summaryrefslogtreecommitdiffstats
path: root/docs/gmock_cheat_sheet.md
blob: c13d85d45ab08c08de0caa154b7f7802c4ebee52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
# gMock Cheat Sheet

<!-- GOOGLETEST_CM0019 DO NOT DELETE -->

<!-- GOOGLETEST_CM0035 DO NOT DELETE -->

<!-- GOOGLETEST_CM0033 DO NOT DELETE -->

## Defining a Mock Class

### Mocking a Normal Class {#MockClass}

Given

```cpp
class Foo {
  ...
  virtual ~Foo();
  virtual int GetSize() const = 0;
  virtual string Describe(const char* name) = 0;
  virtual string Describe(int type) = 0;
  virtual bool Process(Bar elem, int count) = 0;
};
```

(note that `~Foo()` **must** be virtual) we can define its mock as

```cpp
#include "gmock/gmock.h"

class MockFoo : public Foo {
  ...
  MOCK_METHOD(int, GetSize, (), (const, override));
  MOCK_METHOD(string, Describe, (const char* name), (override));
  MOCK_METHOD(string, Describe, (int type), (override));
  MOCK_METHOD(bool, Process, (Bar elem, int count), (override));
};
```

To create a "nice" mock, which ignores all uninteresting calls, a "naggy" mock,
which warns on all uninteresting calls, or a "strict" mock, which treats them as
failures:

```cpp
using ::testing::NiceMock;
using ::testing::NaggyMock;
using ::testing::StrictMock;

NiceMock<MockFoo> nice_foo;      // The type is a subclass of MockFoo.
NaggyMock<MockFoo> naggy_foo;    // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo;  // The type is a subclass of MockFoo.
```

**Note:** A mock object is currently naggy by default. We may make it nice by
default in the future.

### Mocking a Class Template {#MockTemplate}

Class templates can be mocked just like any class.

To mock

```cpp
template <typename Elem>
class StackInterface {
  ...
  virtual ~StackInterface();
  virtual int GetSize() const = 0;
  virtual void Push(const Elem& x) = 0;
};
```

(note that all member functions that are mocked, including `~StackInterface()`
**must** be virtual).

```cpp
template <typename Elem>
class MockStack : public StackInterface<Elem> {
  ...
  MOCK_METHOD(int, GetSize, (), (const, override));
  MOCK_METHOD(void, Push, (const Elem& x), (override));
};
```

### Specifying Calling Conventions for Mock Functions

If your mock function doesn't use the default calling convention, you can
specify it by adding `Calltype(convention)` to `MOCK_METHOD`'s 4th parameter.
For example,

```cpp
  MOCK_METHOD(bool, Foo, (int n), (Calltype(STDMETHODCALLTYPE)));
  MOCK_METHOD(int, Bar, (double x, double y),
              (const, Calltype(STDMETHODCALLTYPE)));
```

where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.

## Using Mocks in Tests {#UsingMocks}

The typical work flow is:

1.  Import the gMock names you need to use. All gMock symbols are in the
    `testing` namespace unless they are macros or otherwise noted.
2.  Create the mock objects.
3.  Optionally, set the default actions of the mock objects.
4.  Set your expectations on the mock objects (How will they be called? What
    will they do?).
5.  Exercise code that uses the mock objects; if necessary, check the result
    using googletest assertions.
6.  When a mock object is destructed, gMock automatically verifies that all
    expectations on it have been satisfied.

Here's an example:

```cpp
using ::testing::Return;                          // #1

TEST(BarTest, DoesThis) {
  MockFoo foo;                                    // #2

  ON_CALL(foo, GetSize())                         // #3
      .WillByDefault(Return(1));
  // ... other default actions ...

  EXPECT_CALL(foo, Describe(5))                   // #4
      .Times(3)
      .WillRepeatedly(Return("Category 5"));
  // ... other expectations ...

  EXPECT_EQ("good", MyProductionFunction(&foo));  // #5
}                                                 // #6
```

## Setting Default Actions {#OnCall}

gMock has a **built-in default action** for any function that returns `void`,
`bool`, a numeric value, or a pointer. In C++11, it will additionally returns
the default-constructed value, if one exists for the given type.

