1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#ifndef __LINUX_UACCESS_H__
#define __LINUX_UACCESS_H__
#include <linux/sched.h>
#include <linux/thread_info.h>
#include <linux/kasan-checks.h>
#define VERIFY_READ 0
#define VERIFY_WRITE 1
#define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS)
#include <asm/uaccess.h>
#ifdef CONFIG_ARCH_HAS_RAW_COPY_USER
/*
* Architectures should provide two primitives (raw_copy_{to,from}_user())
* select ARCH_HAS_RAW_COPY_FROM_USER and get rid of their private instances
* of copy_{to,from}_user() and __copy_{to,from}_user{,_inatomic}(). Once
* all of them switch, this part of linux/uaccess.h will become unconditional.
*
* raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
* return the amount left to copy. They should assume that access_ok() has
* already been checked (and succeeded); they should *not* zero-pad anything.
* No KASAN or object size checks either - those belong here.
*
* Both of these functions should attempt to copy size bytes starting at from
* into the area starting at to. They must not fetch or store anything
* outside of those areas. Return value must be between 0 (everything
* copied successfully) and size (nothing copied).
*
* If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
* at to must become equal to the bytes fetched from the corresponding area
* starting at from. All data past to + size - N must be left unmodified.
*
* If copying succeeds, the return value must be 0. If some data cannot be
* fetched, it is permitted to copy less than had been fetched; the only
* hard requirement is that not storing anything at all (i.e. returning size)
* should happen only when nothing could be copied. In other words, you don't
* have to squeeze as much as possible - it is allowed, but not necessary.
*
* For raw_copy_from_user() to always points to kernel memory and no faults
* on store should happen. Interpretation of from is affected by set_fs().
* For raw_copy_to_user() it's the other way round.
*
* Both can be inlined - it's up to architectures whether it wants to bother
* with that. They should not be used directly; they are used to implement
* the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
* that are used instead. Out of those, __... ones are inlined. Plain
* copy_{to,from}_user() might or might not be inlined. If you want them
* inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
*
* NOTE: only copy_from_user() zero-pads the destination in case of short copy.
* Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
* at all; their callers absolutely must check the return value.
*
* Biarch ones should also provide raw_copy_in_user() - similar to the above,
* but both source and destination are __user pointers (affected by set_fs()
* as usual) and both source and destination can trigger faults.
*/
static __always_inline unsigned long
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
{
kasan_check_write(to, n);
check_object_size(to, n, false);
return raw_copy_from_user(to, from, n);
}
static __always_inline unsigned long
__copy_from_user(void *to, const void __user *from, unsigned long n)
{
might_fault();
kasan_check_write(to, n);
check_object_size(to, n, false);
return raw_copy_from_user(to, from, n);
}
/**
* __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
* @to: Destination address, in user space.
* @from: Source address, in kernel space.
* @n: Number of bytes to copy.
*
* Context: User context only.
*
* Copy data from kernel space to user space. Caller must check
* the specified block with access_ok() before calling this function.
* The caller should also make sure he pins the user space address
* so that we don't result in page fault and sleep.
*/
static __always_inline unsigned long
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
{
kasan_check_read(from, n);
check_object_size(from, n, true);
return raw_copy_to_user(to, from, n);
}
static __always_inline unsigned long
__copy_to_user(void __user *to, const void *from, unsigned long n)
{
might_fault();
kasan_check_read(from, n);
check_object_size(from, n, true);
return raw_copy_to_user(to, from, n);
}
#ifdef INLINE_COPY_FROM_USER
static inline unsigned long
_copy_from_user(void *to, const void __user *from, unsigned long n)
{
unsigned long res = n;
if (likely(access_ok(VERIFY_READ, from, n)))
res = raw_copy_from_user(to, from, n);
if (unlikely(res))
memset(to + (n - res), 0, res);
return res;
}
#else
extern unsigned long
_copy_from_user(void *, const void __user *, unsigned long);
#endif
#ifdef INLINE_COPY_TO_USER
static inline unsigned long
_copy_to_user(void __user *to, const void *from, unsigned long n)
{
if (access_ok(VERIFY_WRITE, to, n))
n = raw_copy_to_user(to, from, n);
return n;
}
#else
extern unsigned long
_copy_to_user(void __user *, const void *, unsigned long);
#endif
