diff options
Diffstat (limited to 'import-layers/yocto-poky/bitbake/lib/ply/yacc.py')
-rw-r--r-- | import-layers/yocto-poky/bitbake/lib/ply/yacc.py | 3278 |
1 files changed, 0 insertions, 3278 deletions
diff --git a/import-layers/yocto-poky/bitbake/lib/ply/yacc.py b/import-layers/yocto-poky/bitbake/lib/ply/yacc.py deleted file mode 100644 index d50886ed2..000000000 --- a/import-layers/yocto-poky/bitbake/lib/ply/yacc.py +++ /dev/null @@ -1,3278 +0,0 @@ -# ----------------------------------------------------------------------------- -# ply: yacc.py -# -# Copyright (C) 2001-2009, -# David M. Beazley (Dabeaz LLC) -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are -# met: -# -# * Redistributions of source code must retain the above copyright notice, -# this list of conditions and the following disclaimer. -# * Redistributions in binary form must reproduce the above copyright notice, -# this list of conditions and the following disclaimer in the documentation -# and/or other materials provided with the distribution. -# * Neither the name of the David Beazley or Dabeaz LLC may be used to -# endorse or promote products derived from this software without -# specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -# ----------------------------------------------------------------------------- -# -# This implements an LR parser that is constructed from grammar rules defined -# as Python functions. The grammer is specified by supplying the BNF inside -# Python documentation strings. The inspiration for this technique was borrowed -# from John Aycock's Spark parsing system. PLY might be viewed as cross between -# Spark and the GNU bison utility. -# -# The current implementation is only somewhat object-oriented. The -# LR parser itself is defined in terms of an object (which allows multiple -# parsers to co-exist). However, most of the variables used during table -# construction are defined in terms of global variables. Users shouldn't -# notice unless they are trying to define multiple parsers at the same -# time using threads (in which case they should have their head examined). -# -# This implementation supports both SLR and LALR(1) parsing. LALR(1) -# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu), -# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles, -# Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced -# by the more efficient DeRemer and Pennello algorithm. -# -# :::::::: WARNING ::::::: -# -# Construction of LR parsing tables is fairly complicated and expensive. -# To make this module run fast, a *LOT* of work has been put into -# optimization---often at the expensive of readability and what might -# consider to be good Python "coding style." Modify the code at your -# own risk! -# ---------------------------------------------------------------------------- - -__version__ = "3.3" -__tabversion__ = "3.2" # Table version - -#----------------------------------------------------------------------------- -# === User configurable parameters === -# -# Change these to modify the default behavior of yacc (if you wish) -#----------------------------------------------------------------------------- - -yaccdebug = 0 # Debugging mode. If set, yacc generates a - # a 'parser.out' file in the current directory - -debug_file = 'parser.out' # Default name of the debugging file -tab_module = 'parsetab' # Default name of the table module -default_lr = 'LALR' # Default LR table generation method - -error_count = 3 # Number of symbols that must be shifted to leave recovery mode - -yaccdevel = 0 # Set to True if developing yacc. This turns off optimized - # implementations of certain functions. - -resultlimit = 40 # Size limit of results when running in debug mode. - -pickle_protocol = 0 # Protocol to use when writing pickle files - -import re, types, sys, os.path - -# Compatibility function for python 2.6/3.0 -if sys.version_info[0] < 3: - def func_code(f): - return f.func_code -else: - def func_code(f): - return f.__code__ - -# Compatibility -try: - MAXINT = sys.maxint -except AttributeError: - MAXINT = sys.maxsize - -# Python 2.x/3.0 compatibility. -def load_ply_lex(): - if sys.version_info[0] < 3: - import lex - else: - import ply.lex as lex - return lex - -# This object is a stand-in for a logging object created by the -# logging module. PLY will use this by default to create things -# such as the parser.out file. If a user wants more detailed -# information, they can create their own logging object and pass -# it into PLY. - -class PlyLogger(object): - def __init__(self,f): - self.f = f - def debug(self,msg,*args,**kwargs): - self.f.write((msg % args) + "\n") - info = debug - - def warning(self,msg,*args,**kwargs): - self.f.write("WARNING: "+ (msg % args) + "\n") - - def error(self,msg,*args,**kwargs): - self.f.write("ERROR: " + (msg % args) + "\n") - - critical = debug - -# Null logger is used when no output is generated. Does nothing. -class NullLogger(object): - def __getattribute__(self,name): - return self - def __call__(self,*args,**kwargs): - return self - -# Exception raised for yacc-related errors -class YaccError(Exception): pass - -# Format the result message that the parser produces when running in debug mode. -def format_result(r): - repr_str = repr(r) - if '\n' in repr_str: repr_str = repr(repr_str) - if len(repr_str) > resultlimit: - repr_str = repr_str[:resultlimit]+" ..." - result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str) - return result - - -# Format stack entries when the parser is running in debug mode -def format_stack_entry(r): - repr_str = repr(r) - if '\n' in repr_str: repr_str = repr(repr_str) - if len(repr_str) < 16: - return repr_str - else: - return "<%s @ 0x%x>" % (type(r).__name__,id(r)) - -#----------------------------------------------------------------------------- -# === LR Parsing Engine === -# -# The following classes are used for the LR parser itself. These are not -# used during table construction and are independent of the actual LR -# table generation algorithm -#----------------------------------------------------------------------------- - -# This class is used to hold non-terminal grammar symbols during parsing. -# It normally has the following attributes set: -# .type = Grammar symbol type -# .value = Symbol value -# .lineno = Starting line number -# .endlineno = Ending line number (optional, set automatically) -# .lexpos = Starting lex position -# .endlexpos = Ending lex position (optional, set automatically) - -class YaccSymbol: - def __str__(self): return self.type - def __repr__(self): return str(self) - -# This class is a wrapper around the objects actually passed to each -# grammar rule. Index lookup and assignment actually assign the -# .value attribute of the underlying YaccSymbol object. -# The lineno() method returns the line number of a given -# item (or 0 if not defined). The linespan() method returns -# a tuple of (startline,endline) representing the range of lines -# for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos) -# representing the range of positional information for a symbol. - -class YaccProduction: - def __init__(self,s,stack=None): - self.slice = s - self.stack = stack - self.lexer = None - self.parser= None - def __getitem__(self,n): - if isinstance(n,slice): - return [self[i] for i in range(*(n.indices(len(self.slice))))] - if n >= 0: return self.slice[n].value - else: return self.stack[n].value - - def __setitem__(self,n,v): - self.slice[n].value = v - - def __getslice__(self,i,j): - return [s.value for s in self.slice[i:j]] - - def __len__(self): - return len(self.slice) - - def lineno(self,n): - return getattr(self.slice[n],"lineno",0) - - def set_lineno(self,n,lineno): - self.slice[n].lineno = lineno - - def linespan(self,n): - startline = getattr(self.slice[n],"lineno",0) - endline = getattr(self.slice[n],"endlineno",startline) - return startline,endline - - def lexpos(self,n): - return getattr(self.slice[n],"lexpos",0) - - def lexspan(self,n): - startpos = getattr(self.slice[n],"lexpos",0) - endpos = getattr(self.slice[n],"endlexpos",startpos) - return startpos,endpos - - def error(self): - raise SyntaxError - - -# ----------------------------------------------------------------------------- -# == LRParser == -# -# The LR Parsing engine. -# ----------------------------------------------------------------------------- - -class LRParser: - def __init__(self,lrtab,errorf): - self.productions = lrtab.lr_productions - self.action = lrtab.lr_action - self.goto = lrtab.lr_goto - self.errorfunc = errorf - - def errok(self): - self.errorok = 1 - - def restart(self): - del self.statestack[:] - del self.symstack[:] - sym = YaccSymbol() - sym.type = '$end' - self.symstack.append(sym) - self.statestack.append(0) - - def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): - if debug or yaccdevel: - if isinstance(debug,int): - debug = PlyLogger(sys.stderr) - return self.parsedebug(input,lexer,debug,tracking,tokenfunc) - elif tracking: - return self.parseopt(input,lexer,debug,tracking,tokenfunc) - else: - return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc) - - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # parsedebug(). - # - # This is the debugging enabled version of parse(). All changes made to the - # parsing engine should be made here. For the non-debugging version, - # copy this code to a method parseopt() and delete all of the sections - # enclosed in: - # - # #--! DEBUG - # statements - # #--! DEBUG - # - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=None): - lookahead = None # Current lookahead symbol - lookaheadstack = [ ] # Stack of lookahead symbols - actions = self.action # Local reference to action table (to avoid lookup on self.) - goto = self.goto # Local reference to goto table (to avoid lookup on self.) - prod = self.productions # Local reference to production list (to avoid lookup on self.) - pslice = YaccProduction(None) # Production object passed to grammar rules - errorcount = 0 # Used during error recovery - - # --! DEBUG - debug.info("PLY: PARSE DEBUG START") - # --! DEBUG - - # If no lexer was given, we will try to use the lex module - if not lexer: - lex = load_ply_lex() - lexer = lex.lexer - - # Set up the lexer and parser objects on pslice - pslice.lexer = lexer - pslice.parser = self - - # If input was supplied, pass to lexer - if input is not None: - lexer.input(input) - - if tokenfunc is None: - # Tokenize function - get_token = lexer.token - else: - get_token = tokenfunc - - # Set up the state and symbol stacks - - statestack = [ ] # Stack of parsing states - self.statestack = statestack - symstack = [ ] # Stack of grammar symbols - self.symstack = symstack - - pslice.stack = symstack # Put in the production - errtoken = None # Err token - - # The start state is assumed to be (0,$end) - - statestack.append(0) - sym = YaccSymbol() - sym.type = "$end" - symstack.append(sym) - state = 0 - while 1: - # Get the next symbol on the input. If a lookahead symbol - # is already set, we just use that. Otherwise, we'll pull - # the next token off of the lookaheadstack or from the lexer - - # --! DEBUG - debug.debug('') - debug.debug('State : %s', state) - # --! DEBUG - - if not lookahead: - if not lookaheadstack: - lookahead = get_token() # Get the next token - else: - lookahead = lookaheadstack.pop() - if not lookahead: - lookahead = YaccSymbol() - lookahead.type = "$end" - - # --! DEBUG - debug.debug('Stack : %s', - ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()) - # --! DEBUG - - # Check the action table - ltype = lookahead.type - t = actions[state].get(ltype) - - if t is not None: - if t > 0: - # shift a symbol on the stack - statestack.append(t) - state = t - - # --! DEBUG - debug.debug("Action : Shift and goto state %s", t) - # --! DEBUG - - symstack.append(lookahead) - lookahead = None - - # Decrease error count on successful shift - if errorcount: errorcount -=1 - continue - - if