summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/via/via-rhine.c
blob: c8f088ab5fdfdbb6c9c757f5defd9c9b70588163 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
/*
	Written 1998-2001 by Donald Becker.

	Current Maintainer: Roger Luethi <rl@hellgate.ch>

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	This driver is designed for the VIA VT86C100A Rhine-I.
	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
	and management NIC 6105M).

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403


	This driver contains some changes from the original Donald Becker
	version. He may or may not be interested in bug reports on this
	code. You can find his versions at:
	http://www.scyld.com/network/via-rhine.html
	[link no longer provides useful info -jgarzik]

*/

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#define DRV_NAME	"via-rhine"
#define DRV_VERSION	"1.5.0"
#define DRV_RELDATE	"2010-10-09"

#include <linux/types.h>

/* A few user-configurable values.
   These may be modified when a driver module is loaded. */
static int debug = 0;
#define RHINE_MSG_DEFAULT \
        (0x0000)

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature. */
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
	defined(__sh__) || defined(__mips__)
static int rx_copybreak = 1518;
#else
static int rx_copybreak;
#endif

/* Work-around for broken BIOSes: they are unable to get the chip back out of
   power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
static bool avoid_D3;

/*
 * In case you are looking for 'options[]' or 'full_duplex[]', they
 * are gone. Use ethtool(8) instead.
 */

/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   The Rhine has a 64 element 8390-like hash table. */
static const int multicast_filter_limit = 32;


/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority.
   There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE	16
#define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
#define RX_RING_SIZE	64

/* Operational parameters that usually are not changed. */

/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT	(2*HZ)

#define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/bitops.h>
#include <linux/workqueue.h>
#include <asm/processor.h>	/* Processor type for cache alignment. */
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/dmi.h>

/* These identify the driver base version and may not be removed. */
static const char version[] =
	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";

/* This driver was written to use PCI memory space. Some early versions
   of the Rhine may only work correctly with I/O space accesses. */
#ifdef CONFIG_VIA_RHINE_MMIO
#define USE_MMIO
#else
#endif

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
MODULE_LICENSE("GPL");

module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
module_param(avoid_D3, bool, 0);
MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");

#define MCAM_SIZE	32
#define VCAM_SIZE	32

/*
		Theory of Operation

I. Board Compatibility

This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
controller.

II. Board-specific settings

Boards with this chip are functional only in a bus-master PCI slot.

Many operational settings are loaded from the EEPROM to the Config word at
offset 0x78. For most of these settings, this driver assumes that they are
correct.
If this driver is compiled to use PCI memory space operations the EEPROM
must be configured to enable memory ops.

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.

IIIb/c. Transmit/Receive Structure

This driver attempts to use a zero-copy receive and transmit scheme.

Alas, all data buffers are required to start on a 32 bit boundary, so
the driver must often copy transmit packets into bounce buffers.

The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack. Buffers consumed this way are replaced by newly allocated
skbuffs in the last phase of rhine_rx().

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames. New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets. When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine. Copying also preloads the cache, which is
most useful with small frames.

Since the VIA chips are only able to transfer data to buffers on 32 bit
boundaries, the IP header at offset 14 in an ethernet frame isn't
longword aligned for further processing. Copying these unaligned buffers
has the beneficial effect of 16-byte aligning the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
which is single threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring. It locks the
netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
the ring is not available it stops the transmit queue by
calling netif_stop_queue.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. If at least half of the entries in
the Rx ring are available the transmit queue is woken up if it was stopped.

IV. Notes

IVb. References

Preliminary VT86C100A manual from http://www.via.com.tw/
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF


IVc. Errata

The VT86C100A manual is not reliable information.
The 3043 chip does not handle unaligned transmit or receive buffers, resulting
in significant performance degradation for bounce buffer copies on transmit
and unaligned IP headers on receive.
The chip does not pad to minimum transmit length.

