1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <lpc.h>
#include <sfc-ctrl.h>
#include <libflash/libflash.h>
#include <libflash/libflash-priv.h>
/* Offset of SFC registers in FW space */
#define SFC_CMDREG_OFFSET 0x00000c00
/* Offset of SFC command buffer in FW space */
#define SFC_CMDBUF_OFFSET 0x00000d00
/* Offset of flash MMIO mapping in FW space */
#define SFC_MMIO_OFFSET 0x0c000000
/*
* Register definitions
*/
#define SFC_REG_CONF 0x10 /* CONF: Direct Access Configuration */
#define SFC_REG_CONF_FRZE (1 << 3)
#define SFC_REG_CONF_ECCEN (1 << 2)
#define SFC_REG_CONF_DRCD (1 << 1)
#define SFC_REG_CONF_FLRLD (1 << 0)
#define SFC_REG_STATUS 0x0C /* STATUS : Status Reg */
#define SFC_REG_STATUS_NX_ON_SHFT 28
#define SFC_REG_STATUS_RWP (1 << 27)
#define SFC_REG_STATUS_FOURBYTEAD (1 << 26)
#define SFC_REG_STATUS_ILLEGAL (1 << 4)
#define SFC_REG_STATUS_ECCERRCNTN (1 << 3)
#define SFC_REG_STATUS_ECCUEN (1 << 2)
#define SFC_REG_STATUS_DONE (1 << 0)
#define SFC_REG_CMD 0x40 /* CMD : Command */
#define SFC_REG_CMD_OPCODE_SHFT 9
#define SFC_REG_CMD_LENGTH_SHFT 0
#define SFC_REG_SPICLK 0x3C /* SPICLK: SPI clock rate config */
#define SFC_REG_SPICLK_OUTDLY_SHFT 24
#define SFC_REG_SPICLK_INSAMPDLY_SHFT 16
#define SFC_REG_SPICLK_CLKHI_SHFT 8
#define SFC_REG_SPICLK_CLKLO_SHFT 0
#define SFC_REG_ADR 0x44 /* ADR : Address */
#define SFC_REG_ERASMS 0x48 /* ERASMS : Small Erase Block Size */
#define SFC_REG_ERASLGS 0x4C /* ERALGS : Large Erase Block Size */
#define SFC_REG_CONF4 0x54 /* CONF4 : SPI Op Code for Small Erase */
#define SFC_REG_CONF5 0x58 /* CONF5 : Small Erase Size config reg */
#define SFC_REG_CONF8 0x64 /* CONF8 : Read Command */
#define SFC_REG_CONF8_CSINACTIVERD_SHFT 18
#define SFC_REG_CONF8_DUMMY_SHFT 8
#define SFC_REG_CONF8_READOP_SHFT 0
#define SFC_REG_ADRCBF 0x80 /* ADRCBF : First Intf NOR Addr Offset */
#define SFC_REG_ADRCMF 0x84 /* ADRCMF : First Intf NOR Allocation */
#define SFC_REG_ADRCBS 0x88 /* ADRCBS : Second Intf NOR Addr Offset */
#define SFC_REG_ADRCMS 0x8C /* ADRCMS : Second Intf NOR Allocation */
#define SFC_REG_OADRNB 0x90 /* OADRNB : Direct Access OBP Window Base Address */
#define SFC_REG_OADRNS 0x94 /* OADRNS : DIrect Access OPB Window Size */
#define SFC_REG_CHIPIDCONF 0x9C /* CHIPIDCONF : config ChipId CMD */
#define SFC_REG_CHIPIDCONF_OPCODE_SHFT 24
#define SFC_REG_CHIPIDCONF_READ (1 << 23)
#define SFC_REG_CHIPIDCONF_WRITE (1 << 22)
#define SFC_REG_CHIPIDCONF_USE_ADDR (1 << 21)
#define SFC_REG_CHIPIDCONF_DUMMY_SHFT 16
#define SFC_REG_CHIPIDCONF_LEN_SHFT 0
/*
* SFC Opcodes
*/
#define SFC_OP_READRAW 0x03 /* Read Raw */
#define SFC_OP_WRITERAW 0x02 /* Write Raw */
#define SFC_OP_ERASM 0x32 /* Erase Small */
#define SFC_OP_ERALG 0x34 /* Erase Large */
#define SFC_OP_ENWRITPROT 0x53 /* Enable WRite Protect */
#define SFC_OP_CHIPID 0x1F /* Get Chip ID */
#define SFC_OP_STATUS 0x05 /* Get Status */
#define SFC_OP_TURNOFF 0x5E /* Turn Off */
#define SFC_OP_TURNON 0x50 /* Turn On */
#define SFC_OP_ABORT 0x6F /* Super-Abort */
#define SFC_OP_START4BA 0x37 /* Start 4BA */
#define SFC_OP_END4BA 0x69 /* End 4BA */