t < 0: - # reduce a symbol on the stack, emit a production - p = prod[-t] - pname = p.name - plen = p.len - - # Get production function - sym = YaccSymbol() - sym.type = pname # Production name - sym.value = None - - # --! DEBUG - if plen: - debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+"]",-t) - else: - debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, [],-t) - - # --! DEBUG - - if plen: - targ = symstack[-plen-1:] - targ[0] = sym - - # --! TRACKING - if tracking: - t1 = targ[1] - sym.lineno = t1.lineno - sym.lexpos = t1.lexpos - t1 = targ[-1] - sym.endlineno = getattr(t1,"endlineno",t1.lineno) - sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) - - # --! TRACKING - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # The code enclosed in this section is duplicated - # below as a performance optimization. Make sure - # changes get made in both locations. - - pslice.slice = targ - - try: - # Call the grammar rule with our special slice object - del symstack[-plen:] - del statestack[-plen:] - p.callable(pslice) - # --! DEBUG - debug.info("Result : %s", format_result(pslice[0])) - # --! DEBUG - symstack.append(sym) - state = goto[statestack[-1]][pname] - statestack.append(state) - except SyntaxError: - # If an error was set. Enter error recovery state - lookaheadstack.append(lookahead) - symstack.pop() - statestack.pop() - state = statestack[-1] - sym.type = 'error' - lookahead = sym - errorcount = error_count - self.errorok = 0 - continue - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - else: - - # --! TRACKING - if tracking: - sym.lineno = lexer.lineno - sym.lexpos = lexer.lexpos - # --! TRACKING - - targ = [ sym ] - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # The code enclosed in this section is duplicated - # above as a performance optimization. Make sure - # changes get made in both locations. - - pslice.slice = targ - - try: - # Call the grammar rule with our special slice object - p.callable(pslice) - # --! DEBUG - debug.info("Result : %s", format_result(pslice[0])) - # --! DEBUG - symstack.append(sym) - state = goto[statestack[-1]][pname] - statestack.append(state) - except SyntaxError: - # If an error was set. Enter error recovery state - lookaheadstack.append(lookahead) - symstack.pop() - statestack.pop() - state = statestack[-1] - sym.type = 'error' - lookahead = sym - errorcount = error_count - self.errorok = 0 - continue - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - if t == 0: - n = symstack[-1] - result = getattr(n,"value",None) - # --! DEBUG - debug.info("Done : Returning %s", format_result(result)) - debug.info("PLY: PARSE DEBUG END") - # --! DEBUG - return result - - if t == None: - - # --! DEBUG - debug.error('Error : %s', - ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip()) - # --! DEBUG - - # We have some kind of parsing error here. To handle - # this, we are going to push the current token onto - # the tokenstack and replace it with an 'error' token. - # If there are any synchronization rules, they may - # catch it. - # - # In addition to pushing the error token, we call call - # the user defined p_error() function if this is the - # first syntax error. This function is only called if - # errorcount == 0. - if errorcount == 0 or self.errorok: - errorcount = error_count - self.errorok = 0 - errtoken = lookahead - if errtoken.type == "$end": - errtoken = None # End of file! - if self.errorfunc: - global errok,token,restart - errok = self.errok # Set some special functions available in error recovery - token = get_token - restart = self.restart - if errtoken and not hasattr(errtoken,'lexer'): - errtoken.lexer = lexer - tok = self.errorfunc(errtoken) - del errok, token, restart # Delete special functions - - if self.errorok: - # User must have done some kind of panic - # mode recovery on their own. The - # returned token is the next lookahead - lookahead = tok - errtoken = None - continue - else: - if errtoken: - if hasattr(errtoken,"lineno"): lineno = lookahead.lineno - else: lineno = 0 - if lineno: - sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) - else: - sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) - else: - sys.stderr.write("yacc: Parse error in input. EOF\n") - return - - else: - errorcount = error_count - - # case 1: the statestack only has 1 entry on it. If we're in this state, the - # entire parse has been rolled back and we're completely hosed. The token is - # discarded and we just keep going. - - if len(statestack) <= 1 and lookahead.type != "$end": - lookahead = None - errtoken = None - state = 0 - # Nuke the pushback stack - del lookaheadstack[:] - continue - - # case 2: the statestack has a couple of entries on it, but we're - # at the end of the file. nuke the top entry and generate an error token - - # Start nuking entries on the stack - if lookahead.type == "$end": - # Whoa. We're really hosed here. Bail out - return - - if lookahead.type != 'error': - sym = symstack[-1] - if sym.type == 'error': - # Hmmm. Error is on top of stack, we'll just nuke input - # symbol and continue - lookahead = None - continue - t = YaccSymbol() - t.type = 'error' - if hasattr(lookahead,"lineno"): - t.lineno = lookahead.lineno - t.value = lookahead - lookaheadstack.append(lookahead) - lookahead = t - else: - symstack.pop() - statestack.pop() - state = statestack[-1] # Potential bug fix - - continue - - # Call an error function here - raise RuntimeError("yacc: internal parser error!!!\n") - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # parseopt(). - # - # Optimized version of parse() method. DO NOT EDIT THIS CODE DIRECTLY. - # Edit the debug version above, then copy any modifications to the method - # below while removing #--! DEBUG sections. - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - - def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): - lookahead = None # Current lookahead symbol - lookaheadstack = [ ] # Stack of lookahead symbols - actions = self.action # Local reference to action table (to avoid lookup on self.) - goto = self.goto # Local reference to goto table (to avoid lookup on self.) - prod = self.productions # Local reference to production list (to avoid lookup on self.) - pslice = YaccProduction(None) # Production object passed to grammar rules - errorcount = 0 # Used during error recovery - - # If no lexer was given, we will try to use the lex module - if not lexer: - lex = load_ply_lex() - lexer = lex.lexer - - # Set up the lexer and parser objects on pslice - pslice.lexer = lexer - pslice.parser = self - - # If input was supplied, pass to lexer - if input is not None: - lexer.input(input) - - if tokenfunc is None: - # Tokenize function - get_token = lexer.token - else: - get_token = tokenfunc - - # Set up the state and symbol stacks - - statestack = [ ] # Stack of parsing states - self.statestack = statestack - symstack = [ ] # Stack of grammar symbols - self.symstack = symstack - - pslice.stack = symstack # Put in the production - errtoken = None # Err token - - # The start state is assumed to be (0,$end) - - statestack.append(0) - sym = YaccSymbol() - sym.type = '$end' - symstack.append(sym) - state = 0 - while 1: - # Get the next symbol on the input. If a lookahead symbol - # is already set, we just use that. Otherwise, we'll pull - # the next token off of the lookaheadstack or from the lexer - - if not lookahead: - if not lookaheadstack: - lookahead = get_token() # Get the next token - else: - lookahead = lookaheadstack.pop() - if not lookahead: - lookahead = YaccSymbol() - lookahead.type = '$end' - - # Check the action table - ltype = lookahead.type - t = actions[state].get(ltype) - - if t is not None: - if t > 0: - # shift a symbol on the stack - statestack.append(t) - state = t - - symstack.append(lookahead) - lookahead = None - - # Decrease error count on successful shift - if errorcount: errorcount -=1 - continue - - if t < 0: - # reduce a symbol on the stack, emit a production - p = prod[-t] - pname = p.name - plen = p.len - - # Get production function - sym = YaccSymbol() - sym.type = pname # Production name - sym.value = None - - if plen: - targ = symstack[-plen-1:] - targ[0] = sym - - # --! TRACKING - if tracking: - t1 = targ[1] - sym.lineno = t1.lineno - sym.lexpos = t1.lexpos - t1 = targ[-1] - sym.endlineno = getattr(t1,"endlineno",t1.lineno) - sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) - - # --! TRACKING - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # The code enclosed in this section is duplicated - # below as a performance optimization. Make sure - # changes get made in both locations. - - pslice.slice = targ - - try: - # Call the grammar rule with our special slice object - del symstack[-plen:] - del statestack[-plen:] - p.callable(pslice) - symstack.append(sym) - state = goto[statestack[-1]][pname] - statestack.append(state) - except SyntaxError: - # If an error was set. Enter error recovery state - lookaheadstack.append(lookahead) - symstack.pop() - statestack.pop() - state = statestack[-1] - sym.type = 'error' - lookahead = sym - errorcount = error_count - self.errorok = 0 - continue - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - else: - - # --! TRACKING - if tracking: - sym.lineno = lexer.lineno - sym.lexpos = lexer.lexpos - # --! TRACKING - - targ = [ sym ] - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # The code enclosed in this section is duplicated - # above as a performance optimization. Make sure - # changes get made in both locations. - - pslice.slice = targ - - try: - # Call the grammar rule with our special slice object - p.callable(pslice) - symstack.append(sym) - state = goto[statestack[-1]][pname] - statestack.append(state) - except SyntaxError: - # If an error was set. Enter error recovery state - lookaheadstack.append(lookahead) - symstack.pop() - statestack.pop() - state = statestack[-1] - sym.type = 'error' - lookahead = sym - errorcount = error_count - self.errorok = 0 - continue - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - if t == 0: - n = symstack[-1] - return getattr(n,"value",None) - - if t == None: - - # We have some kind of parsing error here. To handle - # this, we are going to push the current token onto - # the tokenstack and replace it with an 'error' token. - # If there are any synchronization rules, they may - # catch it. - # - # In addition to pushing the error token, we call call - # the user defined p_error() function if this is the - # first syntax error. This function is only called if - # errorcount == 0. - if errorcount == 0 or self.errorok: - errorcount = error_count - self.errorok = 0 - errtoken = lookahead - if errtoken.type == '$end': - errtoken = None # End of file! - if self.errorfunc: - global errok,token,restart - errok = self.errok # Set some special functions available in error recovery - token = get_token - restart = self.restart - if errtoken and not hasattr(errtoken,'lexer'): - errtoken.lexer = lexer - tok = self.errorfunc(errtoken) - del errok, token, restart # Delete special functions - - if self.errorok: - # User must have done some kind of panic - # mode recovery on their own. The - # returned token is the next lookahead - lookahead = tok - errtoken = None - continue - else: - if errtoken: - if hasattr(errtoken,"lineno"): lineno = lookahead.lineno - else: lineno = 0 - if lineno: - sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) - else: - sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) - else: - sys.stderr.write("yacc: Parse error in input. EOF\n") - return - - else: - errorcount = error_count - - # case 1: the statestack only has 1 entry on it. If we're in this state, the - # entire parse has been rolled back and we're completely hosed. The token is - # discarded and we just keep going. - - if len(statestack) <= 1 and lookahead.type != '$end': - lookahead = None - errtoken = None - state = 0 - # Nuke the pushback stack - del lookaheadstack[:] - continue - - # case 2: the statestack has a couple of entries on it, but we're - # at the end of the file. nuke the top entry and generate an error token - - # Start nuking entries on the stack - if lookahead.type == '$end': - # Whoa. We're really hosed here. Bail out - return - - if lookahead.type != 'error': - sym = symstack[-1] - if sym.type == 'error': - # Hmmm. Error is on top of stack, we'll just nuke input - # symbol and continue - lookahead = None - continue - t = YaccSymbol() - t.type = 'error' - if hasattr(lookahead,"lineno"): - t.lineno = lookahead.lineno - t.value = lookahead - lookaheadstack.append(lookahead) - lookahead = t - else: - symstack.pop() - statestack.pop() - state = statestack[-1] # Potential bug fix - - continue - - # Call an error function here - raise RuntimeError("yacc: internal parser error!!!