summaryrefslogtreecommitdiffstats
path: root/gdb/valops.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/valops.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadppe42-binutils-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
ppe42-binutils-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip
Initial creation of sourceware repository
Diffstat (limited to 'gdb/valops.c')
-rw-r--r--gdb/valops.c3461
1 files changed, 3461 insertions, 0 deletions
diff --git a/gdb/valops.c b/gdb/valops.c
new file mode 100644
index 0000000000..77d2396aa1
--- /dev/null
+++ b/gdb/valops.c
@@ -0,0 +1,3461 @@
+/* Perform non-arithmetic operations on values, for GDB.
+ Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
+ Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "value.h"
+#include "frame.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "target.h"
+#include "demangle.h"
+#include "language.h"
+#include "gdbcmd.h"
+
+#include <errno.h>
+#include "gdb_string.h"
+
+/* Default to coercing float to double in function calls only when there is
+ no prototype. Otherwise on targets where the debug information is incorrect
+ for either the prototype or non-prototype case, we can force it by defining
+ COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
+
+#ifndef COERCE_FLOAT_TO_DOUBLE
+#define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
+#endif
+
+/* Flag indicating HP compilers were used; needed to correctly handle some
+ value operations with HP aCC code/runtime. */
+extern int hp_som_som_object_present;
+
+
+/* Local functions. */
+
+static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
+
+#ifdef CALL_DUMMY
+static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
+static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
+#endif
+
+
+#ifndef PUSH_ARGUMENTS
+static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
+#endif
+
+static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
+ struct type *, int));
+
+static value_ptr search_struct_field_aux PARAMS ((char *, value_ptr, int,
+ struct type *, int, int *, char *,
+ struct type **));
+
+static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
+ value_ptr *,
+ int, int *, struct type *));
+
+static int check_field_in PARAMS ((struct type *, const char *));
+
+static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
+
+static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
+
+void _initialize_valops PARAMS ((void));
+
+#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
+
+/* Flag for whether we want to abandon failed expression evals by default. */
+
+#if 0
+static int auto_abandon = 0;
+#endif
+
+int overload_resolution = 0;
+
+
+
+/* Find the address of function name NAME in the inferior. */
+
+value_ptr
+find_function_in_inferior (name)
+ char *name;
+{
+ register struct symbol *sym;
+ sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
+ if (sym != NULL)
+ {
+ if (SYMBOL_CLASS (sym) != LOC_BLOCK)
+ {
+ error ("\"%s\" exists in this program but is not a function.",
+ name);
+ }
+ return value_of_variable (sym, NULL);
+ }
+ else
+ {
+ struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
+ if (msymbol != NULL)
+ {
+ struct type *type;
+ LONGEST maddr;
+ type = lookup_pointer_type (builtin_type_char);
+ type = lookup_function_type (type);
+ type = lookup_pointer_type (type);
+ maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
+ return value_from_longest (type, maddr);
+ }
+ else
+ {
+ if (!target_has_execution)
+ error ("evaluation of this expression requires the target program to be active");
+ else
+ error ("evaluation of this expression requires the program to have a function \"%s\".", name);
+ }
+ }
+}
+
+/* Allocate NBYTES of space in the inferior using the inferior's malloc
+ and return a value that is a pointer to the allocated space. */
+
+value_ptr
+value_allocate_space_in_inferior (len)
+ int len;
+{
+ value_ptr blocklen;
+ register value_ptr val = find_function_in_inferior ("malloc");
+
+ blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
+ val = call_function_by_hand (val, 1, &blocklen);
+ if (value_logical_not (val))
+ {
+ if (!target_has_execution)
+ error ("No memory available to program now: you need to start the target first");
+ else
+ error ("No memory available to program: call to malloc failed");
+ }
+ return val;
+}
+
+static CORE_ADDR
+allocate_space_in_inferior (len)
+ int len;
+{
+ return value_as_long (value_allocate_space_in_inferior (len));
+}
+
+/* Cast value ARG2 to type TYPE and return as a value.
+ More general than a C cast: accepts any two types of the same length,
+ and if ARG2 is an lvalue it can be cast into anything at all. */
+/* In C++, casts may change pointer or object representations. */
+
+value_ptr
+value_cast (type, arg2)
+ struct type *type;
+ register value_ptr arg2;
+{
+ register enum type_code code1;
+ register enum type_code code2;
+ register int scalar;
+ struct type *type2;
+
+ int convert_to_boolean = 0;
+
+ if (VALUE_TYPE (arg2) == type)
+ return arg2;
+
+ CHECK_TYPEDEF (type);
+ code1 = TYPE_CODE (type);
+ COERCE_REF(arg2);
+ type2 = check_typedef (VALUE_TYPE (arg2));
+
+ /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
+ is treated like a cast to (TYPE [N])OBJECT,
+ where N is sizeof(OBJECT)/sizeof(TYPE). */
+ if (code1 == TYPE_CODE_ARRAY)
+ {
+ struct type *element_type = TYPE_TARGET_TYPE (type);
+ unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
+ if (element_length > 0
+ && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
+ {
+ struct type *range_type = TYPE_INDEX_TYPE (type);
+ int val_length = TYPE_LENGTH (type2);
+ LONGEST low_bound, high_bound, new_length;
+ if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
+ low_bound = 0, high_bound = 0;
+ new_length = val_length / element_length;
+ if (val_length % element_length != 0)
+ warning("array element type size does not divide object size in cast");
+ /* FIXME-type-allocation: need a way to free this type when we are
+ done with it. */
+ range_type = create_range_type ((struct type *) NULL,
+ TYPE_TARGET_TYPE (range_type),
+ low_bound,
+ new_length + low_bound - 1);
+ VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
+ element_type, range_type);
+ return arg2;
+ }
+ }
+
+ if (current_language->c_style_arrays
+ && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
+ arg2 = value_coerce_array (arg2);
+
+ if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
+ arg2 = value_coerce_function (arg2);
+
+ type2 = check_typedef (VALUE_TYPE (arg2));
+ COERCE_VARYING_ARRAY (arg2, type2);
+ code2 = TYPE_CODE (type2);
+
+ if (code1 == TYPE_CODE_COMPLEX)
+ return cast_into_complex (type, arg2);
+ if (code1 == TYPE_CODE_BOOL)
+ {
+ code1 = TYPE_CODE_INT;
+ convert_to_boolean = 1;
+ }
+ if (code1 == TYPE_CODE_CHAR)
+ code1 = TYPE_CODE_INT;
+ if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
+ code2 = TYPE_CODE_INT;
+
+ scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
+ || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
+
+ if ( code1 == TYPE_CODE_STRUCT
+ && code2 == TYPE_CODE_STRUCT
+ && TYPE_NAME (type) != 0)
+ {
+ /* Look in the type of the source to see if it contains the
+ type of the target as a superclass. If so, we'll need to
+ offset the object in addition to changing its type. */
+ value_ptr v = search_struct_field (type_name_no_tag (type),
+ arg2, 0, type2, 1);
+ if (v)
+ {
+ VALUE_TYPE (v) = type;
+ return v;
+ }
+ }
+ if (code1 == TYPE_CODE_FLT && scalar)
+ return value_from_double (type, value_as_double (arg2));
+ else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
+ || code1 == TYPE_CODE_RANGE)
+ && (scalar || code2 == TYPE_CODE_PTR))
+ {
+ LONGEST longest;
+
+ if (hp_som_som_object_present && /* if target compiled by HP aCC */
+ (code2 == TYPE_CODE_PTR))
+ {
+ unsigned int * ptr;
+ value_ptr retvalp;
+
+ switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
+ {
+ /* With HP aCC, pointers to data members have a bias */
+ case TYPE_CODE_MEMBER:
+ retvalp = value_from_longest (type, value_as_long (arg2));
+ ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
+ *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
+ return retvalp;
+
+ /* While pointers to methods don't really point to a function */
+ case TYPE_CODE_METHOD:
+ error ("Pointers to methods not supported with HP aCC");
+
+ default:
+ break; /* fall out and go to normal handling */
+ }
+ }
+ longest = value_as_long (arg2);
+ return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
+ }
+ else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
+ {
+ if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
+ {
+ struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
+ struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
+ if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
+ && TYPE_CODE (t2) == TYPE_CODE_STRUCT
+ && !value_logical_not (arg2))
+ {
+ value_ptr v;
+
+ /* Look in the type of the source to see if it contains the
+ type of the target as a superclass. If so, we'll need to
+ offset the pointer rather than just change its type. */
+ if (TYPE_NAME (t1) != NULL)
+ {
+ v = search_struct_field (type_name_no_tag (t1),
+ value_ind (arg2), 0, t2, 1);
+ if (v)
+ {
+ v = value_addr (v);
+ VALUE_TYPE (v) = type;
+ return v;
+ }
+ }
+
+ /* Look in the type of the target to see if it contains the
+ type of the source as a superclass. If so, we'll need to
+ offset the pointer rather than just change its type.
+ FIXME: This fails silently with virtual inheritance. */
+ if (TYPE_NAME (t2) != NULL)
+ {
+ v = search_struct_field (type_name_no_tag (t2),
+ value_zero (t1, not_lval), 0, t1, 1);
+ if (v)
+ {
+ value_ptr v2 = value_ind (arg2);
+ VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
+ + VALUE_OFFSET (v);
+ v2 = value_addr (v2);
+ VALUE_TYPE (v2) = type;
+ return v2;
+ }
+ }
+ }
+ /* No superclass found, just fall through to change ptr type. */
+ }
+ VALUE_TYPE (arg2) = type;
+ VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
+ VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
+ return arg2;
+ }
+ else if (chill_varying_type (type))
+ {
+ struct type *range1, *range2, *eltype1, *eltype2;
+ value_ptr val;
+ int count1, count2;
+ LONGEST low_bound, high_bound;
+ char *valaddr, *valaddr_data;
+ /* For lint warning about eltype2 possibly uninitialized: */
+ eltype2 = NULL;
+ if (code2 == TYPE_CODE_BITSTRING)
+ error ("not implemented: converting bitstring to varying type");
+ if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
+ || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
+ eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
+ (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
+ /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
+ error ("Invalid conversion to varying type");
+ range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
+ range2 = TYPE_FIELD_TYPE (type2, 0);
+ if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
+ count1 = -1;
+ else
+ count1 = high_bound - low_bound + 1;
+ if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
+ count1 = -1, count2 = 0; /* To force error before */
+ else
+ count2 = high_bound - low_bound + 1;
+ if (count2 > count1)
+ error ("target varying type is too small");
+ val = allocate_value (type);
+ valaddr = VALUE_CONTENTS_RAW (val);
+ valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
+ /* Set val's __var_length field to count2. */
+ store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
+ count2);
+ /* Set the __var_data field to count2 elements copied from arg2. */
+ memcpy (valaddr_data, VALUE_CONTENTS (arg2),
+ count2 * TYPE_LENGTH (eltype2));
+ /* Zero the rest of the __var_data field of val. */
+ memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
+ (count1 - count2) * TYPE_LENGTH (eltype2));
+ return val;
+ }
+ else if (VALUE_LVAL (arg2) == lval_memory)
+ {
+ return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
+ VALUE_BFD_SECTION (arg2));
+ }
+ else if (code1 == TYPE_CODE_VOID)
+ {
+ return value_zero (builtin_type_void, not_lval);
+ }
+ else
+ {
+ error ("Invalid cast.");
+ return 0;
+ }
+}
+
+/* Create a value of type TYPE that is zero, and return it. */
+
+value_ptr
+value_zero (type, lv)
+ struct type *type;
+ enum lval_type lv;
+{
+ register value_ptr val = allocate_value (type);
+
+ memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
+ VALUE_LVAL (val) = lv;
+
+ return val;
+}
+
+/* Return a value with type TYPE located at ADDR.
+
+ Call value_at only if the data needs to be fetched immediately;
+ if we can be 'lazy' and defer the fetch, perhaps indefinately, call
+ value_at_lazy instead. value_at_lazy simply records the address of
+ the data and sets the lazy-evaluation-required flag. The lazy flag
+ is tested in the VALUE_CONTENTS macro, which is used if and when
+ the contents are actually required.
