1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
|
/* Support routines for manipulating internal types for GDB.
Copyright (C) 1992-2013 Free Software Foundation, Inc.
Contributed by Cygnus Support, using pieces from other GDB modules.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdb_string.h"
#include "bfd.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "target.h"
#include "value.h"
#include "demangle.h"
#include "complaints.h"
#include "gdbcmd.h"
#include "cp-abi.h"
#include "gdb_assert.h"
#include "hashtab.h"
#include "exceptions.h"
/* Initialize BADNESS constants. */
const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
const struct rank EXACT_MATCH_BADNESS = {0,0};
const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
const struct rank BOOL_CONVERSION_BADNESS = {3,0};
const struct rank BASE_CONVERSION_BADNESS = {2,0};
const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
/* Floatformat pairs. */
const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_half_big,
&floatformat_ieee_half_little
};
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_single_big,
&floatformat_ieee_single_little
};
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_double_big,
&floatformat_ieee_double_little
};
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_double_big,
&floatformat_ieee_double_littlebyte_bigword
};
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_i387_ext,
&floatformat_i387_ext
};
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_m68881_ext,
&floatformat_m68881_ext
};
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_arm_ext_big,
&floatformat_arm_ext_littlebyte_bigword
};
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ia64_spill_big,
&floatformat_ia64_spill_little
};
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ia64_quad_big,
&floatformat_ia64_quad_little
};
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
&floatformat_vax_f,
&floatformat_vax_f
};
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
&floatformat_vax_d,
&floatformat_vax_d
};
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ibm_long_double,
&floatformat_ibm_long_double
};
/* Should opaque types be resolved? */
static int opaque_type_resolution = 1;
/* A flag to enable printing of debugging information of C++
overloading. */
unsigned int overload_debug = 0;
/* A flag to enable strict type checking. */
static int strict_type_checking = 1;
/* A function to show whether opaque types are resolved. */
static void
show_opaque_type_resolution (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
"(if set before loading symbols) is %s.\n"),
value);
}
/* A function to show whether C++ overload debugging is enabled. */
static void
show_overload_debug (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
value);
}
/* A function to show the status of strict type checking. */
static void
show_strict_type_checking (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
}
/* Allocate a new OBJFILE-associated type structure and fill it
with some defaults. Space for the type structure is allocated
on the objfile's objfile_obstack. */
struct type *
alloc_type (struct objfile *objfile)
{
struct type *type;
gdb_assert (objfile != NULL);
/* Alloc the structure and start off with all fields zeroed. */
type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
struct main_type);
OBJSTAT (objfile, n_types++);
TYPE_OBJFILE_OWNED (type) = 1;
TYPE_OWNER (type).objfile = objfile;
/* Initialize the fields that might not be zero. */
TYPE_CODE (type) = TYPE_CODE_UNDEF;
TYPE_VPTR_FIELDNO (type) = -1;
TYPE_CHAIN (type) = type; /* Chain back to itself. */
return type;
}
/* Allocate a new GDBARCH-associated type structure and fill it
with some defaults. Space for the type structure is allocated
on the heap. */
struct type *
alloc_type_arch (struct gdbarch *gdbarch)
{
struct type *type;
gdb_assert (gdbarch != NULL);
/* Alloc the structure and start off with all fields zeroed. */
type = XZALLOC (struct type);
TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
TYPE_OBJFILE_OWNED (type) = 0;
TYPE_OWNER (type).gdbarch = gdbarch;
/* Initialize the fields that might not be zero. */
TYPE_CODE (type) = TYPE_CODE_UNDEF;
TYPE_VPTR_FIELDNO (type) = -1;
TYPE_CHAIN (type) = type; /* Chain back to itself. */
return type;
}
/* If TYPE is objfile-associated, allocate a new type structure
associated with the same objfile. If TYPE is gdbarch-associated,
allocate a new type structure associated with the same gdbarch. */
struct type *
alloc_type_copy (const struct type *type)
{
if (TYPE_OBJFILE_OWNED (type))
return alloc_type (TYPE_OWNER (type).objfile);
else
return alloc_type_arch (TYPE_OWNER (type).gdbarch);
}
/* If TYPE is gdbarch-associated, return that architecture.
If TYPE is objfile-associated, return that objfile's architecture. */
struct gdbarch *
get_type_arch (const struct type *type)
{
if (TYPE_OBJFILE_OWNED (type))
return get_objfile_arch (TYPE_OWNER (type).objfile);
else
return TYPE_OWNER (type).gdbarch;
}
/* Alloc a new type instance structure, fill it with some defaults,
and point it at OLDTYPE. Allocate the new type instance from the
same place as OLDTYPE. */
static struct type *
alloc_type_instance (struct type *oldtype)
{
struct type *type;
/* Allocate the structure. */
if (! TYPE_OBJFILE_OWNED (oldtype))
type = XZALLOC (struct type);
else
type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
struct type);
TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
return type;
}
/* Clear all remnants of the previous type at TYPE, in preparation for
replacing it with something else. Preserve owner information. */
static void
smash_type (struct type *type)
{
int objfile_owned = TYPE_OBJFILE_OWNED (type);
union type_owner owner = TYPE_OWNER (type);
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
/* Restore owner information. */
TYPE_OBJFILE_OWNED (type) = objfile_owned;
TYPE_OWNER (type) = owner;
/* For now, delete the rings. */
TYPE_CHAIN (type) = type;
/* For now, leave the pointer/reference types alone. */
}
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
to a pointer to memory where the pointer type should be stored.
If *TYPEPTR is zero, update it to point to the pointer type we return.
We allocate new memory if needed. */
struct type *
make_pointer_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct type *chain;
ntype = TYPE_POINTER_TYPE (type);
if (ntype)
{
if (typeptr == 0)
return ntype; /* Don't care about alloc,
and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type_copy (type);
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
chain = TYPE_CHAIN (ntype);
smash_type (ntype);
TYPE_CHAIN (ntype) = chain;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_POINTER_TYPE (type) = ntype;
/* FIXME! Assumes the machine has only one representation for pointers! */
TYPE_LENGTH (ntype)
= gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_PTR;
/* Mark pointers as unsigned. The target converts between pointers
and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
gdbarch_address_to_pointer. */
TYPE_UNSIGNED (ntype) = 1;
/* Update the length of all the other variants of this type. */
chain = TYPE_CHAIN (ntype);
while (chain != ntype)
{
TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
chain = TYPE_CHAIN (chain);
}
return ntype;
}
/* Given a type TYPE, return a type of pointers to that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_pointer_type (struct type *type)
{
return make_pointer_type (type, (struct type **) 0);
}
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
points to a pointer to memory where the reference type should be
stored. If *TYPEPTR is zero, update it to point to the reference
type we return. We allocate new memory if needed. */
struct type *
make_reference_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct type *chain;
ntype = TYPE_REFERENCE_TYPE (type);
if (ntype)
{
if (typeptr == 0)
return ntype; /* Don't care about alloc,
and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type_copy (type);
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
chain = TYPE_CHAIN (ntype);
smash_type (ntype);
TYPE_CHAIN (ntype) = chain;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_REFERENCE_TYPE (type) = ntype;
/* FIXME! Assume the machine has only one representation for
references, and that it matches the (only) representation for
pointers! */
TYPE_LENGTH (ntype) =
gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_REF;
if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
TYPE_REFERENCE_TYPE (type) = ntype;
/* Update the length of all the other variants of this type. */
chain = TYPE_CHAIN (ntype);
while (chain != ntype)
{
TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
chain = TYPE_CHAIN (chain);
}
return ntype;
}
/* Same as above, but caller doesn't care about memory allocation
details. */
struct type *
lookup_reference_type (struct type *type)
{
return make_reference_type (type, (struct type **) 0);
}
/* Lookup a function type that returns type TYPE. TYPEPTR, if
nonzero, points to a pointer to memory where the function type
should be stored. If *TYPEPTR is zero, update it to point to the
function type we return. We allocate new memory if needed. */
struct type *
make_function_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type_copy (type);
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
smash_type (ntype);
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_LENGTH (ntype) = 1;
TYPE_CODE (ntype) = TYPE_CODE_FUNC;
INIT_FUNC_SPECIFIC (ntype);
return ntype;
}
/* Given a type TYPE, return a type of functions that return that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_function_type (struct type *type)
{
return make_function_type (type, (struct type **) 0);
}
/* Given a type TYPE and argument types, return the appropriate
function type. If the final type in PARAM_TYPES is NULL, make a
varargs function. */
struct type *
lookup_function_type_with_arguments (struct type *type,
int nparams,
struct type **param_types)
{
struct type *fn = make_function_type (type, (struct type **) 0);
int i;
if (nparams > 0)
{
if (param_types[nparams - 1] == NULL)
{
--nparams;
TYPE_VARARGS (fn) = 1;
}
else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
== TYPE_CODE_VOID)
{
--nparams;
/* Caller should have ensured this. */
gdb_assert (nparams == 0);
TYPE_PROTOTYPED (fn) = 1;
}
}
TYPE_NFIELDS (fn) = nparams;
TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
for (i = 0; i < nparams; ++i)
TYPE_FIELD_TYPE (fn, i) = param_types[i];
return fn;
}
/* Identify address space identifier by name --
return the integer flag defined in gdbtypes.h. */
int
address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
{
int type_flags;
/* Check for known address space delimiters. */
if (!strcmp (space_identifier, "code"))
return TYPE_INSTANCE_FLAG_CODE_SPACE;
else if (!strcmp (space_identifier, "data"))
return TYPE_INSTANCE_FLAG_DATA_SPACE;
else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
&& gdbarch_address_class_name_to_type_flags (gdbarch,
space_identifier,
&type_flags))
return type_flags;
else
error (_("Unknown address space specifier: \"%s\""), space_identifier);
}
/* Identify address space identifier by integer flag as defined in
gdbtypes.h -- return the string version of the adress space name. */
const char *
address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
{
if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
return "code";
else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
return "data";
else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
&& gdbarch_address_class_type_flags_to_name_p (gdbarch))
return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
else
return NULL;
}
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
If STORAGE is non-NULL, create the new type instance there.
STORAGE must be in the same obstack as TYPE. */
static struct type *
make_qualified_type (struct type *type, int new_flags,
struct type *storage)
{
struct type *ntype;
ntype = type;
do
{
if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
return ntype;
ntype = TYPE_CHAIN (ntype);
}
while (ntype != type);
/* Create a new type instance. */
if (storage == NULL)
ntype = alloc_type_instance (type);
else
{
/* If STORAGE was provided, it had better be in the same objfile
as TYPE. Otherwise, we can't link it into TYPE's cv chain:
if one objfile is freed and the other kept, we'd have
dangling pointers. */
gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
ntype = storage;
TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
TYPE_CHAIN (ntype) = ntype;
}
/* Pointers or references to the original type are not relevant to
the new type. */
TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
/* Chain the new qualified type to the old type. */
TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
TYPE_CHAIN (type) = ntype;
/* Now set the instance flags and return the new type. */
TYPE_INSTANCE_FLAGS (ntype) = new_flags;
/* Set length of new type to that of the original type. */
TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
return ntype;
}
/* Make an address-space-delimited variant of a type -- a type that
is identical to the one supplied except that it has an address
space attribute attached to it (such as "code" or "data").
The space attributes "code" and "data" are for Harvard
architectures. The address space attributes are for architectures
which have alternately sized pointers or pointers with alternate
representations. */
struct type *
make_type_with_address_space (struct type *type, int space_flag)
{
int new_flags = ((TYPE_INSTANCE_FLAGS (type)
& ~(TYPE_INSTANCE_FLAG_CODE_SPACE
| TYPE_INSTANCE_FLAG_DATA_SPACE
| TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
| space_flag);
return make_qualified_type (type, new_flags, NULL);
}
/* Make a "c-v" variant of a type -- a type that is identical to the
one supplied except that it may have const or volatile attributes
CNST is a flag for setting the const attribute
VOLTL is a flag for setting the volatile attribute
TYPE is the base type whose variant we are creating.
