1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <skiboot.h>
#include <fsp.h>
#include <opal.h>
#include <lock.h>
#include <device.h>
#include <errorlog.h>
/*
* The FSP NVRAM API operates in "blocks" of 4K. It is entirely exposed
* to the OS via the OPAL APIs.
*
* In order to avoid dealing with complicated read/modify/write state
* machines (and added issues related to FSP failover in the middle)
* we keep a memory copy of the entire nvram which we load at boot
* time. We save only modified blocks.
*
* To limit the amount of memory used by the nvram image, we limit
* how much nvram we support to NVRAM_SIZE. Additionally, this limit
* of 1M is the maximum that the CHRP/PAPR nvram partition format
* supports for a partition entry.
*
* (Q: should we save the whole thing in case of FSP failover ?)
*
* The nvram is expected to comply with the CHRP/PAPR defined format,
* and specifically contain a System partition (ID 0x70) named "common"
* with configuration variables for the bootloader and a FW private
* partition for future use by skiboot.
*
* If the partition layout appears broken or lacks one of the above
* partitions, we reformat the entire nvram at boot time.
*
* We do not exploit the ability of the FSP to store a checksum. This
* is documented as possibly going away. The CHRP format for nvram
* that Linux uses has its own (though weak) checksum mechanism already
*
*/
#define NVRAM_BLKSIZE 0x1000
struct nvram_triplet {
uint64_t dma_addr;
uint32_t blk_offset;
uint32_t blk_count;
} __packed;
#define NVRAM_FLAG_CLEAR_WPEND 0x80000000
enum nvram_state {
NVRAM_STATE_CLOSED,
NVRAM_STATE_OPENING,
NVRAM_STATE_BROKEN,
NVRAM_STATE_OPEN,
NVRAM_STATE_ABSENT,
};
static void *fsp_nvram_image;
static uint32_t fsp_nvram_size;
static struct lock fsp_nvram_lock = LOCK_UNLOCKED;
static struct fsp_msg *fsp_nvram_msg;
static uint32_t fsp_nvram_dirty_start;
static uint32_t fsp_nvram_dirty_end;
static bool fsp_nvram_was_read;
static struct nvram_triplet fsp_nvram_triplet __align(0x1000);
static enum nvram_state fsp_nvram_state = NVRAM_STATE_CLOSED;
DEFINE_LOG_ENTRY(OPAL_RC_NVRAM_INIT, OPAL_PLATFORM_ERR_EVT , OPAL_NVRAM,
OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
OPAL_NA);
DEFINE_LOG_ENTRY(OPAL_RC_NVRAM_OPEN, OPAL_PLATFORM_ERR_EVT, OPAL_NVRAM,
OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
OPAL_NA);
DEFINE_LOG_ENTRY(OPAL_RC_NVRAM_SIZE, OPAL_PLATFORM_ERR_EVT, OPAL_NVRAM,
OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
OPAL_NA);
DEFINE_LOG_ENTRY(OPAL_RC_NVRAM_READ, OPAL_PLATFORM_ERR_EVT, OPAL_NVRAM,
OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
OPAL_NA);
DEFINE_LOG_ENTRY(OPAL_RC_NVRAM_WRITE, OPAL_PLATFORM_ERR_EVT, OPAL_NVRAM,
OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
OPAL_NA);
static void fsp_nvram_send_write(void);
static void fsp_nvram_wr_complete(struct fsp_msg *msg)
{
struct fsp_msg *resp = msg->resp;
uint8_t rc;
lock(&fsp_nvram_lock);
fsp_nvram_msg = NULL;
/* Check for various errors. If an error occurred,
* we generally assume the nvram is completely dirty
* but we won't trigger a new write until we get
* either a new attempt at writing, or an FSP reset
* reload (TODO)
*/
if (!resp || resp->state != fsp_msg_response)
goto fail_dirty;
rc = (msg->word1 >> 8) & 0xff;
switch(rc) {
case 0:
case 0x44:
/* Sync to secondary required... XXX */
case 0x45:
break;
case 0xef:
/* Sync to secondary failed, let's ignore that for now,
* maybe when (if) we handle redundant FSPs ...