+
+ Note: value_at does *NOT* handle embedded offsets; perform such
+ adjustments before or after calling it. */
+
+value_ptr
+value_at (type, addr, sect)
+ struct type *type;
+ CORE_ADDR addr;
+ asection *sect;
+{
+ register value_ptr val;
+
+ if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
+ error ("Attempt to dereference a generic pointer.");
+
+ val = allocate_value (type);
+
+#ifdef GDB_TARGET_IS_D10V
+ if (TYPE_CODE (type) == TYPE_CODE_PTR
+ && TYPE_TARGET_TYPE (type)
+ && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+ {
+ /* pointer to function */
+ unsigned long num;
+ unsigned short snum;
+ snum = read_memory_unsigned_integer (addr, 2);
+ num = D10V_MAKE_IADDR(snum);
+ store_address ( VALUE_CONTENTS_RAW (val), 4, num);
+ }
+ else if (TYPE_CODE(type) == TYPE_CODE_PTR)
+ {
+ /* pointer to data */
+ unsigned long num;
+ unsigned short snum;
+ snum = read_memory_unsigned_integer (addr, 2);
+ num = D10V_MAKE_DADDR(snum);
+ store_address ( VALUE_CONTENTS_RAW (val), 4, num);
+ }
+ else
+#endif
+ read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
+
+ VALUE_LVAL (val) = lval_memory;
+ VALUE_ADDRESS (val) = addr;
+ VALUE_BFD_SECTION (val) = sect;
+
+ return val;
+}
+
+/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
+
+value_ptr
+value_at_lazy (type, addr, sect)
+ struct type *type;
+ CORE_ADDR addr;
+ asection *sect;
+{
+ register value_ptr val;
+
+ if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
+ error ("Attempt to dereference a generic pointer.");
+
+ val = allocate_value (type);
+
+ VALUE_LVAL (val) = lval_memory;
+ VALUE_ADDRESS (val) = addr;
+ VALUE_LAZY (val) = 1;
+ VALUE_BFD_SECTION (val) = sect;
+
+ return val;
+}
+
+/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
+ if the current data for a variable needs to be loaded into
+ VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
+ clears the lazy flag to indicate that the data in the buffer is valid.
+
+ If the value is zero-length, we avoid calling read_memory, which would
+ abort. We mark the value as fetched anyway -- all 0 bytes of it.
+
+ This function returns a value because it is used in the VALUE_CONTENTS
+ macro as part of an expression, where a void would not work. The
+ value is ignored. */
+
+int
+value_fetch_lazy (val)
+ register value_ptr val;
+{
+ CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
+ int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
+
+#ifdef GDB_TARGET_IS_D10V
+ struct type *type = VALUE_TYPE(val);
+ if (TYPE_CODE (type) == TYPE_CODE_PTR
+ && TYPE_TARGET_TYPE (type)
+ && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
+ {
+ /* pointer to function */
+ unsigned long num;
+ unsigned short snum;
+ snum = read_memory_unsigned_integer (addr, 2);
+ num = D10V_MAKE_IADDR(snum);
+ store_address ( VALUE_CONTENTS_RAW (val), 4, num);
+ }
+ else if (TYPE_CODE(type) == TYPE_CODE_PTR)
+ {
+ /* pointer to data */
+ unsigned long num;
+ unsigned short snum;
+ snum = read_memory_unsigned_integer (addr, 2);
+ num = D10V_MAKE_DADDR(snum);
+ store_address ( VALUE_CONTENTS_RAW (val), 4, num);
+ }
+ else
+#endif
+
+ if (length)
+ read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
+ VALUE_BFD_SECTION (val));
+ VALUE_LAZY (val) = 0;
+ return 0;
+}
+
+
+/* Store the contents of FROMVAL into the location of TOVAL.
+ Return a new value with the location of TOVAL and contents of FROMVAL. */
+
+value_ptr
+value_assign (toval, fromval)
+ register value_ptr toval, fromval;
+{
+ register struct type *type;
+ register value_ptr val;
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+ int use_buffer = 0;
+
+ if (!toval->modifiable)
+ error ("Left operand of assignment is not a modifiable lvalue.");
+
+ COERCE_REF (toval);
+
+ type = VALUE_TYPE (toval);
+ if (VALUE_LVAL (toval) != lval_internalvar)
+ fromval = value_cast (type, fromval);
+ else
+ COERCE_ARRAY (fromval);
+ CHECK_TYPEDEF (type);
+
+ /* If TOVAL is a special machine register requiring conversion
+ of program values to a special raw format,
+ convert FROMVAL's contents now, with result in `raw_buffer',
+ and set USE_BUFFER to the number of bytes to write. */
+
+#ifdef REGISTER_CONVERTIBLE
+ if (VALUE_REGNO (toval) >= 0
+ && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
+ {
+ int regno = VALUE_REGNO (toval);
+ if (REGISTER_CONVERTIBLE (regno))
+ {
+ struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
+ REGISTER_CONVERT_TO_RAW (fromtype, regno,
+ VALUE_CONTENTS (fromval), raw_buffer);
+ use_buffer = REGISTER_RAW_SIZE (regno);
+ }
+ }
+#endif
+
+ switch (VALUE_LVAL (toval))
+ {
+ case lval_internalvar:
+ set_internalvar (VALUE_INTERNALVAR (toval), fromval);
+ val = value_copy (VALUE_INTERNALVAR (toval)->value);
+ VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
+ VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
+ VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
+ return val;
+
+ case lval_internalvar_component:
+ set_internalvar_component (VALUE_INTERNALVAR (toval),
+ VALUE_OFFSET (toval),
+ VALUE_BITPOS (toval),
+ VALUE_BITSIZE (toval),
+ fromval);
+ break;
+
+ case lval_memory:
+ {
+ char *dest_buffer;
+ CORE_ADDR changed_addr;
+ int changed_len;
+
+ if (VALUE_BITSIZE (toval))
+ {
+ char buffer[sizeof (LONGEST)];
+ /* We assume that the argument to read_memory is in units of
+ host chars. FIXME: Is that correct? */
+ changed_len = (VALUE_BITPOS (toval)
+ + VALUE_BITSIZE (toval)
+ + HOST_CHAR_BIT - 1)
+ / HOST_CHAR_BIT;
+
+ if (changed_len > (int) sizeof (LONGEST))
+ error ("Can't handle bitfields which don't fit in a %d bit word.",
+ sizeof (LONGEST) * HOST_CHAR_BIT);
+
+ read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ buffer, changed_len);
+ modify_field (buffer, value_as_long (fromval),
+ VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+ changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
+ dest_buffer = buffer;
+ }
+ else if (use_buffer)
+ {
+ changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
+ changed_len = use_buffer;
+ dest_buffer = raw_buffer;
+ }
+ else
+ {
+ changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
+ changed_len = TYPE_LENGTH (type);
+ dest_buffer = VALUE_CONTENTS (fromval);
+ }
+
+ write_memory (changed_addr, dest_buffer, changed_len);
+ if (memory_changed_hook)
+ memory_changed_hook (changed_addr, changed_len);
+ }
+ break;
+
+ case lval_register:
+ if (VALUE_BITSIZE (toval))
+ {
+ char buffer[sizeof (LONGEST)];
+ int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
+
+ if (len > (int) sizeof (LONGEST))
+ error ("Can't handle bitfields in registers larger than %d bits.",
+ sizeof (LONGEST) * HOST_CHAR_BIT);
+
+ if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
+ > len * HOST_CHAR_BIT)
+ /* Getting this right would involve being very careful about
+ byte order. */
+ error ("\
+Can't handle bitfield which doesn't fit in a single register.");
+
+ read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ buffer, len);
+ modify_field (buffer, value_as_long (fromval),
+ VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ buffer, len);
+ }
+ else if (use_buffer)
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ raw_buffer, use_buffer);
+ else
+ {
+ /* Do any conversion necessary when storing this type to more
+ than one register. */
+#ifdef REGISTER_CONVERT_FROM_TYPE
+ memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+ REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ raw_buffer, TYPE_LENGTH (type));
+#else
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+#endif
+ }
+ /* Assigning to the stack pointer, frame pointer, and other
+ (architecture and calling convention specific) registers may
+ cause the frame cache to be out of date. We just do this
+ on all assignments to registers for simplicity; I doubt the slowdown
+ matters. */
+ reinit_frame_cache ();
+ break;
+
+ case lval_reg_frame_relative:
+ {
+ /* value is stored in a series of registers in the frame
+ specified by the structure. Copy that value out, modify
+ it, and copy it back in. */
+ int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
+ int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
+ int byte_offset = VALUE_OFFSET (toval) % reg_size;
+ int reg_offset = VALUE_OFFSET (toval) / reg_size;
+ int amount_copied;
+
+ /* Make the buffer large enough in all cases. */
+ char *buffer = (char *) alloca (amount_to_copy
+ + sizeof (LONGEST)
+ + MAX_REGISTER_RAW_SIZE);
+
+ int regno;
+ struct frame_info *frame;
+
+ /* Figure out which frame this is in currently. */
+ for (frame = get_current_frame ();
+ frame && FRAME_FP (frame) != VALUE_FRAME (toval);
+ frame = get_prev_frame (frame))
+ ;
+
+ if (!frame)
+ error ("Value being assigned to is no longer active.");
+
+ amount_to_copy += (reg_size - amount_to_copy % reg_size);
+
+ /* Copy it out. */
+ for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
+ amount_copied = 0);
+ amount_copied < amount_to_copy;
+ amount_copied += reg_size, regno++)
+ {
+ get_saved_register (buffer + amount_copied,
+ (int *)NULL, (CORE_ADDR *)NULL,
+ frame, regno, (enum lval_type *)NULL);
+ }
+
+ /* Modify what needs to be modified. */
+ if (VALUE_BITSIZE (toval))
+ modify_field (buffer + byte_offset,
+ value_as_long (fromval),
+ VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+ else if (use_buffer)
+ memcpy (buffer + byte_offset, raw_buffer, use_buffer);
+ else
+ memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
+ TYPE_LENGTH (type));
+
+ /* Copy it back. */
+ for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
+ amount_copied = 0);
+ amount_copied < amount_to_copy;
+ amount_copied += reg_size, regno++)
+ {
+ enum lval_type lval;
+ CORE_ADDR addr;
+ int optim;
+
+ /* Just find out where to put it. */
+ get_saved_register ((char *)NULL,
+ &optim, &addr, frame, regno, &lval);
+
+ if (optim)
+ error ("Attempt to assign to a value that was optimized out.");
+ if (lval == lval_memory)
+ write_memory (addr, buffer + amount_copied, reg_size);
+ else if (lval == lval_register)
+ write_register_bytes (addr, buffer + amount_copied, reg_size);
+ else
+ error ("Attempt to assign to an unmodifiable value.");
+ }
+
+ if (register_changed_hook)
+ register_changed_hook (-1);
+ }
+ break;
+
+
+ default:
+ error ("Left operand of assignment is not an lvalue.");
+ }
+
+ /* If the field does not entirely fill a LONGEST, then zero the sign bits.
+ If the field is signed, and is negative, then sign extend. */
+ if ((VALUE_BITSIZE (toval) > 0)
+ && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
+ {
+ LONGEST fieldval = value_as_long (fromval);
+ LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
+
+ fieldval &= valmask;
+ if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
+ fieldval |= ~valmask;
+
+ fromval = value_from_longest (type, fieldval);
+ }
+
+ val = value_copy (toval);
+ memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
+ TYPE_LENGTH (type));
+ VALUE_TYPE (val) = type;
+ VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
+ VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
+ VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
+
+ return val;
+}
+
+/* Extend a value VAL to COUNT repetitions of its type. */
+
+value_ptr
+value_repeat (arg1, count)
+ value_ptr arg1;
+ int count;
+{
+ register value_ptr val;
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Only values in memory can be extended with '@'.");
+ if (count < 1)
+ error ("Invalid number %d of repetitions.", count);
+
+ val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
+
+ read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
+ VALUE_CONTENTS_ALL_RAW (val),
+ TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
+ VALUE_LVAL (val) = lval_memory;
+ VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
+
+ return val;
+}
+
+value_ptr
+value_of_variable (var, b)
+ struct symbol *var;
+ struct block *b;
+{
+ value_ptr val;
+ struct frame_info *frame = NULL;
+
+ if (!b)
+ frame = NULL; /* Use selected frame. */
+ else if (symbol_read_needs_frame (var))
+ {
+ frame = block_innermost_frame (b);
+ if (!frame)
+ {
+ if (BLOCK_FUNCTION (b)
+ && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
+ error ("No frame is currently executing in block %s.",
+ SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
+ else
+ error ("No frame is currently executing in specified block");
+ }
+ }
+
+ val = read_var_value (var, frame);
+ if (!val)
+ error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
+
+ return val;
+}
+
+/* Given a value which is an array, return a value which is a pointer to its
+ first element, regardless of whether or not the array has a nonzero lower
+ bound.