\n") - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # parseopt_notrack(). - # - # Optimized version of parseopt() with line number tracking removed. - # DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove - # code in the #--! TRACKING sections - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): - lookahead = None # Current lookahead symbol - lookaheadstack = [ ] # Stack of lookahead symbols - actions = self.action # Local reference to action table (to avoid lookup on self.) - goto = self.goto # Local reference to goto table (to avoid lookup on self.) - prod = self.productions # Local reference to production list (to avoid lookup on self.) - pslice = YaccProduction(None) # Production object passed to grammar rules - errorcount = 0 # Used during error recovery - - # If no lexer was given, we will try to use the lex module - if not lexer: - lex = load_ply_lex() - lexer = lex.lexer - - # Set up the lexer and parser objects on pslice - pslice.lexer = lexer - pslice.parser = self - - # If input was supplied, pass to lexer - if input is not None: - lexer.input(input) - - if tokenfunc is None: - # Tokenize function - get_token = lexer.token - else: - get_token = tokenfunc - - # Set up the state and symbol stacks - - statestack = [ ] # Stack of parsing states - self.statestack = statestack - symstack = [ ] # Stack of grammar symbols - self.symstack = symstack - - pslice.stack = symstack # Put in the production - errtoken = None # Err token - - # The start state is assumed to be (0,$end) - - statestack.append(0) - sym = YaccSymbol() - sym.type = '$end' - symstack.append(sym) - state = 0 - while 1: - # Get the next symbol on the input. If a lookahead symbol - # is already set, we just use that. Otherwise, we'll pull - # the next token off of the lookaheadstack or from the lexer - - if not lookahead: - if not lookaheadstack: - lookahead = get_token() # Get the next token - else: - lookahead = lookaheadstack.pop() - if not lookahead: - lookahead = YaccSymbol() - lookahead.type = '$end' - - # Check the action table - ltype = lookahead.type - t = actions[state].get(ltype) - - if t is not None: - if t > 0: - # shift a symbol on the stack - statestack.append(t) - state = t - - symstack.append(lookahead) - lookahead = None - - # Decrease error count on successful shift - if errorcount: errorcount -=1 - continue - - if t < 0: - # reduce a symbol on the stack, emit a production - p = prod[-t] - pname = p.name - plen = p.len - - # Get production function - sym = YaccSymbol() - sym.type = pname # Production name - sym.value = None - - if plen: - targ = symstack[-plen-1:] - targ[0] = sym - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # The code enclosed in this section is duplicated - # below as a performance optimization. Make sure - # changes get made in both locations. - - pslice.slice = targ - - try: - # Call the grammar rule with our special slice object - del symstack[-plen:] - del statestack[-plen:] - p.callable(pslice) - symstack.append(sym) - state = goto[statestack[-1]][pname] - statestack.append(state) - except SyntaxError: - # If an error was set. Enter error recovery state - lookaheadstack.append(lookahead) - symstack.pop() - statestack.pop() - state = statestack[-1] - sym.type = 'error' - lookahead = sym - errorcount = error_count - self.errorok = 0 - continue - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - else: - - targ = [ sym ] - - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - # The code enclosed in this section is duplicated - # above as a performance optimization. Make sure - # changes get made in both locations. - - pslice.slice = targ - - try: - # Call the grammar rule with our special slice object - p.callable(pslice) - symstack.append(sym) - state = goto[statestack[-1]][pname] - statestack.append(state) - except SyntaxError: - # If an error was set. Enter error recovery state - lookaheadstack.append(lookahead) - symstack.pop() - statestack.pop() - state = statestack[-1] - sym.type = 'error' - lookahead = sym - errorcount = error_count - self.errorok = 0 - continue - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - - if t == 0: - n = symstack[-1] - return getattr(n,"value",None) - - if t == None: - - # We have some kind of parsing error here. To handle - # this, we are going to push the current token onto - # the tokenstack and replace it with an 'error' token. - # If there are any synchronization rules, they may - # catch it. - # - # In addition to pushing the error token, we call call - # the user defined p_error() function if this is the - # first syntax error. This function is only called if - # errorcount == 0. - if errorcount == 0 or self.errorok: - errorcount = error_count - self.errorok = 0 - errtoken = lookahead - if errtoken.type == '$end': - errtoken = None # End of file! - if self.errorfunc: - global errok,token,restart - errok = self.errok # Set some special functions available in error recovery - token = get_token - restart = self.restart - if errtoken and not hasattr(errtoken,'lexer'): - errtoken.lexer = lexer - tok = self.errorfunc(errtoken) - del errok, token, restart # Delete special functions - - if self.errorok: - # User must have done some kind of panic - # mode recovery on their own. The - # returned token is the next lookahead - lookahead = tok - errtoken = None - continue - else: - if errtoken: - if hasattr(errtoken,"lineno"): lineno = lookahead.lineno - else: lineno = 0 - if lineno: - sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) - else: - sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) - else: - sys.stderr.write("yacc: Parse error in input. EOF\n") - return - - else: - errorcount = error_count - - # case 1: the statestack only has 1 entry on it. If we're in this state, the - # entire parse has been rolled back and we're completely hosed. The token is - # discarded and we just keep going. - - if len(statestack) <= 1 and lookahead.type != '$end': - lookahead = None - errtoken = None - state = 0 - # Nuke the pushback stack - del lookaheadstack[:] - continue - - # case 2: the statestack has a couple of entries on it, but we're - # at the end of the file. nuke the top entry and generate an error token - - # Start nuking entries on the stack - if lookahead.type == '$end': - # Whoa. We're really hosed here. Bail out - return - - if lookahead.type != 'error': - sym = symstack[-1] - if sym.type == 'error': - # Hmmm. Error is on top of stack, we'll just nuke input - # symbol and continue - lookahead = None - continue - t = YaccSymbol() - t.type = 'error' - if hasattr(lookahead,"lineno"): - t.lineno = lookahead.lineno - t.value = lookahead - lookaheadstack.append(lookahead) - lookahead = t - else: - symstack.pop() - statestack.pop() - state = statestack[-1] # Potential bug fix - - continue - - # Call an error function here - raise RuntimeError("yacc: internal parser error!!!\n") - -# ----------------------------------------------------------------------------- -# === Grammar Representation === -# -# The following functions, classes, and variables are used to represent and -# manipulate the rules that make up a grammar. -# ----------------------------------------------------------------------------- - -import re - -# regex matching identifiers -_is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$') - -# ----------------------------------------------------------------------------- -# class Production: -# -# This class stores the raw information about a single production or grammar rule. -# A grammar rule refers to a specification such as this: -# -# expr : expr PLUS term -# -# Here are the basic attributes defined on all productions -# -# name - Name of the production. For example 'expr' -# prod - A list of symbols on the right side ['expr','PLUS','term'] -# prec - Production precedence level -# number - Production number. -# func - Function that executes on reduce -# file - File where production function is defined -# lineno - Line number where production function is defined -# -# The following attributes are defined or optional. -# -# len - Length of the production (number of symbols on right hand side) -# usyms - Set of unique symbols found in the production -# ----------------------------------------------------------------------------- - -class Production(object): - reduced = 0 - def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',line=0): - self.name = name - self.prod = tuple(prod) - self.number = number - self.func = func - self.callable = None - self.file = file - self.line = line - self.prec = precedence - - # Internal settings used during table construction - - self.len = len(self.prod) # Length of the production - - # Create a list of unique production symbols used in the production - self.usyms = [ ] - for s in self.prod: - if s not in self.usyms: - self.usyms.append(s) - - # List of all LR items for the production - self.lr_items = [] - self.lr_next = None - - # Create a string representation - if self.prod: - self.str = "%s -> %s" % (self.name," ".join(self.prod)) - else: - self.str = "%s -> <empty>" % self.name - - def __str__(self): - return self.str - - def __repr__(self): - return "Production("+str(self)+")" - - def __len__(self): - return len(self.prod) - - def __nonzero__(self): - return 1 - - def __getitem__(self,index): - return self.prod[index] - - # Return the nth lr_item from the production (or None if at the end) - def lr_item(self,n): - if n > len(self.prod): return None - p = LRItem(self,n) - - # Precompute the list of productions immediately following. Hack. Remove later - try: - p.lr_after = Prodnames[p.prod[n+1]] - except (IndexError,KeyError): - p.lr_after = [] - try: - p.lr_before = p.prod[n-1] - except IndexError: - p.lr_before = None - - return p - - # Bind the production function name to a callable - def bind(self,pdict): - if self.func: - self.callable = pdict[self.func] - -# This class serves as a minimal standin for Production objects when -# reading table data from files. It only contains information -# actually used by the LR parsing engine, plus some additional -# debugging information. -class MiniProduction(object): - def __init__(self,str,name,len,func,file,line): - self.name = name - self.len = len - self.func = func - self.callable = None - self.file = file - self.line = line - self.str = str - def __str__(self): - return self.str - def __repr__(self): - return "MiniProduction(%s)" % self.str - - # Bind the production function name to a callable - def bind(self,pdict): - if self.func: - self.callable = pdict[self.func] - - -# ----------------------------------------------------------------------------- -# class LRItem -# -# This class represents a specific stage of parsing a production rule. For -# example: -# -# expr : expr . PLUS term -# -# In the above, the "." represents the current location of the parse. Here -# basic attributes: -# -# name - Name of the production. For example 'expr' -# prod - A list of symbols on the right side ['expr','.', 'PLUS','term'] -# number - Production number. -# -# lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term' -# then lr_next refers