If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
storage to hold the new qualified type; *TYPEPTR and TYPE must be
in the same objfile. Otherwise, allocate fresh memory for the new
type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
new type we construct. */
struct type *
make_cv_type (int cnst, int voltl,
struct type *type,
struct type **typeptr)
{
struct type *ntype; /* New type */
int new_flags = (TYPE_INSTANCE_FLAGS (type)
& ~(TYPE_INSTANCE_FLAG_CONST
| TYPE_INSTANCE_FLAG_VOLATILE));
if (cnst)
new_flags |= TYPE_INSTANCE_FLAG_CONST;
if (voltl)
new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
if (typeptr && *typeptr != NULL)
{
/* TYPE and *TYPEPTR must be in the same objfile. We can't have
a C-V variant chain that threads across objfiles: if one
objfile gets freed, then the other has a broken C-V chain.
This code used to try to copy over the main type from TYPE to
*TYPEPTR if they were in different objfiles, but that's
wrong, too: TYPE may have a field list or member function
lists, which refer to types of their own, etc. etc. The
whole shebang would need to be copied over recursively; you
can't have inter-objfile pointers. The only thing to do is
to leave stub types as stub types, and look them up afresh by
name each time you encounter them. */
gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
}
ntype = make_qualified_type (type, new_flags,
typeptr ? *typeptr : NULL);
if (typeptr != NULL)
*typeptr = ntype;
return ntype;
}
/* Make a 'restrict'-qualified version of TYPE. */
struct type *
make_restrict_type (struct type *type)
{
return make_qualified_type (type,
(TYPE_INSTANCE_FLAGS (type)
| TYPE_INSTANCE_FLAG_RESTRICT),
NULL);
}
/* Replace the contents of ntype with the type *type. This changes the
contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
the changes are propogated to all types in the TYPE_CHAIN.
In order to build recursive types, it's inevitable that we'll need
to update types in place --- but this sort of indiscriminate
smashing is ugly, and needs to be replaced with something more
controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
clear if more steps are needed. */
void
replace_type (struct type *ntype, struct type *type)
{
struct type *chain;
/* These two types had better be in the same objfile. Otherwise,
the assignment of one type's main type structure to the other
will produce a type with references to objects (names; field
lists; etc.) allocated on an objfile other than its own. */
gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
*TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
/* The type length is not a part of the main type. Update it for
each type on the variant chain. */
chain = ntype;
do
{
/* Assert that this element of the chain has no address-class bits
set in its flags. Such type variants might have type lengths
which are supposed to be different from the non-address-class
variants. This assertion shouldn't ever be triggered because
symbol readers which do construct address-class variants don't
call replace_type(). */
gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
TYPE_LENGTH (chain) = TYPE_LENGTH (type);
chain = TYPE_CHAIN (chain);
}
while (ntype != chain);
/* Assert that the two types have equivalent instance qualifiers.
This should be true for at least all of our debug readers. */
gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
}
/* Implement direct support for MEMBER_TYPE in GNU C++.
May need to construct such a type if this is the first use.
The TYPE is the type of the member. The DOMAIN is the type
of the aggregate that the member belongs to. */
struct type *
lookup_memberptr_type (struct type *type, struct type *domain)
{
struct type *mtype;
mtype = alloc_type_copy (type);
smash_to_memberptr_type (mtype, domain, type);
return mtype;
}
/* Return a pointer-to-method type, for a method of type TO_TYPE. */
struct type *
lookup_methodptr_type (struct type *to_type)
{
struct type *mtype;
mtype = alloc_type_copy (to_type);
smash_to_methodptr_type (mtype, to_type);
return mtype;
}
/* Allocate a stub method whose return type is TYPE. This apparently
happens for speed of symbol reading, since parsing out the
arguments to the method is cpu-intensive, the way we are doing it.
So, we will fill in arguments later. This always returns a fresh
type. */
struct type *
allocate_stub_method (struct type *type)
{
struct type *mtype;
mtype = alloc_type_copy (type);
TYPE_CODE (mtype) = TYPE_CODE_METHOD;
TYPE_LENGTH (mtype) = 1;
TYPE_STUB (mtype) = 1;
TYPE_TARGET_TYPE (mtype) = type;
/* _DOMAIN_TYPE (mtype) = unknown yet */
return mtype;
}
/* Create a range type using either a blank type supplied in
RESULT_TYPE, or creating a new type, inheriting the objfile from
INDEX_TYPE.
Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
to HIGH_BOUND, inclusive.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
struct type *
create_range_type (struct type *result_type, struct type *index_type,
LONGEST low_bound, LONGEST high_bound)
{
if (result_type == NULL)
result_type = alloc_type_copy (index_type);
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
TYPE_TARGET_TYPE (result_type) = index_type;
if (TYPE_STUB (index_type))
TYPE_TARGET_STUB (result_type) = 1;
else
TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
TYPE_LOW_BOUND (result_type) = low_bound;
TYPE_HIGH_BOUND (result_type) = high_bound;
if (low_bound >= 0)
TYPE_UNSIGNED (result_type) = 1;
return result_type;
}
/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
TYPE. Return 1 if type is a range type, 0 if it is discrete (and
bounds will fit in LONGEST), or -1 otherwise. */
int
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
{
CHECK_TYPEDEF (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_RANGE:
*lowp = TYPE_LOW_BOUND (type);
*highp = TYPE_HIGH_BOUND (type);
return 1;
case TYPE_CODE_ENUM:
if (TYPE_NFIELDS (type) > 0)
{
/* The enums may not be sorted by value, so search all
entries. */
int i;
*lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
for (i = 0; i < TYPE_NFIELDS (type); i++)
{
if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
*lowp = TYPE_FIELD_ENUMVAL (type, i);
if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
*highp = TYPE_FIELD_ENUMVAL (type, i);
}
/* Set unsigned indicator if warranted. */
if (*lowp >= 0)
{
TYPE_UNSIGNED (type) = 1;
}
}
else
{
*lowp = 0;
*highp = -1;
}
return 0;
case TYPE_CODE_BOOL:
*lowp = 0;
*highp = 1;
return 0;
case TYPE_CODE_INT:
if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
return -1;
if (!TYPE_UNSIGNED (type))
{
*lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
*highp = -*lowp - 1;
return 0;
}
/* ... fall through for unsigned ints ... */
case TYPE_CODE_CHAR:
*lowp = 0;
/* This round-about calculation is to avoid shifting by
TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
if TYPE_LENGTH (type) == sizeof (LONGEST). */
*highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
*highp = (*highp - 1) | *highp;
return 0;
default:
return -1;
}
}
/* Assuming TYPE is a simple, non-empty array type, compute its upper
and lower bound. Save the low bound into LOW_BOUND if not NULL.
Save the high bound into HIGH_BOUND if not NULL.
Return 1 if the operation was successful. Return zero otherwise,
in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
We now simply use get_discrete_bounds call to get the values
of the low and high bounds.
get_discrete_bounds can return three values:
1, meaning that index is a range,
0, meaning that index is a discrete type,
or -1 for failure. */
int
get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
{
struct type *index = TYPE_INDEX_TYPE (type);
LONGEST low = 0;
LONGEST high = 0;
int res;
if (index == NULL)
return 0;
res = get_discrete_bounds (index, &low, &high);
if (res == -1)
return 0;
/* Check if the array bounds are undefined. */
if (res == 1
&& ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
|| (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
return 0;
if (low_bound)
*low_bound = low;
if (high_bound)
*high_bound = high;
return 1;
}
/* Create an array type using either a blank type supplied in
RESULT_TYPE, or creating a new type, inheriting the objfile from
RANGE_TYPE.
Elements will be of type ELEMENT_TYPE, the indices will be of type
RANGE_TYPE.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into an array
type? */
struct type *
create_array_type (struct type *result_type,
struct type *element_type,
struct type *range_type)
{
LONGEST low_bound, high_bound;
if (result_type == NULL)
result_type = alloc_type_copy (range_type);
TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
TYPE_TARGET_TYPE (result_type) = element_type;
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
low_bound = high_bound = 0;
CHECK_TYPEDEF (element_type);
/* Be careful when setting the array length. Ada arrays can be
empty arrays with the high_bound being smaller than the low_bound.
In such cases, the array length should be zero. */
if (high_bound < low_bound)
TYPE_LENGTH (result_type) = 0;
else
TYPE_LENGTH (result_type) =
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
TYPE_NFIELDS (result_type) = 1;
TYPE_FIELDS (result_type) =
(struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
TYPE_INDEX_TYPE (result_type) = range_type;
TYPE_VPTR_FIELDNO (result_type) = -1;
/* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
if (TYPE_LENGTH (result_type) == 0)
TYPE_TARGET_STUB (result_type) = 1;
return result_type;
}
struct type *
lookup_array_range_type (struct type *element_type,
LONGEST low_bound, LONGEST high_bound)
{
struct gdbarch *gdbarch = get_type_arch (element_type);
struct type *index_type = builtin_type (gdbarch)->builtin_int;
struct type *range_type
= create_range_type (NULL, index_type, low_bound, high_bound);
return create_array_type (NULL, element_type, range_type);
}
/* Create a string type using either a blank type supplied in
RESULT_TYPE, or creating a new type. String types are similar
enough to array of char types that we can use create_array_type to
build the basic type and then bash it into a string type.
For fixed length strings, the range type contains 0 as the lower
bound and the length of the string minus one as the upper bound.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into a string
type? */
struct type *
create_string_type (struct type *result_type,
struct type *string_char_type,
struct type *range_type)
{
result_type = create_array_type (result_type,
string_char_type,
range_type);
TYPE_CODE (result_type) = TYPE_CODE_STRING;
return result_type;
}
struct type *
lookup_string_range_type (struct type *string_char_type,
LONGEST low_bound, LONGEST high_bound)
{
struct type *result_type;
result_type = lookup_array_range_type (string_char_type,
low_bound, high_bound);
TYPE_CODE (result_type) = TYPE_CODE_STRING;
return result_type;
}
struct type *
create_set_type (struct type *result_type, struct type *domain_type)
{
if (result_type == NULL)
result_type = alloc_type_copy (domain_type);
TYPE_CODE (result_type) = TYPE_CODE_SET;
TYPE_NFIELDS (result_type) = 1;
TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
if (!TYPE_STUB (domain_type))
{
LONGEST low_bound, high_bound, bit_length;
if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
low_bound = high_bound = 0;
bit_length = high_bound - low_bound + 1;
TYPE_LENGTH (result_type)
= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
if (low_bound >= 0)
TYPE_UNSIGNED (result_type) = 1;
}
TYPE_FIELD_TYPE (result_type, 0) = domain_type;
return result_type;
}
/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
and any array types nested inside it. */
void
make_vector_type (struct type *array_type)
{
struct type *inner_array, *elt_type;
int flags;
/* Find the innermost array type, in case the array is
multi-dimensional. */
inner_array = array_type;
while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
inner_array = TYPE_TARGET_TYPE (inner_array);
elt_type = TYPE_TARGET_TYPE (inner_array);
if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
{
flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
elt_type = make_qualified_type (elt_type, flags, NULL);
TYPE_TARGET_TYPE (inner_array) = elt_type;
}
TYPE_VECTOR (array_type) = 1;
}
struct type *
init_vector_type (struct type *elt_type, int n)
{
struct type *array_type;
array_type = lookup_array_range_type (elt_type, 0, n - 1);
make_vector_type (array_type);
return array_type;
}
/* Smash TYPE to be a type of pointers to members of DOMAIN with type
TO_TYPE. A member pointer is a wierd thing -- it amounts to a
typed offset into a struct, e.g. "an int at offset 8". A MEMBER
TYPE doesn't include the offset (that's the value of the MEMBER
itself), but does include the structure type into which it points
(for some reason).
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_memberptr_type (struct type *type, struct type *domain,
struct type *to_type)
{
smash_type (type);
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
/* Assume that a data member pointer is the same size as a normal
pointer. */
TYPE_LENGTH (type)
= gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
}
/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_methodptr_type (struct type *type, struct type *to_type)
{
smash_type (type);
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
TYPE_CODE (type) = TYPE_CODE_METHODPTR;
}
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
METHOD just means `function that gets an extra "this" argument'.