*/


/* This table drives the PCI probe routines. It's mostly boilerplate in all
   of the drivers, and will likely be provided by some future kernel.
   Note the matching code -- the first table entry matchs all 56** cards but
   second only the 1234 card.
*/

enum rhine_revs {
	VT86C100A	= 0x00,
	VTunknown0	= 0x20,
	VT6102		= 0x40,
	VT8231		= 0x50,	/* Integrated MAC */
	VT8233		= 0x60,	/* Integrated MAC */
	VT8235		= 0x74,	/* Integrated MAC */
	VT8237		= 0x78,	/* Integrated MAC */
	VTunknown1	= 0x7C,
	VT6105		= 0x80,
	VT6105_B0	= 0x83,
	VT6105L		= 0x8A,
	VT6107		= 0x8C,
	VTunknown2	= 0x8E,
	VT6105M		= 0x90,	/* Management adapter */
};

enum rhine_quirks {
	rqWOL		= 0x0001,	/* Wake-On-LAN support */
	rqForceReset	= 0x0002,
	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
	rqRhineI	= 0x0100,	/* See comment below */
};
/*
 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
 * MMIO as well as for the collision counter and the Tx FIFO underflow
 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
 */

/* Beware of PCI posted writes */
#define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)

static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);


/* Offsets to the device registers. */
enum register_offsets {
	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
	ChipCmd1=0x09, TQWake=0x0A,
	IntrStatus=0x0C, IntrEnable=0x0E,
	MulticastFilter0=0x10, MulticastFilter1=0x14,
	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
	StickyHW=0x83, IntrStatus2=0x84,
	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
	WOLcrClr1=0xA6, WOLcgClr=0xA7,
	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
};

/* Bits in ConfigD */
enum backoff_bits {
	BackOptional=0x01, BackModify=0x02,
	BackCaptureEffect=0x04, BackRandom=0x08
};

/* Bits in the TxConfig (TCR) register */
enum tcr_bits {
	TCR_PQEN=0x01,
	TCR_LB0=0x02,		/* loopback[0] */
	TCR_LB1=0x04,		/* loopback[1] */
	TCR_OFSET=0x08,
	TCR_RTGOPT=0x10,
	TCR_RTFT0=0x20,
	TCR_RTFT1=0x40,
	TCR_RTSF=0x80,
};

/* Bits in the CamCon (CAMC) register */
enum camcon_bits {
	CAMC_CAMEN=0x01,
	CAMC_VCAMSL=0x02,
	CAMC_CAMWR=0x04,
	CAMC_CAMRD=0x08,
};

/* Bits in the PCIBusConfig1 (BCR1) register */
enum bcr1_bits {
	BCR1_POT0=0x01,
	BCR1_POT1=0x02,
	BCR1_POT2=0x04,
	BCR1_CTFT0=0x08,
	BCR1_CTFT1=0x10,
	BCR1_CTSF=0x20,
	BCR1_TXQNOBK=0x40,	/* for VT6105 */
	BCR1_VIDFR=0x80,	/* for VT6105 */
	BCR1_MED0=0x40,		/* for VT6102 */
	BCR1_MED1=0x80,		/* for VT6102 */
};

#ifdef USE_MMIO
/* Registers we check that mmio and reg are the same. */
static const int mmio_verify_registers[] = {
	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
	0
};
#endif

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrRxDone	= 0x0001,
	IntrTxDone	= 0x0002,
	IntrRxErr	= 0x0004,
	IntrTxError	= 0x0008,
	IntrRxEmpty	= 0x0020,
	IntrPCIErr	= 0x0040,
	IntrStatsMax	= 0x0080,
	IntrRxEarly	= 0x0100,
	IntrTxUnderrun	= 0x0210,
	IntrRxOverflow	= 0x0400,
	IntrRxDropped	= 0x0800,
	IntrRxNoBuf	= 0x1000,
	IntrTxAborted	= 0x2000,
	IntrLinkChange	= 0x4000,
	IntrRxWakeUp	= 0x8000,
	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
	IntrNormalSummary	= IntrRxDone | IntrTxDone,
	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
				  IntrTxUnderrun,
};

/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
enum wol_bits {
	WOLucast	= 0x10,
	WOLmagic	= 0x20,
	WOLbmcast	= 0x30,
	WOLlnkon	= 0x40,
	WOLlnkoff	= 0x80,
};

/* The Rx and Tx buffer descriptors. */
struct rx_desc {
	__le32 rx_status;
	__le32 desc_length; /* Chain flag, Buffer/frame length */
	__le32 addr;
	__le32 next_desc;
};
struct tx_desc {
	__le32 tx_status;
	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
	__le32 addr;
	__le32 next_desc;
};