to 'expr -> expr PLUS . term' -# lr_index - LR item index (location of the ".") in the prod list. -# lookaheads - LALR lookahead symbols for this item -# len - Length of the production (number of symbols on right hand side) -# lr_after - List of all productions that immediately follow -# lr_before - Grammar symbol immediately before -# ----------------------------------------------------------------------------- - -class LRItem(object): - def __init__(self,p,n): - self.name = p.name - self.prod = list(p.prod) - self.number = p.number - self.lr_index = n - self.lookaheads = { } - self.prod.insert(n,".") - self.prod = tuple(self.prod) - self.len = len(self.prod) - self.usyms = p.usyms - - def __str__(self): - if self.prod: - s = "%s -> %s" % (self.name," ".join(self.prod)) - else: - s = "%s -> <empty>" % self.name - return s - - def __repr__(self): - return "LRItem("+str(self)+")" - -# ----------------------------------------------------------------------------- -# rightmost_terminal() -# -# Return the rightmost terminal from a list of symbols. Used in add_production() -# ----------------------------------------------------------------------------- -def rightmost_terminal(symbols, terminals): - i = len(symbols) - 1 - while i >= 0: - if symbols[i] in terminals: - return symbols[i] - i -= 1 - return None - -# ----------------------------------------------------------------------------- -# === GRAMMAR CLASS === -# -# The following class represents the contents of the specified grammar along -# with various computed properties such as first sets, follow sets, LR items, etc. -# This data is used for critical parts of the table generation process later. -# ----------------------------------------------------------------------------- - -class GrammarError(YaccError): pass - -class Grammar(object): - def __init__(self,terminals): - self.Productions = [None] # A list of all of the productions. The first - # entry is always reserved for the purpose of - # building an augmented grammar - - self.Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all - # productions of that nonterminal. - - self.Prodmap = { } # A dictionary that is only used to detect duplicate - # productions. - - self.Terminals = { } # A dictionary mapping the names of terminal symbols to a - # list of the rules where they are used. - - for term in terminals: - self.Terminals[term] = [] - - self.Terminals['error'] = [] - - self.Nonterminals = { } # A dictionary mapping names of nonterminals to a list - # of rule numbers where they are used. - - self.First = { } # A dictionary of precomputed FIRST(x) symbols - - self.Follow = { } # A dictionary of precomputed FOLLOW(x) symbols - - self.Precedence = { } # Precedence rules for each terminal. Contains tuples of the - # form ('right',level) or ('nonassoc', level) or ('left',level) - - self.UsedPrecedence = { } # Precedence rules that were actually used by the grammer. - # This is only used to provide error checking and to generate - # a warning about unused precedence rules. - - self.Start = None # Starting symbol for the grammar - - - def __len__(self): - return len(self.Productions) - - def __getitem__(self,index): - return self.Productions[index] - - # ----------------------------------------------------------------------------- - # set_precedence() - # - # Sets the precedence for a given terminal. assoc is the associativity such as - # 'left','right', or 'nonassoc'. level is a numeric level. - # - # ----------------------------------------------------------------------------- - - def set_precedence(self,term,assoc,level): - assert self.Productions == [None],"Must call set_precedence() before add_production()" - if term in self.Precedence: - raise GrammarError("Precedence already specified for terminal '%s'" % term) - if assoc not in ['left','right','nonassoc']: - raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'") - self.Precedence[term] = (assoc,level) - - # ----------------------------------------------------------------------------- - # add_production() - # - # Given an action function, this function assembles a production rule and - # computes its precedence level. - # - # The production rule is supplied as a list of symbols. For example, - # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and - # symbols ['expr','PLUS','term']. - # - # Precedence is determined by the precedence of the right-most non-terminal - # or the precedence of a terminal specified by %prec. - # - # A variety of error checks are performed to make sure production symbols - # are valid and that %prec is used correctly. - # ----------------------------------------------------------------------------- - - def add_production(self,prodname,syms,func=None,file='',line=0): - - if prodname in self.Terminals: - raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined as a token" % (file,line,prodname)) - if prodname == 'error': - raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserved word" % (file,line,prodname)) - if not _is_identifier.match(prodname): - raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prodname)) - - # Look for literal tokens - for n,s in enumerate(syms): - if s[0] in "'\"": - try: - c = eval(s) - if (len(c) > 1): - raise GrammarError("%s:%d: Literal token %s in rule '%s' may only be a single character" % (file,line,s, prodname)) - if not c in self.Terminals: - self.Terminals[c] = [] - syms[n] = c - continue - except SyntaxError: - pass - if not _is_identifier.match(s) and s != '%prec': - raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (file,line,s, prodname)) - - # Determine the precedence level - if '%prec' in syms: - if syms[-1] == '%prec': - raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec" % (file,line)) - if syms[-2] != '%prec': - raise GrammarError("%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule" % (file,line)) - precname = syms[-1] - prodprec = self.Precedence.get(precname,None) - if not prodprec: - raise GrammarError("%s:%d: Nothing known about the precedence of '%s'" % (file,line,precname)) - else: - self.UsedPrecedence[precname] = 1 - del syms[-2:] # Drop %prec from the rule - else: - # If no %prec, precedence is determined by the rightmost terminal symbol - precname = rightmost_terminal(syms,self.Terminals) - prodprec = self.Precedence.get(precname,('right',0)) - - # See if the rule is already in the rulemap - map = "%s -> %s" % (prodname,syms) - if map in self.Prodmap: - m = self.Prodmap[map] - raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) + - "Previous definition at %s:%d" % (m.file, m.line)) - - # From this point on, everything is valid. Create a new Production instance - pnumber = len(self.Productions) - if not prodname in self.Nonterminals: - self.Nonterminals[prodname] = [ ] - - # Add the production number to Terminals and Nonterminals - for t in syms: - if t in self.Terminals: - self.Terminals[t].append(pnumber) - else: - if not t in self.Nonterminals: - self.Nonterminals[t] = [ ] - self.Nonterminals[t].append(pnumber) - - # Create a production and add it to the list of productions - p = Production(pnumber,prodname,syms,prodprec,func,file,line) - self.Productions.append(p) - self.Prodmap[map] = p - - # Add to the global productions list - try: - self.Prodnames[prodname].append(p) - except KeyError: - self.Prodnames[prodname] = [ p ] - return 0 - - # ----------------------------------------------------------------------------- - # set_start() - # - # Sets the starting symbol and creates the augmented grammar. Production - # rule 0 is S' -> start where start is the start symbol. - # ----------------------------------------------------------------------------- - - def set_start(self,start=None): - if not start: - start = self.Productions[1].name - if start not in self.Nonterminals: - raise GrammarError("start symbol %s undefined" % start) - self.Productions[0] = Production(0,"S'",[start]) - self.Nonterminals[start].append(0) - self.Start = start - - # ----------------------------------------------------------------------------- - # find_unreachable() - # - # Find all of the nonterminal symbols that can't be reached from the starting - # symbol. Returns a list of nonterminals that can't be reached. - # ----------------------------------------------------------------------------- - - def find_unreachable(self): - - # Mark all symbols that are reachable from a symbol s - def mark_reachable_from(s): - if reachable[s]: - # We've already reached symbol s. - return - reachable[s] = 1 - for p in self.Prodnames.get(s,[]): - for r in p.prod: - mark_reachable_from(r) - - reachable = { } - for s in list(self.Terminals) + list(self.Nonterminals): - reachable[s] = 0 - - mark_reachable_from( self.Productions[0].prod[0] ) - - return [s for s in list(self.Nonterminals) - if not reachable[s]] - - # ----------------------------------------------------------------------------- - # infinite_cycles() - # - # This function looks at the various parsing rules and tries to detect - # infinite recursion cycles (grammar rules where there is no possible way - # to derive a string of only terminals). - # ----------------------------------------------------------------------------- - - def infinite_cycles(self): - terminates = {} - - # Terminals: - for t in self.Terminals: - terminates[t] = 1 - - terminates['$end'] = 1 - - # Nonterminals: - - # Initialize to false: - for n in self.Nonterminals: - terminates[n] = 0 - - # Then propagate termination until no change: - while 1: - some_change = 0 - for (n,pl) in self.Prodnames.items(): - # Nonterminal n terminates iff any of its productions terminates. - for p in pl: - # Production p terminates iff all of its rhs symbols terminate. - for s in p.prod: - if not terminates[s]: - # The symbol s does not terminate, - # so production p does not terminate. - p_terminates = 0 - break - else: - # didn't break from the loop, - # so every symbol s terminates - # so production p terminates. - p_terminates = 1 - - if p_terminates: - # symbol n terminates! - if not terminates[n]: - terminates[n] = 1 - some_change = 1 - # Don't need to consider any more productions for this n. - break - - if not some_change: - break - - infinite = [] - for (s,term) in terminates.items(): - if not term: - if not s in self.Prodnames and not s in self.Terminals and s != 'error': - # s is used-but-not-defined, and we've already warned of that, - # so it would be overkill to say that it's also non-terminating. - pass - else: - infinite.append(s) - - return infinite - - - # ----------------------------------------------------------------------------- - # undefined_symbols() - # - # Find all symbols that were used the grammar, but not defined as tokens or - # grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol - # and prod is the production where the symbol was used. - # ----------------------------------------------------------------------------- - def undefined_symbols(self): - result = [] - for p in self.Productions: - if not p: continue - - for s in p.prod: - if not s in self.Prodnames and not s in self.Terminals and s != 'error': - result.append((s,p)) - return result - - # ----------------------------------------------------------------------------- - # unused_terminals() - # - # Find all terminals that were defined, but not used by the grammar. Returns - # a list of all symbols. - # ----------------------------------------------------------------------------- - def unused_terminals(self): - unused_tok = [] - for s,v in self.Terminals.items(): - if s != 'error' and not v: - unused_tok.append(s) - - return unused_tok - - # ------------------------------------------------------------------------------ - # unused_rules() - # - # Find all grammar rules that were defined, but not used (maybe not reachable) - # Returns a list of productions. - # ------------------------------------------------------------------------------ - - def unused_rules(self): - unused_prod = [] - for