+
+ FIXME: A previous comment here indicated that this routine should be
+ substracting the array's lower bound. It's not clear to me that this
+ is correct. Given an array subscripting operation, it would certainly
+ work to do the adjustment here, essentially computing:
+
+ (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
+
+ However I believe a more appropriate and logical place to account for
+ the lower bound is to do so in value_subscript, essentially computing:
+
+ (&array[0] + ((index - lowerbound) * sizeof array[0]))
+
+ As further evidence consider what would happen with operations other
+ than array subscripting, where the caller would get back a value that
+ had an address somewhere before the actual first element of the array,
+ and the information about the lower bound would be lost because of
+ the coercion to pointer type.
+ */
+
+value_ptr
+value_coerce_array (arg1)
+ value_ptr arg1;
+{
+ register struct type *type = check_typedef (VALUE_TYPE (arg1));
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Attempt to take address of value not located in memory.");
+
+ return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
+ (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
+}
+
+/* Given a value which is a function, return a value which is a pointer
+ to it. */
+
+value_ptr
+value_coerce_function (arg1)
+ value_ptr arg1;
+{
+ value_ptr retval;
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Attempt to take address of value not located in memory.");
+
+ retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
+ (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
+ VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
+ return retval;
+}
+
+/* Return a pointer value for the object for which ARG1 is the contents. */
+
+value_ptr
+value_addr (arg1)
+ value_ptr arg1;
+{
+ value_ptr arg2;
+
+ struct type *type = check_typedef (VALUE_TYPE (arg1));
+ if (TYPE_CODE (type) == TYPE_CODE_REF)
+ {
+ /* Copy the value, but change the type from (T&) to (T*).
+ We keep the same location information, which is efficient,
+ and allows &(&X) to get the location containing the reference. */
+ arg2 = value_copy (arg1);
+ VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
+ return arg2;
+ }
+ if (TYPE_CODE (type) == TYPE_CODE_FUNC)
+ return value_coerce_function (arg1);
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Attempt to take address of value not located in memory.");
+
+ /* Get target memory address */
+ arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
+ (LONGEST) (VALUE_ADDRESS (arg1)
+ + VALUE_OFFSET (arg1)
+ + VALUE_EMBEDDED_OFFSET (arg1)));
+
+ /* This may be a pointer to a base subobject; so remember the
+ full derived object's type ... */
+ VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
+ /* ... and also the relative position of the subobject in the full object */
+ VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
+ VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
+ return arg2;
+}
+
+/* Given a value of a pointer type, apply the C unary * operator to it. */
+
+value_ptr
+value_ind (arg1)
+ value_ptr arg1;
+{
+ struct type *base_type;
+ value_ptr arg2;
+ value_ptr real_val;
+
+ COERCE_ARRAY (arg1);
+
+ base_type = check_typedef (VALUE_TYPE (arg1));
+
+ if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
+ error ("not implemented: member types in value_ind");
+
+ /* Allow * on an integer so we can cast it to whatever we want.
+ This returns an int, which seems like the most C-like thing
+ to do. "long long" variables are rare enough that
+ BUILTIN_TYPE_LONGEST would seem to be a mistake. */
+ if (TYPE_CODE (base_type) == TYPE_CODE_INT)
+ return value_at (builtin_type_int,
+ (CORE_ADDR) value_as_long (arg1),
+ VALUE_BFD_SECTION (arg1));
+ else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
+ {
+ struct type *enc_type;
+ /* We may be pointing to something embedded in a larger object */
+ /* Get the real type of the enclosing object */
+ enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
+ enc_type = TYPE_TARGET_TYPE (enc_type);
+ /* Retrieve the enclosing object pointed to */
+ arg2 = value_at_lazy (enc_type,
+ value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
+ VALUE_BFD_SECTION (arg1));
+ /* Re-adjust type */
+ VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
+ /* Add embedding info */
+ VALUE_ENCLOSING_TYPE (arg2) = enc_type;
+ VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
+
+ /* We may be pointing to an object of some derived type */
+ arg2 = value_full_object (arg2, NULL, 0, 0, 0);
+ return arg2;
+ }
+
+ error ("Attempt to take contents of a non-pointer value.");
+ return 0; /* For lint -- never reached */
+}
+
+/* Pushing small parts of stack frames. */
+
+/* Push one word (the size of object that a register holds). */
+
+CORE_ADDR
+push_word (sp, word)
+ CORE_ADDR sp;
+ ULONGEST word;
+{
+ register int len = REGISTER_SIZE;
+ char buffer[MAX_REGISTER_RAW_SIZE];
+
+ store_unsigned_integer (buffer, len, word);
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= len;
+ write_memory (sp, buffer, len);
+ }
+ else
+ {
+ /* stack grows upward */
+ write_memory (sp, buffer, len);
+ sp += len;
+ }
+
+ return sp;
+}
+
+/* Push LEN bytes with data at BUFFER. */
+
+CORE_ADDR
+push_bytes (sp, buffer, len)
+ CORE_ADDR sp;
+ char *buffer;
+ int len;
+{
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= len;
+ write_memory (sp, buffer, len);
+ }
+ else
+ {
+ /* stack grows upward */
+ write_memory (sp, buffer, len);
+ sp += len;
+ }
+
+ return sp;
+}
+
+/* Push onto the stack the specified value VALUE. */
+
+#ifndef PUSH_ARGUMENTS
+
+static CORE_ADDR
+value_push (sp, arg)
+ register CORE_ADDR sp;
+ value_ptr arg;
+{
+ register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
+
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= len;
+ write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
+ }
+ else
+ {
+ /* stack grows upward */
+ write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
+ sp += len;
+ }
+
+ return sp;
+}
+
+#endif /* !PUSH_ARGUMENTS */
+
+#ifdef CALL_DUMMY
+/* Perform the standard coercions that are specified
+ for arguments to be passed to C functions.
+
+ If PARAM_TYPE is non-NULL, it is the expected parameter type.
+ IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
+
+static value_ptr
+value_arg_coerce (arg, param_type, is_prototyped)
+ value_ptr arg;
+ struct type *param_type;
+ int is_prototyped;
+{
+ register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
+ register struct type *type
+ = param_type ? check_typedef (param_type) : arg_type;
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_REF:
+ if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
+ {
+ arg = value_addr (arg);
+ VALUE_TYPE (arg) = param_type;
+ return arg;
+ }
+ break;
+ case TYPE_CODE_INT:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_ENUM:
+ /* If we don't have a prototype, coerce to integer type if necessary. */
+ if (!is_prototyped)
+ {
+ if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
+ type = builtin_type_int;
+ }
+ /* Currently all target ABIs require at least the width of an integer
+ type for an argument. We may have to conditionalize the following
+ type coercion for future targets. */
+ if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
+ type = builtin_type_int;
+ break;
+ case TYPE_CODE_FLT:
+ /* FIXME: We should always convert floats to doubles in the
+ non-prototyped case. As many debugging formats include
+ no information about prototyping, we have to live with
+ COERCE_FLOAT_TO_DOUBLE for now. */
+ if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
+ {
+ if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
+ type = builtin_type_double;
+ else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
+ type = builtin_type_long_double;
+ }
+ break;
+ case TYPE_CODE_FUNC:
+ type = lookup_pointer_type (type);
+ break;
+ case TYPE_CODE_ARRAY:
+ if (current_language->c_style_arrays)
+ type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
+ break;
+ case TYPE_CODE_UNDEF:
+ case TYPE_CODE_PTR:
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ case TYPE_CODE_VOID:
+ case TYPE_CODE_SET:
+ case TYPE_CODE_RANGE:
+ case TYPE_CODE_STRING:
+ case TYPE_CODE_BITSTRING:
+ case TYPE_CODE_ERROR:
+ case TYPE_CODE_MEMBER:
+ case TYPE_CODE_METHOD:
+ case TYPE_CODE_COMPLEX:
+ default:
+ break;
+ }
+
+ return value_cast (type, arg);
+}
+
+/* Determine a function's address and its return type from its value.
+ Calls error() if the function is not valid for calling. */
+
+static CORE_ADDR
+find_function_addr (function, retval_type)
+ value_ptr function;
+ struct type **retval_type;
+{
+ register struct type *ftype = check_typedef (VALUE_TYPE (function));
+ register enum type_code code = TYPE_CODE (ftype);
+ struct type *value_type;
+ CORE_ADDR funaddr;
+
+ /* If it's a member function, just look at the function
+ part of it. */
+
+ /* Determine address to call. */
+ if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
+ {
+ funaddr = VALUE_ADDRESS (function);
+ value_type = TYPE_TARGET_TYPE (ftype);
+ }
+ else if (code == TYPE_CODE_PTR)
+ {
+ funaddr = value_as_pointer (function);
+ ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
+ if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
+ || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
+ {
+#ifdef CONVERT_FROM_FUNC_PTR_ADDR
+ /* FIXME: This is a workaround for the unusual function
+ pointer representation on the RS/6000, see comment
+ in config/rs6000/tm-rs6000.h */
+ funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
+#endif
+ value_type = TYPE_TARGET_TYPE (ftype);
+ }
+ else
+ value_type = builtin_type_int;
+ }
+ else if (code == TYPE_CODE_INT)
+ {
+ /* Handle the case of functions lacking debugging info.
+ Their values are characters since their addresses are char */
+ if (TYPE_LENGTH (ftype) == 1)
+ funaddr = value_as_pointer (value_addr (function));
+ else
+ /* Handle integer used as address of a function. */
+ funaddr = (CORE_ADDR) value_as_long (function);
+
+ value_type = builtin_type_int;
+ }
+ else
+ error ("Invalid data type for function to be called.");
+
+ *retval_type = value_type;
+ return funaddr;
+}
+
+/* All this stuff with a dummy frame may seem unnecessarily complicated
+ (why not just save registers in GDB?). The purpose of pushing a dummy
+ frame which looks just like a real frame is so that if you call a
+ function and then hit a breakpoint (get a signal, etc), "backtrace"
+ will look right. Whether the backtrace needs to actually show the
+ stack at the time the inferior function was called is debatable, but
+ it certainly needs to not display garbage. So if you are contemplating
+ making dummy frames be different from normal frames, consider that. */
+
+/* Perform a function call in the inferior.
+ ARGS is a vector of values of arguments (NARGS of them).
+ FUNCTION is a value, the function to be called.
+ Returns a value representing what the function returned.
+ May fail to return, if a breakpoint or signal is hit
+ during the execution of the function.
+
+ ARGS is modified to contain coerced values. */
+
+value_ptr
+call_function_by_hand (function, nargs, args)
+ value_ptr function;
+ int nargs;
+ value_ptr *args;
+{
+ register CORE_ADDR sp;
+ register int i;
+ CORE_ADDR start_sp;
+ /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
+ is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
+ and remove any extra bytes which might exist because ULONGEST is
+ bigger than REGISTER_SIZE.