To customize the default action for functions with return type *`T`*:

```cpp
using ::testing::DefaultValue;

// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
//  T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
```

Example usage:

```cpp
  // Sets the default action for return type std::unique_ptr<Buzz> to
  // creating a new Buzz every time.
  DefaultValue<std::unique_ptr<Buzz>>::SetFactory(
      [] { return MakeUnique<Buzz>(AccessLevel::kInternal); });

  // When this fires, the default action of MakeBuzz() will run, which
  // will return a new Buzz object.
  EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")).Times(AnyNumber());

  auto buzz1 = mock_buzzer_.MakeBuzz("hello");
  auto buzz2 = mock_buzzer_.MakeBuzz("hello");
  EXPECT_NE(nullptr, buzz1);
  EXPECT_NE(nullptr, buzz2);
  EXPECT_NE(buzz1, buzz2);

  // Resets the default action for return type std::unique_ptr<Buzz>,
  // to avoid interfere with other tests.
  DefaultValue<std::unique_ptr<Buzz>>::Clear();
```

To customize the default action for a particular method of a specific mock
object, use `ON_CALL()`. `ON_CALL()` has a similar syntax to `EXPECT_CALL()`,
but it is used for setting default behaviors (when you do not require that the
mock method is called). See [here](gmock_cook_book.md#UseOnCall) for a more detailed
discussion.

```cpp
ON_CALL(mock-object, method(matchers))
    .With(multi-argument-matcher)   ?
    .WillByDefault(action);
```

## Setting Expectations {#ExpectCall}

`EXPECT_CALL()` sets **expectations** on a mock method (How will it be called?
What will it do?):

```cpp
EXPECT_CALL(mock-object, method (matchers)?)
     .With(multi-argument-matcher)  ?
     .Times(cardinality)            ?
     .InSequence(sequences)         *
     .After(expectations)           *
     .WillOnce(action)              *
     .WillRepeatedly(action)        ?
     .RetiresOnSaturation();        ?
```

For each item above, `?` means it can be used at most once, while `*` means it
can be used any number of times.

In order to pass, `EXPECT_CALL` must be used before the calls are actually made.

The `(matchers)` is a comma-separated list of matchers that correspond to each
of the arguments of `method`, and sets the expectation only for calls of
`method` that matches all of the matchers.

If `(matchers)` is omitted, the expectation is the same as if the matchers were
set to anything matchers (for example, `(_, _, _, _)` for a four-arg method).

If `Times()` is omitted, the cardinality is assumed to be:

*   `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
*   `Times(n)` when there are `n` `WillOnce()`s but no `WillRepeatedly()`, where
    `n` >= 1; or
*   `Times(AtLeast(n))` when there are `n` `WillOnce()`s and a
    `WillRepeatedly()`, where `n` >= 0.

A method with no `EXPECT_CALL()` is free to be invoked *any number of times*,
and the default action will be taken each time.

## Matchers {#MatcherList}

<!-- GOOGLETEST_CM0020 DO NOT DELETE -->

A **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
`EXPECT_CALL()`, or use it to validate a value directly using two macros:

<!-- mdformat off(github rendering does not support multiline tables) -->
| Macro                                | Description                           |
| :----------------------------------- | :------------------------------------ |
| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. |
| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. |
<!-- mdformat on -->

**Note:** Although equality matching via `EXPECT_THAT(actual_value,
expected_value)` is supported, prefer to make the comparison explicit via
`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value,
expected_value)`.

Built-in matchers (where `argument` is the function argument, e.g.
`actual_value` in the example above, or when used in the context of
`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are
divided into several categories:

### Wildcard

Matcher                     | Description
:-------------------------- | :-----------------------------------------------
`_`                         | `argument` can be any value of the correct type.
`A<type>()` or `An<type>()` | `argument` can be any value of type `type`.