*/
prerror("FSP: NVRAM sync to secondary failed\n");
break;
default:
log_simple_error(&e_info(OPAL_RC_NVRAM_WRITE),
"FSP: NVRAM write return error 0x%02x\n", rc);
goto fail_dirty;
}
fsp_freemsg(msg);
if (fsp_nvram_dirty_start <= fsp_nvram_dirty_end)
fsp_nvram_send_write();
unlock(&fsp_nvram_lock);
return;
fail_dirty:
fsp_nvram_dirty_start = 0;
fsp_nvram_dirty_end = fsp_nvram_size - 1;
fsp_freemsg(msg);
unlock(&fsp_nvram_lock);
}
static void fsp_nvram_send_write(void)
{
uint32_t start = fsp_nvram_dirty_start;
uint32_t end = fsp_nvram_dirty_end;
uint32_t count;
if (start > end || fsp_nvram_state != NVRAM_STATE_OPEN)
return;
count = (end - start) / NVRAM_BLKSIZE + 1;
fsp_nvram_triplet.dma_addr = PSI_DMA_NVRAM_BODY + start;
fsp_nvram_triplet.blk_offset = start / NVRAM_BLKSIZE;
fsp_nvram_triplet.blk_count = count;
fsp_nvram_msg = fsp_mkmsg(FSP_CMD_WRITE_VNVRAM, 6,
0, PSI_DMA_NVRAM_TRIPL, 1,
NVRAM_FLAG_CLEAR_WPEND, 0, 0);
if (fsp_queue_msg(fsp_nvram_msg, fsp_nvram_wr_complete)) {
fsp_freemsg(fsp_nvram_msg);
fsp_nvram_msg = NULL;
log_simple_error(&e_info(OPAL_RC_NVRAM_WRITE),
"FSP: Error queueing nvram update\n");
return;
}
fsp_nvram_dirty_start = fsp_nvram_size;
fsp_nvram_dirty_end = 0;
}
static void fsp_nvram_rd_complete(struct fsp_msg *msg)
{
int64_t rc;
lock(&fsp_nvram_lock);
/* Read complete, check status. What to do if the read fails ?
*
* Well, there could be various reasons such as an FSP reboot
* at the wrong time, but there is really not much we can do
* so for now I'll just mark the nvram as closed, and we'll
* attempt a re-open and re-read whenever the OS tries to
* access it
*/
rc = (msg->resp->word1 >> 8) & 0xff;
fsp_nvram_msg = NULL;
fsp_freemsg(msg);
if (rc) {
prerror("FSP: NVRAM read failed, will try again later\n");
fsp_nvram_state = NVRAM_STATE_CLOSED;
} else {
/* nvram was read once, no need to do it ever again */
fsp_nvram_was_read = true;
fsp_nvram_state = NVRAM_STATE_OPEN;
/* XXX Here we should look for nvram settings that concern
* us such as guest kernel arguments etc...
*/
}
unlock(&fsp_nvram_lock);
nvram_read_complete(fsp_nvram_state == NVRAM_STATE_OPEN);
if (fsp_nvram_state != NVRAM_STATE_OPEN)
log_simple_error(&e_info(OPAL_RC_NVRAM_INIT),
"FSP: NVRAM not read, skipping init\n");
}
static void fsp_nvram_send_read(void)
{
fsp_nvram_msg = fsp_mkmsg(FSP_CMD_READ_VNVRAM, 4,
0, PSI_DMA_NVRAM_BODY, 0,
fsp_nvram_size / NVRAM_BLKSIZE);
if (fsp_queue_msg(fsp_nvram_msg, fsp_nvram_rd_complete)) {
/* If the nvram read fails to queue, we mark ourselves
* closed. Shouldn't have happened anyway. Not much else
* we can do.
*/
fsp_nvram_state = NVRAM_STATE_CLOSED;
fsp_freemsg(fsp_nvram_msg);
fsp_nvram_msg = NULL;
log_simple_error(&e_info(OPAL_RC_NVRAM_READ),
"FSP: Error queueing nvram read\n");
return;
}
}
static void fsp_nvram_open_complete(struct fsp_msg *msg)
{
int8_t rc;
lock(&fsp_nvram_lock);
/* Open complete, check status */
rc = (msg->resp->word1 >> 8) & 0xff;
fsp_nvram_msg = NULL;
fsp_freemsg(msg);
if (rc) {
log_simple_error(&e_info(OPAL_RC_NVRAM_OPEN),
"FSP: NVRAM open failed, FSP error 0x%02x\n", rc);
goto failed;
}
if (fsp_nvram_was_read)
fsp_nvram_state = NVRAM_STATE_OPEN;
else
fsp_nvram_send_read();
unlock(&fsp_nvram_lock);
return;
failed:
fsp_nvram_state = NVRAM_STATE_CLOSED;
unlock(&fsp_nvram_lock);
}
static void fsp_nvram_send_open(void)
{
printf("FSP NVRAM: Opening nvram...\n");
fsp_nvram_msg = fsp_mkmsg(FSP_CMD_OPEN_VNVRAM, 1, fsp_nvram_size);
assert(fsp_nvram_msg);
fsp_nvram_state = NVRAM_STATE_OPENING;
if (!fsp_queue_msg(fsp_nvram_msg, fsp_nvram_open_complete))
return;
prerror("FSP NVRAM: Failed to queue nvram open message\n");
fsp_freemsg(fsp_nvram_msg);
fsp_nvram_msg = NULL;
fsp_nvram_state = NVRAM_STATE_CLOSED;