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_method_type (struct type *type, struct type *domain,
struct type *to_type, struct field *args,
int nargs, int varargs)
{
smash_type (type);
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
TYPE_FIELDS (type) = args;
TYPE_NFIELDS (type) = nargs;
if (varargs)
TYPE_VARARGS (type) = 1;
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
TYPE_CODE (type) = TYPE_CODE_METHOD;
}
/* Return a typename for a struct/union/enum type without "struct ",
"union ", or "enum ". If the type has a NULL name, return NULL. */
const char *
type_name_no_tag (const struct type *type)
{
if (TYPE_TAG_NAME (type) != NULL)
return TYPE_TAG_NAME (type);
/* Is there code which expects this to return the name if there is
no tag name? My guess is that this is mainly used for C++ in
cases where the two will always be the same. */
return TYPE_NAME (type);
}
/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
Since GCC PR debug/47510 DWARF provides associated information to detect the
anonymous class linkage name from its typedef.
Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
apply it itself. */
const char *
type_name_no_tag_or_error (struct type *type)
{
struct type *saved_type = type;
const char *name;
struct objfile *objfile;
CHECK_TYPEDEF (type);
name = type_name_no_tag (type);
if (name != NULL)
return name;
name = type_name_no_tag (saved_type);
objfile = TYPE_OBJFILE (saved_type);
error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
}
/* Lookup a typedef or primitive type named NAME, visible in lexical
block BLOCK. If NOERR is nonzero, return zero if NAME is not
suitably defined. */
struct type *
lookup_typename (const struct language_defn *language,
struct gdbarch *gdbarch, const char *name,
const struct block *block, int noerr)
{
struct symbol *sym;
struct type *type;
sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
return SYMBOL_TYPE (sym);
type = language_lookup_primitive_type_by_name (language, gdbarch, name);
if (type)
return type;
if (noerr)
return NULL;
error (_("No type named %s."), name);
}
struct type *
lookup_unsigned_typename (const struct language_defn *language,
struct gdbarch *gdbarch, const char *name)
{
char *uns = alloca (strlen (name) + 10);
strcpy (uns, "unsigned ");
strcpy (uns + 9, name);
return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
}
struct type *
lookup_signed_typename (const struct language_defn *language,
struct gdbarch *gdbarch, const char *name)
{
struct type *t;
char *uns = alloca (strlen (name) + 8);
strcpy (uns, "signed ");
strcpy (uns + 7, name);
t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
/* If we don't find "signed FOO" just try again with plain "FOO". */
if (t != NULL)
return t;
return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
}
/* Lookup a structure type named "struct NAME",
visible in lexical block BLOCK. */
struct type *
lookup_struct (const char *name, const struct block *block)
{
struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
if (sym == NULL)
{
error (_("No struct type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
error (_("This context has class, union or enum %s, not a struct."),
name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup a union type named "union NAME",
visible in lexical block BLOCK. */
struct type *
lookup_union (const char *name, const struct block *block)
{
struct symbol *sym;
struct type *t;
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
if (sym == NULL)
error (_("No union type named %s."), name);
t = SYMBOL_TYPE (sym);
if (TYPE_CODE (t) == TYPE_CODE_UNION)
return t;
/* If we get here, it's not a union. */
error (_("This context has class, struct or enum %s, not a union."),
name);
}
/* Lookup an enum type named "enum NAME",
visible in lexical block BLOCK. */
struct type *
lookup_enum (const char *name, const struct block *block)
{
struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
if (sym == NULL)
{
error (_("No enum type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
{
error (_("This context has class, struct or union %s, not an enum."),
name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup a template type named "template NAME<TYPE>",
visible in lexical block BLOCK. */
struct type *
lookup_template_type (char *name, struct type *type,
const struct block *block)
{
struct symbol *sym;
char *nam = (char *)
alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
strcpy (nam, name);
strcat (nam, "<");
strcat (nam, TYPE_NAME (type));
strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
if (sym == NULL)
{
error (_("No template type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
error (_("This context has class, union or enum %s, not a struct."),
name);
}
return (SYMBOL_TYPE (sym));
}
/* Given a type TYPE, lookup the type of the component of type named
NAME.
TYPE can be either a struct or union, or a pointer or reference to
a struct or union. If it is a pointer or reference, its target
type is automatically used. Thus '.' and '->' are interchangable,
as specified for the definitions of the expression element types
STRUCTOP_STRUCT and STRUCTOP_PTR.
If NOERR is nonzero, return zero if NAME is not suitably defined.
If NAME is the name of a baseclass type, return that type. */
struct type *
lookup_struct_elt_type (struct type *type, char *name, int noerr)
{
int i;
char *typename;
for (;;)
{
CHECK_TYPEDEF (type);
if (TYPE_CODE (type) != TYPE_CODE_PTR
&& TYPE_CODE (type) != TYPE_CODE_REF)
break;
type = TYPE_TARGET_TYPE (type);
}
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
{
typename = type_to_string (type);
make_cleanup (xfree, typename);
error (_("Type %s is not a structure or union type."), typename);
}
#if 0
/* FIXME: This change put in by Michael seems incorrect for the case
where the structure tag name is the same as the member name.
I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
foo; } bell;" Disabled by fnf. */
{
char *typename;
typename = type_name_no_tag (type);
if (typename != NULL && strcmp (typename, name) == 0)
return type;
}
#endif
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
{
const char *t_field_name = TYPE_FIELD_NAME (type, i);
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
{
return TYPE_FIELD_TYPE (type, i);
}
else if (!t_field_name || *t_field_name == '\0')
{
struct type *subtype
= lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
if (subtype != NULL)
return subtype;
}
}
/* OK, it's not in this class. Recursively check the baseclasses. */
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
{
struct type *t;
t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
if (t != NULL)
{
return t;
}
}
if (noerr)
{
return NULL;
}
typename = type_to_string (type);
make_cleanup (xfree, typename);
error (_("Type %s has no component named %s."), typename, name);
}
/* Lookup the vptr basetype/fieldno values for TYPE.
If found store vptr_basetype in *BASETYPEP if non-NULL, and return
vptr_fieldno. Also, if found and basetype is from the same objfile,
cache the results.
If not found, return -1 and ignore BASETYPEP.
Callers should be aware that in some cases (for example,
the type or one of its baseclasses is a stub type and we are
debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
this function will not be able to find the
virtual function table pointer, and vptr_fieldno will remain -1 and
vptr_basetype will remain NULL or incomplete. */
int
get_vptr_fieldno (struct type *type, struct type **basetypep)
{
CHECK_TYPEDEF (type);
if (TYPE_VPTR_FIELDNO (type) < 0)
{
int i;
/* We must start at zero in case the first (and only) baseclass
is virtual (and hence we cannot share the table pointer). */
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
{
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
int fieldno;
struct type *basetype;
fieldno = get_vptr_fieldno (baseclass, &basetype);
if (fieldno >= 0)
{
/* If the type comes from a different objfile we can't cache
it, it may have a different lifetime. PR 2384 */
if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
{
TYPE_VPTR_FIELDNO (type) = fieldno;
TYPE_VPTR_BASETYPE (type) = basetype;
}
if (basetypep)
*basetypep = basetype;
return fieldno;
}
}
/* Not found. */
return -1;
}
else
{
if (basetypep)
*basetypep = TYPE_VPTR_BASETYPE (type);
return TYPE_VPTR_FIELDNO (type);
}
}
static void
stub_noname_complaint (void)
{
complaint (&symfile_complaints, _("stub type has NULL name"));
}
/* Find the real type of TYPE. This function returns the real type,
after removing all layers of typedefs, and completing opaque or stub
types. Completion changes the TYPE argument, but stripping of
typedefs does not.
Instance flags (e.g. const/volatile) are preserved as typedefs are
stripped. If necessary a new qualified form of the underlying type
is created.
NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
not been computed and we're either in the middle of reading symbols, or
there was no name for the typedef in the debug info.
NOTE: Lookup of opaque types can throw errors for invalid symbol files.
QUITs in the symbol reading code can also throw.
Thus this function can throw an exception.
If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
the target type.
If this is a stubbed struct (i.e. declared as struct foo *), see if
we can find a full definition in some other file. If so, copy this
definition, so we can use it in future. There used to be a comment
(but not any code) that if we don't find a full definition, we'd
set a flag so we don't spend time in the future checking the same
type. That would be a mistake, though--we might load in more
symbols which contain a full definition for the type. */
struct type *
check_typedef (struct type *type)
{
struct type *orig_type = type;
/* While we're removing typedefs, we don't want to lose qualifiers.
E.g., const/volatile. */
int instance_flags = TYPE_INSTANCE_FLAGS (type);
gdb_assert (type);
while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
{
if (!TYPE_TARGET_TYPE (type))
{
const char *name;
struct symbol *sym;
/* It is dangerous to call lookup_symbol if we are currently
reading a symtab. Infinite recursion is one danger. */
if (currently_reading_symtab)
return make_qualified_type (type, instance_flags, NULL);
name = type_name_no_tag (type);
/* FIXME: shouldn't we separately check the TYPE_NAME and
the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
VAR_DOMAIN as appropriate? (this code was written before
TYPE_NAME and TYPE_TAG_NAME were separate). */
if (name == NULL)
{
stub_noname_complaint ();
return make_qualified_type (type, instance_flags, NULL);
}
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
if (sym)
TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
else /* TYPE_CODE_UNDEF */
TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
}
type = TYPE_TARGET_TYPE (type);
/* Preserve the instance flags as we traverse down the typedef chain.
Handling address spaces/classes is nasty, what do we do if there's a
conflict?
E.g., what if an outer typedef marks the type as class_1 and an inner
typedef marks the type as class_2?
This is the wrong place to do such error checking. We leave it to
the code that created the typedef in the first place to flag the
error. We just pick the outer address space (akin to letting the
outer cast in a chain of casting win), instead of assuming
"it can't happen". */
{
const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
| TYPE_INSTANCE_FLAG_DATA_SPACE);
const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
/* Treat code vs data spaces and address classes separately. */
if ((instance_flags & ALL_SPACES) != 0)
new_instance_flags &= ~ALL_SPACES;
if ((instance_flags & ALL_CLASSES) != 0)
new_instance_flags &= ~ALL_CLASSES;
instance_flags |= new_instance_flags;
}
}
/* If this is a struct/class/union with no fields, then check
whether a full definition exists somewhere else. This is for
systems where a type definition with no fields is issued for such
types, instead of identifying them as stub types in the first
place. */
if (TYPE_IS_OPAQUE (type)
&& opaque_type_resolution
&& !currently_reading_symtab)
{
const char *name = type_name_no_tag (type);
struct type *newtype;
if (name == NULL)
{
stub_noname_complaint ();
return make_qualified_type (type, instance_flags, NULL);
}
newtype = lookup_transparent_type (name);
if (newtype)
{
/* If the resolved type and the stub are in the same
objfile, then replace the stub type with the real deal.
But if they're in separate objfiles, leave the stub
alone; we'll just look up the transparent type every time
we call check_typedef. We can't create pointers between
types allocated to different objfiles, since they may
have different lifetimes. Trying to copy NEWTYPE over to
TYPE's objfile is pointless, too, since you'll have to
move over any other types NEWTYPE refers to, which could
be an unbounded amount of stuff. */
if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
type = make_qualified_type (newtype,
TYPE_INSTANCE_FLAGS (type),
type);
else
type = newtype;
}
}
/* Otherwise, rely on the stub flag being set for opaque/stubbed
types. */
else if (TYPE_STUB (type) && !currently_reading_symtab)
{
const char *name = type_name_no_tag (type);
/* FIXME: shouldn't we separately check the TYPE_NAME and the
TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
as appropriate? (this code was written before TYPE_NAME and
TYPE_TAG_NAME were separate). */
struct symbol *sym;
if (name == NULL)
{
stub_noname_complaint ();
return make_qualified_type (type, instance_flags, NULL);
}
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
if (sym)
{
/* Same as above for opaque types, we can replace the stub
with the complete type only if they are in the same
objfile. */
if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
type = make_qualified_type (SYMBOL_TYPE (sym),
TYPE_INSTANCE_FLAGS (type),
type);
else
type = SYMBOL_TYPE (sym);
}
}
if (TYPE_TARGET_STUB (type))
{
struct type *range_type;
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
{
/* Nothing we can do. */
}
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_NFIELDS (type) == 1
&& (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
== TYPE_CODE_RANGE))
{
/* Now recompute the length of the array type, based on its
number of elements and the target type's length.