+
+ NOTE: This is pretty wierd, as the call dummy is actually a
+ sequence of instructions. But CISC machines will have
+ to pack the instructions into REGISTER_SIZE units (and
+ so will RISC machines for which INSTRUCTION_SIZE is not
+ REGISTER_SIZE). */
+
+ static ULONGEST dummy[] = CALL_DUMMY;
+ char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (ULONGEST)];
+ CORE_ADDR old_sp;
+ struct type *value_type;
+ unsigned char struct_return;
+ CORE_ADDR struct_addr = 0;
+ struct inferior_status inf_status;
+ struct cleanup *old_chain;
+ CORE_ADDR funaddr;
+ int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
+ CORE_ADDR real_pc;
+ struct type *param_type = NULL;
+ struct type *ftype = check_typedef (SYMBOL_TYPE (function));
+
+ if (!target_has_execution)
+ noprocess();
+
+ save_inferior_status (&inf_status, 1);
+ old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
+ &inf_status);
+
+ /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
+ (and POP_FRAME for restoring them). (At least on most machines)
+ they are saved on the stack in the inferior. */
+ PUSH_DUMMY_FRAME;
+
+ old_sp = sp = read_sp ();
+
+ if (INNER_THAN (1, 2))
+ {
+ /* Stack grows down */
+ sp -= sizeof dummy1;
+ start_sp = sp;
+ }
+ else
+ {
+ /* Stack grows up */
+ start_sp = sp;
+ sp += sizeof dummy1;
+ }
+
+ funaddr = find_function_addr (function, &value_type);
+ CHECK_TYPEDEF (value_type);
+
+ {
+ struct block *b = block_for_pc (funaddr);
+ /* If compiled without -g, assume GCC 2. */
+ using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
+ }
+
+ /* Are we returning a value using a structure return or a normal
+ value return? */
+
+ struct_return = using_struct_return (function, funaddr, value_type,
+ using_gcc);
+
+ /* Create a call sequence customized for this function
+ and the number of arguments for it. */
+ for (i = 0; i < (int) (sizeof (dummy) / sizeof (dummy[0])); i++)
+ store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
+ REGISTER_SIZE,
+ (ULONGEST)dummy[i]);
+
+#ifdef GDB_TARGET_IS_HPPA
+ real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
+ value_type, using_gcc);
+#else
+ FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
+ value_type, using_gcc);
+ real_pc = start_sp;
+#endif
+
+#if CALL_DUMMY_LOCATION == ON_STACK
+ write_memory (start_sp, (char *)dummy1, sizeof dummy1);
+#endif /* On stack. */
+
+#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
+ /* Convex Unix prohibits executing in the stack segment. */
+ /* Hope there is empty room at the top of the text segment. */
+ {
+ extern CORE_ADDR text_end;
+ static checked = 0;
+ if (!checked)
+ for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
+ if (read_memory_integer (start_sp, 1) != 0)
+ error ("text segment full -- no place to put call");
+ checked = 1;
+ sp = old_sp;
+ real_pc = text_end - sizeof dummy1;
+ write_memory (real_pc, (char *)dummy1, sizeof dummy1);
+ }
+#endif /* Before text_end. */
+
+#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
+ {
+ extern CORE_ADDR text_end;
+ int errcode;
+ sp = old_sp;
+ real_pc = text_end;
+ errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
+ if (errcode != 0)
+ error ("Cannot write text segment -- call_function failed");
+ }
+#endif /* After text_end. */
+
+#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
+ real_pc = funaddr;
+#endif /* At entry point. */
+
+#ifdef lint
+ sp = old_sp; /* It really is used, for some ifdef's... */
+#endif
+
+ if (nargs < TYPE_NFIELDS (ftype))
+ error ("too few arguments in function call");
+
+ for (i = nargs - 1; i >= 0; i--)
+ {
+ /* If we're off the end of the known arguments, do the standard
+ promotions. FIXME: if we had a prototype, this should only
+ be allowed if ... were present. */
+ if (i >= TYPE_NFIELDS (ftype))
+ args[i] = value_arg_coerce (args[i], NULL, 0);
+
+ else
+ {
+ int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
+ param_type = TYPE_FIELD_TYPE (ftype, i);
+
+ args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
+ }
+
+ /*elz: this code is to handle the case in which the function to be called
+ has a pointer to function as parameter and the corresponding actual argument
+ is the address of a function and not a pointer to function variable.
+ In aCC compiled code, the calls through pointers to functions (in the body
+ of the function called by hand) are made via $$dyncall_external which
+ requires some registers setting, this is taken care of if we call
+ via a function pointer variable, but not via a function address.
+ In cc this is not a problem. */
+
+ if (using_gcc == 0)
+ if (param_type)
+ /* if this parameter is a pointer to function*/
+ if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
+ if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
+ /* elz: FIXME here should go the test about the compiler used
+ to compile the target. We want to issue the error
+ message only if the compiler used was HP's aCC.
+ If we used HP's cc, then there is no problem and no need
+ to return at this point */
+ if (using_gcc == 0) /* && compiler == aCC*/
+ /* go see if the actual parameter is a variable of type
+ pointer to function or just a function */
+ if (args[i]->lval == not_lval)
+ {
+ char *arg_name;
+ if (find_pc_partial_function((CORE_ADDR)args[i]->aligner.contents[0], &arg_name, NULL, NULL))
+ error("\
+You cannot use function <%s> as argument. \n\
+You must use a pointer to function type variable. Command ignored.", arg_name);
+ }
+ }
+
+#if defined (REG_STRUCT_HAS_ADDR)
+ {
+ /* This is a machine like the sparc, where we may need to pass a pointer
+ to the structure, not the structure itself. */
+ for (i = nargs - 1; i >= 0; i--)
+ {
+ struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
+ if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (arg_type) == TYPE_CODE_UNION
+ || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
+ || TYPE_CODE (arg_type) == TYPE_CODE_STRING
+ || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
+ || TYPE_CODE (arg_type) == TYPE_CODE_SET
+ || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
+ && TYPE_LENGTH (arg_type) > 8)
+ )
+ && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
+ {
+ CORE_ADDR addr;
+ int len; /* = TYPE_LENGTH (arg_type); */
+ int aligned_len;
+ arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
+ len = TYPE_LENGTH (arg_type);
+
+#ifdef STACK_ALIGN
+ /* MVS 11/22/96: I think at least some of this stack_align code is
+ really broken. Better to let PUSH_ARGUMENTS adjust the stack in
+ a target-defined manner. */
+ aligned_len = STACK_ALIGN (len);
+#else
+ aligned_len = len;
+#endif
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= aligned_len;
+ }
+ else
+ {
+ /* The stack grows up, so the address of the thing we push
+ is the stack pointer before we push it. */
+ addr = sp;
+ }
+ /* Push the structure. */
+ write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
+ if (INNER_THAN (1, 2))
+ {
+ /* The stack grows down, so the address of the thing we push
+ is the stack pointer after we push it. */
+ addr = sp;
+ }
+ else
+ {
+ /* stack grows upward */
+ sp += aligned_len;
+ }
+ /* The value we're going to pass is the address of the thing
+ we just pushed. */
+ /*args[i] = value_from_longest (lookup_pointer_type (value_type),
+ (LONGEST) addr);*/
+ args[i] = value_from_longest (lookup_pointer_type (arg_type),
+ (LONGEST) addr);
+ }
+ }
+ }
+#endif /* REG_STRUCT_HAS_ADDR. */
+
+ /* Reserve space for the return structure to be written on the
+ stack, if necessary */
+
+ if (struct_return)
+ {
+ int len = TYPE_LENGTH (value_type);
+#ifdef STACK_ALIGN
+ /* MVS 11/22/96: I think at least some of this stack_align code is
+ really broken. Better to let PUSH_ARGUMENTS adjust the stack in
+ a target-defined manner. */
+ len = STACK_ALIGN (len);
+#endif
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= len;
+ struct_addr = sp;
+ }
+ else
+ {
+ /* stack grows upward */
+ struct_addr = sp;
+ sp += len;
+ }
+ }
+
+/* elz: on HPPA no need for this extra alignment, maybe it is needed
+ on other architectures. This is because all the alignment is taken care
+ of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
+ hppa_push_arguments*/
+#ifndef NO_EXTRA_ALIGNMENT_NEEDED
+
+#if defined(STACK_ALIGN)
+ /* MVS 11/22/96: I think at least some of this stack_align code is
+ really broken. Better to let PUSH_ARGUMENTS adjust the stack in
+ a target-defined manner. */
+ if (INNER_THAN (1, 2))
+ {
+ /* If stack grows down, we must leave a hole at the top. */
+ int len = 0;
+
+ for (i = nargs - 1; i >= 0; i--)
+ len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
+#ifdef CALL_DUMMY_STACK_ADJUST
+ len += CALL_DUMMY_STACK_ADJUST;
+#endif
+ sp -= STACK_ALIGN (len) - len;
+ }
+#endif /* STACK_ALIGN */
+#endif /* NO_EXTRA_ALIGNMENT_NEEDED */
+
+#ifdef PUSH_ARGUMENTS
+ PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
+#else /* !PUSH_ARGUMENTS */
+ for (i = nargs - 1; i >= 0; i--)
+ sp = value_push (sp, args[i]);
+#endif /* !PUSH_ARGUMENTS */
+
+#ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
+ /* There are a number of targets now which actually don't write any
+ CALL_DUMMY instructions into the target, but instead just save the
+ machine state, push the arguments, and jump directly to the callee
+ function. Since this doesn't actually involve executing a JSR/BSR
+ instruction, the return address must be set up by hand, either by
+ pushing onto the stack or copying into a return-address register
+ as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
+ but that's overloading its functionality a bit, so I'm making it
+ explicit to do it here. */
+ sp = PUSH_RETURN_ADDRESS(real_pc, sp);
+#endif /* PUSH_RETURN_ADDRESS */
+
+#if defined(STACK_ALIGN)
+ if (! INNER_THAN (1, 2))
+ {
+ /* If stack grows up, we must leave a hole at the bottom, note
+ that sp already has been advanced for the arguments! */
+#ifdef CALL_DUMMY_STACK_ADJUST
+ sp += CALL_DUMMY_STACK_ADJUST;
+#endif
+ sp = STACK_ALIGN (sp);
+ }
+#endif /* STACK_ALIGN */
+
+/* XXX This seems wrong. For stacks that grow down we shouldn't do
+ anything here! */
+ /* MVS 11/22/96: I think at least some of this stack_align code is
+ really broken. Better to let PUSH_ARGUMENTS adjust the stack in
+ a target-defined manner. */
+#ifdef CALL_DUMMY_STACK_ADJUST
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= CALL_DUMMY_STACK_ADJUST;
+ }
+#endif /* CALL_DUMMY_STACK_ADJUST */
+
+ /* Store the address at which the structure is supposed to be
+ written. Note that this (and the code which reserved the space
+ above) assumes that gcc was used to compile this function. Since
+ it doesn't cost us anything but space and if the function is pcc
+ it will ignore this value, we will make that assumption.
+
+ Also note that on some machines (like the sparc) pcc uses a
+ convention like gcc's. */
+
+ if (struct_return)
+ STORE_STRUCT_RETURN (struct_addr, sp);
+
+ /* Write the stack pointer. This is here because the statements above
+ might fool with it. On SPARC, this write also stores the register
+ window into the right place in the new stack frame, which otherwise
+ wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
+ write_sp (sp);
+
+ {
+ char retbuf[REGISTER_BYTES];
+ char *name;
+ struct symbol *symbol;
+
+ name = NULL;
+ symbol = find_pc_function (funaddr);
+ if (symbol)
+ {
+ name = SYMBOL_SOURCE_NAME (symbol);
+ }
+ else
+ {
+ /* Try the minimal symbols. */
+ struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
+
+ if (msymbol)
+ {
+ name = SYMBOL_SOURCE_NAME (msymbol);
+ }
+ }
+ if (name == NULL)
+ {
+ char format[80];
+ sprintf (format, "at %s", local_hex_format ());
+ name = alloca (80);
+ /* FIXME-32x64: assumes funaddr fits in a long. */
+ sprintf (name, format, (unsigned long) funaddr);
+ }
+
+ /* Execute the stack dummy routine, calling FUNCTION.
+ When it is done, discard the empty frame
+ after storing the contents of all regs into retbuf. */
+ if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
+ {
+ /* We stopped somewhere besides the call dummy. */
+
+ /* If we did the cleanups, we would print a spurious error message
+ (Unable to restore previously selected frame), would write the
+ registers from the inf_status (which is wrong), and would do other
+ wrong things (like set stop_bpstat to the wrong thing). */
+ discard_cleanups (old_chain);
+ /* Prevent memory leak. */
+ bpstat_clear (&inf_status.stop_bpstat);
+
+ /* The following error message used to say "The expression
+ which contained the function call has been discarded." It
+ is a hard concept to explain in a few words. Ideally, GDB
+ would be able to resume evaluation of the expression when
+ the function finally is done executing. Perhaps someday
+ this will be implemented (it would not be easy). */
+
+ /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
+ a C++ name with arguments and stuff. */
+ error ("\
+The program being debugged stopped while in a function called from GDB.\n\
+When the function (%s) is done executing, GDB will silently\n\
+stop (instead of continuing to evaluate the expression containing\n\
+the function call).", name);
+ }
+
+ do_cleanups (old_chain);
+
+ /* Figure out the value returned by the function. */
+/* elz: I defined this new macro for the hppa architecture only.
+ this gives us a way to get the value returned by the function from the stack,
+ at the same address we told the function to put it.
+ We cannot assume on the pa that r28 still contains the address of the returned
+ structure. Usually this will be overwritten by the callee.