s,v in self.Nonterminals.items(): - if not v: - p = self.Prodnames[s][0] - unused_prod.append(p) - return unused_prod - - # ----------------------------------------------------------------------------- - # unused_precedence() - # - # Returns a list of tuples (term,precedence) corresponding to precedence - # rules that were never used by the grammar. term is the name of the terminal - # on which precedence was applied and precedence is a string such as 'left' or - # 'right' corresponding to the type of precedence. - # ----------------------------------------------------------------------------- - - def unused_precedence(self): - unused = [] - for termname in self.Precedence: - if not (termname in self.Terminals or termname in self.UsedPrecedence): - unused.append((termname,self.Precedence[termname][0])) - - return unused - - # ------------------------------------------------------------------------- - # _first() - # - # Compute the value of FIRST1(beta) where beta is a tuple of symbols. - # - # During execution of compute_first1, the result may be incomplete. - # Afterward (e.g., when called from compute_follow()), it will be complete. - # ------------------------------------------------------------------------- - def _first(self,beta): - - # We are computing First(x1,x2,x3,...,xn) - result = [ ] - for x in beta: - x_produces_empty = 0 - - # Add all the non-<empty> symbols of First[x] to the result. - for f in self.First[x]: - if f == '<empty>': - x_produces_empty = 1 - else: - if f not in result: result.append(f) - - if x_produces_empty: - # We have to consider the next x in beta, - # i.e. stay in the loop. - pass - else: - # We don't have to consider any further symbols in beta. - break - else: - # There was no 'break' from the loop, - # so x_produces_empty was true for all x in beta, - # so beta produces empty as well. - result.append('<empty>') - - return result - - # ------------------------------------------------------------------------- - # compute_first() - # - # Compute the value of FIRST1(X) for all symbols - # ------------------------------------------------------------------------- - def compute_first(self): - if self.First: - return self.First - - # Terminals: - for t in self.Terminals: - self.First[t] = [t] - - self.First['$end'] = ['$end'] - - # Nonterminals: - - # Initialize to the empty set: - for n in self.Nonterminals: - self.First[n] = [] - - # Then propagate symbols until no change: - while 1: - some_change = 0 - for n in self.Nonterminals: - for p in self.Prodnames[n]: - for f in self._first(p.prod): - if f not in self.First[n]: - self.First[n].append( f ) - some_change = 1 - if not some_change: - break - - return self.First - - # --------------------------------------------------------------------- - # compute_follow() - # - # Computes all of the follow sets for every non-terminal symbol. The - # follow set is the set of all symbols that might follow a given - # non-terminal. See the Dragon book, 2nd Ed. p. 189. - # --------------------------------------------------------------------- - def compute_follow(self,start=None): - # If already computed, return the result - if self.Follow: - return self.Follow - - # If first sets not computed yet, do that first. - if not self.First: - self.compute_first() - - # Add '$end' to the follow list of the start symbol - for k in self.Nonterminals: - self.Follow[k] = [ ] - - if not start: - start = self.Productions[1].name - - self.Follow[start] = [ '$end' ] - - while 1: - didadd = 0 - for p in self.Productions[1:]: - # Here is the production set - for i in range(len(p.prod)): - B = p.prod[i] - if B in self.Nonterminals: - # Okay. We got a non-terminal in a production - fst = self._first(p.prod[i+1:]) - hasempty = 0 - for f in fst: - if f != '<empty>' and f not in self.Follow[B]: - self.Follow[B].append(f) - didadd = 1 - if f == '<empty>': - hasempty = 1 - if hasempty or i == (len(p.prod)-1): - # Add elements of follow(a) to follow(b) - for f in self.Follow[p.name]: - if f not in self.Follow[B]: - self.Follow[B].append(f) - didadd = 1 - if not didadd: break - return self.Follow - - - # ----------------------------------------------------------------------------- - # build_lritems() - # - # This function walks the list of productions and builds a complete set of the - # LR items. The LR items are stored in two ways: First, they are uniquely - # numbered and placed in the list _lritems. Second, a linked list of LR items - # is built for each production. For example: - # - # E -> E PLUS E - # - # Creates the list - # - # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ] - # ----------------------------------------------------------------------------- - - def build_lritems(self): - for p in self.Productions: - lastlri = p - i = 0 - lr_items = [] - while 1: - if i > len(p): - lri = None - else: - lri = LRItem(p,i) - # Precompute the list of productions immediately following - try: - lri.lr_after = self.Prodnames[lri.prod[i+1]] - except (IndexError,KeyError): - lri.lr_after = [] - try: - lri.lr_before = lri.prod[i-1] - except IndexError: - lri.lr_before = None - - lastlri.lr_next = lri - if not lri: break - lr_items.append(lri) - lastlri = lri - i += 1 - p.lr_items = lr_items - -# ----------------------------------------------------------------------------- -# == Class LRTable == -# -# This basic class represents a basic table of LR parsing information. -# Methods for generating the tables are not defined here. They are defined -# in the derived class LRGeneratedTable. -# ----------------------------------------------------------------------------- - -class VersionError(YaccError): pass - -class LRTable(object): - def __init__(self): - self.lr_action = None - self.lr_goto = None - self.lr_productions = None - self.lr_method = None - - def read_table(self,module): - if isinstance(module,types.ModuleType): - parsetab = module - else: - if sys.version_info[0] < 3: - exec("import %s as parsetab" % module) - else: - env = { } - exec("import %s as parsetab" % module, env, env) - parsetab = env['parsetab'] - - if parsetab._tabversion != __tabversion__: - raise VersionError("yacc table file version is out of date") - - self.lr_action = parsetab._lr_action - self.lr_goto = parsetab._lr_goto - - self.lr_productions = [] - for p in parsetab._lr_productions: - self.lr_productions.append(MiniProduction(*p)) - - self.lr_method = parsetab._lr_method - return parsetab._lr_signature - - def read_pickle(self,filename): - try: - import cPickle as pickle - except ImportError: - import pickle - - in_f = open(filename,"rb") - - tabversion = pickle.load(in_f) - if tabversion != __tabversion__: - raise VersionError("yacc table file version is out of date") - self.lr_method = pickle.load(in_f) - signature = pickle.load(in_f) - self.lr_action = pickle.load(in_f) - self.lr_goto = pickle.load(in_f) - productions = pickle.load(in_f) - - self.lr_productions = [] - for p in productions: - self.lr_productions.append(MiniProduction(*p)) - - in_f.close() - return signature - - # Bind all production function names to callable objects in pdict - def bind_callables(self,pdict): - for p in self.lr_productions: - p.bind(pdict) - -# ----------------------------------------------------------------------------- -# === LR Generator === -# -# The following classes and functions are used to generate LR parsing tables on -# a grammar. -# ----------------------------------------------------------------------------- - -# ----------------------------------------------------------------------------- -# digraph() -# traverse() -# -# The following two functions are used to compute set valued functions -# of the form: -# -# F(x) = F'(x) U U{F(y) | x R y} -# -# This is used to compute the values of Read() sets as well as FOLLOW sets -# in LALR(1) generation. -# -# Inputs: X - An input set -# R - A relation -# FP - Set-valued function -# ------------------------------------------------------------------------------ - -def digraph(X,R,FP): - N = { } - for x in X: - N[x] = 0 - stack = [] - F = { } - for x in X: - if N[x] == 0: traverse(x,N,stack,F,X,R,FP) - return F - -def traverse(x,N,stack,F,X,R,FP): - stack.append(x) - d = len(stack) - N[x] = d - F[x] = FP(x) # F(X) <- F'(x) - - rel = R(x) # Get y's related to x - for y in rel: - if N[y] == 0: - traverse(y,N,stack,F,X,R,FP) - N[x] = min(N[x],N[y]) - for a in F.get(y,[]): - if a not in F[x]: F[x].append(a) - if N[x] == d: - N[stack[-1]] = MAXINT - F[stack[-1]] = F[x] - element = stack.pop() - while element != x: - N[stack[-1]] = MAXINT - F[stack[-1]] = F[x] - element = stack.pop() - -class LALRError(YaccError): pass - -# ----------------------------------------------------------------------------- -# == LRGeneratedTable == -# -# This class implements the LR table generation algorithm. There are no -# public methods except for write() -# ----------------------------------------------------------------------------- - -class LRGeneratedTable(LRTable): - def __init__(self,grammar,method='LALR',log=None): - if method not in ['SLR','LALR']: - raise LALRError("Unsupported method %s" % method) - - self.grammar = grammar - self.lr_method = method - - # Set up the logger - if not log: - log = NullLogger() - self.log = log - - # Internal attributes - self.lr_action = {} # Action table - self.lr_goto = {} # Goto table - self.lr_productions = grammar.Productions # Copy of grammar Production array - self.lr_goto_cache = {} # Cache of computed gotos - self.lr0_cidhash = {} # Cache of closures - - self._add_count = 0 # Internal counter used to detect cycles - - # Diagonistic information filled in by the table generator - self.sr_conflict = 0 - self.rr_conflict = 0 - self.conflicts = [] # List of conflicts - - self.sr_conflicts = [] - self.rr_conflicts = [] - - # Build the tables - self.grammar.build_lritems() - self.grammar.compute_first() - self.grammar.compute_follow() - self.lr_parse_table() - - # Compute the LR(0) closure operation on I, where I is a set of LR(0) items. - - def lr0_closure(self,I): - self._add_count += 1 - - # Add everything in I to J - J = I[:] - didadd = 1 - while didadd: - didadd = 0 - for j in J: - for x in j.lr_after: - if getattr(x,"lr0_added",0) == self._add_count: continue - # Add B --> .G to J - J.append(x.lr_next) - x.lr0_added = self._add_count - didadd = 1 - - return J - - # Compute the LR(0) goto function goto(I,X) where I is a set - # of LR(0) items and X is a grammar symbol. This function is written - # in a way that guarantees uniqueness of the generated goto sets - # (i.e. the same goto set will never be returned as two different Python - # objects). With uniqueness, we can later do fast set comparisons using - # id(obj) instead of element-wise comparison. - - def lr0_goto(self,I,x): - # First we look for a previously cached entry - g = self.lr_goto_cache.get((id(I),x),None) - if g: return g - - # Now we generate the goto set in a way that guarantees uniqueness - # of the result - - s = self.lr_goto_cache.get(x,None) - if not s: - s = { } - self.lr_goto_cache[x] = s - - gs = [ ] - for p in I: - n = p.lr_next - if n and n.lr_before == x: - s1 = s.get(id(n),None) - if not s1: - s1 = { } - s[id(n)] = s1 - gs.append(n) - s = s1 - g = s.get('$end',None) - if not g: - if gs: - g = self.lr0_closure(gs) - s['$end'] = g - else: - s['$end'] = gs - self.lr_goto_cache[(id(I),x)] = g - return g - - # Compute the LR(0) sets of item function - def lr0_items(self): - - C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ] - i = 0 - for I in C: - self.lr0_cidhash[id(I)] = i - i += 1 - - # Loop over the items in C and each grammar symbols - i = 0 - while i < len(C): - I = C[i] - i += 1 - - # Collect all of the symbols that could possibly be in the goto(I,X) sets - asyms = { } - for ii in I: - for s in ii.usyms: - asyms[s] = None - - for x in asyms: - g = self.lr0_goto(I,x) - if not g: continue - if id(g) in self.lr0_cidhash: continue - self.lr0_cidhash[id(g)] = len(C) - C.append(g) - - return