/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
#define TXDESC		0x00e08000

enum rx_status_bits {
	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
};

/* Bits in *_desc.*_status */
enum desc_status_bits {
	DescOwn=0x80000000
};

/* Bits in *_desc.*_length */
enum desc_length_bits {
	DescTag=0x00010000
};

/* Bits in ChipCmd. */
enum chip_cmd_bits {
	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
};

struct rhine_stats {
	u64		packets;
	u64		bytes;
	struct u64_stats_sync syncp;
};

struct rhine_private {
	/* Bit mask for configured VLAN ids */
	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];

	/* Descriptor rings */
	struct rx_desc *rx_ring;
	struct tx_desc *tx_ring;
	dma_addr_t rx_ring_dma;
	dma_addr_t tx_ring_dma;

	/* The addresses of receive-in-place skbuffs. */
	struct sk_buff *rx_skbuff[RX_RING_SIZE];
	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];

	/* The saved address of a sent-in-place packet/buffer, for later free(). */
	struct sk_buff *tx_skbuff[TX_RING_SIZE];
	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];

	/* Tx bounce buffers (Rhine-I only) */
	unsigned char *tx_buf[TX_RING_SIZE];
	unsigned char *tx_bufs;
	dma_addr_t tx_bufs_dma;

	struct pci_dev *pdev;
	long pioaddr;
	struct net_device *dev;
	struct napi_struct napi;
	spinlock_t lock;
	struct mutex task_lock;
	bool task_enable;
	struct work_struct slow_event_task;
	struct work_struct reset_task;

	u32 msg_enable;

	/* Frequently used values: keep some adjacent for cache effect. */
	u32 quirks;
	struct rx_desc *rx_head_desc;
	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
	unsigned int cur_tx, dirty_tx;
	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
	struct rhine_stats rx_stats;
	struct rhine_stats tx_stats;
	u8 wolopts;

	u8 tx_thresh, rx_thresh;

	struct mii_if_info mii_if;
	void __iomem *base;
};

#define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
#define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
#define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)

#define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
#define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
#define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))

#define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
#define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
#define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)

#define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
#define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
#define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)


static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  rhine_open(struct net_device *dev);
static void rhine_reset_task(struct work_struct *work);
static void rhine_slow_event_task(struct work_struct *work);
static void rhine_tx_timeout(struct net_device *dev);
static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
				  struct net_device *dev);
static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
static void rhine_tx(struct net_device *dev);
static int rhine_rx(struct net_device *dev, int limit);
static void rhine_set_rx_mode(struct net_device *dev);
static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
	       struct rtnl_link_stats64 *stats);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static const struct ethtool_ops netdev_ethtool_ops;
static int  rhine_close(struct net_device *dev);
static int rhine_vlan_rx_add_vid(struct net_device *dev,
				 __be16 proto, u16 vid);
static int rhine_vlan_rx_kill_vid(struct net_device *dev,
				  __be16 proto, u16 vid);
static void rhine_restart_tx(struct net_device *dev);

static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
{
	void __iomem *ioaddr = rp->base;
	int i;

	for (i = 0; i < 1024; i++) {
		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);

		if (low ^ has_mask_bits)
			break;
		udelay(10);
	}
	if (i > 64) {
		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
	}
}

static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
{
	rhine_wait_bit(rp, reg, mask, false);
}

static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
{
	rhine_wait_bit(rp, reg, mask, true);
}

static u32 rhine_get_events(struct rhine_private *rp)
{
	void __iomem *ioaddr = rp->base;
	u32 intr_status;

	intr_status = ioread16(ioaddr + IntrStatus);
	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
	if (rp->quirks & rqStatusWBRace)
		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
	return intr_status;
}

static void rhine_ack_events(struct rhine_private *rp, u32 mask)
{
	void __iomem *ioaddr = rp->base;

	if (rp->quirks & rqStatusWBRace)
		iowrite8(mask >> 16, ioaddr + IntrStatus2);
	iowrite16(mask, ioaddr + IntrStatus);
	mmiowb();
}