}
static bool fsp_nvram_get_size(uint32_t *out_size)
{
struct fsp_msg *msg;
int rc, size;
msg = fsp_mkmsg(FSP_CMD_GET_VNVRAM_SIZE, 0);
assert(msg);
rc = fsp_sync_msg(msg, false);
size = msg->resp ? msg->resp->data.words[0] : 0;
fsp_freemsg(msg);
if (rc || size == 0) {
log_simple_error(&e_info(OPAL_RC_NVRAM_SIZE),
"FSP: Error %d nvram size reported is %d\n", rc, size);
fsp_nvram_state = NVRAM_STATE_BROKEN;
return false;
}
printf("FSP: NVRAM file size from FSP is %d bytes\n", size);
*out_size = size;
return true;
}
static bool fsp_nvram_msg_rr(u32 cmd_sub_mod, struct fsp_msg *msg)
{
assert(msg == NULL);
switch (cmd_sub_mod) {
case FSP_RESET_START:
printf("FSP: Closing NVRAM on account of FSP Reset\n");
fsp_nvram_state = NVRAM_STATE_CLOSED;
return true;
case FSP_RELOAD_COMPLETE:
printf("FSP: Reopening NVRAM of FSP Reload complete\n");
lock(&fsp_nvram_lock);
fsp_nvram_send_open();
unlock(&fsp_nvram_lock);
return true;
}
return false;
}
static struct fsp_client fsp_nvram_client_rr = {
.message = fsp_nvram_msg_rr,
};
static bool fsp_vnvram_msg(u32 cmd_sub_mod, struct fsp_msg *msg)
{
u32 cmd;
struct fsp_msg *resp;
assert(msg == NULL);
switch (cmd_sub_mod) {
case FSP_CMD_GET_VNV_STATS:
prlog(PR_DEBUG,
"FSP NVRAM: Get vNVRAM statistics not supported\n");
cmd = FSP_RSP_GET_VNV_STATS | FSP_STATUS_INVALID_SUBCMD;
break;
case FSP_CMD_FREE_VNV_STATS:
prlog(PR_DEBUG,
"FSP NVRAM: Free vNVRAM statistics buffer not supported\n");
cmd = FSP_RSP_FREE_VNV_STATS | FSP_STATUS_INVALID_SUBCMD;
break;
default:
return false;
}
resp = fsp_mkmsg(cmd, 0);
if (!resp) {
prerror("FSP NVRAM: Failed to allocate resp message\n");
return false;
}
if (fsp_queue_msg(resp, fsp_freemsg)) {
prerror("FSP NVRAM: Failed to queue resp message\n");
fsp_freemsg(resp);
return false;
}
return true;
}
static struct fsp_client fsp_vnvram_client = {
.message = fsp_vnvram_msg,
};
int fsp_nvram_info(uint32_t *total_size)
{
if (!fsp_present()) {
fsp_nvram_state = NVRAM_STATE_ABSENT;
return OPAL_HARDWARE;
}
if (!fsp_nvram_get_size(total_size))
return OPAL_HARDWARE;
return OPAL_SUCCESS;
}
int fsp_nvram_start_read(void *dst, uint32_t src, uint32_t len)
{
/* We are currently limited to fully aligned transfers */
assert((((uint64_t)dst) & 0xfff) == 0);
assert(dst);
/* Currently don't support src!=0 */
assert(src == 0);
if (!fsp_present())
return -ENODEV;
op_display(OP_LOG, OP_MOD_INIT, 0x0007);
lock(&fsp_nvram_lock);
/* Store image info */
fsp_nvram_image = dst;
fsp_nvram_size = len;
/* Mark nvram as not dirty */
fsp_nvram_dirty_start = len;
fsp_nvram_dirty_end = 0;
/* Map TCEs */
fsp_tce_map(PSI_DMA_NVRAM_TRIPL, &fsp_nvram_triplet,
PSI_DMA_NVRAM_TRIPL_SZ);
fsp_tce_map(PSI_DMA_NVRAM_BODY, dst, PSI_DMA_NVRAM_BODY_SZ);
/* Register for the reset/reload event */
fsp_register_client(&fsp_nvram_client_rr, FSP_MCLASS_RR_EVENT);
/* Register for virtual NVRAM interface events */
fsp_register_client(&fsp_vnvram_client, FSP_MCLASS_VIRTUAL_NVRAM);
/* Open and load the nvram from the FSP */
fsp_nvram_send_open();
unlock(&fsp_nvram_lock);
return 0;
}
int fsp_nvram_write(uint32_t offset, void *src, uint32_t size)
{
uint64_t end = offset + size - 1;
/* We only support writing from the original image */
if (src != fsp_nvram_image + offset)
return OPAL_HARDWARE;
offset &= ~(NVRAM_BLKSIZE - 1);
end &= ~(NVRAM_BLKSIZE - 1);
lock(&fsp_nvram_lock);
/* If the nvram is closed, try re-opening */
if (fsp_nvram_state == NVRAM_STATE_CLOSED)
fsp_nvram_send_open();
if (fsp_nvram_dirty_start > offset)
fsp_nvram_dirty_start = offset;
if (fsp_nvram_dirty_end < end)
fsp_nvram_dirty_end = end;
if (!fsp_nvram_msg && fsp_nvram_state == NVRAM_STATE_OPEN)
fsp_nvram_send_write();
unlock(&fsp_nvram_lock);
return 0;
}
|