Watch out for Ada null Ada arrays where the high bound
is smaller than the low bound. */
const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
ULONGEST len;
if (high_bound < low_bound)
len = 0;
else
{
/* For now, we conservatively take the array length to be 0
if its length exceeds UINT_MAX. The code below assumes
that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
which is technically not guaranteed by C, but is usually true
(because it would be true if x were unsigned with its
high-order bit on). It uses the fact that
high_bound-low_bound is always representable in
ULONGEST and that if high_bound-low_bound+1 overflows,
it overflows to 0. We must change these tests if we
decide to increase the representation of TYPE_LENGTH
from unsigned int to ULONGEST. */
ULONGEST ulow = low_bound, uhigh = high_bound;
ULONGEST tlen = TYPE_LENGTH (target_type);
len = tlen * (uhigh - ulow + 1);
if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
|| len > UINT_MAX)
len = 0;
}
TYPE_LENGTH (type) = len;
TYPE_TARGET_STUB (type) = 0;
}
else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
{
TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
TYPE_TARGET_STUB (type) = 0;
}
}
type = make_qualified_type (type, instance_flags, NULL);
/* Cache TYPE_LENGTH for future use. */
TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
return type;
}
/* Parse a type expression in the string [P..P+LENGTH). If an error
occurs, silently return a void type. */
static struct type *
safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
{
struct ui_file *saved_gdb_stderr;
struct type *type = NULL; /* Initialize to keep gcc happy. */
volatile struct gdb_exception except;
/* Suppress error messages. */
saved_gdb_stderr = gdb_stderr;
gdb_stderr = ui_file_new ();
/* Call parse_and_eval_type() without fear of longjmp()s. */
TRY_CATCH (except, RETURN_MASK_ERROR)
{
type = parse_and_eval_type (p, length);
}
if (except.reason < 0)
type = builtin_type (gdbarch)->builtin_void;
/* Stop suppressing error messages. */
ui_file_delete (gdb_stderr);
gdb_stderr = saved_gdb_stderr;
return type;
}
/* Ugly hack to convert method stubs into method types.
He ain't kiddin'. This demangles the name of the method into a
string including argument types, parses out each argument type,
generates a string casting a zero to that type, evaluates the
string, and stuffs the resulting type into an argtype vector!!!
Then it knows the type of the whole function (including argument
types for overloading), which info used to be in the stab's but was
removed to hack back the space required for them. */
static void
check_stub_method (struct type *type, int method_id, int signature_id)
{
struct gdbarch *gdbarch = get_type_arch (type);
struct fn_field *f;
char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
char *demangled_name = cplus_demangle (mangled_name,
DMGL_PARAMS | DMGL_ANSI);
char *argtypetext, *p;
int depth = 0, argcount = 1;
struct field *argtypes;
struct type *mtype;
/* Make sure we got back a function string that we can use. */
if (demangled_name)
p = strchr (demangled_name, '(');
else
p = NULL;
if (demangled_name == NULL || p == NULL)
error (_("Internal: Cannot demangle mangled name `%s'."),
mangled_name);
/* Now, read in the parameters that define this type. */
p += 1;
argtypetext = p;
while (*p)
{
if (*p == '(' || *p == '<')
{
depth += 1;
}
else if (*p == ')' || *p == '>')
{
depth -= 1;
}
else if (*p == ',' && depth == 0)
{
argcount += 1;
}
p += 1;
}
/* If we read one argument and it was ``void'', don't count it. */
if (strncmp (argtypetext, "(void)", 6) == 0)
argcount -= 1;
/* We need one extra slot, for the THIS pointer. */
argtypes = (struct field *)
TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
p = argtypetext;
/* Add THIS pointer for non-static methods. */
f = TYPE_FN_FIELDLIST1 (type, method_id);
if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
argcount = 0;
else
{
argtypes[0].type = lookup_pointer_type (type);
argcount = 1;
}
if (*p != ')') /* () means no args, skip while. */
{
depth = 0;
while (*p)
{
if (depth <= 0 && (*p == ',' || *p == ')'))
{
/* Avoid parsing of ellipsis, they will be handled below.
Also avoid ``void'' as above. */
if (strncmp (argtypetext, "...", p - argtypetext) != 0
&& strncmp (argtypetext, "void", p - argtypetext) != 0)
{
argtypes[argcount].type =
safe_parse_type (gdbarch, argtypetext, p - argtypetext);
argcount += 1;
}
argtypetext = p + 1;
}
if (*p == '(' || *p == '<')
{
depth += 1;
}
else if (*p == ')' || *p == '>')
{
depth -= 1;
}
p += 1;
}
}
TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
/* Now update the old "stub" type into a real type. */
mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
TYPE_DOMAIN_TYPE (mtype) = type;
TYPE_FIELDS (mtype) = argtypes;
TYPE_NFIELDS (mtype) = argcount;
TYPE_STUB (mtype) = 0;
TYPE_FN_FIELD_STUB (f, signature_id) = 0;
if (p[-2] == '.')
TYPE_VARARGS (mtype) = 1;
xfree (demangled_name);
}
/* This is the external interface to check_stub_method, above. This
function unstubs all of the signatures for TYPE's METHOD_ID method
name. After calling this function TYPE_FN_FIELD_STUB will be
cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
correct.
This function unfortunately can not die until stabs do. */
void
check_stub_method_group (struct type *type, int method_id)
{
int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
int j, found_stub = 0;
for (j = 0; j < len; j++)
if (TYPE_FN_FIELD_STUB (f, j))
{
found_stub = 1;
check_stub_method (type, method_id, j);
}
/* GNU v3 methods with incorrect names were corrected when we read
in type information, because it was cheaper to do it then. The
only GNU v2 methods with incorrect method names are operators and
destructors; destructors were also corrected when we read in type
information.
Therefore the only thing we need to handle here are v2 operator
names. */
if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
{
int ret;
char dem_opname[256];
ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
method_id),
dem_opname, DMGL_ANSI);
if (!ret)
ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
method_id),
dem_opname, 0);
if (ret)
TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
}
}
/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
const struct cplus_struct_type cplus_struct_default = { };
void
allocate_cplus_struct_type (struct type *type)
{
if (HAVE_CPLUS_STRUCT (type))
/* Structure was already allocated. Nothing more to do. */
return;
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
*(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
}
const struct gnat_aux_type gnat_aux_default =
{ NULL };
/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
and allocate the associated gnat-specific data. The gnat-specific
data is also initialized to gnat_aux_default. */
void
allocate_gnat_aux_type (struct type *type)
{
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
*(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
}
/* Helper function to initialize the standard scalar types.
If NAME is non-NULL, then it is used to initialize the type name.
Note that NAME is not copied; it is required to have a lifetime at
least as long as OBJFILE. */
struct type *
init_type (enum type_code code, int length, int flags,
const char *name, struct objfile *objfile)
{
struct type *type;
type = alloc_type (objfile);
TYPE_CODE (type) = code;
TYPE_LENGTH (type) = length;
gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
if (flags & TYPE_FLAG_UNSIGNED)
TYPE_UNSIGNED (type) = 1;
if (flags & TYPE_FLAG_NOSIGN)
TYPE_NOSIGN (type) = 1;
if (flags & TYPE_FLAG_STUB)
TYPE_STUB (type) = 1;
if (flags & TYPE_FLAG_TARGET_STUB)
TYPE_TARGET_STUB (type) = 1;
if (flags & TYPE_FLAG_STATIC)
TYPE_STATIC (type) = 1;
if (flags & TYPE_FLAG_PROTOTYPED)
TYPE_PROTOTYPED (type) = 1;
if (flags & TYPE_FLAG_INCOMPLETE)
TYPE_INCOMPLETE (type) = 1;
if (flags & TYPE_FLAG_VARARGS)
TYPE_VARARGS (type) = 1;
if (flags & TYPE_FLAG_VECTOR)
TYPE_VECTOR (type) = 1;
if (flags & TYPE_FLAG_STUB_SUPPORTED)
TYPE_STUB_SUPPORTED (type) = 1;
if (flags & TYPE_FLAG_FIXED_INSTANCE)
TYPE_FIXED_INSTANCE (type) = 1;
if (flags & TYPE_FLAG_GNU_IFUNC)
TYPE_GNU_IFUNC (type) = 1;
TYPE_NAME (type) = name;
/* C++ fancies. */
if (name && strcmp (name, "char") == 0)
TYPE_NOSIGN (type) = 1;
switch (code)
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_NAMESPACE:
INIT_CPLUS_SPECIFIC (type);
break;
case TYPE_CODE_FLT:
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
break;
case TYPE_CODE_FUNC:
INIT_FUNC_SPECIFIC (type);
break;
}
return type;
}
/* Queries on types. */
int
can_dereference (struct type *t)
{
/* FIXME: Should we return true for references as well as
pointers? */
CHECK_TYPEDEF (t);
return
(t != NULL
&& TYPE_CODE (t) == TYPE_CODE_PTR
&& TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
}
int
is_integral_type (struct type *t)
{
CHECK_TYPEDEF (t);
return
((t != NULL)
&& ((TYPE_CODE (t) == TYPE_CODE_INT)
|| (TYPE_CODE (t) == TYPE_CODE_ENUM)
|| (TYPE_CODE (t) == TYPE_CODE_FLAGS)
|| (TYPE_CODE (t) == TYPE_CODE_CHAR)
|| (TYPE_CODE (t) == TYPE_CODE_RANGE)
|| (TYPE_CODE (t) == TYPE_CODE_BOOL)));
}
/* Return true if TYPE is scalar. */
static int
is_scalar_type (struct type *type)
{
CHECK_TYPEDEF (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_ARRAY:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_SET:
case TYPE_CODE_STRING:
return 0;
default:
return 1;
}
}
/* Return true if T is scalar, or a composite type which in practice has
the memory layout of a scalar type. E.g., an array or struct with only
one scalar element inside it, or a union with only scalar elements. */
int
is_scalar_type_recursive (struct type *t)
{
CHECK_TYPEDEF (t);
if (is_scalar_type (t))
return 1;
/* Are we dealing with an array or string of known dimensions? */
else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
|| TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
&& TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
{
LONGEST low_bound, high_bound;
struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
return high_bound == low_bound && is_scalar_type_recursive (elt_type);
}
/* Are we dealing with a struct with one element? */
else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
else if (TYPE_CODE (t) == TYPE_CODE_UNION)
{
int i, n = TYPE_NFIELDS (t);
/* If all elements of the union are scalar, then the union is scalar. */
for (i = 0; i < n; i++)
if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
return 0;
return 1;
}
return 0;
}
/* A helper function which returns true if types A and B represent the
"same" class type. This is true if the types have the same main
type, or the same name. */
int
class_types_same_p (const struct type *a, const struct type *b)
{
return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
|| (TYPE_NAME (a) && TYPE_NAME (b)
&& !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
}
/* If BASE is an ancestor of DCLASS return the distance between them.
otherwise return -1;
eg:
class A {};
class B: public A {};
class C: public B {};
class D: C {};
distance_to_ancestor (A, A, 0) = 0
distance_to_ancestor (A, B, 0) = 1
distance_to_ancestor (A, C, 0) = 2
distance_to_ancestor (A, D, 0) = 3
If PUBLIC is 1 then only public ancestors are considered,
and the function returns the distance only if BASE is a public ancestor
of DCLASS.
Eg:
distance_to_ancestor (A, D, 1) = -1. */
static int
distance_to_ancestor (struct type *base, struct type *dclass, int public)
{
int i;
int d;
CHECK_TYPEDEF (base);
CHECK_TYPEDEF (dclass);
if (class_types_same_p (base, dclass))
return 0;
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
{
if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
continue;
d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
if (d >= 0)
return 1 + d;
}
return -1;
}
/* Check whether BASE is an ancestor or base class or DCLASS
Return 1 if so, and 0 if not.