/*
 * Get power related registers into sane state.
 * Notify user about past WOL event.
 */
static void rhine_power_init(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u16 wolstat;

	if (rp->quirks & rqWOL) {
		/* Make sure chip is in power state D0 */
		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);

		/* Disable "force PME-enable" */
		iowrite8(0x80, ioaddr + WOLcgClr);

		/* Clear power-event config bits (WOL) */
		iowrite8(0xFF, ioaddr + WOLcrClr);
		/* More recent cards can manage two additional patterns */
		if (rp->quirks & rq6patterns)
			iowrite8(0x03, ioaddr + WOLcrClr1);

		/* Save power-event status bits */
		wolstat = ioread8(ioaddr + PwrcsrSet);
		if (rp->quirks & rq6patterns)
			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;

		/* Clear power-event status bits */
		iowrite8(0xFF, ioaddr + PwrcsrClr);
		if (rp->quirks & rq6patterns)
			iowrite8(0x03, ioaddr + PwrcsrClr1);

		if (wolstat) {
			char *reason;
			switch (wolstat) {
			case WOLmagic:
				reason = "Magic packet";
				break;
			case WOLlnkon:
				reason = "Link went up";
				break;
			case WOLlnkoff:
				reason = "Link went down";
				break;
			case WOLucast:
				reason = "Unicast packet";
				break;
			case WOLbmcast:
				reason = "Multicast/broadcast packet";
				break;
			default:
				reason = "Unknown";
			}
			netdev_info(dev, "Woke system up. Reason: %s\n",
				    reason);
		}
	}
}

static void rhine_chip_reset(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u8 cmd1;

	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
	IOSYNC;

	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
		netdev_info(dev, "Reset not complete yet. Trying harder.\n");

		/* Force reset */
		if (rp->quirks & rqForceReset)
			iowrite8(0x40, ioaddr + MiscCmd);

		/* Reset can take somewhat longer (rare) */
		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
	}

	cmd1 = ioread8(ioaddr + ChipCmd1);
	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
		   "failed" : "succeeded");
}

#ifdef USE_MMIO
static void enable_mmio(long pioaddr, u32 quirks)
{
	int n;
	if (quirks & rqRhineI) {
		/* More recent docs say that this bit is reserved ... */
		n = inb(pioaddr + ConfigA) | 0x20;
		outb(n, pioaddr + ConfigA);
	} else {
		n = inb(pioaddr + ConfigD) | 0x80;
		outb(n, pioaddr + ConfigD);
	}
}
#endif

/*
 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
 * (plus 0x6C for Rhine-I/II)
 */
static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int i;

	outb(0x20, pioaddr + MACRegEEcsr);
	for (i = 0; i < 1024; i++) {
		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
			break;
	}
	if (i > 512)
		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);

#ifdef USE_MMIO
	/*
	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
	 * MMIO. If reloading EEPROM was done first this could be avoided, but
	 * it is not known if that still works with the "win98-reboot" problem.
	 */
	enable_mmio(pioaddr, rp->quirks);
#endif

	/* Turn off EEPROM-controlled wake-up (magic packet) */
	if (rp->quirks & rqWOL)
		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);

}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void rhine_poll(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	const int irq = rp->pdev->irq;

	disable_irq(irq);
	rhine_interrupt(irq, dev);
	enable_irq(irq);
}
#endif

static void rhine_kick_tx_threshold(struct rhine_private *rp)
{
	if (rp->tx_thresh < 0xe0) {
		void __iomem *ioaddr = rp->base;

		rp->tx_thresh += 0x20;
		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
	}
}

static void rhine_tx_err(struct rhine_private *rp, u32 status)
{
	struct net_device *dev = rp->dev;

	if (status & IntrTxAborted) {
		netif_info(rp, tx_err, dev,
			   "Abort %08x, frame dropped\n", status);
	}

	if (status & IntrTxUnderrun) {
		rhine_kick_tx_threshold(rp);
		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
			   "Tx threshold now %02x\n", rp->tx_thresh);
	}

	if (status & IntrTxDescRace)
		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");

	if ((status & IntrTxError) &&
	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
		rhine_kick_tx_threshold(rp);
		netif_info(rp, tx_err, dev, "Unspecified error. "
			   "Tx threshold now %02x\n", rp->tx_thresh);
	}

	rhine_restart_tx(dev);
}

static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
{
	void __iomem *ioaddr = rp->base;
	struct net_device_stats *stats = &rp->dev->stats;