### Generic Comparison

<!-- mdformat off(no multiline tables) -->
| Matcher                | Description                                         |
| :--------------------- | :-------------------------------------------------- |
| `Eq(value)` or `value` | `argument == value`                                 |
| `Ge(value)`            | `argument >= value`                                 |
| `Gt(value)`            | `argument > value`                                  |
| `Le(value)`            | `argument <= value`                                 |
| `Lt(value)`            | `argument < value`                                  |
| `Ne(value)`            | `argument != value`                                 |
| `IsFalse()`            | `argument` evaluates to `false` in a Boolean context. |
| `IsTrue()`             | `argument` evaluates to `true` in a Boolean context. |
| `IsNull()`             | `argument` is a `NULL` pointer (raw or smart).      |
| `NotNull()`            | `argument` is a non-null pointer (raw or smart).    |
| `Optional(m)`          | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
| `VariantWith<T>(m)`    | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
| `Ref(variable)`        | `argument` is a reference to `variable`.            |
| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
<!-- mdformat on -->

Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or
destructed later. If the compiler complains that `value` doesn't have a public
copy constructor, try wrap it in `std::ref()`, e.g.
`Eq(std::ref(non_copyable_value))`. If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your matcher
will be changed.

`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
that can be explicitly converted to Boolean, but are not implicitly converted to
Boolean. In other cases, you can use the basic
[`EXPECT_TRUE` and `EXPECT_FALSE`](../../googletest/docs/primer#basic-assertions)
assertions.

### Floating-Point Matchers {#FpMatchers}

<!-- mdformat off(no multiline tables) -->
| Matcher                          | Description                        |
| :------------------------------- | :--------------------------------- |
| `DoubleEq(a_double)`             | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. |
| `FloatEq(a_float)`               | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
| `NanSensitiveFloatEq(a_float)`   | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
| `IsNan()`   | `argument` is any floating-point type with a NaN value. |
<!-- mdformat on -->

The above matchers use ULP-based comparison (the same as used in googletest).
They automatically pick a reasonable error bound based on the absolute value of
the expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
which requires comparing two NaNs for equality to return false. The
`NanSensitive*` version instead treats two NaNs as equal, which is often what a
user wants.

<!-- mdformat off(no multiline tables) -->
| Matcher                                           | Description              |
| :------------------------------------------------ | :----------------------- |
| `DoubleNear(a_double, max_abs_error)`             | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
| `FloatNear(a_float, max_abs_error)`               | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
| `NanSensitiveFloatNear(a_float, max_abs_error)`   | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
<!-- mdformat on -->

### String Matchers

The `argument` can be either a C string or a C++ string object:

<!-- mdformat off(no multiline tables) -->
| Matcher                 | Description                                        |
| :---------------------- | :------------------------------------------------- |
| `ContainsRegex(string)` | `argument` matches the given regular expression.   |
| `EndsWith(suffix)`      | `argument` ends with string `suffix`.              |
| `HasSubstr(string)`     | `argument` contains `string` as a sub-string.      |
| `MatchesRegex(string)`  | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
| `StartsWith(prefix)`    | `argument` starts with string `prefix`.            |
| `StrCaseEq(string)`     | `argument` is equal to `string`, ignoring case.    |
| `StrCaseNe(string)`     | `argument` is not equal to `string`, ignoring case. |
| `StrEq(string)`         | `argument` is equal to `string`.                   |
| `StrNe(string)`         | `argument` is not equal to `string`.               |
<!-- mdformat on -->

`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
use the regular expression syntax defined
[here](../../googletest/docs/advanced.md#regular-expression-syntax). All of
these matchers, except `ContainsRegex()` and `MatchesRegex()` work for wide
strings as well.

### Container Matchers

Most STL-style containers support `==`, so you can use `Eq(expected_container)`
or simply `expected_container` to match a container exactly. If you want to
write the elements in-line, match them more flexibly, or get more informative
messages, you can use:

<!-- mdformat off(no multiline tables) -->
| Matcher                                   | Description                      |
| :---------------------------------------- | :------------------------------- |
| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. |
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. |
| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. |
| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. |
| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. |
| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
<!-- mdformat on -->

**Notes:**

*   These matchers can also match:
    1.  a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
        and
    2.  an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
        int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
*   The array being matched may be multi-dimensional (i.e. its elements can be
    arrays).
*   `m` in `Pointwise(m, ...)` should be a matcher for `::std::tuple<T, U>`
    where `T` and `U` are the element type of the actual container and the
    expected container, respectively. For example, to compare two `Foo`
    containers where `Foo` doesn't support `operator==`, one might write:

    ```cpp
    using ::std::get;
    MATCHER(FooEq, "") {
      return std::get<0>(arg).Equals(std::get<1>(arg));
    }
    ...
    EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
    ```

### Member Matchers

<!-- mdformat off(no multiline tables) -->
| Matcher                         | Description                                |
| :------------------------------ | :----------------------------------------- |
| `Field(&class::field, m)`       | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
| `Key(e)`                        | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
| `Pair(m1, m2)`                  | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
| `FieldsAre(m...)`                   | `argument` is a compatible object where each field matches piecewise with `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
<!-- mdformat on -->

### Matching the Result of a Function, Functor, or Callback

<!-- mdformat off(no multiline tables) -->
| Matcher          | Description                                       |
| :--------------- | :------------------------------------------------ |
| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. |
<!-- mdformat on -->

### Pointer Matchers

<!-- mdformat off(no multiline tables) -->
| Matcher                   | Description                                     |
| :------------------------ | :---------------------------------------------- |
| `Address(m)`              | the result of `std::addressof(argument)` matches `m`. |
| `Pointee(m)`              | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
| `Pointer(m)`              | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
<!-- mdformat on -->

<!-- GOOGLETEST_CM0026 DO NOT DELETE -->

<!-- GOOGLETEST_CM0027 DO NOT DELETE -->

### Multi-argument Matchers {#MultiArgMatchers}

Technically, all matchers match a *single* value. A "multi-argument" matcher is
just one that matches a *tuple*. The following matchers can be used to match a
tuple `(x, y)`:

Matcher | Description
:------ | :----------
`Eq()`  | `x == y`
`Ge()`  | `x >= y`
`Gt()`  | `x > y`
`Le()`  | `x <= y`
`Lt()`  | `x < y`
`Ne()`  | `x != y`

You can use the following selectors to pick a subset of the arguments (or
reorder them) to participate in the matching:

<!-- mdformat off(no multiline tables) -->
| Matcher                    | Description                                     |
| :------------------------- | :---------------------------------------------- |
| `AllArgs(m)`               | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. |
| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. |
<!-- mdformat on -->

### Composite Matchers

You can make a matcher from one or more other matchers:

<!-- mdformat off(no multiline tables) -->
| Matcher                          | Description                             |
| :------------------------------- | :-------------------------------------- |
| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
| `Not(m)` | `argument` doesn't match matcher `m`. |
<!-- mdformat on -->

<!-- GOOGLETEST_CM0028 DO NOT DELETE -->

### Adapters for Matchers

<!-- mdformat off(no multiline tables) -->
| Matcher                 | Description                           |
| :---------------------- | :------------------------------------ |
| `MatcherCast<T>(m)`     | casts matcher `m` to type `Matcher<T>`. |
| `SafeMatcherCast<T>(m)` | [safely casts](gmock_cook_book.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
| `Truly(predicate)`      | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. |
<!-- mdformat on -->

`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
which must be a permanent callback.

### Using Matchers as Predicates {#MatchersAsPredicatesCheat}

<!-- mdformat off(no multiline tables) -->
| Matcher                       | Description                                 |
| :---------------------------- | :------------------------------------------ |
| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. |
| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
| `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
<!-- mdformat on -->

### Defining Matchers

<!-- mdformat off(no multiline tables) -->
| Matcher                              | Description                           |
| :----------------------------------- | :------------------------------------ |
| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
<!-- mdformat on -->

**Notes:**

1.  The `MATCHER*` macros cannot be used inside a function or class.
2.  The matcher body must be *purely functional* (i.e. it cannot have any side
    effect, and the result must not depend on anything other than the value
    being matched and the matcher parameters).
3.  You can use `PrintToString(x)` to convert a value `x` of any type to a
    string.