+ I don't know about other architectures, so I defined this macro
+*/
+
+#ifdef VALUE_RETURNED_FROM_STACK
+ if (struct_return)
+ return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
+#endif
+
+ return value_being_returned (value_type, retbuf, struct_return);
+ }
+}
+#else /* no CALL_DUMMY. */
+value_ptr
+call_function_by_hand (function, nargs, args)
+ value_ptr function;
+ int nargs;
+ value_ptr *args;
+{
+ error ("Cannot invoke functions on this machine.");
+}
+#endif /* no CALL_DUMMY. */
+
+
+/* Create a value for an array by allocating space in the inferior, copying
+ the data into that space, and then setting up an array value.
+
+ The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
+ populated from the values passed in ELEMVEC.
+
+ The element type of the array is inherited from the type of the
+ first element, and all elements must have the same size (though we
+ don't currently enforce any restriction on their types). */
+
+value_ptr
+value_array (lowbound, highbound, elemvec)
+ int lowbound;
+ int highbound;
+ value_ptr *elemvec;
+{
+ int nelem;
+ int idx;
+ unsigned int typelength;
+ value_ptr val;
+ struct type *rangetype;
+ struct type *arraytype;
+ CORE_ADDR addr;
+
+ /* Validate that the bounds are reasonable and that each of the elements
+ have the same size. */
+
+ nelem = highbound - lowbound + 1;
+ if (nelem <= 0)
+ {
+ error ("bad array bounds (%d, %d)", lowbound, highbound);
+ }
+ typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
+ for (idx = 1; idx < nelem; idx++)
+ {
+ if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
+ {
+ error ("array elements must all be the same size");
+ }
+ }
+
+ rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
+ lowbound, highbound);
+ arraytype = create_array_type ((struct type *) NULL,
+ VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
+
+ if (!current_language->c_style_arrays)
+ {
+ val = allocate_value (arraytype);
+ for (idx = 0; idx < nelem; idx++)
+ {
+ memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
+ VALUE_CONTENTS_ALL (elemvec[idx]),
+ typelength);
+ }
+ VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
+ return val;
+ }
+
+ /* Allocate space to store the array in the inferior, and then initialize
+ it by copying in each element. FIXME: Is it worth it to create a
+ local buffer in which to collect each value and then write all the
+ bytes in one operation? */
+
+ addr = allocate_space_in_inferior (nelem * typelength);
+ for (idx = 0; idx < nelem; idx++)
+ {
+ write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
+ typelength);
+ }
+
+ /* Create the array type and set up an array value to be evaluated lazily. */
+
+ val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
+ return (val);
+}
+
+/* Create a value for a string constant by allocating space in the inferior,
+ copying the data into that space, and returning the address with type
+ TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
+ of characters.
+ Note that string types are like array of char types with a lower bound of
+ zero and an upper bound of LEN - 1. Also note that the string may contain
+ embedded null bytes. */
+
+value_ptr
+value_string (ptr, len)
+ char *ptr;
+ int len;
+{
+ value_ptr val;
+ int lowbound = current_language->string_lower_bound;
+ struct type *rangetype = create_range_type ((struct type *) NULL,
+ builtin_type_int,
+ lowbound, len + lowbound - 1);
+ struct type *stringtype
+ = create_string_type ((struct type *) NULL, rangetype);
+ CORE_ADDR addr;
+
+ if (current_language->c_style_arrays == 0)
+ {
+ val = allocate_value (stringtype);
+ memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
+ return val;
+ }
+
+
+ /* Allocate space to store the string in the inferior, and then
+ copy LEN bytes from PTR in gdb to that address in the inferior. */
+
+ addr = allocate_space_in_inferior (len);
+ write_memory (addr, ptr, len);
+
+ val = value_at_lazy (stringtype, addr, NULL);
+ return (val);
+}
+
+value_ptr
+value_bitstring (ptr, len)
+ char *ptr;
+ int len;
+{
+ value_ptr val;
+ struct type *domain_type = create_range_type (NULL, builtin_type_int,
+ 0, len - 1);
+ struct type *type = create_set_type ((struct type*) NULL, domain_type);
+ TYPE_CODE (type) = TYPE_CODE_BITSTRING;
+ val = allocate_value (type);
+ memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
+ return val;
+}
+
+/* See if we can pass arguments in T2 to a function which takes arguments
+ of types T1. Both t1 and t2 are NULL-terminated vectors. If some
+ arguments need coercion of some sort, then the coerced values are written
+ into T2. Return value is 0 if the arguments could be matched, or the
+ position at which they differ if not.
+
+ STATICP is nonzero if the T1 argument list came from a
+ static member function.
+
+ For non-static member functions, we ignore the first argument,
+ which is the type of the instance variable. This is because we want
+ to handle calls with objects from derived classes. This is not
+ entirely correct: we should actually check to make sure that a
+ requested operation is type secure, shouldn't we? FIXME. */
+
+static int
+typecmp (staticp, t1, t2)
+ int staticp;
+ struct type *t1[];
+ value_ptr t2[];
+{
+ int i;
+
+ if (t2 == 0)
+ return 1;
+ if (staticp && t1 == 0)
+ return t2[1] != 0;
+ if (t1 == 0)
+ return 1;
+ if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
+ if (t1[!staticp] == 0) return 0;
+ for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
+ {
+ struct type *tt1, *tt2;
+ if (! t2[i])
+ return i+1;
+ tt1 = check_typedef (t1[i]);
+ tt2 = check_typedef (VALUE_TYPE(t2[i]));
+ if (TYPE_CODE (tt1) == TYPE_CODE_REF
+ /* We should be doing hairy argument matching, as below. */
+ && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
+ {
+ if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
+ t2[i] = value_coerce_array (t2[i]);
+ else
+ t2[i] = value_addr (t2[i]);
+ continue;
+ }
+
+ while (TYPE_CODE (tt1) == TYPE_CODE_PTR
+ && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
+ || TYPE_CODE (tt2) == TYPE_CODE_PTR))
+ {
+ tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
+ tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
+ }
+ if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
+ /* Array to pointer is a `trivial conversion' according to the ARM. */
+
+ /* We should be doing much hairier argument matching (see section 13.2
+ of the ARM), but as a quick kludge, just check for the same type
+ code. */
+ if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
+ return i+1;
+ }
+ if (!t1[i]) return 0;
+ return t2[i] ? i+1 : 0;
+}
+
+/* Helper function used by value_struct_elt to recurse through baseclasses.
+ Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
+ and search in it assuming it has (class) type TYPE.
+ If found, return value, else return NULL.
+
+ If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
+ look for a baseclass named NAME. */
+
+static value_ptr
+search_struct_field (name, arg1, offset, type, looking_for_baseclass)
+ char *name;
+ register value_ptr arg1;
+ int offset;
+ register struct type *type;
+ int looking_for_baseclass;
+{
+ int i;
+ int nbases = TYPE_N_BASECLASSES (type);
+
+ CHECK_TYPEDEF (type);
+
+ if (! looking_for_baseclass)
+ for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
+ {
+ char *t_field_name = TYPE_FIELD_NAME (type, i);
+
+ if (t_field_name && STREQ (t_field_name, name))
+ {
+ value_ptr v;
+ if (TYPE_FIELD_STATIC (type, i))
+ v = value_static_field (type, i);
+ else
+ v = value_primitive_field (arg1, offset, i, type);
+ if (v == 0)
+ error("there is no field named %s", name);
+ return v;
+ }
+
+ if (t_field_name
+ && (t_field_name[0] == '\0'
+ || (TYPE_CODE (type) == TYPE_CODE_UNION
+ && STREQ (t_field_name, "else"))))
+ {
+ struct type *field_type = TYPE_FIELD_TYPE (type, i);
+ if (TYPE_CODE (field_type) == TYPE_CODE_UNION
+ || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
+ {
+ /* Look for a match through the fields of an anonymous union,
+ or anonymous struct. C++ provides anonymous unions.
+
+ In the GNU Chill implementation of variant record types,
+ each <alternative field> has an (anonymous) union type,
+ each member of the union represents a <variant alternative>.
+ Each <variant alternative> is represented as a struct,
+ with a member for each <variant field>. */
+
+ value_ptr v;
+ int new_offset = offset;
+
+ /* This is pretty gross. In G++, the offset in an anonymous
+ union is relative to the beginning of the enclosing struct.
+ In the GNU Chill implementation of variant records,
+ the bitpos is zero in an anonymous union field, so we
+ have to add the offset of the union here. */
+ if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
+ || (TYPE_NFIELDS (field_type) > 0
+ && TYPE_FIELD_BITPOS (field_type, 0) == 0))
+ new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
+
+ v = search_struct_field (name, arg1, new_offset, field_type,
+ looking_for_baseclass);
+ if (v)
+ return v;
+ }
+ }
+ }
+
+ for (i = 0; i < nbases; i++)
+ {
+ value_ptr v;
+ struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
+ /* If we are looking for baseclasses, this is what we get when we
+ hit them. But it could happen that the base part's member name
+ is not yet filled in. */
+ int found_baseclass = (looking_for_baseclass
+ && TYPE_BASECLASS_NAME (type, i) != NULL
+ && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
+
+ if (BASETYPE_VIA_VIRTUAL (type, i))
+ {
+ int boffset;
+ value_ptr v2 = allocate_value (basetype);
+
+ boffset = baseclass_offset (type, i,
+ VALUE_CONTENTS (arg1) + offset,
+ VALUE_ADDRESS (arg1)
+ + VALUE_OFFSET (arg1) + offset);
+ if (boffset == -1)
+ error ("virtual baseclass botch");
+
+ /* The virtual base class pointer might have been clobbered by the
+ user program. Make sure that it still points to a valid memory
+ location. */
+
+ boffset += offset;
+ if (boffset < 0 || boffset >= TYPE_LENGTH (type))
+ {
+ CORE_ADDR base_addr;
+
+ base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
+ if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
+ TYPE_LENGTH (basetype)) != 0)
+ error ("virtual baseclass botch");
+ VALUE_LVAL (v2) = lval_memory;
+ VALUE_ADDRESS (v2) = base_addr;
+ }
+ else
+ {
+ VALUE_LVAL (v2) = VALUE_LVAL (arg1);
+ VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
+ VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
+ if (VALUE_LAZY (arg1))
+ VALUE_LAZY (v2) = 1;
+ else
+ memcpy (VALUE_CONTENTS_RAW (v2),
+ VALUE_CONTENTS_RAW (arg1) + boffset,
+ TYPE_LENGTH (basetype));
+ }
+
+ if (found_baseclass)
+ return v2;
+ v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
+ looking_for_baseclass);
+ }
+ else if (found_baseclass)
+ v = value_primitive_field (arg1, offset, i, type);
+ else
+ v = search_struct_field (name, arg1,
+ offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
+ basetype, looking_for_baseclass);
+ if (v) return v;
+ }
+ return NULL;
+}
+
+
+/* Return the offset (in bytes) of the virtual base of type BASETYPE
+ * in an object pointed to by VALADDR (on the host), assumed to be of
+ * type TYPE. OFFSET is number of bytes beyond start of ARG to start
+ * looking (in case VALADDR is the contents of an enclosing object).
+ *
+ * This routine recurses on the primary base of the derived class because
+ * the virtual base entries of the primary base appear before the other
+ * virtual base entries.
+ *
+ * If the virtual base is not found, a negative integer is returned.
+ * The magnitude of the negative integer is the number of entries in
+ * the virtual table to skip over (entries corresponding to various
+ * ancestral classes in the chain of primary bases).
+ *
+ * Important: This assumes the HP / Taligent C++ runtime
+ * conventions. Use baseclass_offset() instead to deal with g++
+ * conventions. */
+
+void
+find_rt_vbase_offset(type, basetype, valaddr, offset, boffset_p, skip_p)
+ struct type * type;
+ struct type * basetype;
+ char * valaddr;
+ int offset;
+ int * boffset_p;
+ int * skip_p;
+{
+ int boffset; /* offset of virtual base */
+ int index; /* displacement to use in virtual table */
+ int skip;
+
+ value_ptr vp;
+ CORE_ADDR vtbl; /* the virtual table pointer */
+ struct type * pbc; /* the primary base class */
+
+ /* Look for the virtual base recursively in the primary base, first.