	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);

	/*
	 * Clears the "tally counters" for CRC errors and missed frames(?).
	 * It has been reported that some chips need a write of 0 to clear
	 * these, for others the counters are set to 1 when written to and
	 * instead cleared when read. So we clear them both ways ...
	 */
	iowrite32(0, ioaddr + RxMissed);
	ioread16(ioaddr + RxCRCErrs);
	ioread16(ioaddr + RxMissed);
}

#define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
				 IntrRxErr | \
				 IntrRxEmpty | \
				 IntrRxOverflow	| \
				 IntrRxDropped | \
				 IntrRxNoBuf | \
				 IntrRxWakeUp)

#define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
				 IntrTxAborted | \
				 IntrTxUnderrun | \
				 IntrTxDescRace)
#define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)

#define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
				 RHINE_EVENT_NAPI_TX | \
				 IntrStatsMax)
#define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
#define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)

static int rhine_napipoll(struct napi_struct *napi, int budget)
{
	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
	struct net_device *dev = rp->dev;
	void __iomem *ioaddr = rp->base;
	u16 enable_mask = RHINE_EVENT & 0xffff;
	int work_done = 0;
	u32 status;

	status = rhine_get_events(rp);
	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);

	if (status & RHINE_EVENT_NAPI_RX)
		work_done += rhine_rx(dev, budget);

	if (status & RHINE_EVENT_NAPI_TX) {
		if (status & RHINE_EVENT_NAPI_TX_ERR) {
			/* Avoid scavenging before Tx engine turned off */
			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
				netif_warn(rp, tx_err, dev, "Tx still on\n");
		}

		rhine_tx(dev);

		if (status & RHINE_EVENT_NAPI_TX_ERR)
			rhine_tx_err(rp, status);
	}

	if (status & IntrStatsMax) {
		spin_lock(&rp->lock);
		rhine_update_rx_crc_and_missed_errord(rp);
		spin_unlock(&rp->lock);
	}

	if (status & RHINE_EVENT_SLOW) {
		enable_mask &= ~RHINE_EVENT_SLOW;
		schedule_work(&rp->slow_event_task);
	}

	if (work_done < budget) {
		napi_complete(napi);
		iowrite16(enable_mask, ioaddr + IntrEnable);
		mmiowb();
	}
	return work_done;
}

static void rhine_hw_init(struct net_device *dev, long pioaddr)
{
	struct rhine_private *rp = netdev_priv(dev);

	/* Reset the chip to erase previous misconfiguration. */
	rhine_chip_reset(dev);

	/* Rhine-I needs extra time to recuperate before EEPROM reload */
	if (rp->quirks & rqRhineI)
		msleep(5);

	/* Reload EEPROM controlled bytes cleared by soft reset */
	rhine_reload_eeprom(pioaddr, dev);
}

static const struct net_device_ops rhine_netdev_ops = {
	.ndo_open		 = rhine_open,
	.ndo_stop		 = rhine_close,
	.ndo_start_xmit		 = rhine_start_tx,
	.ndo_get_stats64	 = rhine_get_stats64,
	.ndo_set_rx_mode	 = rhine_set_rx_mode,
	.ndo_change_mtu		 = eth_change_mtu,
	.ndo_validate_addr	 = eth_validate_addr,
	.ndo_set_mac_address 	 = eth_mac_addr,
	.ndo_do_ioctl		 = netdev_ioctl,
	.ndo_tx_timeout 	 = rhine_tx_timeout,
	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	 = rhine_poll,
#endif
};

static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct rhine_private *rp;
	int i, rc;
	u32 quirks;
	long pioaddr;
	long memaddr;
	void __iomem *ioaddr;
	int io_size, phy_id;
	const char *name;
#ifdef USE_MMIO
	int bar = 1;
#else
	int bar = 0;
#endif