## Actions {#ActionList}

**Actions** specify what a mock function should do when invoked.

### Returning a Value

<!-- mdformat off(no multiline tables) -->
|                                   |                                               |
| :-------------------------------- | :-------------------------------------------- |
| `Return()`                        | Return from a `void` mock function.           |
| `Return(value)`                   | Return `value`. If the type of `value` is     different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed. |
| `ReturnArg<N>()`                  | Return the `N`-th (0-based) argument.         |
| `ReturnNew<T>(a1, ..., ak)`       | Return `new T(a1, ..., ak)`; a different      object is created each time. |
| `ReturnNull()`                    | Return a null pointer.                        |
| `ReturnPointee(ptr)`              | Return the value pointed to by `ptr`.         |
| `ReturnRef(variable)`             | Return a reference to `variable`.             |
| `ReturnRefOfCopy(value)`          | Return a reference to a copy of `value`; the  copy lives as long as the action. |
| `ReturnRoundRobin({a1, ..., ak})` | Each call will return the next `ai` in the list, starting at the beginning when the end of the list is reached. |
<!-- mdformat on -->

### Side Effects

<!-- mdformat off(no multiline tables) -->
|                                    |                                         |
| :--------------------------------- | :-------------------------------------- |
| `Assign(&variable, value)` | Assign `value` to variable. |
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
| `SetArgReferee<N>(value)` | Assign `value` to the variable referenced by the `N`-th (0-based) argument. |
| `SetArgPointee<N>(value)` | Assign `value` to the variable pointed by the `N`-th (0-based) argument. |
| `SetArgumentPointee<N>(value)` | Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0. |
| `SetArrayArgument<N>(first, last)` | Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range. |
| `SetErrnoAndReturn(error, value)` | Set `errno` to `error` and return `value`. |
| `Throw(exception)` | Throws the given exception, which can be any copyable value. Available since v1.1.0. |
<!-- mdformat on -->

### Using a Function, Functor, or Lambda as an Action

In the following, by "callable" we mean a free function, `std::function`,
functor, or lambda.

<!-- mdformat off(no multiline tables) -->
|                                     |                                        |
| :---------------------------------- | :------------------------------------- |
| `f` | Invoke f with the arguments passed to the mock function, where f is a callable. |
| `Invoke(f)` | Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor. |
| `Invoke(object_pointer, &class::method)` | Invoke the method on the object with the arguments passed to the mock function. |
| `InvokeWithoutArgs(f)` | Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
| `InvokeWithoutArgs(object_pointer, &class::method)` | Invoke the method on the object, which takes no arguments. |
| `InvokeArgument<N>(arg1, arg2, ..., argk)` | Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments. |
<!-- mdformat on -->

The return value of the invoked function is used as the return value of the
action.

When defining a callable to be used with `Invoke*()`, you can declare any unused
parameters as `Unused`:

```cpp
using ::testing::Invoke;
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
...
EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
```

`Invoke(callback)` and `InvokeWithoutArgs(callback)` take ownership of
`callback`, which must be permanent. The type of `callback` must be a base
callback type instead of a derived one, e.g.

```cpp
  BlockingClosure* done = new BlockingClosure;
  ... Invoke(done) ...;  // This won't compile!

  Closure* done2 = new BlockingClosure;
  ... Invoke(done2) ...;  // This works.
```

In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference,
wrap it inside `std::ref()`. For example,

```cpp
using ::testing::InvokeArgument;
...
InvokeArgument<2>(5, string("Hi"), std::ref(foo))
```

calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by
value, and `foo` by reference.

### Default Action

<!-- mdformat off(no multiline tables) -->
| Matcher       | Description                                            |
| :------------ | :----------------------------------------------------- |
| `DoDefault()` | Do the default action (specified by `ON_CALL()` or the built-in one). |
<!-- mdformat on -->

**Note:** due to technical reasons, `DoDefault()` cannot be used inside a
composite action - trying to do so will result in a run-time error.