/* Command buffer size */
#define SFC_CMDBUF_SIZE 256
struct sfc_ctrl {
/* Erase sizes */
uint32_t small_er_size;
uint32_t large_er_size;
/* Current 4b mode */
bool mode_4b;
/* Callbacks */
struct spi_flash_ctrl ops;
};
/* Command register support */
static inline int sfc_reg_read(uint8_t reg, uint32_t *val)
{
uint32_t tmp;
int rc;
*val = 0xffffffff;
rc = lpc_fw_read32(&tmp, SFC_CMDREG_OFFSET + reg);
if (rc)
return rc;
*val = be32_to_cpu(tmp);
return 0;
}
static inline int sfc_reg_write(uint8_t reg, uint32_t val)
{
return lpc_fw_write32(cpu_to_be32(val), SFC_CMDREG_OFFSET + reg);
}
static int sfc_buf_write(uint32_t len, const void *data)
{
uint32_t tmp, off = 0;
int rc;
if (len > SFC_CMDBUF_SIZE)
return FLASH_ERR_PARM_ERROR;
while (len >= 4) {
tmp = *(const uint32_t *)data;
rc = lpc_fw_write32(tmp, SFC_CMDBUF_OFFSET + off);
if (rc)
return rc;
off += 4;
len -= 4;
data += 4;
}
if (!len)
return 0;
/* lpc_fw_write operates on BE values so that's what we layout
* in memory with memcpy. The swap in the register on LE doesn't
* matter, the result in memory will be in the right order.
*/
tmp = -1;
memcpy(&tmp, data, len);
return lpc_fw_write32(tmp, SFC_CMDBUF_OFFSET + off);
}
static int sfc_buf_read(uint32_t len, void *data)
{
uint32_t tmp, off = 0;
int rc;
if (len > SFC_CMDBUF_SIZE)
return FLASH_ERR_PARM_ERROR;
while (len >= 4) {
rc = lpc_fw_read32(data, SFC_CMDBUF_OFFSET + off);
if (rc)
return rc;
off += 4;
len -= 4;
data += 4;
}
if (!len)
return 0;
rc = lpc_fw_read32(&tmp, SFC_CMDBUF_OFFSET + off);
if (rc)
return rc;
/* We know tmp contains a big endian value, so memcpy is
* our friend here
*/
memcpy(data, &tmp, len);
return 0;
}
/* Polls until SFC indicates command is complete */
static int sfc_poll_complete(void)
{
uint32_t status, timeout;
struct timespec ts;
/*
* A full 256 bytes read/write command will take at least
* 126us. Smaller commands are faster but we use less of
* them. So let's sleep in increments of 100us
*/
ts.tv_sec = 0;
ts.tv_nsec = 100000;
/*
* Use a 1s timeout which should be sufficient for the
* commands we use
*/
timeout = 10000;
do {
int rc;
rc = sfc_reg_read(SFC_REG_STATUS, &status);
if (rc)
return rc;
if (status & SFC_REG_STATUS_DONE)
break;
if (--timeout == 0)
return FLASH_ERR_CTRL_TIMEOUT;
nanosleep(&ts, NULL);
} while (true);
return 0;
}
static int sfc_exec_command(uint8_t opcode, uint32_t length)
{
int rc = 0;
uint32_t cmd_reg = 0;
if (opcode > 0x7f || length > 0x1ff)
return FLASH_ERR_PARM_ERROR;
/* Write command register to start execution */
cmd_reg |= (opcode << SFC_REG_CMD_OPCODE_SHFT);
cmd_reg |= (length << SFC_REG_CMD_LENGTH_SHFT);
rc = sfc_reg_write(SFC_REG_CMD, cmd_reg);
if (rc)
return rc;
/* Wait for command to complete */
return sfc_poll_complete();
}
static int sfc_chip_id(struct spi_flash_ctrl *ctrl, uint8_t *id_buf,
uint32_t *id_size)
{
uint32_t idconf;
int rc;
(void)ctrl;
if ((*id_size) < 3)
return FLASH_ERR_PARM_ERROR;
/*
* XXX This will not work in locked down mode but we assume that
* in this case, the chip ID command is already properly programmed
* and the SFC will ignore this. However I haven't verified...