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	pr_info_once("%s\n", version);
#endif

	io_size = 256;
	phy_id = 0;
	quirks = 0;
	name = "Rhine";
	if (pdev->revision < VTunknown0) {
		quirks = rqRhineI;
		io_size = 128;
	}
	else if (pdev->revision >= VT6102) {
		quirks = rqWOL | rqForceReset;
		if (pdev->revision < VT6105) {
			name = "Rhine II";
			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
		}
		else {
			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
			if (pdev->revision >= VT6105_B0)
				quirks |= rq6patterns;
			if (pdev->revision < VT6105M)
				name = "Rhine III";
			else
				name = "Rhine III (Management Adapter)";
		}
	}

	rc = pci_enable_device(pdev);
	if (rc)
		goto err_out;

	/* this should always be supported */
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
	if (rc) {
		dev_err(&pdev->dev,
			"32-bit PCI DMA addresses not supported by the card!?\n");
		goto err_out;
	}

	/* sanity check */
	if ((pci_resource_len(pdev, 0) < io_size) ||
	    (pci_resource_len(pdev, 1) < io_size)) {
		rc = -EIO;
		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
		goto err_out;
	}

	pioaddr = pci_resource_start(pdev, 0);
	memaddr = pci_resource_start(pdev, 1);

	pci_set_master(pdev);

	dev = alloc_etherdev(sizeof(struct rhine_private));
	if (!dev) {
		rc = -ENOMEM;
		goto err_out;
	}
	SET_NETDEV_DEV(dev, &pdev->dev);

	rp = netdev_priv(dev);
	rp->dev = dev;
	rp->quirks = quirks;
	rp->pioaddr = pioaddr;
	rp->pdev = pdev;
	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_out_free_netdev;

	ioaddr = pci_iomap(pdev, bar, io_size);
	if (!ioaddr) {
		rc = -EIO;
		dev_err(&pdev->dev,
			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
			pci_name(pdev), io_size, memaddr);
		goto err_out_free_res;
	}

#ifdef USE_MMIO
	enable_mmio(pioaddr, quirks);

	/* Check that selected MMIO registers match the PIO ones */
	i = 0;
	while (mmio_verify_registers[i]) {
		int reg = mmio_verify_registers[i++];
		unsigned char a = inb(pioaddr+reg);
		unsigned char b = readb(ioaddr+reg);
		if (a != b) {
			rc = -EIO;
			dev_err(&pdev->dev,
				"MMIO do not match PIO [%02x] (%02x != %02x)\n",
				reg, a, b);
			goto err_out_unmap;
		}
	}
#endif /* USE_MMIO */

	rp->base = ioaddr;

	/* Get chip registers into a sane state */
	rhine_power_init(dev);
	rhine_hw_init(dev, pioaddr);

	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);

	if (!is_valid_ether_addr(dev->dev_addr)) {
		/* Report it and use a random ethernet address instead */
		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
		eth_hw_addr_random(dev);
		netdev_info(dev, "Using random MAC address: %pM\n",
			    dev->dev_addr);
	}

	/* For Rhine-I/II, phy_id is loaded from EEPROM */
	if (!phy_id)
		phy_id = ioread8(ioaddr + 0x6C);

	spin_lock_init(&rp->lock);
	mutex_init(&rp->task_lock);
	INIT_WORK(&rp->reset_task, rhine_reset_task);
	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);

	rp->mii_if.dev = dev;
	rp->mii_if.mdio_read = mdio_read;
	rp->mii_if.mdio_write = mdio_write;
	rp->mii_if.phy_id_mask = 0x1f;
	rp->mii_if.reg_num_mask = 0x1f;

	/* The chip-specific entries in the device structure. */
	dev->netdev_ops = &rhine_netdev_ops;
	dev->ethtool_ops = &netdev_ethtool_ops,
	dev->watchdog_timeo = TX_TIMEOUT;

	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);

	if (rp->quirks & rqRhineI)
		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;

	if (pdev->revision >= VT6105M)
		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
				 NETIF_F_HW_VLAN_CTAG_RX |
				 NETIF_F_HW_VLAN_CTAG_FILTER;

	/* dev->name not defined before register_netdev()! */
	rc = register_netdev(dev);
	if (rc)
		goto err_out_unmap;

	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
		    name,
#ifdef USE_MMIO
		    memaddr,
#else
		    (long)ioaddr,
#endif
		    dev->dev_addr, pdev->irq);

	pci_set_drvdata(pdev, dev);