Note: If BASE and DCLASS are of the same type, this function
will return 1. So for some class A, is_ancestor (A, A) will
return 1. */
int
is_ancestor (struct type *base, struct type *dclass)
{
return distance_to_ancestor (base, dclass, 0) >= 0;
}
/* Like is_ancestor, but only returns true when BASE is a public
ancestor of DCLASS. */
int
is_public_ancestor (struct type *base, struct type *dclass)
{
return distance_to_ancestor (base, dclass, 1) >= 0;
}
/* A helper function for is_unique_ancestor. */
static int
is_unique_ancestor_worker (struct type *base, struct type *dclass,
int *offset,
const gdb_byte *valaddr, int embedded_offset,
CORE_ADDR address, struct value *val)
{
int i, count = 0;
CHECK_TYPEDEF (base);
CHECK_TYPEDEF (dclass);
for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
{
struct type *iter;
int this_offset;
iter = check_typedef (TYPE_BASECLASS (dclass, i));
this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
address, val);
if (class_types_same_p (base, iter))
{
/* If this is the first subclass, set *OFFSET and set count
to 1. Otherwise, if this is at the same offset as
previous instances, do nothing. Otherwise, increment
count. */
if (*offset == -1)
{
*offset = this_offset;
count = 1;
}
else if (this_offset == *offset)
{
/* Nothing. */
}
else
++count;
}
else
count += is_unique_ancestor_worker (base, iter, offset,
valaddr,
embedded_offset + this_offset,
address, val);
}
return count;
}
/* Like is_ancestor, but only returns true if BASE is a unique base
class of the type of VAL. */
int
is_unique_ancestor (struct type *base, struct value *val)
{
int offset = -1;
return is_unique_ancestor_worker (base, value_type (val), &offset,
value_contents_for_printing (val),
value_embedded_offset (val),
value_address (val), val) == 1;
}
/* Overload resolution. */
/* Return the sum of the rank of A with the rank of B. */
struct rank
sum_ranks (struct rank a, struct rank b)
{
struct rank c;
c.rank = a.rank + b.rank;
c.subrank = a.subrank + b.subrank;
return c;
}
/* Compare rank A and B and return:
0 if a = b
1 if a is better than b
-1 if b is better than a. */
int
compare_ranks (struct rank a, struct rank b)
{
if (a.rank == b.rank)
{
if (a.subrank == b.subrank)
return 0;
if (a.subrank < b.subrank)
return 1;
if (a.subrank > b.subrank)
return -1;
}
if (a.rank < b.rank)
return 1;
/* a.rank > b.rank */
return -1;
}
/* Functions for overload resolution begin here. */
/* Compare two badness vectors A and B and return the result.
0 => A and B are identical
1 => A and B are incomparable
2 => A is better than B
3 => A is worse than B */
int
compare_badness (struct badness_vector *a, struct badness_vector *b)
{
int i;
int tmp;
short found_pos = 0; /* any positives in c? */
short found_neg = 0; /* any negatives in c? */
/* differing lengths => incomparable */
if (a->length != b->length)
return 1;
/* Subtract b from a */
for (i = 0; i < a->length; i++)
{
tmp = compare_ranks (b->rank[i], a->rank[i]);
if (tmp > 0)
found_pos = 1;
else if (tmp < 0)
found_neg = 1;
}
if (found_pos)
{
if (found_neg)
return 1; /* incomparable */
else
return 3; /* A > B */
}
else
/* no positives */
{
if (found_neg)
return 2; /* A < B */
else
return 0; /* A == B */
}
}
/* Rank a function by comparing its parameter types (PARMS, length
NPARMS), to the types of an argument list (ARGS, length NARGS).
Return a pointer to a badness vector. This has NARGS + 1
entries. */
struct badness_vector *
rank_function (struct type **parms, int nparms,
struct value **args, int nargs)
{
int i;
struct badness_vector *bv;
int min_len = nparms < nargs ? nparms : nargs;
bv = xmalloc (sizeof (struct badness_vector));
bv->length = nargs + 1; /* add 1 for the length-match rank. */
bv->rank = xmalloc ((nargs + 1) * sizeof (int));
/* First compare the lengths of the supplied lists.
If there is a mismatch, set it to a high value. */
/* pai/1997-06-03 FIXME: when we have debug info about default
arguments and ellipsis parameter lists, we should consider those
and rank the length-match more finely. */
LENGTH_MATCH (bv) = (nargs != nparms)
? LENGTH_MISMATCH_BADNESS
: EXACT_MATCH_BADNESS;
/* Now rank all the parameters of the candidate function. */
for (i = 1; i <= min_len; i++)
bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
args[i - 1]);
/* If more arguments than parameters, add dummy entries. */
for (i = min_len + 1; i <= nargs; i++)
bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
return bv;
}
/* Compare the names of two integer types, assuming that any sign
qualifiers have been checked already. We do it this way because
there may be an "int" in the name of one of the types. */
static int
integer_types_same_name_p (const char *first, const char *second)
{
int first_p, second_p;
/* If both are shorts, return 1; if neither is a short, keep
checking. */
first_p = (strstr (first, "short") != NULL);
second_p = (strstr (second, "short") != NULL);
if (first_p && second_p)
return 1;
if (first_p || second_p)
return 0;
/* Likewise for long. */
first_p = (strstr (first, "long") != NULL);
second_p = (strstr (second, "long") != NULL);
if (first_p && second_p)
return 1;
if (first_p || second_p)
return 0;
/* Likewise for char. */
first_p = (strstr (first, "char") != NULL);
second_p = (strstr (second, "char") != NULL);
if (first_p && second_p)
return 1;
if (first_p || second_p)
return 0;
/* They must both be ints. */
return 1;
}
/* Compares type A to type B returns 1 if the represent the same type
0 otherwise. */
int
types_equal (struct type *a, struct type *b)
{
/* Identical type pointers. */
/* However, this still doesn't catch all cases of same type for b
and a. The reason is that builtin types are different from
the same ones constructed from the object. */
if (a == b)
return 1;
/* Resolve typedefs */
if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
a = check_typedef (a);
if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
b = check_typedef (b);
/* If after resolving typedefs a and b are not of the same type
code then they are not equal. */
if (TYPE_CODE (a) != TYPE_CODE (b))
return 0;
/* If a and b are both pointers types or both reference types then
they are equal of the same type iff the objects they refer to are
of the same type. */
if (TYPE_CODE (a) == TYPE_CODE_PTR
|| TYPE_CODE (a) == TYPE_CODE_REF)
return types_equal (TYPE_TARGET_TYPE (a),
TYPE_TARGET_TYPE (b));
/* Well, damnit, if the names are exactly the same, I'll say they
are exactly the same. This happens when we generate method
stubs. The types won't point to the same address, but they
really are the same. */
if (TYPE_NAME (a) && TYPE_NAME (b)
&& strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
return 1;
/* Check if identical after resolving typedefs. */
if (a == b)
return 1;
/* Two function types are equal if their argument and return types
are equal. */
if (TYPE_CODE (a) == TYPE_CODE_FUNC)
{
int i;
if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
return 0;
if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
return 0;
for (i = 0; i < TYPE_NFIELDS (a); ++i)
if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
return 0;
return 1;
}
return 0;
}
/* Compare one type (PARM) for compatibility with another (ARG).
* PARM is intended to be the parameter type of a function; and
* ARG is the supplied argument's type. This function tests if
* the latter can be converted to the former.
* VALUE is the argument's value or NULL if none (or called recursively)
*
* Return 0 if they are identical types;
* Otherwise, return an integer which corresponds to how compatible
* PARM is to ARG. The higher the return value, the worse the match.
* Generally the "bad" conversions are all uniformly assigned a 100. */
struct rank
rank_one_type (struct type *parm, struct type *arg, struct value *value)
{
struct rank rank = {0,0};
if (types_equal (parm, arg))
return EXACT_MATCH_BADNESS;
/* Resolve typedefs */
if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
parm = check_typedef (parm);
if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
arg = check_typedef (arg);
/* See through references, since we can almost make non-references
references. */
if (TYPE_CODE (arg) == TYPE_CODE_REF)
return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
REFERENCE_CONVERSION_BADNESS));
if (TYPE_CODE (parm) == TYPE_CODE_REF)
return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
REFERENCE_CONVERSION_BADNESS));
if (overload_debug)
/* Debugging only. */
fprintf_filtered (gdb_stderr,
"------ Arg is %s [%d], parm is %s [%d]\n",
TYPE_NAME (arg), TYPE_CODE (arg),
TYPE_NAME (parm), TYPE_CODE (parm));
/* x -> y means arg of type x being supplied for parameter of type y. */
switch (TYPE_CODE (parm))
{
case TYPE_CODE_PTR:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR:
/* Allowed pointer conversions are:
(a) pointer to void-pointer conversion. */
if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
return VOID_PTR_CONVERSION_BADNESS;
/* (b) pointer to ancestor-pointer conversion. */
rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
TYPE_TARGET_TYPE (arg),
0);
if (rank.subrank >= 0)
return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
return INCOMPATIBLE_TYPE_BADNESS;
case TYPE_CODE_ARRAY:
if (types_equal (TYPE_TARGET_TYPE (parm),
TYPE_TARGET_TYPE (arg)))
return EXACT_MATCH_BADNESS;
return INCOMPATIBLE_TYPE_BADNESS;
case TYPE_CODE_FUNC:
return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
case TYPE_CODE_INT:
if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
{
if (value_as_long (value) == 0)
{
/* Null pointer conversion: allow it to be cast to a pointer.
