1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
/*
* linux/drivers/video/fbcvt.c - VESA(TM) Coordinated Video Timings
*
* Copyright (C) 2005 Antonino Daplas <adaplas@pol.net>
*
* Based from the VESA(TM) Coordinated Video Timing Generator by
* Graham Loveridge April 9, 2003 available at
* http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*
*/
#include <linux/fb.h>
#include <linux/slab.h>
#define FB_CVT_CELLSIZE 8
#define FB_CVT_GTF_C 40
#define FB_CVT_GTF_J 20
#define FB_CVT_GTF_K 128
#define FB_CVT_GTF_M 600
#define FB_CVT_MIN_VSYNC_BP 550
#define FB_CVT_MIN_VPORCH 3
#define FB_CVT_MIN_BPORCH 6
#define FB_CVT_RB_MIN_VBLANK 460
#define FB_CVT_RB_HBLANK 160
#define FB_CVT_RB_V_FPORCH 3
#define FB_CVT_FLAG_REDUCED_BLANK 1
#define FB_CVT_FLAG_MARGINS 2
#define FB_CVT_FLAG_INTERLACED 4
struct fb_cvt_data {
u32 xres;
u32 yres;
u32 refresh;
u32 f_refresh;
u32 pixclock;
u32 hperiod;
u32 hblank;
u32 hfreq;
u32 htotal;
u32 vtotal;
u32 vsync;
u32 hsync;
u32 h_front_porch;
u32 h_back_porch;
u32 v_front_porch;
u32 v_back_porch;
u32 h_margin;
u32 v_margin;
u32 interlace;
u32 aspect_ratio;
u32 active_pixels;
u32 flags;
u32 status;
};
static const unsigned char fb_cvt_vbi_tab[] = {
4, /* 4:3 */
5, /* 16:9 */
6, /* 16:10 */
7, /* 5:4 */
7, /* 15:9 */
8, /* reserved */
9, /* reserved */
10 /* custom */
};
/* returns hperiod * 1000 */
static u32 fb_cvt_hperiod(struct fb_cvt_data *cvt)
{
u32 num = 1000000000/cvt->f_refresh;
u32 den;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) {
num -= FB_CVT_RB_MIN_VBLANK * 1000;
den = 2 * (cvt->yres/cvt->interlace + 2 * cvt->v_margin);
} else {
num -= FB_CVT_MIN_VSYNC_BP * 1000;
den = 2 * (cvt->yres/cvt->interlace + cvt->v_margin * 2
+ FB_CVT_MIN_VPORCH + cvt->interlace/2);
}
return 2 * (num/den);
}
/* returns ideal duty cycle * 1000 */
static u32 fb_cvt_ideal_duty_cycle(struct fb_cvt_data *cvt)
{
u32 c_prime = (FB_CVT_GTF_C - FB_CVT_GTF_J) *
(FB_CVT_GTF_K) + 256 * FB_CVT_GTF_J;
u32 m_prime = (FB_CVT_GTF_K * FB_CVT_GTF_M);
u32 h_period_est = cvt->hperiod;
return (1000 * c_prime - ((m_prime * h_period_est)/1000))/256;
}
static u32 fb_cvt_hblank(struct fb_cvt_data *cvt)
{
u32 hblank = 0;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
hblank = FB_CVT_RB_HBLANK;
else {
u32 ideal_duty_cycle = fb_cvt_ideal_duty_cycle(cvt);
u32 active_pixels = cvt->active_pixels;
if (ideal_duty_cycle < 20000)
hblank = (active_pixels * 20000)/
(100000 - 20000);
else {
hblank = (active_pixels * ideal_duty_cycle)/
(100000 - ideal_duty_cycle);
}
}
hblank &= ~((2 * FB_CVT_CELLSIZE) - 1);
return hblank;
}
static u32 fb_cvt_hsync(struct fb_cvt_data *cvt)
{
u32 hsync;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
hsync = 32;
else
hsync = (FB_CVT_CELLSIZE * cvt->htotal)/100;
hsync &= ~(FB_CVT_CELLSIZE - 1);
return hsync;
}
static u32 fb_cvt_vbi_lines(struct fb_cvt_data *cvt)
{
u32 vbi_lines, min_vbi_lines, act_vbi_lines;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) {
