsigned radix;
{
/* Validate the radix and disallow ones that we aren't prepared to
handle correctly, leaving the radix unchanged. */
switch (radix)
{
case 16:
output_format = 'x'; /* hex */
break;
case 10:
output_format = 0; /* decimal */
break;
case 8:
output_format = 'o'; /* octal */
break;
default:
error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
radix);
}
output_radix = radix;
if (from_tty)
{
printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
radix, radix, radix);
}
}
/* Set both the input and output radix at once. Try to set the output radix
first, since it has the most restrictive range. An radix that is valid as
an output radix is also valid as an input radix.
It may be useful to have an unusual input radix. If the user wishes to
set an input radix that is not valid as an output radix, he needs to use
the 'set input-radix' command. */
static void
set_radix (arg, from_tty)
char *arg;
int from_tty;
{
unsigned radix;
radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
set_output_radix_1 (0, radix);
set_input_radix_1 (0, radix);
if (from_tty)
{
printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
radix, radix, radix);
}
}
/* Show both the input and output radices. */
/*ARGSUSED*/
static void
show_radix (arg, from_tty)
char *arg;
int from_tty;
{
if (from_tty)
{
if (input_radix == output_radix)
{
printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
input_radix, input_radix, input_radix);
}
else
{
printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
input_radix, input_radix, input_radix);
printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
output_radix, output_radix, output_radix);
}
}
}
/*ARGSUSED*/
static void
set_print (arg, from_tty)
char *arg;
int from_tty;
{
printf_unfiltered (
"\"set print\" must be followed by the name of a print subcommand.\n");
help_list (setprintlist, "set print ", -1, gdb_stdout);
}
/*ARGSUSED*/
static void
show_print (args, from_tty)
char *args;
int from_tty;
{
cmd_show_list (showprintlist, from_tty, "");
}
void
_initialize_valprint ()
{
struct cmd_list_element *c;
add_prefix_cmd ("print", no_class, set_print,
"Generic command for setting how things print.",
&setprintlist, "set print ", 0, &setlist);
add_alias_cmd ("p", "print", no_class, 1, &setlist);
/* prefer set print to set prompt */
add_alias_cmd ("pr", "print", no_class, 1, &setlist);
add_prefix_cmd ("print", no_class, show_print,
"Generic command for showing print settings.",
&showprintlist, "show print ", 0, &showlist);
add_alias_cmd ("p", "print", no_class, 1, &showlist);
add_alias_cmd ("pr", "print", no_class, 1, &showlist);
add_show_from_set
(add_set_cmd ("elements", no_class, var_uinteger, (char *)&print_max,
"Set limit on string chars or array elements to print.\n\
\"set print elements 0\" causes there to be no limit.",
&setprintlist),
&showprintlist);
add_show_from_set
(add_set_cmd ("repeats", no_class, var_uinteger,
(char *)&repeat_count_threshold,
"Set threshold for repeated print elements.\n\
\"set print repeats 0\" causes all elements to be individually printed.",
&setprintlist),
&showprintlist);
add_show_from_set
(add_set_cmd ("pretty", class_support, var_boolean,
(char *)&prettyprint_structs,
"Set prettyprinting of structures.",
&setprintlist),
&showprintlist);
add_show_from_set
(add_set_cmd ("union", class_support, var_boolean, (char *)&unionprint,
"Set printing of unions interior to structures.",
&setprintlist),
&showprintlist);
add_show_from_set
(add_set_cmd ("array", class_support, var_boolean,
(char *)&prettyprint_arrays,
"Set prettyprinting of arrays.",
&setprintlist),
&showprintlist);
add_show_from_set
(add_set_cmd ("address", class_support, var_boolean, (char *)&addressprint,
"Set printing of addresses.",
&setprintlist),
&showprintlist);
c = add_set_cmd ("input-radix", class_support, var_uinteger,
(char *)&input_radix,
"Set default input radix for entering numbers.",
&setlist);
add_show_from_set (c, &showlist);
c->function.sfunc = set_input_radix;
c = add_set_cmd ("output-radix", class_support, var_uinteger,
(char *)&output_radix,
"Set default output radix for printing of values.",
&setlist);
add_show_from_set (c, &showlist);
c->function.sfunc = set_output_radix;
/* The "set radix" and "show radix" commands are special in that they are
like normal set and show commands but allow two normally independent
variables to be either set or shown with a single command. So the
usual add_set_cmd() and add_show_from_set() commands aren't really
appropriate. */
add_cmd ("radix", class_support, set_radix,
"Set default input and output number radices.\n\
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
Without an argument, sets both radices back to the default value of 10.",
&setlist);
add_cmd ("radix", class_support, show_radix,
"Show the default input and output number radices.\n\
Use 'show input-radix' or 'show output-radix' to independently show each.",
&showlist);
/* Give people the defaults which they are used to. */
prettyprint_structs = 0;
prettyprint_arrays = 0;
unionprint = 1;
addressprint = 1;
print_max = PRINT_MAX_DEFAULT;
}
|