[4.10.1 of C++ standard draft n3290] */
return NULL_POINTER_CONVERSION_BADNESS;
}
else
{
/* If type checking is disabled, allow the conversion. */
if (!strict_type_checking)
return NS_INTEGER_POINTER_CONVERSION_BADNESS;
}
}
/* fall through */
case TYPE_CODE_ENUM:
case TYPE_CODE_FLAGS:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
case TYPE_CODE_ARRAY:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR:
case TYPE_CODE_ARRAY:
return rank_one_type (TYPE_TARGET_TYPE (parm),
TYPE_TARGET_TYPE (arg), NULL);
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
case TYPE_CODE_FUNC:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR: /* funcptr -> func */
return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
case TYPE_CODE_INT:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
{
/* Deal with signed, unsigned, and plain chars and
signed and unsigned ints. */
if (TYPE_NOSIGN (parm))
{
/* This case only for character types. */
if (TYPE_NOSIGN (arg))
return EXACT_MATCH_BADNESS; /* plain char -> plain char */
else /* signed/unsigned char -> plain char */
return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_UNSIGNED (parm))
{
if (TYPE_UNSIGNED (arg))
{
/* unsigned int -> unsigned int, or
unsigned long -> unsigned long */
if (integer_types_same_name_p (TYPE_NAME (parm),
TYPE_NAME (arg)))
return EXACT_MATCH_BADNESS;
else if (integer_types_same_name_p (TYPE_NAME (arg),
"int")
&& integer_types_same_name_p (TYPE_NAME (parm),
"long"))
/* unsigned int -> unsigned long */
return INTEGER_PROMOTION_BADNESS;
else
/* unsigned long -> unsigned int */
return INTEGER_CONVERSION_BADNESS;
}
else
{
if (integer_types_same_name_p (TYPE_NAME (arg),
"long")
&& integer_types_same_name_p (TYPE_NAME (parm),
"int"))
/* signed long -> unsigned int */
return INTEGER_CONVERSION_BADNESS;
else
/* signed int/long -> unsigned int/long */
return INTEGER_CONVERSION_BADNESS;
}
}
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
{
if (integer_types_same_name_p (TYPE_NAME (parm),
TYPE_NAME (arg)))
return EXACT_MATCH_BADNESS;
else if (integer_types_same_name_p (TYPE_NAME (arg),
"int")
&& integer_types_same_name_p (TYPE_NAME (parm),
"long"))
return INTEGER_PROMOTION_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
}
else
return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
return INTEGER_PROMOTION_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_ENUM:
case TYPE_CODE_FLAGS:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
return INTEGER_PROMOTION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
case TYPE_CODE_PTR:
return NS_POINTER_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_ENUM:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_CHAR:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
case TYPE_CODE_INT:
if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
return INTEGER_CONVERSION_BADNESS;
else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
return INTEGER_PROMOTION_BADNESS;
/* >>> !! else fall through !! <<< */
case TYPE_CODE_CHAR:
/* Deal with signed, unsigned, and plain chars for C++ and
with int cases falling through from previous case. */
if (TYPE_NOSIGN (parm))
{
if (TYPE_NOSIGN (arg))
return EXACT_MATCH_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_UNSIGNED (parm))
{
if (TYPE_UNSIGNED (arg))
return EXACT_MATCH_BADNESS;
else
return INTEGER_PROMOTION_BADNESS;
}
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
return EXACT_MATCH_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_RANGE:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_BOOL:
switch (TYPE_CODE (arg))
{
/* n3290 draft, section 4.12.1 (conv.bool):
"A prvalue of arithmetic, unscoped enumeration, pointer, or
pointer to member type can be converted to a prvalue of type
bool. A zero value, null pointer value, or null member pointer
value is converted to false; any other value is converted to
true. A prvalue of type std::nullptr_t can be converted to a
prvalue of type bool; the resulting value is false." */
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_ENUM:
case TYPE_CODE_FLT:
case TYPE_CODE_MEMBERPTR:
case TYPE_CODE_PTR:
return BOOL_CONVERSION_BADNESS;
case TYPE_CODE_RANGE:
return INCOMPATIBLE_TYPE_BADNESS;
case TYPE_CODE_BOOL:
return EXACT_MATCH_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_FLT:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_FLT:
if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
return FLOAT_PROMOTION_BADNESS;
else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
return EXACT_MATCH_BADNESS;
else
return FLOAT_CONVERSION_BADNESS;
case TYPE_CODE_INT:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
case TYPE_CODE_RANGE:
case TYPE_CODE_CHAR:
return INT_FLOAT_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_COMPLEX:
switch (TYPE_CODE (arg))
{ /* Strictly not needed for C++, but... */
case TYPE_CODE_FLT:
return FLOAT_PROMOTION_BADNESS;
case TYPE_CODE_COMPLEX:
return EXACT_MATCH_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_STRUCT:
/* currently same as TYPE_CODE_CLASS. */
switch (TYPE_CODE (arg))
{
case TYPE_CODE_STRUCT:
/* Check for derivation */
rank.subrank = distance_to_ancestor (parm, arg, 0);
if (rank.subrank >= 0)
return sum_ranks (BASE_CONVERSION_BADNESS, rank);
/* else fall through */
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_UNION:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_UNION:
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_MEMBERPTR:
switch (TYPE_CODE (arg))
{
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_METHOD:
switch (TYPE_CODE (arg))
{
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_REF:
switch (TYPE_CODE (arg))
{
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_SET:
switch (TYPE_CODE (arg))
{
/* Not in C++ */
case TYPE_CODE_SET:
return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
TYPE_FIELD_TYPE (arg, 0), NULL);
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_VOID:
default:
return INCOMPATIBLE_TYPE_BADNESS;
} /* switch (TYPE_CODE (arg)) */
}
/* End of functions for overload resolution. */
/* Routines to pretty-print types. */
static void
print_bit_vector (B_TYPE *bits, int nbits)
{
int bitno;
for (bitno = 0; bitno < nbits; bitno++)
{
if ((bitno % 8) == 0)
{
puts_filtered (" ");
}
if (B_TST (bits, bitno))
printf_filtered (("1"));
else
printf_filtered (("0"));
}
}
/* Note the first arg should be the "this" pointer, we may not want to
include it since we may get into a infinitely recursive
situation. */
static void
print_arg_types (struct field *args, int nargs, int spaces)
{
if (args != NULL)
{
int i;
for (i = 0; i < nargs; i++)
recursive_dump_type (args[i].type, spaces + 2);
}
}
int
field_is_static (struct field *f)
{
/* "static" fields are the fields whose location is not relative
to the address of the enclosing struct. It would be nice to
have a dedicated flag that would be set for static fields when
the type is being created. But in practice, checking the field
loc_kind should give us an accurate answer. */
return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
|| FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
}
static void
dump_fn_fieldlists (struct type *type, int spaces)
{
int method_idx;
int overload_idx;
struct fn_field *f;
printfi_filtered (spaces, "fn_fieldlists ");
gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
printf_filtered ("\n");
for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
{
f = TYPE_FN_FIELDLIST1 (type, method_idx);
printfi_filtered (spaces + 2, "[%d] name '%s' (",
method_idx,
TYPE_FN_FIELDLIST_NAME (type, method_idx));
gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
gdb_stdout);
printf_filtered (_(") length %d\n"),
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
for (overload_idx = 0;
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
overload_idx++)
{
printfi_filtered (spaces + 4, "[%d] physname '%s' (",
overload_idx,
TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces + 8, "type ");
gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
gdb_stdout);
printf_filtered ("\n");
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
spaces + 8 + 2);
printfi_filtered (spaces + 8, "args ");
gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
gdb_stdout);
printf_filtered ("\n");
print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
overload_idx)),
spaces);
printfi_filtered (spaces + 8, "fcontext ");
gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces + 8, "is_const %d\n",
TYPE_FN_FIELD_CONST (f, overload_idx));
printfi_filtered (spaces + 8, "is_volatile %d\n",
TYPE_FN_FIELD_VOLATILE (f, overload_idx));
printfi_filtered (spaces + 8, "is_private %d\n",
TYPE_FN_FIELD_PRIVATE (f, overload_idx));
printfi_filtered (spaces + 8, "is_protected %d\n",
TYPE_FN_FIELD_PROTECTED (f, overload_idx));
printfi_filtered (spaces + 8, "is_stub %d\n",
TYPE_FN_FIELD_STUB (f, overload_idx));
printfi_filtered (spaces + 8, "voffset %u\n",
TYPE_FN_FIELD_VOFFSET (f, overload_idx));
}
}
}
static void
print_cplus_stuff (struct type *type, int spaces)
{
printfi_filtered (spaces, "n_baseclasses %d\n",
TYPE_N_BASECLASSES (type));
printfi_filtered (spaces, "nfn_fields %d\n",
TYPE_NFN_FIELDS (type));
if (TYPE_N_BASECLASSES (type) > 0)
{
printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
TYPE_N_BASECLASSES (type));
gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
TYPE_N_BASECLASSES (type));
puts_filtered ("\n");
}
if (TYPE_NFIELDS (type) > 0)
{
if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
{
printfi_filtered (spaces,
"private_field_bits (%d bits at *",
TYPE_NFIELDS (type));
gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
TYPE_NFIELDS (type));
puts_filtered ("\n");
}
if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
{
printfi_filtered (spaces,
"protected_field_bits (%d bits at *",
TYPE_NFIELDS (type));
gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
TYPE_NFIELDS (type));
puts_filtered ("\n");
}
}
if (TYPE_NFN_FIELDS (type) > 0)
{
dump_fn_fieldlists (type, spaces);
}
}
/* Print the contents of the TYPE's type_specific union, assuming that
its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
static void
print_gnat_stuff (struct type *type, int spaces)
{
struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
recursive_dump_type (descriptive_type, spaces + 2);
}
static struct obstack dont_print_type_obstack;
void
recursive_dump_type (struct type *type, int spaces)
{
int idx;
if (spaces == 0)
obstack_begin (&dont_print_type_obstack, 0);
if (TYPE_NFIELDS (type) > 0
|| (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
{
struct type **first_dont_print
= (struct type **) obstack_base (&dont_print_type_obstack);
int i = (struct type **)
obstack_next_free (&dont_print_type_obstack) - first_dont_print;
while (--i >= 0)
{
if (type == first_dont_print[i])
{
printfi_filtered (spaces, "type node ");
gdb_print_host_address (type, gdb_stdout);
printf_filtered (_(" <same as already seen type>\n"));
return;
}
}
obstack_ptr_grow (&dont_print_type_obstack, type);
}
printfi_filtered (spaces, "type node ");
gdb_print_host_address (type, gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "name '%s' (",
TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces, "tagname '%s' (",
TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
switch (TYPE_CODE (type))
{
case TYPE_CODE_UNDEF:
printf_filtered ("(TYPE_CODE_UNDEF)");
break;
case TYPE_CODE_PTR:
printf_filtered ("(TYPE_CODE_PTR)");
break;
case TYPE_CODE_ARRAY:
printf_filtered ("(TYPE_CODE_ARRAY)");
break;
case TYPE_CODE_STRUCT:
printf_filtered ("(TYPE_CODE_STRUCT)");
break;
case TYPE_CODE_UNION:
printf_filtered ("(TYPE_CODE_UNION)");
break;
case TYPE_CODE_ENUM:
printf_filtered ("(TYPE_CODE_ENUM)");
break;
case TYPE_CODE_FLAGS:
printf_filtered ("(TYPE_CODE_FLAGS)");
break;
case TYPE_CODE_FUNC:
printf_filtered ("(TYPE_CODE_FUNC)");
break;
case TYPE_CODE_INT:
printf_filtered ("(TYPE_CODE_INT)");
break;
case TYPE_CODE_FLT:
printf_filtered ("(TYPE_CODE_FLT)");
break;
case TYPE_CODE_VOID:
printf_filtered ("(TYPE_CODE_VOID)");
break;
case TYPE_CODE_SET:
printf_filtered ("(TYPE_CODE_SET)");
break;
case TYPE_CODE_RANGE:
printf_filtered ("(TYPE_CODE_RANGE)");
break;
case TYPE_CODE_STRING:
printf_filtered ("(TYPE_CODE_STRING)");
break;
case TYPE_CODE_ERROR:
printf_filtered ("(TYPE_CODE_ERROR)");
break;
case TYPE_CODE_MEMBERPTR:
printf_filtered ("(TYPE_CODE_MEMBERPTR)");
break;
case TYPE_CODE_METHODPTR:
printf_filtered ("(TYPE_CODE_METHODPTR)");
break;
case TYPE_CODE_METHOD:
printf_filtered ("(TYPE_CODE_METHOD)");
break;
case TYPE_CODE_REF:
printf_filtered ("(TYPE_CODE_REF)");
break;
case TYPE_CODE_CHAR:
printf_filtered ("(TYPE_CODE_CHAR)");
break;
case TYPE_CODE_BOOL:
printf_filtered ("(TYPE_CODE_BOOL)");
break;
case TYPE_CODE_COMPLEX:
printf_filtered ("(TYPE_CODE_COMPLEX)");
break;
case TYPE_CODE_TYPEDEF:
printf_filtered ("(TYPE_CODE_TYPEDEF)");
break;
case TYPE_CODE_NAMESPACE:
printf_filtered ("(TYPE_CODE_NAMESPACE)");
break;
default:
printf_filtered ("(UNKNOWN TYPE CODE)");
break;
}
puts_filtered ("\n");
printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
if (TYPE_OBJFILE_OWNED (type))
{
printfi_filtered (spaces, "objfile ");
gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
}
else
{
printfi_filtered (spaces, "gdbarch ");
gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
}
printf_filtered ("\n");
printfi_filtered (spaces, "target_type ");
gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