C - - # ----------------------------------------------------------------------------- - # ==== LALR(1) Parsing ==== - # - # LALR(1) parsing is almost exactly the same as SLR except that instead of - # relying upon Follow() sets when performing reductions, a more selective - # lookahead set that incorporates the state of the LR(0) machine is utilized. - # Thus, we mainly just have to focus on calculating the lookahead sets. - # - # The method used here is due to DeRemer and Pennelo (1982). - # - # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1) - # Lookahead Sets", ACM Transactions on Programming Languages and Systems, - # Vol. 4, No. 4, Oct. 1982, pp. 615-649 - # - # Further details can also be found in: - # - # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing", - # McGraw-Hill Book Company, (1985). - # - # ----------------------------------------------------------------------------- - - # ----------------------------------------------------------------------------- - # compute_nullable_nonterminals() - # - # Creates a dictionary containing all of the non-terminals that might produce - # an empty production. - # ----------------------------------------------------------------------------- - - def compute_nullable_nonterminals(self): - nullable = {} - num_nullable = 0 - while 1: - for p in self.grammar.Productions[1:]: - if p.len == 0: - nullable[p.name] = 1 - continue - for t in p.prod: - if not t in nullable: break - else: - nullable[p.name] = 1 - if len(nullable) == num_nullable: break - num_nullable = len(nullable) - return nullable - - # ----------------------------------------------------------------------------- - # find_nonterminal_trans(C) - # - # Given a set of LR(0) items, this functions finds all of the non-terminal - # transitions. These are transitions in which a dot appears immediately before - # a non-terminal. Returns a list of tuples of the form (state,N) where state - # is the state number and N is the nonterminal symbol. - # - # The input C is the set of LR(0) items. - # ----------------------------------------------------------------------------- - - def find_nonterminal_transitions(self,C): - trans = [] - for state in range(len(C)): - for p in C[state]: - if p.lr_index < p.len - 1: - t = (state,p.prod[p.lr_index+1]) - if t[1] in self.grammar.Nonterminals: - if t not in trans: trans.append(t) - state = state + 1 - return trans - - # ----------------------------------------------------------------------------- - # dr_relation() - # - # Computes the DR(p,A) relationships for non-terminal transitions. The input - # is a tuple (state,N) where state is a number and N is a nonterminal symbol. - # - # Returns a list of terminals. - # ----------------------------------------------------------------------------- - - def dr_relation(self,C,trans,nullable): - dr_set = { } - state,N = trans - terms = [] - - g = self.lr0_goto(C[state],N) - for p in g: - if p.lr_index < p.len - 1: - a = p.prod[p.lr_index+1] - if a in self.grammar.Terminals: - if a not in terms: terms.append(a) - - # This extra bit is to handle the start state - if state == 0 and N == self.grammar.Productions[0].prod[0]: - terms.append('$end') - - return terms - - # ----------------------------------------------------------------------------- - # reads_relation() - # - # Computes the READS() relation (p,A) READS (t,C). - # ----------------------------------------------------------------------------- - - def reads_relation(self,C, trans, empty): - # Look for empty transitions - rel = [] - state, N = trans - - g = self.lr0_goto(C[state],N) - j = self.lr0_cidhash.get(id(g),-1) - for p in g: - if p.lr_index < p.len - 1: - a = p.prod[p.lr_index + 1] - if a in empty: - rel.append((j,a)) - - return rel - - # ----------------------------------------------------------------------------- - # compute_lookback_includes() - # - # Determines the lookback and includes relations - # - # LOOKBACK: - # - # This relation is determined by running the LR(0) state machine forward. - # For example, starting with a production "N : . A B C", we run it forward - # to obtain "N : A B C ." We then build a relationship between this final - # state and the starting state. These relationships are stored in a dictionary - # lookdict. - # - # INCLUDES: - # - # Computes the INCLUDE() relation (p,A) INCLUDES (p',B). - # - # This relation is used to determine non-terminal transitions that occur - # inside of other non-terminal transition states. (p,A) INCLUDES (p', B) - # if the following holds: - # - # B -> LAT, where T -> epsilon and p' -L-> p - # - # L is essentially a prefix (which may be empty), T is a suffix that must be - # able to derive an empty string. State p' must lead to state p with the string L. - # - # ----------------------------------------------------------------------------- - - def compute_lookback_includes(self,C,trans,nullable): - - lookdict = {} # Dictionary of lookback relations - includedict = {} # Dictionary of include relations - - # Make a dictionary of non-terminal transitions - dtrans = {} - for t in trans: - dtrans[t] = 1 - - # Loop over all transitions and compute lookbacks and includes - for state,N in trans: - lookb = [] - includes = [] - for p in C[state]: - if p.name != N: continue - - # Okay, we have a name match. We now follow the production all the way - # through the state machine until we get the . on the right hand side - - lr_index = p.lr_index - j = state - while lr_index < p.len - 1: - lr_index = lr_index + 1 - t = p.prod[lr_index] - - # Check to see if this symbol and state are a non-terminal transition - if (j,t) in dtrans: - # Yes. Okay, there is some chance that this is an includes relation - # the only way to know for certain is whether the rest of the - # production derives empty - - li = lr_index + 1 - while li < p.len: - if p.prod[li] in self.grammar.Terminals: break # No forget it - if not p.prod[li] in nullable: break - li = li + 1 - else: - # Appears to be a relation between (j,t) and (state,N) - includes.append((j,t)) - - g = self.lr0_goto(C[j],t) # Go to next set - j = self.lr0_cidhash.get(id(g),-1) # Go to next state - - # When we get here, j is the final state, now we have to locate the production - for r in C[j]: - if r.name != p.name: continue - if r.len != p.len: continue - i = 0 - # This look is comparing a production ". A B C" with "A B C ." - while i < r.lr_index: - if r.prod[i] != p.prod[i+1]: break - i = i + 1 - else: - lookb.append((j,r)) - for i in includes: - if not i in includedict: includedict[i] = [] - includedict[i].append((state,N)) - lookdict[(state,N)] = lookb - - return lookdict,includedict - - # ----------------------------------------------------------------------------- - # compute_read_sets() - # - # Given a set of LR(0) items, this function computes the read sets. - # - # Inputs: C = Set of LR(0) items - # ntrans = Set of nonterminal transitions - # nullable = Set of empty transitions - # - # Returns a set containing the read sets - # ----------------------------------------------------------------------------- - - def compute_read_sets(self,C, ntrans, nullable): - FP = lambda x: self.dr_relation(C,x,nullable) - R = lambda x: self.reads_relation(C,x,nullable) - F = digraph(ntrans,R,FP) - return F - - # ----------------------------------------------------------------------------- - # compute_follow_sets() - # - # Given a set of LR(0) items, a set of non-terminal transitions, a readset, - # and an include set, this function computes the follow sets - # - # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)} - # - # Inputs: - # ntrans = Set of nonterminal transitions - # readsets = Readset (previously computed) - # inclsets = Include sets (previously computed) - # - # Returns a set containing the follow sets - # ----------------------------------------------------------------------------- - - def compute_follow_sets(self,ntrans,readsets,inclsets): - FP = lambda x: readsets[x] - R = lambda x: inclsets.get(x,[]) - F = digraph(ntrans,R,FP) - return F - - # ----------------------------------------------------------------------------- - # add_lookaheads() - # - # Attaches the lookahead symbols to grammar rules. - # - # Inputs: lookbacks - Set of lookback relations - # followset - Computed follow set - # - # This function directly attaches the lookaheads to productions contained - # in the lookbacks set - # ----------------------------------------------------------------------------- - - def add_lookaheads(self,lookbacks,followset): - for trans,lb in lookbacks.items(): - # Loop over productions in lookback - for state,p in lb: - if not state in p.lookaheads: - p.lookaheads[state] = [] - f = followset.get(trans,[]) - for a in f: - if a not in p.lookaheads[state]: p.lookaheads[state].append(a) - - # ----------------------------------------------------------------------------- - # add_lalr_lookaheads() - # - # This function does all of the work of adding lookahead information for use - # with LALR parsing - # ----------------------------------------------------------------------------- - - def add_lalr_lookaheads(self,C): - # Determine all of the nullable nonterminals - nullable = self.compute_nullable_nonterminals() - - # Find all non-terminal transitions - trans = self.find_nonterminal_transitions(C) - - # Compute read sets - readsets = self.compute_read_sets(C,trans,nullable) - - # Compute lookback/includes relations - lookd, included = self.compute_lookback_includes(C,trans,nullable) - - # Compute LALR FOLLOW sets - followsets = self.compute_follow_sets(trans,readsets,included) - - # Add all of the lookaheads - self.add_lookaheads(lookd,followsets) - - # ----------------------------------------------------------------------------- - # lr_parse_table() - # - # This function constructs the parse tables for SLR or LALR - # ----------------------------------------------------------------------------- - def lr_parse_table(self): - Productions = self.grammar.Productions - Precedence = self.grammar.Precedence - goto = self.lr_goto # Goto array - action = self.lr_action # Action array - log = self.log # Logger for output - - actionp = { } # Action production array (temporary) - - log.info("Parsing method: %s", self.lr_method) - - # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items - # This determines the number of states - - C = self.lr0_items() - - if self.lr_method == 'LALR': - self.add_lalr_lookaheads(C) - - # Build the parser table, state by state - st = 0 - for I in C: - # Loop over each production in I - actlist = [ ] # List of actions - st_action = { } - st_actionp = { } - st_goto = { } - log.info("") - log.info("state %d", st) - log.info("") - for p in I: - log.info(" (%d) %s", p.number, str(p)) - log.info("") - - for p in I: - if p.len == p.lr_index + 1: - if p.name == "S'": - # Start symbol. Accept! - st_action["$end"] = 0 - st_actionp["$end"] = p - else: - # We are at the end of a production. Reduce! - if self.lr_method == 'LALR': - laheads = p.lookaheads[st] - else: - laheads = self.grammar.Follow[p.name] - for a in laheads: - actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p))) - r = st_action.get(a,None) - if r is not None: - # Whoa. Have a shift/reduce or reduce/reduce conflict - if r > 0: - # Need to decide on shift or reduce here - # By default we favor shifting. Need to add - # some precedence rules here. - sprec,slevel = Productions[st_actionp[a].number].prec - rprec,rlevel = Precedence.get(a,('right',0)) - if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')): - # We really need to reduce here. - st_action[a] = -p.number - st_actionp[a] = p - if not slevel and not rlevel: - log.info(" ! shift/reduce conflict for %s resolved as reduce",a) - self.sr_conflicts.append((st,a,'reduce')) - Productions[p.number].reduced += 1 - elif (slevel == rlevel) and (rprec == 'nonassoc'): - st_action[a] = None - else: - # Hmmm. Guess we'll keep the shift - if