	{
		u16 mii_cmd;
		int mii_status = mdio_read(dev, phy_id, 1);
		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
		if (mii_status != 0xffff && mii_status != 0x0000) {
			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
			netdev_info(dev,
				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
				    phy_id,
				    mii_status, rp->mii_if.advertising,
				    mdio_read(dev, phy_id, 5));

			/* set IFF_RUNNING */
			if (mii_status & BMSR_LSTATUS)
				netif_carrier_on(dev);
			else
				netif_carrier_off(dev);

		}
	}
	rp->mii_if.phy_id = phy_id;
	if (avoid_D3)
		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");

	return 0;

err_out_unmap:
	pci_iounmap(pdev, ioaddr);
err_out_free_res:
	pci_release_regions(pdev);
err_out_free_netdev:
	free_netdev(dev);
err_out:
	return rc;
}

static int alloc_ring(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void *ring;
	dma_addr_t ring_dma;

	ring = pci_alloc_consistent(rp->pdev,
				    RX_RING_SIZE * sizeof(struct rx_desc) +
				    TX_RING_SIZE * sizeof(struct tx_desc),
				    &ring_dma);
	if (!ring) {
		netdev_err(dev, "Could not allocate DMA memory\n");
		return -ENOMEM;
	}
	if (rp->quirks & rqRhineI) {
		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
						   PKT_BUF_SZ * TX_RING_SIZE,
						   &rp->tx_bufs_dma);
		if (rp->tx_bufs == NULL) {
			pci_free_consistent(rp->pdev,
				    RX_RING_SIZE * sizeof(struct rx_desc) +
				    TX_RING_SIZE * sizeof(struct tx_desc),
				    ring, ring_dma);
			return -ENOMEM;
		}
	}

	rp->rx_ring = ring;
	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
	rp->rx_ring_dma = ring_dma;
	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);

	return 0;
}

static void free_ring(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	pci_free_consistent(rp->pdev,
			    RX_RING_SIZE * sizeof(struct rx_desc) +
			    TX_RING_SIZE * sizeof(struct tx_desc),
			    rp->rx_ring, rp->rx_ring_dma);
	rp->tx_ring = NULL;

	if (rp->tx_bufs)
		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
				    rp->tx_bufs, rp->tx_bufs_dma);

	rp->tx_bufs = NULL;

}

static void alloc_rbufs(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	dma_addr_t next;
	int i;

	rp->dirty_rx = rp->cur_rx = 0;

	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
	rp->rx_head_desc = &rp->rx_ring[0];
	next = rp->rx_ring_dma;

	/* Init the ring entries */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rp->rx_ring[i].rx_status = 0;
		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
		next += sizeof(struct rx_desc);
		rp->rx_ring[i].next_desc = cpu_to_le32(next);
		rp->rx_skbuff[i] = NULL;
	}
	/* Mark the last entry as wrapping the ring. */
	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
		rp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;

		rp->rx_skbuff_dma[i] =
			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
				       PCI_DMA_FROMDEVICE);
		if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
			rp->rx_skbuff_dma[i] = 0;
			dev_kfree_skb(skb);
			break;
		}
		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
	}
	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
}

static void free_rbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int i;

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rp->rx_ring[i].rx_status = 0;
		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (rp->rx_skbuff[i]) {
			pci_unmap_single(rp->pdev,
					 rp->rx_skbuff_dma[i],
					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb(rp->rx_skbuff[i]);
		}
		rp->rx_skbuff[i] = NULL;
	}
}

static void alloc_tbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	dma_addr_t next;
	int i;

	rp->dirty_tx = rp->cur_tx = 0;
	next = rp->tx_ring_dma;
	for (i = 0; i < TX_RING_SIZE; i++) {
		rp->tx_skbuff[i] = NULL;
		rp->tx_ring[i].tx_status = 0;
		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
		next += sizeof(struct tx_desc);
		rp->tx_ring[i].next_desc = cpu_to_le32(next);
		if (rp->quirks & rqRhineI)
			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
	}
	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);