printf_filtered ("\n");
if (TYPE_TARGET_TYPE (type) != NULL)
{
recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
}
printfi_filtered (spaces, "pointer_type ");
gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "reference_type ");
gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "type_chain ");
gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "instance_flags 0x%x",
TYPE_INSTANCE_FLAGS (type));
if (TYPE_CONST (type))
{
puts_filtered (" TYPE_FLAG_CONST");
}
if (TYPE_VOLATILE (type))
{
puts_filtered (" TYPE_FLAG_VOLATILE");
}
if (TYPE_CODE_SPACE (type))
{
puts_filtered (" TYPE_FLAG_CODE_SPACE");
}
if (TYPE_DATA_SPACE (type))
{
puts_filtered (" TYPE_FLAG_DATA_SPACE");
}
if (TYPE_ADDRESS_CLASS_1 (type))
{
puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
}
if (TYPE_ADDRESS_CLASS_2 (type))
{
puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
}
if (TYPE_RESTRICT (type))
{
puts_filtered (" TYPE_FLAG_RESTRICT");
}
puts_filtered ("\n");
printfi_filtered (spaces, "flags");
if (TYPE_UNSIGNED (type))
{
puts_filtered (" TYPE_FLAG_UNSIGNED");
}
if (TYPE_NOSIGN (type))
{
puts_filtered (" TYPE_FLAG_NOSIGN");
}
if (TYPE_STUB (type))
{
puts_filtered (" TYPE_FLAG_STUB");
}
if (TYPE_TARGET_STUB (type))
{
puts_filtered (" TYPE_FLAG_TARGET_STUB");
}
if (TYPE_STATIC (type))
{
puts_filtered (" TYPE_FLAG_STATIC");
}
if (TYPE_PROTOTYPED (type))
{
puts_filtered (" TYPE_FLAG_PROTOTYPED");
}
if (TYPE_INCOMPLETE (type))
{
puts_filtered (" TYPE_FLAG_INCOMPLETE");
}
if (TYPE_VARARGS (type))
{
puts_filtered (" TYPE_FLAG_VARARGS");
}
/* This is used for things like AltiVec registers on ppc. Gcc emits
an attribute for the array type, which tells whether or not we
have a vector, instead of a regular array. */
if (TYPE_VECTOR (type))
{
puts_filtered (" TYPE_FLAG_VECTOR");
}
if (TYPE_FIXED_INSTANCE (type))
{
puts_filtered (" TYPE_FIXED_INSTANCE");
}
if (TYPE_STUB_SUPPORTED (type))
{
puts_filtered (" TYPE_STUB_SUPPORTED");
}
if (TYPE_NOTTEXT (type))
{
puts_filtered (" TYPE_NOTTEXT");
}
puts_filtered ("\n");
printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
puts_filtered ("\n");
for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
{
if (TYPE_CODE (type) == TYPE_CODE_ENUM)
printfi_filtered (spaces + 2,
"[%d] enumval %s type ",
idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
else
printfi_filtered (spaces + 2,
"[%d] bitpos %d bitsize %d type ",
idx, TYPE_FIELD_BITPOS (type, idx),
TYPE_FIELD_BITSIZE (type, idx));
gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
printf_filtered (" name '%s' (",
TYPE_FIELD_NAME (type, idx) != NULL
? TYPE_FIELD_NAME (type, idx)
: "<NULL>");
gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
printf_filtered (")\n");
if (TYPE_FIELD_TYPE (type, idx) != NULL)
{
recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
}
}
if (TYPE_CODE (type) == TYPE_CODE_RANGE)
{
printfi_filtered (spaces, "low %s%s high %s%s\n",
plongest (TYPE_LOW_BOUND (type)),
TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
plongest (TYPE_HIGH_BOUND (type)),
TYPE_HIGH_BOUND_UNDEFINED (type)
? " (undefined)" : "");
}
printfi_filtered (spaces, "vptr_basetype ");
gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
puts_filtered ("\n");
if (TYPE_VPTR_BASETYPE (type) != NULL)
{
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
}
printfi_filtered (spaces, "vptr_fieldno %d\n",
TYPE_VPTR_FIELDNO (type));
switch (TYPE_SPECIFIC_FIELD (type))
{
case TYPE_SPECIFIC_CPLUS_STUFF:
printfi_filtered (spaces, "cplus_stuff ");
gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
gdb_stdout);
puts_filtered ("\n");
print_cplus_stuff (type, spaces);
break;
case TYPE_SPECIFIC_GNAT_STUFF:
printfi_filtered (spaces, "gnat_stuff ");
gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
puts_filtered ("\n");
print_gnat_stuff (type, spaces);
break;
case TYPE_SPECIFIC_FLOATFORMAT:
printfi_filtered (spaces, "floatformat ");
if (TYPE_FLOATFORMAT (type) == NULL)
puts_filtered ("(null)");
else
{
puts_filtered ("{ ");
if (TYPE_FLOATFORMAT (type)[0] == NULL
|| TYPE_FLOATFORMAT (type)[0]->name == NULL)
puts_filtered ("(null)");
else
puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
puts_filtered (", ");
if (TYPE_FLOATFORMAT (type)[1] == NULL
|| TYPE_FLOATFORMAT (type)[1]->name == NULL)
puts_filtered ("(null)");
else
puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
puts_filtered (" }");
}
puts_filtered ("\n");
break;
case TYPE_SPECIFIC_FUNC:
printfi_filtered (spaces, "calling_convention %d\n",
TYPE_CALLING_CONVENTION (type));
/* tail_call_list is not printed. */
break;
}
if (spaces == 0)
obstack_free (&dont_print_type_obstack, NULL);
}
/* Trivial helpers for the libiberty hash table, for mapping one
type to another. */
struct type_pair
{
struct type *old, *new;
};
static hashval_t
type_pair_hash (const void *item)
{
const struct type_pair *pair = item;
return htab_hash_pointer (pair->old);
}
static int
type_pair_eq (const void *item_lhs, const void *item_rhs)
{
const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
return lhs->old == rhs->old;
}
/* Allocate the hash table used by copy_type_recursive to walk
types without duplicates. We use OBJFILE's obstack, because
OBJFILE is about to be deleted. */
htab_t
create_copied_types_hash (struct objfile *objfile)
{
return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
NULL, &objfile->objfile_obstack,
hashtab_obstack_allocate,
dummy_obstack_deallocate);
}
/* Recursively copy (deep copy) TYPE, if it is associated with
OBJFILE. Return a new type allocated using malloc, a saved type if
we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
not associated with OBJFILE. */
struct type *
copy_type_recursive (struct objfile *objfile,
struct type *type,
htab_t copied_types)
{
struct type_pair *stored, pair;
void **slot;
struct type *new_type;
if (! TYPE_OBJFILE_OWNED (type))
return type;
/* This type shouldn't be pointing to any types in other objfiles;
if it did, the type might disappear unexpectedly. */
gdb_assert (TYPE_OBJFILE (type) == objfile);
pair.old = type;
slot = htab_find_slot (copied_types, &pair, INSERT);
if (*slot != NULL)
return ((struct type_pair *) *slot)->new;
new_type = alloc_type_arch (get_type_arch (type));
/* We must add the new type to the hash table immediately, in case
we encounter this type again during a recursive call below. */
stored
= obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
stored->old = type;
stored->new = new_type;
*slot = stored;
/* Copy the common fields of types. For the main type, we simply
copy the entire thing and then update specific fields as needed. */
*TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
TYPE_OBJFILE_OWNED (new_type) = 0;
TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
if (TYPE_NAME (type))
TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
if (TYPE_TAG_NAME (type))
TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
/* Copy the fields. */
if (TYPE_NFIELDS (type))
{
int i, nfields;
nfields = TYPE_NFIELDS (type);
TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
for (i = 0; i < nfields; i++)
{
TYPE_FIELD_ARTIFICIAL (new_type, i) =
TYPE_FIELD_ARTIFICIAL (type, i);
TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
if (TYPE_FIELD_TYPE (type, i))
TYPE_FIELD_TYPE (new_type, i)
= copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
copied_types);
if (TYPE_FIELD_NAME (type, i))
TYPE_FIELD_NAME (new_type, i) =
xstrdup (TYPE_FIELD_NAME (type, i));
switch (TYPE_FIELD_LOC_KIND (type, i))
{
case FIELD_LOC_KIND_BITPOS:
SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
TYPE_FIELD_BITPOS (type, i));
break;
case FIELD_LOC_KIND_ENUMVAL:
SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
TYPE_FIELD_ENUMVAL (type, i));
break;
case FIELD_LOC_KIND_PHYSADDR:
SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
TYPE_FIELD_STATIC_PHYSADDR (type, i));
break;
case FIELD_LOC_KIND_PHYSNAME:
SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
i)));
break;
default:
internal_error (__FILE__, __LINE__,
_("Unexpected type field location kind: %d"),
TYPE_FIELD_LOC_KIND (type, i));
}
}
}
/* For range types, copy the bounds information. */
if (TYPE_CODE (type) == TYPE_CODE_RANGE)
{
TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
*TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
}
/* Copy pointers to other types. */
if (TYPE_TARGET_TYPE (type))
TYPE_TARGET_TYPE (new_type) =
copy_type_recursive (objfile,
TYPE_TARGET_TYPE (type),
copied_types);
if (TYPE_VPTR_BASETYPE (type))
TYPE_VPTR_BASETYPE (new_type) =
copy_type_recursive (objfile,
TYPE_VPTR_BASETYPE (type),
copied_types);
/* Maybe copy the type_specific bits.
NOTE drow/2005-12-09: We do not copy the C++-specific bits like
base classes and methods. There's no fundamental reason why we
can't, but at the moment it is not needed. */
if (TYPE_CODE (type) == TYPE_CODE_FLT)
TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
INIT_CPLUS_SPECIFIC (new_type);
return new_type;
}
/* Make a copy of the given TYPE, except that the pointer & reference
types are not preserved.
This function assumes that the given type has an associated objfile.
This objfile is used to allocate the new type. */
struct type *
copy_type (const struct type *type)
{
struct type *new_type;
gdb_assert (TYPE_OBJFILE_OWNED (type));
new_type = alloc_type_copy (type);
TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
sizeof (struct main_type));
return new_type;
}
/* Helper functions to initialize architecture-specific types. */
/* Allocate a type structure associated with GDBARCH and set its
CODE, LENGTH, and NAME fields. */
struct type *
arch_type (struct gdbarch *gdbarch,
enum type_code code, int length, char *name)
{
struct type *type;
type = alloc_type_arch (gdbarch);
TYPE_CODE (type) = code;
TYPE_LENGTH (type) = length;
if (name)
TYPE_NAME (type) = xstrdup (name);
return type;
}
/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
BIT is the type size in bits. If UNSIGNED_P is non-zero, set
the type's TYPE_UNSIGNED flag. NAME is the type name. */
struct type *
arch_integer_type (struct gdbarch *gdbarch,
int bit, int unsigned_p, char *name)
{
struct type *t;
t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
if (unsigned_p)
TYPE_UNSIGNED (t) = 1;
if (name && strcmp (name, "char") == 0)
TYPE_NOSIGN (t) = 1;
return t;
}
/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
BIT is the type size in bits. If UNSIGNED_P is non-zero, set
the type's TYPE_UNSIGNED flag. NAME is the type name. */
struct type *
arch_character_type (struct gdbarch *gdbarch,
int bit, int unsigned_p, char *name)
{
struct type *t;
t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
if (unsigned_p)
TYPE_UNSIGNED (t) = 1;
return t;
}
/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
BIT is the type size in bits. If UNSIGNED_P is non-zero, set
the type's TYPE_UNSIGNED flag. NAME is the type name. */
struct type *
arch_boolean_type (struct gdbarch *gdbarch,
int bit, int unsigned_p, char *name)
{
struct type *t;
t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
if (unsigned_p)
TYPE_UNSIGNED (t) = 1;
return t;
}
/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
BIT is the type size in bits; if BIT equals -1, the size is
determined by the floatformat. NAME is the type name. Set the
TYPE_FLOATFORMAT from FLOATFORMATS. */
struct type *
arch_float_type (struct gdbarch *gdbarch,
int bit, char *name, const struct floatformat **floatformats)
{
struct type *t;
if (bit == -1)
{
gdb_assert (floatformats != NULL);
gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
bit = floatformats[0]->totalsize;
}
gdb_assert (bit >= 0);
t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
TYPE_FLOATFORMAT (t) = floatformats;
return t;
}
/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
NAME is the type name. TARGET_TYPE is the component float type. */
struct type *
arch_complex_type (struct gdbarch *gdbarch,
char *name, struct type *target_type)
{
struct type *t;
t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
2 * TYPE_LENGTH (target_type), name);
TYPE_TARGET_TYPE (t) = target_type;
return t;
}
/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
NAME is the type name. LENGTH is the size of the flag word in bytes. */
struct type *
arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
{
int nfields = length * TARGET_CHAR_BIT;
struct type *type;
type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
TYPE_UNSIGNED (type) = 1;
TYPE_NFIELDS (type) = nfields;
TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
return type;
}
/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
position BITPOS is called NAME. */
void
append_flags_type_flag (struct type *type, int bitpos, char *name)
{
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
gdb_assert (bitpos < TYPE_NFIELDS (type));
gdb_assert (bitpos >= 0);
if (name)
{
TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
}
else
{
/* Don't show this field to the user. */
SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
}
}
/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
specified by CODE) associated with GDBARCH. NAME is the type name. */
struct type *
arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
{
struct type *t;
gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
t = arch_type (gdbarch, code, 0, NULL);
TYPE_TAG_NAME (t) = name;
INIT_CPLUS_SPECIFIC (t);
return t;
}
/* Add new field with name NAME and type FIELD to composite type T.