vbi_lines = (1000 * FB_CVT_RB_MIN_VBLANK)/cvt->hperiod + 1;
min_vbi_lines = FB_CVT_RB_V_FPORCH + cvt->vsync +
FB_CVT_MIN_BPORCH;
} else {
vbi_lines = (FB_CVT_MIN_VSYNC_BP * 1000)/cvt->hperiod + 1 +
FB_CVT_MIN_VPORCH;
min_vbi_lines = cvt->vsync + FB_CVT_MIN_BPORCH +
FB_CVT_MIN_VPORCH;
}
if (vbi_lines < min_vbi_lines)
act_vbi_lines = min_vbi_lines;
else
act_vbi_lines = vbi_lines;
return act_vbi_lines;
}
static u32 fb_cvt_vtotal(struct fb_cvt_data *cvt)
{
u32 vtotal = cvt->yres/cvt->interlace;
vtotal += 2 * cvt->v_margin + cvt->interlace/2 + fb_cvt_vbi_lines(cvt);
vtotal |= cvt->interlace/2;
return vtotal;
}
static u32 fb_cvt_pixclock(struct fb_cvt_data *cvt)
{
u32 pixclock;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
pixclock = (cvt->f_refresh * cvt->vtotal * cvt->htotal)/1000;
else
pixclock = (cvt->htotal * 1000000)/cvt->hperiod;
pixclock /= 250;
pixclock *= 250;
pixclock *= 1000;
return pixclock;
}
static u32 fb_cvt_aspect_ratio(struct fb_cvt_data *cvt)
{
u32 xres = cvt->xres;
u32 yres = cvt->yres;
u32 aspect = -1;
if (xres == (yres * 4)/3 && !((yres * 4) % 3))
aspect = 0;
else if (xres == (yres * 16)/9 && !((yres * 16) % 9))
aspect = 1;
else if (xres == (yres * 16)/10 && !((yres * 16) % 10))
aspect = 2;
else if (xres == (yres * 5)/4 && !((yres * 5) % 4))
aspect = 3;
else if (xres == (yres * 15)/9 && !((yres * 15) % 9))
aspect = 4;
else {
printk(KERN_INFO "fbcvt: Aspect ratio not CVT "
"standard\n");
aspect = 7;
cvt->status = 1;
}
return aspect;
}
static void fb_cvt_print_name(struct fb_cvt_data *cvt)
{
u32 pixcount, pixcount_mod;
int cnt = 255, offset = 0, read = 0;
u8 *buf = kzalloc(256, GFP_KERNEL);
if (!buf)
return;
pixcount = (cvt->xres * (cvt->yres/cvt->interlace))/1000000;
pixcount_mod = (cvt->xres * (cvt->yres/cvt->interlace)) % 1000000;
pixcount_mod /= 1000;
read = snprintf(buf+offset, cnt, "fbcvt: %dx%d@%d: CVT Name - ",
cvt->xres, cvt->yres, cvt->refresh);
offset += read;
cnt -= read;
if (cvt->status)
snprintf(buf+offset, cnt, "Not a CVT standard - %d.%03d Mega "
"Pixel Image\n", pixcount, pixcount_mod);
else {
if (pixcount) {
read = snprintf(buf+offset, cnt, "%d", pixcount);
cnt -= read;
offset += read;
}
read = snprintf(buf+offset, cnt, ".%03dM", pixcount_mod);
cnt -= read;
offset += read;
if (cvt->aspect_ratio == 0)
read = snprintf(buf+offset, cnt, "3");
else if (cvt->aspect_ratio == 3)
read = snprintf(buf+offset, cnt, "4");
else if (cvt->aspect_ratio == 1 || cvt->aspect_ratio == 4)
read = snprintf(buf+offset, cnt, "9");
else if (cvt->aspect_ratio == 2)
read = snprintf(buf+offset, cnt, "A");
else
read = 0;
cnt -= read;
offset += read;
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) {
read = snprintf(buf+offset, cnt, "-R");
cnt -= read;
offset += read;
}
}
printk(KERN_INFO "%s\n", buf);
kfree(buf);
}
static void fb_cvt_convert_to_mode(struct fb_cvt_data *cvt,
struct fb_videomode *mode)
{