<!-- GOOGLETEST_CM0032 DO NOT DELETE -->

### Composite Actions

<!-- mdformat off(no multiline tables) -->
|                                |                                             |
| :----------------------------- | :------------------------------------------ |
| `DoAll(a1, a2, ..., an)`       | Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void and will receive a  readonly view of the arguments. |
| `IgnoreResult(a)`              | Perform action `a` and ignore its result. `a` must not return void. |
| `WithArg<N>(a)`                | Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
| `WithArgs<N1, N2, ..., Nk>(a)` | Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
| `WithoutArgs(a)`               | Perform action `a` without any arguments. |
<!-- mdformat on -->

### Defining Actions

<!-- mdformat off(no multiline tables) -->
|                                    |                                         |
| :--------------------------------- | :-------------------------------------- |
| `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. |
| `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. |
| `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. |
<!-- mdformat on -->

The `ACTION*` macros cannot be used inside a function or class.

## Cardinalities {#CardinalityList}

These are used in `Times()` to specify how many times a mock function will be
called:

<!-- mdformat off(no multiline tables) -->
|                   |                                                        |
| :---------------- | :----------------------------------------------------- |
| `AnyNumber()`     | The function can be called any number of times.        |
| `AtLeast(n)`      | The call is expected at least `n` times.               |
| `AtMost(n)`       | The call is expected at most `n` times.                |
| `Between(m, n)`   | The call is expected between `m` and `n` (inclusive) times. |
| `Exactly(n) or n` | The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0. |
<!-- mdformat on -->

## Expectation Order

By default, the expectations can be matched in *any* order. If some or all
expectations must be matched in a given order, there are two ways to specify it.
They can be used either independently or together.

### The After Clause {#AfterClause}

```cpp
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
     .After(init_x, init_y);
```

says that `Bar()` can be called only after both `InitX()` and `InitY()` have
been called.

If you don't know how many pre-requisites an expectation has when you write it,
you can use an `ExpectationSet` to collect them:

```cpp
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count; i++) {
  all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
     .After(all_inits);
```

says that `Bar()` can be called only after all elements have been initialized
(but we don't care about which elements get initialized before the others).

Modifying an `ExpectationSet` after using it in an `.After()` doesn't affect the
meaning of the `.After()`.

### Sequences {#UsingSequences}

When you have a long chain of sequential expectations, it's easier to specify
the order using **sequences**, which don't require you to given each expectation
in the chain a different name. *All expected calls* in the same sequence must
occur in the order they are specified.

```cpp
using ::testing::Return;
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(foo, Reset())
    .InSequence(s1, s2)
    .WillOnce(Return(true));
EXPECT_CALL(foo, GetSize())
    .InSequence(s1)
    .WillOnce(Return(1));
EXPECT_CALL(foo, Describe(A<const char*>()))
    .InSequence(s2)
    .WillOnce(Return("dummy"));
```

says that `Reset()` must be called before *both* `GetSize()` *and* `Describe()`,
and the latter two can occur in any order.

To put many expectations in a sequence conveniently:

```cpp
using ::testing::InSequence;
{
  InSequence seq;

  EXPECT_CALL(...)...;
  EXPECT_CALL(...)...;
  ...
  EXPECT_CALL(...)...;
}
```

says that all expected calls in the scope of `seq` must occur in strict order.
The name `seq` is irrelevant.

## Verifying and Resetting a Mock

gMock will verify the expectations on a mock object when it is destructed, or
you can do it earlier:

```cpp
using ::testing::Mock;
...
// Verifies and removes the expectations on mock_obj;
// returns true if and only if successful.
Mock::VerifyAndClearExpectations(&mock_obj);
...
// Verifies and removes the expectations on mock_obj;
// also removes the default actions set by ON_CALL();
// returns true if and only if successful.
Mock::VerifyAndClear(&mock_obj);
```

You can also tell gMock that a mock object can be leaked and doesn't need to be
verified:

```cpp
Mock::AllowLeak(&mock_obj);
```

## Mock Classes

gMock defines a convenient mock class template

```cpp
class MockFunction<R(A1, ..., An)> {
 public:
  MOCK_METHOD(R, Call, (A1, ..., An));
};
```

See this [recipe](gmock_cook_book.md#using-check-points) for one application of it.

## Flags

<!-- mdformat off(no multiline tables) -->
| Flag                           | Description                               |
| :----------------------------- | :---------------------------------------- |
| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. |
| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. |
<!-- mdformat on -->
OpenPOWER on IntegriCloud