+ * This is because the derived class object and its primary base
+ * subobject share the primary virtual table. */
+
+ boffset = 0;
+ pbc = TYPE_PRIMARY_BASE(type);
+ if (pbc)
+ {
+ find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
+ if (skip < 0)
+ {
+ *boffset_p = boffset;
+ *skip_p = -1;
+ return;
+ }
+ }
+ else
+ skip = 0;
+
+
+ /* Find the index of the virtual base according to HP/Taligent
+ runtime spec. (Depth-first, left-to-right.) */
+ index = virtual_base_index_skip_primaries (basetype, type);
+
+ if (index < 0) {
+ *skip_p = skip + virtual_base_list_length_skip_primaries (type);
+ *boffset_p = 0;
+ return;
+ }
+
+ /* pai: FIXME -- 32x64 possible problem */
+ /* First word (4 bytes) in object layout is the vtable pointer */
+ vtbl = * (CORE_ADDR *) (valaddr + offset);
+
+ /* Before the constructor is invoked, things are usually zero'd out. */
+ if (vtbl == 0)
+ error ("Couldn't find virtual table -- object may not be constructed yet.");
+
+
+ /* Find virtual base's offset -- jump over entries for primary base
+ * ancestors, then use the index computed above. But also adjust by
+ * HP_ACC_VBASE_START for the vtable slots before the start of the
+ * virtual base entries. Offset is negative -- virtual base entries
+ * appear _before_ the address point of the virtual table. */
+
+ /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
+ & use long type */
+
+ /* epstein : FIXME -- added param for overlay section. May not be correct */
+ vp = value_at (builtin_type_int, vtbl + 4 * (- skip - index - HP_ACC_VBASE_START), NULL);
+ boffset = value_as_long (vp);
+ *skip_p = -1;
+ *boffset_p = boffset;
+ return;
+}
+
+
+/* Helper function used by value_struct_elt to recurse through baseclasses.
+ Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
+ and search in it assuming it has (class) type TYPE.
+ If found, return value, else if name matched and args not return (value)-1,
+ else return NULL. */
+
+static value_ptr
+search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
+ char *name;
+ register value_ptr *arg1p, *args;
+ int offset, *static_memfuncp;
+ register struct type *type;
+{
+ int i;
+ value_ptr v;
+ int name_matched = 0;
+ char dem_opname[64];
+
+ CHECK_TYPEDEF (type);
+ for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
+ {
+ char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
+ /* FIXME! May need to check for ARM demangling here */
+ if (strncmp(t_field_name, "__", 2)==0 ||
+ strncmp(t_field_name, "op", 2)==0 ||
+ strncmp(t_field_name, "type", 4)==0 )
+ {
+ if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
+ t_field_name = dem_opname;
+ else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
+ t_field_name = dem_opname;
+ }
+ if (t_field_name && STREQ (t_field_name, name))
+ {
+ int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
+ struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
+ name_matched = 1;
+
+ if (j > 0 && args == 0)
+ error ("cannot resolve overloaded method `%s': no arguments supplied", name);
+ while (j >= 0)
+ {
+ if (TYPE_FN_FIELD_STUB (f, j))
+ check_stub_method (type, i, j);
+ if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
+ TYPE_FN_FIELD_ARGS (f, j), args))
+ {
+ if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
+ return value_virtual_fn_field (arg1p, f, j, type, offset);
+ if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
+ *static_memfuncp = 1;
+ v = value_fn_field (arg1p, f, j, type, offset);
+ if (v != NULL) return v;
+ }
+ j--;
+ }
+ }
+ }
+
+ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
+ {
+ int base_offset;
+
+ if (BASETYPE_VIA_VIRTUAL (type, i))
+ {
+ if (TYPE_HAS_VTABLE (type))
+ {
+ /* HP aCC compiled type, search for virtual base offset
+ according to HP/Taligent runtime spec. */
+ int skip;
+ find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
+ VALUE_CONTENTS_ALL (*arg1p),
+ offset + VALUE_EMBEDDED_OFFSET (*arg1p),
+ &base_offset, &skip);
+ if (skip >= 0)
+ error ("Virtual base class offset not found in vtable");
+ }
+ else
+ {
+ struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
+ char *base_valaddr;
+
+ /* The virtual base class pointer might have been clobbered by the
+ user program. Make sure that it still points to a valid memory
+ location. */
+
+ if (offset < 0 || offset >= TYPE_LENGTH (type))
+ {
+ base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
+ if (target_read_memory (VALUE_ADDRESS (*arg1p)
+ + VALUE_OFFSET (*arg1p) + offset,
+ base_valaddr,
+ TYPE_LENGTH (baseclass)) != 0)
+ error ("virtual baseclass botch");
+ }
+ else
+ base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
+
+ base_offset =
+ baseclass_offset (type, i, base_valaddr,
+ VALUE_ADDRESS (*arg1p)
+ + VALUE_OFFSET (*arg1p) + offset);
+ if (base_offset == -1)
+ error ("virtual baseclass botch");
+ }
+ }
+ else
+ {
+ base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
+ }
+ v = search_struct_method (name, arg1p, args, base_offset + offset,
+ static_memfuncp, TYPE_BASECLASS (type, i));
+ if (v == (value_ptr) -1)
+ {
+ name_matched = 1;
+ }
+ else if (v)
+ {
+/* FIXME-bothner: Why is this commented out? Why is it here? */
+/* *arg1p = arg1_tmp;*/
+ return v;
+ }
+ }
+ if (name_matched) return (value_ptr) -1;
+ else return NULL;
+}
+
+/* Given *ARGP, a value of type (pointer to a)* structure/union,
+ extract the component named NAME from the ultimate target structure/union
+ and return it as a value with its appropriate type.
+ ERR is used in the error message if *ARGP's type is wrong.
+
+ C++: ARGS is a list of argument types to aid in the selection of
+ an appropriate method. Also, handle derived types.
+
+ STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
+ where the truthvalue of whether the function that was resolved was
+ a static member function or not is stored.
+
+ ERR is an error message to be printed in case the field is not found. */
+
+value_ptr
+value_struct_elt (argp, args, name, static_memfuncp, err)
+ register value_ptr *argp, *args;
+ char *name;
+ int *static_memfuncp;
+ char *err;
+{
+ register struct type *t;
+ value_ptr v;
+
+ COERCE_ARRAY (*argp);
+
+ t = check_typedef (VALUE_TYPE (*argp));
+
+ /* Follow pointers until we get to a non-pointer. */
+
+ while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
+ {
+ *argp = value_ind (*argp);
+ /* Don't coerce fn pointer to fn and then back again! */
+ if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
+ COERCE_ARRAY (*argp);
+ t = check_typedef (VALUE_TYPE (*argp));
+ }
+
+ if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
+ error ("not implemented: member type in value_struct_elt");
+
+ if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Attempt to extract a component of a value that is not a %s.", err);
+
+ /* Assume it's not, unless we see that it is. */
+ if (static_memfuncp)
+ *static_memfuncp =0;
+
+ if (!args)
+ {
+ /* if there are no arguments ...do this... */
+
+ /* Try as a field first, because if we succeed, there
+ is less work to be done. */
+ v = search_struct_field (name, *argp, 0, t, 0);
+ if (v)
+ return v;
+
+ /* C++: If it was not found as a data field, then try to
+ return it as a pointer to a method. */
+
+ if (destructor_name_p (name, t))
+ error ("Cannot get value of destructor");
+
+ v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
+
+ if (v == (value_ptr) -1)
+ error ("Cannot take address of a method");
+ else if (v == 0)
+ {
+ if (TYPE_NFN_FIELDS (t))
+ error ("There is no member or method named %s.", name);
+ else
+ error ("There is no member named %s.", name);
+ }
+ return v;
+ }
+
+ if (destructor_name_p (name, t))
+ {
+ if (!args[1])
+ {
+ /* Destructors are a special case. */
+ int m_index, f_index;
+
+ v = NULL;
+ if (get_destructor_fn_field (t, &m_index, &f_index))
+ {
+ v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
+ f_index, NULL, 0);
+ }
+ if (v == NULL)
+ error ("could not find destructor function named %s.", name);
+ else
+ return v;
+ }
+ else
+ {
+ error ("destructor should not have any argument");
+ }
+ }
+ else
+ v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
+
+ if (v == (value_ptr) -1)
+ {
+ error("Argument list of %s mismatch with component in the structure.", name);
+ }
+ else if (v == 0)
+ {
+ /* See if user tried to invoke data as function. If so,
+ hand it back. If it's not callable (i.e., a pointer to function),
+ gdb should give an error. */
+ v = search_struct_field (name, *argp, 0, t, 0);
+ }
+
+ if (!v)
+ error ("Structure has no component named %s.", name);
+ return v;
+}
+
+/* Search through the methods of an object (and its bases)
+ * to find a specified method. Return the pointer to the
+ * fn_field list of overloaded instances.
+ * Helper function for value_find_oload_list.
+ * ARGP is a pointer to a pointer to a value (the object)
+ * METHOD is a string containing the method name
+ * OFFSET is the offset within the value
+ * STATIC_MEMFUNCP is set if the method is static
+ * TYPE is the assumed type of the object
+ * NUM_FNS is the number of overloaded instances
+ * BASETYPE is set to the actual type of the subobject where the method is found
+ * BOFFSET is the offset of the base subobject where the method is found */
+
+struct fn_field *
+find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
+ value_ptr *argp;
+ char * method;
+ int offset;
+ int * static_memfuncp;
+ struct type * type;
+ int * num_fns;
+ struct type ** basetype;
+ int * boffset;
+{
+ int i;
+ struct fn_field * f;
+ CHECK_TYPEDEF (type);
+
+ *num_fns = 0;
+
+ /* First check in object itself */
+ for (i = TYPE_NFN_FIELDS (type) -1; i >= 0; i--)
+ {
+ /* pai: FIXME What about operators and type conversions? */
+ char * fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
+ if (fn_field_name && STREQ (fn_field_name, method))
+ {
+ *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
+ *basetype = type;
+ *boffset = offset;
+ return TYPE_FN_FIELDLIST1 (type, i);
+ }
+ }
+
+ /* Not found in object, check in base subobjects */
+ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
+ {
+ int base_offset;
+ if (BASETYPE_VIA_VIRTUAL (type, i))
+ {
+ if (TYPE_HAS_VTABLE (type))
+ {
+ /* HP aCC compiled type, search for virtual base offset
+ * according to HP/Taligent runtime spec. */
+ int skip;
+ find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
+ VALUE_CONTENTS_ALL (*argp),
+ offset + VALUE_EMBEDDED_OFFSET (*argp),
+ &base_offset, &skip);
+ if (skip >= 0)
+ error ("Virtual base class offset not found in vtable");
+ }
+ else
+ {
+ /* probably g++ runtime model */
+ base_offset = VALUE_OFFSET (*argp) + offset;
+ base_offset =
+ baseclass_offset (type, i,
+ VALUE_CONTENTS (*argp) + base_offset,
+ VALUE_ADDRESS (*argp) + base_offset);
+ if (base_offset == -1)
+ error ("virtual baseclass botch");
+ }
+ }
+ else /* non-virtual base, simply use bit position from debug info */
+ {
+ base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
+ }
+ f = find_method_list (argp, method, base_offset + offset,
+ static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
+ if (f)
+ return f;
+ }
+ return NULL;
+}
+
+/* Return the list of overloaded methods of a specified name.
+ * ARGP is a pointer to a pointer to a value (the object)
+ * METHOD is the method name
+ * OFFSET is the offset within the value contents
+ * STATIC_MEMFUNCP is set if the method is static
+ * NUM_FNS is the number of overloaded instances
+ * BASETYPE is set to the type of the base subobject that defines the method
+ * BOFFSET is the offset of the base subobject which defines the method */
+
+struct fn_field *
+value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
+ value_ptr *argp;
+ char * method;
+ int offset;
+ int * static_memfuncp;
+ int * num_fns;
+ struct type ** basetype;
+ int * boffset;
+{
+ struct type * t;
+ value_ptr v;
+
+ t = check_typedef (VALUE_TYPE (*argp));
+
+ /* code snarfed from value_struct_elt */
+ while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
+ {
+ *argp = value_ind (*argp);
+ /* Don't coerce fn pointer to fn and then back again! */
+ if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
+ COERCE_ARRAY (*argp);
+ t = check_typedef (VALUE_TYPE (*argp));
+ }
+
+ if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
+ error ("Not implemented: member type in value_find_oload_lis");
+
+ if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Attempt to extract a component of a value that is not a struct or union");
+
+ /* Assume it's not static, unless we see that it is. */
+ if (static_memfuncp)
+ *static_memfuncp =0;
+
+ return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
+
+}
+
+/* Given an array of argument types (ARGTYPES) (which includes an
+ entry for "this" in the case of C++ methods), the number of
+ arguments NARGS, the NAME of a function whether it's a method or
+ not (METHOD), and the degree of laxness (LAX) in conforming to
+ overload resolution rules in ANSI C++, find the best function that
+ matches on the argument types according to the overload resolution
+ rules.