*/
idconf = ((uint64_t)CMD_RDID) << SFC_REG_CHIPIDCONF_OPCODE_SHFT;
idconf |= SFC_REG_CHIPIDCONF_READ;
idconf |= (3ul << SFC_REG_CHIPIDCONF_LEN_SHFT);
(void)sfc_reg_write(SFC_REG_CHIPIDCONF, idconf);
/* Perform command */
rc = sfc_exec_command(SFC_OP_CHIPID, 0);
if (rc)
return rc;
/* Read chip ID */
rc = sfc_buf_read(3, id_buf);
if (rc)
return rc;
*id_size = 3;
return 0;
}
static int sfc_read(struct spi_flash_ctrl *ctrl, uint32_t pos,
void *buf, uint32_t len)
{
(void)ctrl;
while(len) {
uint32_t chunk = len;
int rc;
if (chunk > SFC_CMDBUF_SIZE)
chunk = SFC_CMDBUF_SIZE;
rc = sfc_reg_write(SFC_REG_ADR, pos);
if (rc)
return rc;
rc = sfc_exec_command(SFC_OP_READRAW, chunk);
if (rc)
return rc;
rc = sfc_buf_read(chunk, buf);
if (rc)
return rc;
len -= chunk;
pos += chunk;
buf += chunk;
}
return 0;
}
static int sfc_write(struct spi_flash_ctrl *ctrl, uint32_t addr,
const void *buf, uint32_t size)
{
uint32_t chunk;
int rc;
(void)ctrl;
while(size) {
/* We shall not cross a page boundary */
chunk = 0x100 - (addr & 0xff);
if (chunk > size)
chunk = size;
/* Write to SFC write buffer */
rc = sfc_buf_write(chunk, buf);
if (rc)
return rc;
/* Program address */
rc = sfc_reg_write(SFC_REG_ADR, addr);
if (rc)
return rc;
/* Send command */
rc = sfc_exec_command(SFC_OP_WRITERAW, chunk);
if (rc)
return rc;
addr += chunk;
buf += chunk;
size -= chunk;
}
return 0;
}
static int sfc_erase(struct spi_flash_ctrl *ctrl, uint32_t addr,
uint32_t size)
{
struct sfc_ctrl *ct = container_of(ctrl, struct sfc_ctrl, ops);
uint32_t sm_mask = ct->small_er_size - 1;
uint32_t lg_mask = ct->large_er_size - 1;
uint32_t chunk;
uint8_t cmd;
int rc;
while(size) {
/* Choose erase size for this chunk */
if (((addr | size) & lg_mask) == 0) {
chunk = ct->large_er_size;
cmd = SFC_OP_ERALG;
} else if (((addr | size) & sm_mask) == 0) {
chunk = ct->small_er_size;
cmd = SFC_OP_ERASM;
} else
return FLASH_ERR_ERASE_BOUNDARY;
rc = sfc_reg_write(SFC_REG_ADR, addr);
if (rc)
return rc;
rc = sfc_exec_command(cmd, 0);
if (rc)
return rc;
addr += chunk;
size -= chunk;
}
return 0;
}
static int sfc_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)
{
struct sfc_ctrl *ct = container_of(ctrl, struct sfc_ctrl, ops);
struct flash_info *info = ctrl->finfo;
uint32_t er_flags;
(void)tsize;
/* Keep non-erase related flags */
er_flags = ~FL_ERASE_ALL;
/* Add supported erase sizes */
if (ct->small_er_size == 0x1000 || ct->large_er_size == 0x1000)
er_flags |= FL_ERASE_4K;
if (ct->small_er_size == 0x8000 || ct->large_er_size == 0x8000)
er_flags |= FL_ERASE_32K;
if (ct->small_er_size == 0x10000 || ct->large_er_size == 0x10000)