extern void __compiletime_error("usercopy buffer size is too small")
__bad_copy_user(void);
static inline void copy_user_overflow(int size, unsigned long count)
{
WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count);
}
static __always_inline unsigned long __must_check
copy_from_user(void *to, const void __user *from, unsigned long n)
{
int sz = __compiletime_object_size(to);
might_fault();
kasan_check_write(to, n);
if (likely(sz < 0 || sz >= n)) {
check_object_size(to, n, false);
n = _copy_from_user(to, from, n);
} else if (!__builtin_constant_p(n))
copy_user_overflow(sz, n);
else
__bad_copy_user();
return n;
}
static __always_inline unsigned long __must_check
copy_to_user(void __user *to, const void *from, unsigned long n)
{
int sz = __compiletime_object_size(from);
kasan_check_read(from, n);
might_fault();
if (likely(sz < 0 || sz >= n)) {
check_object_size(from, n, true);
n = _copy_to_user(to, from, n);
} else if (!__builtin_constant_p(n))
copy_user_overflow(sz, n);
else
__bad_copy_user();
return n;
}
#ifdef CONFIG_COMPAT
static __always_inline unsigned long __must_check
__copy_in_user(void __user *to, const void *from, unsigned long n)
{
might_fault();
return raw_copy_in_user(to, from, n);
}
static __always_inline unsigned long __must_check
copy_in_user(void __user *to, const void *from, unsigned long n)
{
might_fault();
if (access_ok(VERIFY_WRITE, to, n) && access_ok(VERIFY_READ, from, n))
n = raw_copy_in_user(to, from, n);
return n;
}
#endif
#endif
static __always_inline void pagefault_disabled_inc(void)
{
current->pagefault_disabled++;
}
static __always_inline void pagefault_disabled_dec(void)
{
current->pagefault_disabled--;
WARN_ON(current->pagefault_disabled < 0);
}
/*
* These routines enable/disable the pagefault handler. If disabled, it will
* not take any locks and go straight to the fixup table.
*
* User access methods will not sleep when called from a pagefault_disabled()
* environment.
*/
static inline void pagefault_disable(void)
{
pagefault_disabled_inc();
/*
* make sure to have issued the store before a pagefault
* can hit.
*/
barrier();
}
static inline void pagefault_enable(void)
{
/*
* make sure to issue those last loads/stores before enabling
* the pagefault handler again.
*/
barrier();
pagefault_disabled_dec();
}
/*
* Is the pagefault handler disabled? If so, user access methods will not sleep.
*/
#define pagefault_disabled() (current->pagefault_disabled != 0)
/*
* The pagefault handler is in general disabled by pagefault_disable() or
* when in irq context (via in_atomic()).
*
* This function should only be used by the fault handlers. Other users should
* stick to pagefault_disabled().
* Please NEVER use preempt_disable() to disable the fault handler. With
* !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
* in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
*/
#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
#ifndef ARCH_HAS_NOCACHE_UACCESS
static inline unsigned long __copy_from_user_inatomic_nocache(void *to,
const void __user *from, unsigned long n)
{
return __copy_from_user_inatomic(to, from, n);
}
static inline unsigned long __copy_from_user_nocache(void *to,
const void __user *from, unsigned long n)
{
return __copy_from_user(to, from, n);
}
#endif /* ARCH_HAS_NOCACHE_UACCESS */
/*
* probe_kernel_read(): safely attempt to read from a location
* @dst: pointer to the buffer that shall take the data
* @src: address to read from
* @size: size of the data chunk
*
* Safely read from address @src to the buffer at @dst. If a kernel fault
* happens, handle that and return -EFAULT.
*/
extern long probe_kernel_read(void *dst, const void *src, size_t size);
extern long __probe_kernel_read(void *dst, const void *src, size_t size);
/*
* probe_kernel_write(): safely attempt to write to a location
* @dst: address to write to
* @src: pointer to the data that shall be written
* @size: size of the data chunk
*
* Safely write to address @dst from the buffer at @src. If a kernel fault
* happens, handle that and return -EFAULT.
*/
extern long notrace probe_kernel_write(void *dst, const void *src, size_t size);
extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size);
extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count);
/**
* probe_kernel_address(): safely attempt to read from a location
* @addr: address to read from
* @retval: read into this variable
*
* Returns 0 on success, or -EFAULT.
*/
#define probe_kernel_address(addr, retval) \
probe_kernel_read(&retval, addr, sizeof(retval))
#ifndef user_access_begin
#define user_access_begin() do { } while (0)
#define user_access_end() do { } while (0)
#define unsafe_get_user(x, ptr, err) do { if (unlikely(__get_user(x, ptr))) goto err; } while (0)
#define unsafe_put_user(x, ptr, err) do { if (unlikely(__put_user(x, ptr))) goto err; } while (0)
#endif
#endif /* __LINUX_UACCESS_H__ */
|