+
+ In the case of class methods, the parameter OBJ is an object value
+ in which to search for overloaded methods.
+
+ In the case of non-method functions, the parameter FSYM is a symbol
+ corresponding to one of the overloaded functions.
+
+ Return value is an integer: 0 -> good match, 10 -> debugger applied
+ non-standard coercions, 100 -> incompatible.
+
+ If a method is being searched for, VALP will hold the value.
+ If a non-method is being searched for, SYMP will hold the symbol for it.
+
+ If a method is being searched for, and it is a static method,
+ then STATICP will point to a non-zero value.
+
+ Note: This function does *not* check the value of
+ overload_resolution. Caller must check it to see whether overload
+ resolution is permitted.
+ */
+
+int
+find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
+ struct type ** arg_types;
+ int nargs;
+ char * name;
+ int method;
+ int lax;
+ value_ptr obj;
+ struct symbol * fsym;
+ value_ptr * valp;
+ struct symbol ** symp;
+ int * staticp;
+{
+ int nparms;
+ struct type ** parm_types;
+ int champ_nparms = 0;
+
+ short oload_champ = -1; /* Index of best overloaded function */
+ short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
+ /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
+ short oload_ambig_champ = -1; /* 2nd contender for best match */
+ short oload_non_standard = 0; /* did we have to use non-standard conversions? */
+ short oload_incompatible = 0; /* are args supplied incompatible with any function? */
+
+ struct badness_vector * bv; /* A measure of how good an overloaded instance is */
+ struct badness_vector * oload_champ_bv = NULL; /* The measure for the current best match */
+
+ value_ptr temp = obj;
+ struct fn_field * fns_ptr = NULL; /* For methods, the list of overloaded methods */
+ struct symbol ** oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
+ int num_fns = 0; /* Number of overloaded instances being considered */
+ struct type * basetype = NULL;
+ int boffset;
+ register int jj;
+ register int ix;
+
+ char * obj_type_name = NULL;
+ char * func_name = NULL;
+
+ /* Get the list of overloaded methods or functions */
+ if (method)
+ {
+ obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
+ /* Hack: evaluate_subexp_standard often passes in a pointer
+ value rather than the object itself, so try again */
+ if ((!obj_type_name || !*obj_type_name) &&
+ (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
+ obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
+
+ fns_ptr = value_find_oload_method_list (&temp, name, 0,
+ staticp,
+ &num_fns,
+ &basetype, &boffset);
+ if (!fns_ptr || !num_fns)
+ error ("Couldn't find method %s%s%s",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ }
+ else
+ {
+ int i = -1;
+ func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
+
+ oload_syms = make_symbol_overload_list (fsym);
+ while (oload_syms[++i])
+ num_fns++;
+ if (!num_fns)
+ error ("Couldn't find function %s", func_name);
+ }
+
+ oload_champ_bv = NULL;
+
+ /* Consider each candidate in turn */
+ for (ix = 0; ix < num_fns; ix++)
+ {
+ int jj;
+
+ /* Number of parameters for current candidate */
+ nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type)
+ : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
+
+ /* Prepare array of parameter types */
+ parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
+ for (jj = 0; jj < nparms; jj++)
+ parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj)
+ : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj);
+
+ /* Compare parameter types to supplied argument types */
+ bv = rank_function (parm_types, nparms, arg_types, nargs);
+
+ if (!oload_champ_bv)
+ {
+ oload_champ_bv = bv;
+ oload_champ = 0;
+ champ_nparms = nparms;
+ }
+ else
+ /* See whether current candidate is better or worse than previous best */
+ switch (compare_badness (bv, oload_champ_bv))
+ {
+ case 0:
+ oload_ambiguous = 1; /* top two contenders are equally good */
+ oload_ambig_champ = ix;
+ break;
+ case 1:
+ oload_ambiguous = 2; /* incomparable top contenders */
+ oload_ambig_champ = ix;
+ break;
+ case 2:
+ oload_champ_bv = bv; /* new champion, record details */
+ oload_ambiguous = 0;
+ oload_champ = ix;
+ oload_ambig_champ = -1;
+ champ_nparms = nparms;
+ break;
+ case 3:
+ default:
+ break;
+ }
+ free (parm_types);
+#ifdef DEBUG_OLOAD
+ if (method)
+ printf("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
+ else
+ printf("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME(oload_syms[ix]),nparms);
+ for (jj = 0; jj <= nargs; jj++)
+ printf("...Badness @ %d : %d\n", jj, bv->rank[jj]);
+ printf("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
+#endif
+ } /* end loop over all candidates */
+
+ if (oload_ambiguous)
+ {
+ if (method)
+ error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ else
+ error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
+ func_name);
+ }
+
+ /* Check how bad the best match is */
+ for (ix = 1; ix <= nargs; ix++)
+ {
+ switch (oload_champ_bv->rank[ix])
+ {
+ case 10:
+ oload_non_standard = 1; /* non-standard type conversions needed */
+ break;
+ case 100:
+ oload_incompatible = 1; /* truly mismatched types */
+ break;
+ }
+ }
+ if (oload_incompatible)
+ {
+ if (method)
+ error ("Cannot resolve method %s%s%s to any overloaded instance",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ else
+ error ("Cannot resolve function %s to any overloaded instance",
+ func_name);
+ }
+ else if (oload_non_standard)
+ {
+ if (method)
+ warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ else
+ warning ("Using non-standard conversion to match function %s to supplied arguments",
+ func_name);
+ }
+
+ if (method)
+ {
+ if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
+ *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
+ else
+ *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
+ }
+ else
+ {
+ *symp = oload_syms[oload_champ];
+ free (func_name);
+ }
+
+ return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
+}
+
+/* C++: return 1 is NAME is a legitimate name for the destructor
+ of type TYPE. If TYPE does not have a destructor, or
+ if NAME is inappropriate for TYPE, an error is signaled. */
+int
+destructor_name_p (name, type)
+ const char *name;
+ const struct type *type;
+{
+ /* destructors are a special case. */
+
+ if (name[0] == '~')
+ {
+ char *dname = type_name_no_tag (type);
+ char *cp = strchr (dname, '<');
+ unsigned int len;
+
+ /* Do not compare the template part for template classes. */
+ if (cp == NULL)
+ len = strlen (dname);
+ else
+ len = cp - dname;
+ if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
+ error ("name of destructor must equal name of class");
+ else
+ return 1;
+ }
+ return 0;
+}
+
+/* Helper function for check_field: Given TYPE, a structure/union,
+ return 1 if the component named NAME from the ultimate
+ target structure/union is defined, otherwise, return 0. */
+
+static int
+check_field_in (type, name)
+ register struct type *type;
+ const char *name;
+{
+ register int i;
+
+ for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
+ {
+ char *t_field_name = TYPE_FIELD_NAME (type, i);
+ if (t_field_name && STREQ (t_field_name, name))
+ return 1;
+ }
+
+ /* C++: If it was not found as a data field, then try to
+ return it as a pointer to a method. */
+
+ /* Destructors are a special case. */
+ if (destructor_name_p (name, type))
+ {
+ int m_index, f_index;
+
+ return get_destructor_fn_field (type, &m_index, &f_index);
+ }
+
+ for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
+ {
+ if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
+ return 1;
+ }
+
+ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
+ if (check_field_in (TYPE_BASECLASS (type, i), name))
+ return 1;
+
+ return 0;
+}
+
+
+/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
+ return 1 if the component named NAME from the ultimate
+ target structure/union is defined, otherwise, return 0. */
+
+int
+check_field (arg1, name)
+ register value_ptr arg1;
+ const char *name;
+{
+ register struct type *t;
+
+ COERCE_ARRAY (arg1);
+
+ t = VALUE_TYPE (arg1);
+
+ /* Follow pointers until we get to a non-pointer. */
+
+ for (;;)
+ {
+ CHECK_TYPEDEF (t);
+ if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
+ break;
+ t = TYPE_TARGET_TYPE (t);
+ }
+
+ if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
+ error ("not implemented: member type in check_field");
+
+ if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Internal error: `this' is not an aggregate");
+
+ return check_field_in (t, name);
+}
+
+/* C++: Given an aggregate type CURTYPE, and a member name NAME,
+ return the address of this member as a "pointer to member"
+ type. If INTYPE is non-null, then it will be the type
+ of the member we are looking for. This will help us resolve
+ "pointers to member functions". This function is used
+ to resolve user expressions of the form "DOMAIN::NAME". */
+
+value_ptr
+value_struct_elt_for_reference (domain, offset, curtype, name, intype)
+ struct type *domain, *curtype, *intype;
+ int offset;
+ char *name;
+{
+ register struct type *t = curtype;
+ register int i;
+ value_ptr v;
+
+ if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
+
+ for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
+ {
+ char *t_field_name = TYPE_FIELD_NAME (t, i);
+
+ if (t_field_name && STREQ (t_field_name, name))
+ {
+ if (TYPE_FIELD_STATIC (t, i))
+ {
+ v = value_static_field (t, i);
+ if (v == NULL)
+ error ("Internal error: could not find static variable %s",
+ name);
+ return v;
+ }
+ if (TYPE_FIELD_PACKED (t, i))
+ error ("pointers to bitfield members not allowed");
+
+ return value_from_longest
+ (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
+ domain)),
+ offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
+ }
+ }
+
+ /* C++: If it was not found as a data field, then try to
+ return it as a pointer to a method. */
+
+ /* Destructors are a special case. */
+ if (destructor_name_p (name, t))
+ {
+ error ("member pointers to destructors not implemented yet");
+ }
+
+ /* Perform all necessary dereferencing. */
+ while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
+ intype = TYPE_TARGET_TYPE (intype);
+
+ for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
+ {
+ char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
+ char dem_opname[64];
+
+ if (strncmp(t_field_name, "__", 2)==0 ||
+ strncmp(t_field_name, "op", 2)==0 ||
+ strncmp(t_field_name, "type", 4)==0 )
+ {
+ if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
+ t_field_name = dem_opname;
+ else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
+ t_field_name = dem_opname;
+ }
+ if (t_field_name && STREQ (t_field_name, name))
+ {
+ int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
+ struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
+
+ if (intype == 0 && j > 1)
+ error ("non-unique member `%s' requires type instantiation", name);
+ if (intype)
+ {
+ while (j--)
+ if (TYPE_FN_FIELD_TYPE (f, j) == intype)
+ break;
+ if (j < 0)
+ error ("no member function matches that type instantiation");
+ }
+ else
+ j = 0;
+
+ if (TYPE_FN_FIELD_STUB (f, j))
+ check_stub_method (t, i, j);
+ if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
+ {
+ return value_from_longest
+ (lookup_reference_type
+ (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
+ domain)),
+ (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
+ }
+ else
+ {
+ struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
+ 0, VAR_NAMESPACE, 0, NULL);
+ if (s == NULL)
+ {
+ v = 0;
+ }
+ else
+ {
+ v = read_var_value (s, 0);
+#if 0
+ VALUE_TYPE (v) = lookup_reference_type
+ (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
+ domain));
+#endif
+ }
+ return v;
+ }
+ }
+ }
+ for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
+ {
+ value_ptr v;
+ int base_offset;
+
+ if (BASETYPE_VIA_VIRTUAL (t, i))
+ base_offset = 0;
+ else
+ base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
+ v = value_struct_elt_for_reference (domain,
+ offset + base_offset,
+ TYPE_BASECLASS (t, i),
+ name,
+ intype);
+ if (v)
+ return v;
+ }
+ return 0;
+}
+
+
+/* Find the real run-time type of a value using RTTI.
+ * V is a pointer to the value.
+ * A pointer to the struct type entry of the run-time type
+ * is returneed.
+ * FULL is a flag that is set only if the value V includes
+ * the entire contents of an object of the RTTI type.
+ * TOP is the offset to the top of the enclosing object of
+ * the real run-time type. This offset may be for the embedded
+ * object, or for the enclosing object of V.
+ * USING_ENC is the flag that distinguishes the two cases.