er_flags |= FL_ERASE_64K;
/* Mask the flags out */
info->flags &= er_flags;
return 0;
}
static int sfc_set_4b(struct spi_flash_ctrl *ctrl, bool enable)
{
struct sfc_ctrl *ct = container_of(ctrl, struct sfc_ctrl, ops);
int rc;
rc = sfc_exec_command(enable ? SFC_OP_START4BA : SFC_OP_END4BA, 0);
if (rc)
return rc;
ct->mode_4b = enable;
return 0;
}
static void sfc_validate_er_size(uint32_t *size)
{
if (*size == 0)
return;
/* We only support 4k, 32k and 64k */
if (*size != 0x1000 && *size != 0x8000 && *size != 0x10000) {
FL_ERR("SFC: Erase size %d bytes unsupported\n", *size);
*size = 0;
}
}
static int sfc_init(struct sfc_ctrl *ct)
{
int rc;
uint32_t status;
/*
* Assumptions: The controller has been fully initialized
* by an earlier FW layer setting the chip ID command, the
* erase sizes, and configuring the timings for reads and
* writes.
*
* This driver is meant to be usable if the configuration
* is in lock down.
*
* If that wasn't the case, we could configure some sane
* defaults here and tuned values in setup() after the
* chip has been identified.
*/
/* Read erase sizes from flash */
rc = sfc_reg_read(SFC_REG_ERASMS, &ct->small_er_size);
if (rc)
return rc;
sfc_validate_er_size(&ct->small_er_size);
rc = sfc_reg_read(SFC_REG_ERASLGS, &ct->large_er_size);
if (rc)
return rc;
sfc_validate_er_size(&ct->large_er_size);
/* No erase sizes we can cope with ? Ouch... */
if ((ct->small_er_size == 0 && ct->large_er_size == 0) ||
(ct->large_er_size && (ct->small_er_size > ct->large_er_size))) {
FL_ERR("SFC: No supported erase sizes !\n");
return FLASH_ERR_CTRL_CONFIG_MISMATCH;
}
FL_INF("SFC: Suppored erase sizes:");
if (ct->small_er_size)
FL_INF(" %dKB", ct->small_er_size >> 10);
if (ct->large_er_size)
FL_INF(" %dKB", ct->large_er_size >> 10);
FL_INF("\n");
/* Read current state of 4 byte addressing */
rc = sfc_reg_read(SFC_REG_STATUS, &status);
if (rc)
return rc;
ct->mode_4b = !!(status & SFC_REG_STATUS_FOURBYTEAD);
return 0;
}
int sfc_open(struct spi_flash_ctrl **ctrl)
{
struct sfc_ctrl *ct;
int rc;
*ctrl = NULL;
ct = malloc(sizeof(*ct));
if (!ct) {
FL_ERR("SFC: Failed to allocate\n");
return FLASH_ERR_MALLOC_FAILED;
}
memset(ct, 0, sizeof(*ct));
ct->ops.chip_id = sfc_chip_id;
ct->ops.setup = sfc_setup;
ct->ops.set_4b = sfc_set_4b;
ct->ops.read = sfc_read;
ct->ops.write = sfc_write;
ct->ops.erase = sfc_erase;
rc = sfc_init(ct);
if (rc)
goto fail;
*ctrl = &ct->ops;
return 0;
fail:
free(ct);
return rc;
}
void sfc_close(struct spi_flash_ctrl *ctrl)
{
struct sfc_ctrl *ct = container_of(ctrl, struct sfc_ctrl, ops);
/* Free the whole lot */
free(ct);
}
|