Do not set the field's position or adjust the type's length;
the caller should do so. Return the new field. */
struct field *
append_composite_type_field_raw (struct type *t, char *name,
struct type *field)
{
struct field *f;
TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
sizeof (struct field) * TYPE_NFIELDS (t));
f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
memset (f, 0, sizeof f[0]);
FIELD_TYPE (f[0]) = field;
FIELD_NAME (f[0]) = name;
return f;
}
/* Add new field with name NAME and type FIELD to composite type T.
ALIGNMENT (if non-zero) specifies the minimum field alignment. */
void
append_composite_type_field_aligned (struct type *t, char *name,
struct type *field, int alignment)
{
struct field *f = append_composite_type_field_raw (t, name, field);
if (TYPE_CODE (t) == TYPE_CODE_UNION)
{
if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
TYPE_LENGTH (t) = TYPE_LENGTH (field);
}
else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
{
TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
if (TYPE_NFIELDS (t) > 1)
{
SET_FIELD_BITPOS (f[0],
(FIELD_BITPOS (f[-1])
+ (TYPE_LENGTH (FIELD_TYPE (f[-1]))
* TARGET_CHAR_BIT)));
if (alignment)
{
int left;
alignment *= TARGET_CHAR_BIT;
left = FIELD_BITPOS (f[0]) % alignment;
if (left)
{
SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
}
}
}
}
}
/* Add new field with name NAME and type FIELD to composite type T. */
void
append_composite_type_field (struct type *t, char *name,
struct type *field)
{
append_composite_type_field_aligned (t, name, field, 0);
}
static struct gdbarch_data *gdbtypes_data;
const struct builtin_type *
builtin_type (struct gdbarch *gdbarch)
{
return gdbarch_data (gdbarch, gdbtypes_data);
}
static void *
gdbtypes_post_init (struct gdbarch *gdbarch)
{
struct builtin_type *builtin_type
= GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
/* Basic types. */
builtin_type->builtin_void
= arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
builtin_type->builtin_char
= arch_integer_type (gdbarch, TARGET_CHAR_BIT,
!gdbarch_char_signed (gdbarch), "char");
builtin_type->builtin_signed_char
= arch_integer_type (gdbarch, TARGET_CHAR_BIT,
0, "signed char");
builtin_type->builtin_unsigned_char
= arch_integer_type (gdbarch, TARGET_CHAR_BIT,
1, "unsigned char");
builtin_type->builtin_short
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
0, "short");
builtin_type->builtin_unsigned_short
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
1, "unsigned short");
builtin_type->builtin_int
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
0, "int");
builtin_type->builtin_unsigned_int
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
1, "unsigned int");
builtin_type->builtin_long
= arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
0, "long");
builtin_type->builtin_unsigned_long
= arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
1, "unsigned long");
builtin_type->builtin_long_long
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
0, "long long");
builtin_type->builtin_unsigned_long_long
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
1, "unsigned long long");
builtin_type->builtin_float
= arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
"float", gdbarch_float_format (gdbarch));
builtin_type->builtin_double
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
"double", gdbarch_double_format (gdbarch));
builtin_type->builtin_long_double
= arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
"long double", gdbarch_long_double_format (gdbarch));
builtin_type->builtin_complex
= arch_complex_type (gdbarch, "complex",
builtin_type->builtin_float);
builtin_type->builtin_double_complex
= arch_complex_type (gdbarch, "double complex",
builtin_type->builtin_double);
builtin_type->builtin_string
= arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
builtin_type->builtin_bool
= arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
/* The following three are about decimal floating point types, which
are 32-bits, 64-bits and 128-bits respectively. */
builtin_type->builtin_decfloat
= arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
builtin_type->builtin_decdouble
= arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
builtin_type->builtin_declong
= arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
/* "True" character types. */
builtin_type->builtin_true_char
= arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
builtin_type->builtin_true_unsigned_char
= arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
/* Fixed-size integer types. */
builtin_type->builtin_int0
= arch_integer_type (gdbarch, 0, 0, "int0_t");
builtin_type->builtin_int8
= arch_integer_type (gdbarch, 8, 0, "int8_t");
builtin_type->builtin_uint8
= arch_integer_type (gdbarch, 8, 1, "uint8_t");
builtin_type->builtin_int16
= arch_integer_type (gdbarch, 16, 0, "int16_t");
builtin_type->builtin_uint16
= arch_integer_type (gdbarch, 16, 1, "uint16_t");
builtin_type->builtin_int32
= arch_integer_type (gdbarch, 32, 0, "int32_t");
builtin_type->builtin_uint32
= arch_integer_type (gdbarch, 32, 1, "uint32_t");
builtin_type->builtin_int64
= arch_integer_type (gdbarch, 64, 0, "int64_t");
builtin_type->builtin_uint64
= arch_integer_type (gdbarch, 64, 1, "uint64_t");
builtin_type->builtin_int128
= arch_integer_type (gdbarch, 128, 0, "int128_t");
builtin_type->builtin_uint128
= arch_integer_type (gdbarch, 128, 1, "uint128_t");
TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
TYPE_INSTANCE_FLAG_NOTTEXT;
TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
TYPE_INSTANCE_FLAG_NOTTEXT;
/* Wide character types. */
builtin_type->builtin_char16
= arch_integer_type (gdbarch, 16, 0, "char16_t");
builtin_type->builtin_char32
= arch_integer_type (gdbarch, 32, 0, "char32_t");
/* Default data/code pointer types. */
builtin_type->builtin_data_ptr
= lookup_pointer_type (builtin_type->builtin_void);
builtin_type->builtin_func_ptr
= lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
builtin_type->builtin_func_func
= lookup_function_type (builtin_type->builtin_func_ptr);
/* This type represents a GDB internal function. */
builtin_type->internal_fn
= arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
"<internal function>");
return builtin_type;
}
/* This set of objfile-based types is intended to be used by symbol
readers as basic types. */
static const struct objfile_data *objfile_type_data;
const struct objfile_type *
objfile_type (struct objfile *objfile)
{
struct gdbarch *gdbarch;
struct objfile_type *objfile_type
= objfile_data (objfile, objfile_type_data);
if (objfile_type)
return objfile_type;
objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
1, struct objfile_type);
/* Use the objfile architecture to determine basic type properties. */
gdbarch = get_objfile_arch (objfile);
/* Basic types. */
objfile_type->builtin_void
= init_type (TYPE_CODE_VOID, 1,
0,
"void", objfile);
objfile_type->builtin_char
= init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
(TYPE_FLAG_NOSIGN
| (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
"char", objfile);
objfile_type->builtin_signed_char
= init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"signed char", objfile);
objfile_type->builtin_unsigned_char
= init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED,
"unsigned char", objfile);
objfile_type->builtin_short
= init_type (TYPE_CODE_INT,
gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
0, "short", objfile);
objfile_type->builtin_unsigned_short
= init_type (TYPE_CODE_INT,
gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
objfile_type->builtin_int
= init_type (TYPE_CODE_INT,
gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
0, "int", objfile);
objfile_type->builtin_unsigned_int
= init_type (TYPE_CODE_INT,
gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
objfile_type->builtin_long
= init_type (TYPE_CODE_INT,
gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
0, "long", objfile);
objfile_type->builtin_unsigned_long
= init_type (TYPE_CODE_INT,
gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
objfile_type->builtin_long_long
= init_type (TYPE_CODE_INT,
gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
0, "long long", objfile);
objfile_type->builtin_unsigned_long_long
= init_type (TYPE_CODE_INT,
gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
objfile_type->builtin_float
= init_type (TYPE_CODE_FLT,
gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
0, "float", objfile);
TYPE_FLOATFORMAT (objfile_type->builtin_float)
= gdbarch_float_format (gdbarch);
objfile_type->builtin_double
= init_type (TYPE_CODE_FLT,
gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
0, "double", objfile);
TYPE_FLOATFORMAT (objfile_type->builtin_double)
= gdbarch_double_format (gdbarch);
objfile_type->builtin_long_double
= init_type (TYPE_CODE_FLT,
gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
0, "long double", objfile);
TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
= gdbarch_long_double_format (gdbarch);
/* This type represents a type that was unrecognized in symbol read-in. */
objfile_type->builtin_error
= init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
/* The following set of types is used for symbols with no
debug information. */
objfile_type->nodebug_text_symbol
= init_type (TYPE_CODE_FUNC, 1, 0,
"<text variable, no debug info>", objfile);
TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
= objfile_type->builtin_int;
objfile_type->nodebug_text_gnu_ifunc_symbol
= init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
"<text gnu-indirect-function variable, no debug info>",
objfile);
TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
= objfile_type->nodebug_text_symbol;
objfile_type->nodebug_got_plt_symbol
= init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
"<text from jump slot in .got.plt, no debug info>",
objfile);
TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
= objfile_type->nodebug_text_symbol;
objfile_type->nodebug_data_symbol
= init_type (TYPE_CODE_INT,
gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
"<data variable, no debug info>", objfile);
objfile_type->nodebug_unknown_symbol
= init_type (TYPE_CODE_INT, 1, 0,
"<variable (not text or data), no debug info>", objfile);
objfile_type->nodebug_tls_symbol
= init_type (TYPE_CODE_INT,
gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
"<thread local variable, no debug info>", objfile);
/* NOTE: on some targets, addresses and pointers are not necessarily
the same --- for example, on the D10V, pointers are 16 bits long,
but addresses are 32 bits long. See doc/gdbint.texinfo,
``Pointers Are Not Always Addresses''.
The upshot is:
- gdb's `struct type' always describes the target's
representation.
- gdb's `struct value' objects should always hold values in
target form.
- gdb's CORE_ADDR values are addresses in the unified virtual
address space that the assembler and linker work with. Thus,
since target_read_memory takes a CORE_ADDR as an argument, it
can access any memory on the target, even if the processor has
separate code and data address spaces.
So, for example:
- If v is a value holding a D10V code pointer, its contents are
in target form: a big-endian address left-shifted two bits.
- If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
sizeof (void *) == 2 on the target.
In this context, objfile_type->builtin_core_addr is a bit odd:
it's a target type for a value the target will never see. It's
only used to hold the values of (typeless) linker symbols, which
are indeed in the unified virtual address space. */
objfile_type->builtin_core_addr
= init_type (TYPE_CODE_INT,
gdbarch_addr_bit (gdbarch) / 8,
TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
set_objfile_data (objfile, objfile_type_data, objfile_type);
return objfile_type;
}
extern initialize_file_ftype _initialize_gdbtypes;
void
_initialize_gdbtypes (void)
{
gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
objfile_type_data = register_objfile_data ();
add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
_("Set debugging of C++ overloading."),
_("Show debugging of C++ overloading."),
_("When enabled, ranking of the "
"functions is displayed."),
NULL,
show_overload_debug,
&setdebuglist, &showdebuglist);
/* Add user knob for controlling resolution of opaque types. */
add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
&opaque_type_resolution,
_("Set resolution of opaque struct/class/union"
" types (if set before loading symbols)."),
_("Show resolution of opaque struct/class/union"
" types (if set before loading symbols)."),
NULL, NULL,
show_opaque_type_resolution,
&setlist, &showlist);
/* Add an option to permit non-strict type checking. */
add_setshow_boolean_cmd ("type", class_support,
&strict_type_checking,
_("Set strict type checking."),
_("Show strict type checking."),
NULL, NULL,
show_strict_type_checking,
&setchecklist, &showchecklist);
}
|