mode->refresh = cvt->f_refresh;
mode->pixclock = KHZ2PICOS(cvt->pixclock/1000);
mode->left_margin = cvt->h_back_porch;
mode->right_margin = cvt->h_front_porch;
mode->hsync_len = cvt->hsync;
mode->upper_margin = cvt->v_back_porch;
mode->lower_margin = cvt->v_front_porch;
mode->vsync_len = cvt->vsync;
mode->sync &= ~(FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT);
if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK)
mode->sync |= FB_SYNC_HOR_HIGH_ACT;
else
mode->sync |= FB_SYNC_VERT_HIGH_ACT;
}
/*
* fb_find_mode_cvt - calculate mode using VESA(TM) CVT
* @mode: pointer to fb_videomode; xres, yres, refresh and vmode must be
* pre-filled with the desired values
* @margins: add margin to calculation (1.8% of xres and yres)
* @rb: compute with reduced blanking (for flatpanels)
*
* RETURNS:
* 0 for success
* @mode is filled with computed values. If interlaced, the refresh field
* will be filled with the field rate (2x the frame rate)
*
* DESCRIPTION:
* Computes video timings using VESA(TM) Coordinated Video Timings
*/
int fb_find_mode_cvt(struct fb_videomode *mode, int margins, int rb)
{
struct fb_cvt_data cvt;
memset(&cvt, 0, sizeof(cvt));
if (margins)
cvt.flags |= FB_CVT_FLAG_MARGINS;
if (rb)
cvt.flags |= FB_CVT_FLAG_REDUCED_BLANK;
if (mode->vmode & FB_VMODE_INTERLACED)
cvt.flags |= FB_CVT_FLAG_INTERLACED;
cvt.xres = mode->xres;
cvt.yres = mode->yres;
cvt.refresh = mode->refresh;
cvt.f_refresh = cvt.refresh;
cvt.interlace = 1;
if (!cvt.xres || !cvt.yres || !cvt.refresh) {
printk(KERN_INFO "fbcvt: Invalid input parameters\n");
return 1;
}
if (!(cvt.refresh == 50 || cvt.refresh == 60 || cvt.refresh == 70 ||
cvt.refresh == 85)) {
printk(KERN_INFO "fbcvt: Refresh rate not CVT "
"standard\n");
cvt.status = 1;
}
cvt.xres &= ~(FB_CVT_CELLSIZE - 1);
if (cvt.flags & FB_CVT_FLAG_INTERLACED) {
cvt.interlace = 2;
cvt.f_refresh *= 2;
}
if (cvt.flags & FB_CVT_FLAG_REDUCED_BLANK) {
if (cvt.refresh != 60) {
printk(KERN_INFO "fbcvt: 60Hz refresh rate "
"advised for reduced blanking\n");
cvt.status = 1;
}
}
if (cvt.flags & FB_CVT_FLAG_MARGINS) {
cvt.h_margin = (cvt.xres * 18)/1000;
cvt.h_margin &= ~(FB_CVT_CELLSIZE - 1);
cvt.v_margin = ((cvt.yres/cvt.interlace)* 18)/1000;
}
cvt.aspect_ratio = fb_cvt_aspect_ratio(&cvt);
cvt.active_pixels = cvt.xres + 2 * cvt.h_margin;
cvt.hperiod = fb_cvt_hperiod(&cvt);
cvt.vsync = fb_cvt_vbi_tab[cvt.aspect_ratio];
cvt.vtotal = fb_cvt_vtotal(&cvt);
cvt.hblank = fb_cvt_hblank(&cvt);
cvt.htotal = cvt.active_pixels + cvt.hblank;
cvt.hsync = fb_cvt_hsync(&cvt);
cvt.pixclock = fb_cvt_pixclock(&cvt);
cvt.hfreq = cvt.pixclock/cvt.htotal;
cvt.h_back_porch = cvt.hblank/2 + cvt.h_margin;
cvt.h_front_porch = cvt.hblank - cvt.hsync - cvt.h_back_porch +
2 * cvt.h_margin;
cvt.v_back_porch = 3 + cvt.v_margin;
cvt.v_front_porch = cvt.vtotal - cvt.yres/cvt.interlace -
cvt.v_back_porch - cvt.vsync;
fb_cvt_print_name(&cvt);
fb_cvt_convert_to_mode(&cvt, mode);
return 0;
}
|