not rlevel: - log.info(" ! shift/reduce conflict for %s resolved as shift",a) - self.sr_conflicts.append((st,a,'shift')) - elif r < 0: - # Reduce/reduce conflict. In this case, we favor the rule - # that was defined first in the grammar file - oldp = Productions[-r] - pp = Productions[p.number] - if oldp.line > pp.line: - st_action[a] = -p.number - st_actionp[a] = p - chosenp,rejectp = pp,oldp - Productions[p.number].reduced += 1 - Productions[oldp.number].reduced -= 1 - else: - chosenp,rejectp = oldp,pp - self.rr_conflicts.append((st,chosenp,rejectp)) - log.info(" ! reduce/reduce conflict for %s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a]) - else: - raise LALRError("Unknown conflict in state %d" % st) - else: - st_action[a] = -p.number - st_actionp[a] = p - Productions[p.number].reduced += 1 - else: - i = p.lr_index - a = p.prod[i+1] # Get symbol right after the "." - if a in self.grammar.Terminals: - g = self.lr0_goto(I,a) - j = self.lr0_cidhash.get(id(g),-1) - if j >= 0: - # We are in a shift state - actlist.append((a,p,"shift and go to state %d" % j)) - r = st_action.get(a,None) - if r is not None: - # Whoa have a shift/reduce or shift/shift conflict - if r > 0: - if r != j: - raise LALRError("Shift/shift conflict in state %d" % st) - elif r < 0: - # Do a precedence check. - # - if precedence of reduce rule is higher, we reduce. - # - if precedence of reduce is same and left assoc, we reduce. - # - otherwise we shift - rprec,rlevel = Productions[st_actionp[a].number].prec - sprec,slevel = Precedence.get(a,('right',0)) - if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')): - # We decide to shift here... highest precedence to shift - Productions[st_actionp[a].number].reduced -= 1 - st_action[a] = j - st_actionp[a] = p - if not rlevel: - log.info(" ! shift/reduce conflict for %s resolved as shift",a) - self.sr_conflicts.append((st,a,'shift')) - elif (slevel == rlevel) and (rprec == 'nonassoc'): - st_action[a] = None - else: - # Hmmm. Guess we'll keep the reduce - if not slevel and not rlevel: - log.info(" ! shift/reduce conflict for %s resolved as reduce",a) - self.sr_conflicts.append((st,a,'reduce')) - - else: - raise LALRError("Unknown conflict in state %d" % st) - else: - st_action[a] = j - st_actionp[a] = p - - # Print the actions associated with each terminal - _actprint = { } - for a,p,m in actlist: - if a in st_action: - if p is st_actionp[a]: - log.info(" %-15s %s",a,m) - _actprint[(a,m)] = 1 - log.info("") - # Print the actions that were not used. (debugging) - not_used = 0 - for a,p,m in actlist: - if a in st_action: - if p is not st_actionp[a]: - if not (a,m) in _actprint: - log.debug(" ! %-15s [ %s ]",a,m) - not_used = 1 - _actprint[(a,m)] = 1 - if not_used: - log.debug("") - - # Construct the goto table for this state - - nkeys = { } - for ii in I: - for s in ii.usyms: - if s in self.grammar.Nonterminals: - nkeys[s] = None - for n in nkeys: - g = self.lr0_goto(I,n) - j = self.lr0_cidhash.get(id(g),-1) - if j >= 0: - st_goto[n] = j - log.info(" %-30s shift and go to state %d",n,j) - - action[st] = st_action - actionp[st] = st_actionp - goto[st] = st_goto - st += 1 - - - # ----------------------------------------------------------------------------- - # write() - # - # This function writes the LR parsing tables to a file - # ----------------------------------------------------------------------------- - - def write_table(self,modulename,outputdir='',signature=""): - basemodulename = modulename.split(".")[-1] - filename = os.path.join(outputdir,basemodulename) + ".py" - try: - f = open(filename,"w") - - f.write(""" -# %s -# This file is automatically generated. Do not edit. -_tabversion = %r - -_lr_method = %r - -_lr_signature = %r - """ % (filename, __tabversion__, self.lr_method, signature)) - - # Change smaller to 0 to go back to original tables - smaller = 1 - - # Factor out names to try and make smaller - if smaller: - items = { } - - for s,nd in self.lr_action.items(): - for name,v in nd.items(): - i = items.get(name) - if not i: - i = ([],[]) - items[name] = i - i[0].append(s) - i[1].append(v) - - f.write("\n_lr_action_items = {") - for k,v in items.items(): - f.write("%r:([" % k) - for i in v[0]: - f.write("%r," % i) - f.write("],[") - for i in v[1]: - f.write("%r," % i) - - f.write("]),") - f.write("}\n") - - f.write(""" -_lr_action = { } -for _k, _v in _lr_action_items.items(): - for _x,_y in zip(_v[0],_v[1]): - if not _x in _lr_action: _lr_action[_x] = { } - _lr_action[_x][_k] = _y -del _lr_action_items -""") - - else: - f.write("\n_lr_action = { "); - for k,v in self.lr_action.items(): - f.write("(%r,%r):%r," % (k[0],k[1],v)) - f.write("}\n"); - - if smaller: - # Factor out names to try and make smaller - items = { } - - for s,nd in self.lr_goto.items(): - for name,v in nd.items(): - i = items.get(name) - if not i: - i = ([],[]) - items[name] = i - i[0].append(s) - i[1].append(v) - - f.write("\n_lr_goto_items = {") - for k,v in items.items(): - f.write("%r:([" % k) - for i in v[0]: - f.write("%r," % i) - f.write("],[") - for i in v[1]: - f.write("%r," % i) - - f.write("]),") - f.write("}\n") - - f.write(""" -_lr_goto = { } -for _k, _v in _lr_goto_items.items(): - for _x,_y in zip(_v[0],_v[1]): - if not _x in _lr_goto: _lr_goto[_x] = { } - _lr_goto[_x][_k] = _y -del _lr_goto_items -""") - else: - f.write("\n_lr_goto = { "); - for k,v in self.lr_goto.items(): - f.write("(%r,%r):%r," % (k[0],k[1],v)) - f.write("}\n"); - - # Write production table - f.write("_lr_productions = [\n") - for p in self.lr_productions: - if p.func: - f.write(" (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p.func,p.file,p.line)) - else: - f.write(" (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p.len)) - f.write("]\n") - f.close() - - except IOError: - e = sys.exc_info()[1] - sys.stderr.write("Unable to create '%s'\n" % filename) - sys.stderr.write(str(e)+"\n") - return - - - # ----------------------------------------------------------------------------- - # pickle_table() - # - # This function pickles the LR parsing tables to a supplied file object - # ----------------------------------------------------------------------------- - - def pickle_table(self,filename,signature=""): - try: - import cPickle as pickle - except ImportError: - import pickle - outf = open(filename,"wb") - pickle.dump(__tabversion__,outf,pickle_protocol) - pickle.dump(self.lr_method,outf,pickle_protocol) - pickle.dump(signature,outf,pickle_protocol) - pickle.dump(self.lr_action,outf,pickle_protocol) - pickle.dump(self.lr_goto,outf,pickle_protocol) - - outp = [] - for p in self.lr_productions: - if p.func: - outp.append((p.str,p.name, p.len, p.func,p.file,p.line)) - else: - outp.append((str(p),p.name,p.len,None,None,None)) - pickle.dump(outp,outf,pickle_protocol) - outf.close() - -# ----------------------------------------------------------------------------- -# === INTROSPECTION === -# -# The following functions and classes are used to implement the PLY -# introspection features followed by the yacc() function itself. -# ----------------------------------------------------------------------------- - -# ----------------------------------------------------------------------------- -# get_caller_module_dict() -# -# This function returns a dictionary containing all of the symbols defined within -# a caller further down the call stack. This is used to get the environment -# associated with the yacc() call if none was provided. -# ----------------------------------------------------------------------------- - -def get_caller_module_dict(levels): - try: - raise RuntimeError - except RuntimeError: - e,b,t = sys.exc_info() - f = t.tb_frame - while levels > 0: - f = f.f_back - levels -= 1 - ldict = f.f_globals.copy() - if f.f_globals != f.f_locals: - ldict.update(f.f_locals) - - return ldict - -# ----------------------------------------------------------------------------- -# parse_grammar() -# -# This takes a raw grammar rule string and parses it into production data -# ----------------------------------------------------------------------------- -def parse_grammar(doc,file,line): - grammar = [] - # Split the doc string into lines - pstrings = doc.splitlines() - lastp = None - dline = line - for ps in pstrings: - dline += 1 - p = ps.split() - if not p: continue - try: - if p[0] == '|': - # This is a continuation of a previous rule - if not lastp: - raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline)) - prodname = lastp - syms = p[1:] - else: - prodname = p[0] - lastp = prodname - syms = p[2:] - assign = p[1] - if assign != ':' and assign != '::=': - raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file,dline)) - - grammar.append((file,dline,prodname,syms)) - except SyntaxError: - raise - except Exception: - raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,ps.strip())) - - return grammar - -# ----------------------------------------------------------------------------- -# ParserReflect() -# -# This class represents information extracted for building a parser including -# start symbol, error function, tokens, precedence list, action functions, -# etc. -# ----------------------------------------------------------------------------- -class ParserReflect(object): - def __init__(self,pdict,log=None): - self.pdict = pdict - self.start = None - self.error_func = None - self.tokens = None - self.files = {} - self.grammar = [] - self.error = 0 - - if log is None: - self.log = PlyLogger(sys.stderr) - else: - self.log = log - - # Get all of the basic information - def get_all(self): - self.get_start() - self.get_error_func() - self.get_tokens() - self.get_precedence() - self.get_pfunctions() - - # Validate all of the information - def validate_all(self): - self.validate_start() - self.validate_error_func() - self.validate_tokens() - self.validate_precedence() - self.validate_pfunctions() - self.validate_files() - return self.error - - # Compute a signature over the grammar - def signature(self): - try: - from hashlib import md5 - except ImportError: - from md5 import md5 - try: - sig = md5() - if self.start: - sig.update(self.start.encode('latin-1')) - if self.prec: - sig.update("".join(["".join(p) for p in self.prec]).encode('latin-1')) - if self.tokens: - sig.update(" ".join(self.tokens).encode('latin-1')) - for f in self.pfuncs: - if f[3]: - sig.update(f[3].encode('latin-1')) - except (TypeError,ValueError): - pass - return sig.digest() - - # ----------------------------------------------------------------------------- - # validate_file() - # - # This method checks to see if there are duplicated p_rulename() functions - # in the parser module file. Without this function, it is really easy for - # users to make mistakes by cutting and pasting code fragments (and it's a real - # bugger to try and figure out why the resulting parser doesn't work). Therefore, - # we just do a little regular expression pattern matching of def statements - # to try and detect duplicates. - # ----------------------------------------------------------------------------- - - def validate_files(self): - # Match def p_funcname( - fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(') - - for filename in self.files.keys(): - base,ext = os.path.splitext(filename) - if ext != '.py': return 1 # No idea. Assume it's okay. - - try: - f = open(filename) - lines = f.readlines() - f.close() - except IOError: - continue - - counthash = { } - for linen,l in enumerate(lines): - linen += 1 - m = fre.match(l) - if m: - name = m.group(1) - prev = counthash.get(name) - if not prev: - counthash[name] = linen - else: - self.log.warning("%s:%d: Function %s redefined. Previously defined on line %d", filename,linen,name,prev) - - # Get the start symbol - def get_start(self): - self.start = self.pdict.get('start') - - # Validate the start symbol - def validate_start(self): - if self.start is not None: - if not isinstance(self.start,str): - self.log.error("'start' must