+ * If it is 1, then the offset is for the enclosing object,
+ * otherwise for the embedded object.
+ *
+ * This currently works only for RTTI information generated
+ * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
+ * does not appear to support RTTI. This function returns a
+ * NULL value for objects in the g++ runtime model. */
+
+struct type *
+value_rtti_type (v, full, top, using_enc)
+ value_ptr v;
+ int * full;
+ int * top;
+ int * using_enc;
+{
+ struct type * known_type;
+ struct type * rtti_type;
+ CORE_ADDR coreptr;
+ value_ptr vp;
+ int using_enclosing = 0;
+ long top_offset = 0;
+ char rtti_type_name[256];
+
+ if (full)
+ *full = 0;
+ if (top)
+ *top = -1;
+ if (using_enc)
+ *using_enc = 0;
+
+ /* Get declared type */
+ known_type = VALUE_TYPE (v);
+ CHECK_TYPEDEF (known_type);
+ /* RTTI works only or class objects */
+ if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
+ return NULL;
+
+ /* If neither the declared type nor the enclosing type of the
+ * value structure has a HP ANSI C++ style virtual table,
+ * we can't do anything. */
+ if (!TYPE_HAS_VTABLE (known_type))
+ {
+ known_type = VALUE_ENCLOSING_TYPE (v);
+ CHECK_TYPEDEF (known_type);
+ if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
+ !TYPE_HAS_VTABLE (known_type))
+ return NULL; /* No RTTI, or not HP-compiled types */
+ CHECK_TYPEDEF (known_type);
+ using_enclosing = 1;
+ }
+
+ if (using_enclosing && using_enc)
+ *using_enc = 1;
+
+ /* First get the virtual table address */
+ coreptr = * (CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
+ + VALUE_OFFSET (v)
+ + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
+ if (coreptr == 0)
+ return NULL; /* return silently -- maybe called on gdb-generated value */
+
+ /* Fetch the top offset of the object */
+ /* FIXME possible 32x64 problem with pointer size & arithmetic */
+ vp = value_at (builtin_type_int,
+ coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
+ VALUE_BFD_SECTION (v));
+ top_offset = value_as_long (vp);
+ if (top)
+ *top = top_offset;
+
+ /* Fetch the typeinfo pointer */
+ /* FIXME possible 32x64 problem with pointer size & arithmetic */
+ vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
+ /* Indirect through the typeinfo pointer and retrieve the pointer
+ * to the string name */
+ coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
+ if (!coreptr)
+ error ("Retrieved null typeinfo pointer in trying to determine run-time type");
+ vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
+ /* FIXME possible 32x64 problem */
+
+ coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
+
+ read_memory_string (coreptr, rtti_type_name, 256);
+
+ if (strlen (rtti_type_name) == 0)
+ error ("Retrieved null type name from typeinfo");
+
+ /* search for type */
+ rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
+
+ if (!rtti_type)
+ error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
+ CHECK_TYPEDEF (rtti_type);
+
+#if 0 /* debugging*/
+ printf("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
+#endif
+
+ /* Check whether we have the entire object */
+ if (full /* Non-null pointer passed */
+
+ &&
+ /* Either we checked on the whole object in hand and found the
+ top offset to be zero */
+ (((top_offset == 0) &&
+ using_enclosing &&
+ TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
+ ||
+ /* Or we checked on the embedded object and top offset was the
+ same as the embedded offset */
+ ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
+ !using_enclosing &&
+ TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
+
+ *full = 1;
+
+ return rtti_type;
+}
+
+/* Given a pointer value V, find the real (RTTI) type
+ of the object it points to.
+ Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
+ and refer to the values computed for the object pointed to. */
+
+struct type *
+value_rtti_target_type (v, full, top, using_enc)
+ value_ptr v;
+ int * full;
+ int * top;
+ int * using_enc;
+{
+ value_ptr target;
+
+ target = value_ind (v);
+
+ return value_rtti_type (target, full, top, using_enc);
+}
+
+/* Given a value pointed to by ARGP, check its real run-time type, and
+ if that is different from the enclosing type, create a new value
+ using the real run-time type as the enclosing type (and of the same
+ type as ARGP) and return it, with the embedded offset adjusted to
+ be the correct offset to the enclosed object
+ RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
+ parameters, computed by value_rtti_type(). If these are available,
+ they can be supplied and a second call to value_rtti_type() is avoided.
+ (Pass RTYPE == NULL if they're not available */
+
+value_ptr
+value_full_object (argp, rtype, xfull, xtop, xusing_enc)
+ value_ptr argp;
+ struct type * rtype;
+ int xfull;
+ int xtop;
+ int xusing_enc;
+
+{
+ struct type * real_type;
+ int full = 0;
+ int top = -1;
+ int using_enc = 0;
+ value_ptr new_val;
+
+ if (rtype)
+ {
+ real_type = rtype;
+ full = xfull;
+ top = xtop;
+ using_enc = xusing_enc;
+ }
+ else
+ real_type = value_rtti_type (argp, &full, &top, &using_enc);
+
+ /* If no RTTI data, or if object is already complete, do nothing */
+ if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
+ return argp;
+
+ /* If we have the full object, but for some reason the enclosing
+ type is wrong, set it */ /* pai: FIXME -- sounds iffy */
+ if (full)
+ {
+ VALUE_ENCLOSING_TYPE (argp) = real_type;
+ return argp;
+ }
+
+ /* Check if object is in memory */
+ if (VALUE_LVAL (argp) != lval_memory)
+ {
+ warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
+
+ return argp;
+ }
+
+ /* All other cases -- retrieve the complete object */
+ /* Go back by the computed top_offset from the beginning of the object,
+ adjusting for the embedded offset of argp if that's what value_rtti_type
+ used for its computation. */
+ new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
+ (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
+ VALUE_BFD_SECTION (argp));
+ VALUE_TYPE (new_val) = VALUE_TYPE (argp);
+ VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
+ return new_val;
+}
+
+
+
+
+/* C++: return the value of the class instance variable, if one exists.
+ Flag COMPLAIN signals an error if the request is made in an
+ inappropriate context. */
+
+value_ptr
+value_of_this (complain)
+ int complain;
+{
+ struct symbol *func, *sym;
+ struct block *b;
+ int i;
+ static const char funny_this[] = "this";
+ value_ptr this;
+
+ if (selected_frame == 0)
+ {
+ if (complain)
+ error ("no frame selected");
+ else return 0;
+ }
+
+ func = get_frame_function (selected_frame);
+ if (!func)
+ {
+ if (complain)
+ error ("no `this' in nameless context");
+ else return 0;
+ }
+
+ b = SYMBOL_BLOCK_VALUE (func);
+ i = BLOCK_NSYMS (b);
+ if (i <= 0)
+ {
+ if (complain)
+ error ("no args, no `this'");
+ else return 0;
+ }
+
+ /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
+ symbol instead of the LOC_ARG one (if both exist). */
+ sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
+ if (sym == NULL)
+ {
+ if (complain)
+ error ("current stack frame not in method");
+ else
+ return NULL;
+ }
+
+ this = read_var_value (sym, selected_frame);
+ if (this == 0 && complain)
+ error ("`this' argument at unknown address");
+ return this;
+}
+
+/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
+ long, starting at LOWBOUND. The result has the same lower bound as
+ the original ARRAY. */
+
+value_ptr
+value_slice (array, lowbound, length)
+ value_ptr array;
+ int lowbound, length;
+{
+ struct type *slice_range_type, *slice_type, *range_type;
+ LONGEST lowerbound, upperbound, offset;
+ value_ptr slice;
+ struct type *array_type;
+ array_type = check_typedef (VALUE_TYPE (array));
+ COERCE_VARYING_ARRAY (array, array_type);
+ if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
+ && TYPE_CODE (array_type) != TYPE_CODE_STRING
+ && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
+ error ("cannot take slice of non-array");
+ range_type = TYPE_INDEX_TYPE (array_type);
+ if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
+ error ("slice from bad array or bitstring");
+ if (lowbound < lowerbound || length < 0
+ || lowbound + length - 1 > upperbound
+ /* Chill allows zero-length strings but not arrays. */
+ || (current_language->la_language == language_chill
+ && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
+ error ("slice out of range");
+ /* FIXME-type-allocation: need a way to free this type when we are
+ done with it. */
+ slice_range_type = create_range_type ((struct type*) NULL,
+ TYPE_TARGET_TYPE (range_type),
+ lowbound, lowbound + length - 1);
+ if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
+ {
+ int i;
+ slice_type = create_set_type ((struct type*) NULL, slice_range_type);
+ TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
+ slice = value_zero (slice_type, not_lval);
+ for (i = 0; i < length; i++)
+ {
+ int element = value_bit_index (array_type,
+ VALUE_CONTENTS (array),
+ lowbound + i);
+ if (element < 0)
+ error ("internal error accessing bitstring");
+ else if (element > 0)
+ {
+ int j = i % TARGET_CHAR_BIT;
+ if (BITS_BIG_ENDIAN)
+ j = TARGET_CHAR_BIT - 1 - j;
+ VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
+ }
+ }
+ /* We should set the address, bitssize, and bitspos, so the clice
+ can be used on the LHS, but that may require extensions to
+ value_assign. For now, just leave as a non_lval. FIXME. */
+ }
+ else
+ {
+ struct type *element_type = TYPE_TARGET_TYPE (array_type);
+ offset
+ = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
+ slice_type = create_array_type ((struct type*) NULL, element_type,
+ slice_range_type);
+ TYPE_CODE (slice_type) = TYPE_CODE (array_type);
+ slice = allocate_value (slice_type);
+ if (VALUE_LAZY (array))
+ VALUE_LAZY (slice) = 1;
+ else
+ memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
+ TYPE_LENGTH (slice_type));
+ if (VALUE_LVAL (array) == lval_internalvar)
+ VALUE_LVAL (slice) = lval_internalvar_component;
+ else
+ VALUE_LVAL (slice) = VALUE_LVAL (array);
+ VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
+ VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
+ }
+ return slice;
+}
+
+/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
+ value as a fixed-length array. */
+
+value_ptr
+varying_to_slice (varray)
+ value_ptr varray;
+{
+ struct type *vtype = check_typedef (VALUE_TYPE (varray));
+ LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
+ VALUE_CONTENTS (varray)
+ + TYPE_FIELD_BITPOS (vtype, 0) / 8);
+ return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
+}
+
+/* Create a value for a FORTRAN complex number. Currently most of
+ the time values are coerced to COMPLEX*16 (i.e. a complex number
+ composed of 2 doubles. This really should be a smarter routine
+ that figures out precision inteligently as opposed to assuming
+ doubles. FIXME: fmb */
+
+value_ptr
+value_literal_complex (arg1, arg2, type)
+ value_ptr arg1;
+ value_ptr arg2;
+ struct type *type;
+{
+ register value_ptr val;
+ struct type *real_type = TYPE_TARGET_TYPE (type);
+
+ val = allocate_value (type);
+ arg1 = value_cast (real_type, arg1);
+ arg2 = value_cast (real_type, arg2);
+
+ memcpy (VALUE_CONTENTS_RAW (val),
+ VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
+ memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
+ VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
+ return val;
+}
+
+/* Cast a value into the appropriate complex data type. */
+
+static value_ptr
+cast_into_complex (type, val)
+ struct type *type;
+ register value_ptr val;
+{
+ struct type *real_type = TYPE_TARGET_TYPE (type);
+ if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
+ {
+ struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
+ value_ptr re_val = allocate_value (val_real_type);
+ value_ptr im_val = allocate_value (val_real_type);
+
+ memcpy (VALUE_CONTENTS_RAW (re_val),
+ VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
+ memcpy (VALUE_CONTENTS_RAW (im_val),
+ VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
+ TYPE_LENGTH (val_real_type));
+
+ return value_literal_complex (re_val, im_val, type);
+ }
+ else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
+ || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
+ return value_literal_complex (val, value_zero (real_type, not_lval), type);
+ else
+ error ("cannot cast non-number to complex");
+}
+
+void
+_initialize_valops ()
+{
+#if 0
+ add_show_from_set
+ (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
+ "Set automatic abandonment of expressions upon failure.",
+ &setlist),
+ &showlist);
+#endif
+
+ add_show_from_set
+ (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *)&overload_resolution,
+ "Set overload resolution in evaluating C++ functions.",
+ &setlist),
+ &showlist);
+ overload_resolution = 1;
+
+}
OpenPOWER on IntegriCloud