be a string") - - # Look for error handler - def get_error_func(self): - self.error_func = self.pdict.get('p_error') - - # Validate the error function - def validate_error_func(self): - if self.error_func: - if isinstance(self.error_func,types.FunctionType): - ismethod = 0 - elif isinstance(self.error_func, types.MethodType): - ismethod = 1 - else: - self.log.error("'p_error' defined, but is not a function or method") - self.error = 1 - return - - eline = func_code(self.error_func).co_firstlineno - efile = func_code(self.error_func).co_filename - self.files[efile] = 1 - - if (func_code(self.error_func).co_argcount != 1+ismethod): - self.log.error("%s:%d: p_error() requires 1 argument",efile,eline) - self.error = 1 - - # Get the tokens map - def get_tokens(self): - tokens = self.pdict.get("tokens",None) - if not tokens: - self.log.error("No token list is defined") - self.error = 1 - return - - if not isinstance(tokens,(list, tuple)): - self.log.error("tokens must be a list or tuple") - self.error = 1 - return - - if not tokens: - self.log.error("tokens is empty") - self.error = 1 - return - - self.tokens = tokens - - # Validate the tokens - def validate_tokens(self): - # Validate the tokens. - if 'error' in self.tokens: - self.log.error("Illegal token name 'error'. Is a reserved word") - self.error = 1 - return - - terminals = {} - for n in self.tokens: - if n in terminals: - self.log.warning("Token '%s' multiply defined", n) - terminals[n] = 1 - - # Get the precedence map (if any) - def get_precedence(self): - self.prec = self.pdict.get("precedence",None) - - # Validate and parse the precedence map - def validate_precedence(self): - preclist = [] - if self.prec: - if not isinstance(self.prec,(list,tuple)): - self.log.error("precedence must be a list or tuple") - self.error = 1 - return - for level,p in enumerate(self.prec): - if not isinstance(p,(list,tuple)): - self.log.error("Bad precedence table") - self.error = 1 - return - - if len(p) < 2: - self.log.error("Malformed precedence entry %s. Must be (assoc, term, ..., term)",p) - self.error = 1 - return - assoc = p[0] - if not isinstance(assoc,str): - self.log.error("precedence associativity must be a string") - self.error = 1 - return - for term in p[1:]: - if not isinstance(term,str): - self.log.error("precedence items must be strings") - self.error = 1 - return - preclist.append((term,assoc,level+1)) - self.preclist = preclist - - # Get all p_functions from the grammar - def get_pfunctions(self): - p_functions = [] - for name, item in self.pdict.items(): - if name[:2] != 'p_': continue - if name == 'p_error': continue - if isinstance(item,(types.FunctionType,types.MethodType)): - line = func_code(item).co_firstlineno - file = func_code(item).co_filename - p_functions.append((line,file,name,item.__doc__)) - - # Sort all of the actions by line number - p_functions.sort() - self.pfuncs = p_functions - - - # Validate all of the p_functions - def validate_pfunctions(self): - grammar = [] - # Check for non-empty symbols - if len(self.pfuncs) == 0: - self.log.error("no rules of the form p_rulename are defined") - self.error = 1 - return - - for line, file, name, doc in self.pfuncs: - func = self.pdict[name] - if isinstance(func, types.MethodType): - reqargs = 2 - else: - reqargs = 1 - if func_code(func).co_argcount > reqargs: - self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,func.__name__) - self.error = 1 - elif func_code(func).co_argcount < reqargs: - self.log.error("%s:%d: Rule '%s' requires an argument",file,line,func.__name__) - self.error = 1 - elif not func.__doc__: - self.log.warning("%s:%d: No documentation string specified in function '%s' (ignored)",file,line,func.__name__) - else: - try: - parsed_g = parse_grammar(doc,file,line) - for g in parsed_g: - grammar.append((name, g)) - except SyntaxError: - e = sys.exc_info()[1] - self.log.error(str(e)) - self.error = 1 - - # Looks like a valid grammar rule - # Mark the file in which defined. - self.files[file] = 1 - - # Secondary validation step that looks for p_ definitions that are not functions - # or functions that look like they might be grammar rules. - - for n,v in self.pdict.items(): - if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.MethodType)): continue - if n[0:2] == 't_': continue - if n[0:2] == 'p_' and n != 'p_error': - self.log.warning("'%s' not defined as a function", n) - if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount == 1) or - (isinstance(v,types.MethodType) and func_code(v).co_argcount == 2)): - try: - doc = v.__doc__.split(" ") - if doc[1] == ':': - self.log.warning("%s:%d: Possible grammar rule '%s' defined without p_ prefix", - func_code(v).co_filename, func_code(v).co_firstlineno,n) - except Exception: - pass - - self.grammar = grammar - -# ----------------------------------------------------------------------------- -# yacc(module) -# -# Build a parser -# ----------------------------------------------------------------------------- - -def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None, - check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,outputdir='', - debuglog=None, errorlog = None, picklefile=None): - - global parse # Reference to the parsing method of the last built parser - - # If pickling is enabled, table files are not created - - if picklefile: - write_tables = 0 - - if errorlog is None: - errorlog = PlyLogger(sys.stderr) - - # Get the module dictionary used for the parser - if module: - _items = [(k,getattr(module,k)) for k in dir(module)] - pdict = dict(_items) - else: - pdict = get_caller_module_dict(2) - - # Collect parser information from the dictionary - pinfo = ParserReflect(pdict,log=errorlog) - pinfo.get_all() - - if pinfo.error: - raise YaccError("Unable to build parser") - - # Check signature against table files (if any) - signature = pinfo.signature() - - # Read the tables - try: - lr = LRTable() - if picklefile: - read_signature = lr.read_pickle(picklefile) - else: - read_signature = lr.read_table(tabmodule) - if optimize or (read_signature == signature): - try: - lr.bind_callables(pinfo.pdict) - parser = LRParser(lr,pinfo.error_func) - parse = parser.parse - return parser - except Exception: - e = sys.exc_info()[1] - errorlog.warning("There was a problem loading the table file: %s", repr(e)) - except VersionError: - e = sys.exc_info() - errorlog.warning(str(e)) - except Exception: - pass - - if debuglog is None: - if debug: - debuglog = PlyLogger(open(debugfile,"w")) - else: - debuglog = NullLogger() - - debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __version__) - - - errors = 0 - - # Validate the parser information - if pinfo.validate_all(): - raise YaccError("Unable to build parser") - - if not pinfo.error_func: - errorlog.warning("no p_error() function is defined") - - # Create a grammar object - grammar = Grammar(pinfo.tokens) - - # Set precedence level for terminals - for term, assoc, level in pinfo.preclist: - try: - grammar.set_precedence(term,assoc,level) - except GrammarError: - e = sys.exc_info()[1] - errorlog.warning("%s",str(e)) - - # Add productions to the grammar - for funcname, gram in pinfo.grammar: - file, line, prodname, syms = gram - try: - grammar.add_production(prodname,syms,funcname,file,line) - except GrammarError: - e = sys.exc_info()[1] - errorlog.error("%s",str(e)) - errors = 1 - - # Set the grammar start symbols - try: - if start is None: - grammar.set_start(pinfo.start) - else: - grammar.set_start(start) - except GrammarError: - e = sys.exc_info()[1] - errorlog.error(str(e)) - errors = 1 - - if errors: - raise YaccError("Unable to build parser") - - # Verify the grammar structure - undefined_symbols = grammar.undefined_symbols() - for sym, prod in undefined_symbols: - errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a rule",prod.file,prod.line,sym) - errors = 1 - - unused_terminals = grammar.unused_terminals() - if unused_terminals: - debuglog.info("") - debuglog.info("Unused terminals:") - debuglog.info("") - for term in unused_terminals: - errorlog.warning("Token '%s' defined, but not used", term) - debuglog.info(" %s", term) - - # Print out all productions to the debug log - if debug: - debuglog.info("") - debuglog.info("Grammar") - debuglog.info("") - for n,p in enumerate(grammar.Productions): - debuglog.info("Rule %-5d %s", n, p) - - # Find unused non-terminals - unused_rules = grammar.unused_rules() - for prod in unused_rules: - errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, prod.line, prod.name) - - if len(unused_terminals) == 1: - errorlog.warning("There is 1 unused token") - if len(unused_terminals) > 1: - errorlog.warning("There are %d unused tokens", len(unused_terminals)) - - if len(unused_rules) == 1: - errorlog.warning("There is 1 unused rule") - if len(unused_rules) > 1: - errorlog.warning("There are %d unused rules", len(unused_rules)) - - if debug: - debuglog.info("") - debuglog.info("Terminals, with rules where they appear") - debuglog.info("") - terms = list(grammar.Terminals) - terms.sort() - for term in terms: - debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.Terminals[term]])) - - debuglog.info("") - debuglog.info("Nonterminals, with rules where they appear") - debuglog.info("") - nonterms = list(grammar.Nonterminals) - nonterms.sort() - for nonterm in nonterms: - debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in grammar.Nonterminals[nonterm]])) - debuglog.info("") - - if check_recursion: - unreachable = grammar.find_unreachable() - for u in unreachable: - errorlog.warning("Symbol '%s' is unreachable",u) - - infinite = grammar.infinite_cycles() - for inf in infinite: - errorlog.error("Infinite recursion detected for symbol '%s'", inf) - errors = 1 - - unused_prec = grammar.unused_precedence() - for term, assoc in unused_prec: - errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", assoc, term) - errors = 1 - - if errors: - raise YaccError("Unable to build parser") - - # Run the LRGeneratedTable on the grammar - if debug: - errorlog.debug("Generating %s tables", method) - - lr = LRGeneratedTable(grammar,method,debuglog) - - if debug: - num_sr = len(lr.sr_conflicts) - - # Report shift/reduce and reduce/reduce conflicts - if num_sr == 1: - errorlog.warning("1 shift/reduce conflict") - elif num_sr > 1: - errorlog.warning("%d shift/reduce conflicts", num_sr) - - num_rr = len(lr.rr_conflicts) - if num_rr == 1: - errorlog.warning("1 reduce/reduce conflict") - elif num_rr > 1: - errorlog.warning("%d reduce/reduce conflicts", num_rr) - - # Write out conflicts to the output file - if debug and (lr.sr_conflicts or lr.rr_conflicts): - debuglog.warning("") - debuglog.warning("Conflicts:") - debuglog.warning("") - - for state, tok, resolution in lr.sr_conflicts: - debuglog.warning("shift/reduce conflict for %s in state %d resolved as %s", tok, state, resolution) - - already_reported = {} - for state, rule, rejected in lr.rr_conflicts: - if (state,id(rule),id(rejected)) in already_reported: - continue - debuglog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule) - debuglog.warning("rejected rule (%s) in state %d", rejected,state) - errorlog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule) - errorlog.warning("rejected rule (%s) in state %d", rejected, state) - already_reported[state,id(rule),id(rejected)] = 1 - - warned_never = [] - for state, rule, rejected in lr.rr_conflicts: - if not rejected.reduced and (rejected not in warned_never): - debuglog.warning("Rule (%s) is never reduced", rejected) - errorlog.warning("Rule (%s) is never reduced", rejected) - warned_never.append(rejected) - - # Write the table file if requested - if write_tables: - lr.write_table(tabmodule,outputdir,signature) - - # Write a pickled version of the tables - if picklefile: - lr.pickle_table(picklefile,signature) - - # Build the parser - lr.bind_callables(pinfo.pdict) - parser = LRParser(lr,pinfo.error_func) - - parse = parser.parse - return parser |