}

static void free_tbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int i;

	for (i = 0; i < TX_RING_SIZE; i++) {
		rp->tx_ring[i].tx_status = 0;
		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (rp->tx_skbuff[i]) {
			if (rp->tx_skbuff_dma[i]) {
				pci_unmap_single(rp->pdev,
						 rp->tx_skbuff_dma[i],
						 rp->tx_skbuff[i]->len,
						 PCI_DMA_TODEVICE);
			}
			dev_kfree_skb(rp->tx_skbuff[i]);
		}
		rp->tx_skbuff[i] = NULL;
		rp->tx_buf[i] = NULL;
	}
}

static void rhine_check_media(struct net_device *dev, unsigned int init_media)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);

	if (rp->mii_if.full_duplex)
	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
		   ioaddr + ChipCmd1);
	else
	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
		   ioaddr + ChipCmd1);

	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
		   rp->mii_if.force_media, netif_carrier_ok(dev));
}

/* Called after status of force_media possibly changed */
static void rhine_set_carrier(struct mii_if_info *mii)
{
	struct net_device *dev = mii->dev;
	struct rhine_private *rp = netdev_priv(dev);

	if (mii->force_media) {
		/* autoneg is off: Link is always assumed to be up */
		if (!netif_carrier_ok(dev))
			netif_carrier_on(dev);
	} else	/* Let MMI library update carrier status */
		rhine_check_media(dev, 0);

	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
		   mii->force_media, netif_carrier_ok(dev));
}

/**
 * rhine_set_cam - set CAM multicast filters
 * @ioaddr: register block of this Rhine
 * @idx: multicast CAM index [0..MCAM_SIZE-1]
 * @addr: multicast address (6 bytes)
 *
 * Load addresses into multicast filters.
 */
static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
{
	int i;

	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
	wmb();

	/* Paranoid -- idx out of range should never happen */
	idx &= (MCAM_SIZE - 1);

	iowrite8((u8) idx, ioaddr + CamAddr);

	for (i = 0; i < 6; i++, addr++)
		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
	udelay(10);
	wmb();

	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
	udelay(10);

	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_set_vlan_cam - set CAM VLAN filters
 * @ioaddr: register block of this Rhine
 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
 * @addr: VLAN ID (2 bytes)
 *
 * Load addresses into VLAN filters.
 */
static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
{
	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
	wmb();

	/* Paranoid -- idx out of range should never happen */
	idx &= (VCAM_SIZE - 1);

	iowrite8((u8) idx, ioaddr + CamAddr);

	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
	udelay(10);
	wmb();

	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
	udelay(10);

	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_set_cam_mask - set multicast CAM mask
 * @ioaddr: register block of this Rhine
 * @mask: multicast CAM mask
 *
 * Mask sets multicast filters active/inactive.
 */
static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
{
	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
	wmb();

	/* write mask */
	iowrite32(mask, ioaddr + CamMask);

	/* disable CAMEN */
	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_set_vlan_cam_mask - set VLAN CAM mask
 * @ioaddr: register block of this Rhine
 * @mask: VLAN CAM mask
 *
 * Mask sets VLAN filters active/inactive.
 */
static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
{
	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
	wmb();

	/* write mask */
	iowrite32(mask, ioaddr + CamMask);

	/* disable CAMEN */
	iowrite8(0, ioaddr + CamCon);
}

/**
 * rhine_init_cam_filter - initialize CAM filters
 * @dev: network device
 *
 * Initialize (disable) hardware VLAN and multicast support on this
 * Rhine.
 */
static void rhine_init_cam_filter(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	/* Disable all CAMs */
	rhine_set_vlan_cam_mask(ioaddr, 0);
	rhine_set_cam_mask(ioaddr, 0);

	/* disable hardware VLAN support */
	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
}

/**
 * rhine_update_vcam - update VLAN CAM filters
 * @rp: rhine_private data of this Rhine
 *
 * Update VLAN CAM filters to match configuration change.
 */
static void rhine_update_vcam(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u16 vid;
	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
	unsigned int i = 0;

	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
		vCAMmask |= 1 << i;
		if (++i >= VCAM_SIZE)
			break;
	}
	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
}

static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
{
	struct rhine_private *rp = netdev_priv(dev);

	spin_lock_bh(&rp->lock);
	set_bit(vid, rp->active_vlans);
	rhine_update_vcam(dev);
	spin_unlock_bh(&rp->lock);
	return 0;
}

static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
{
	struct rhine_private *rp = netdev_priv(dev);

	spin_lock_bh(&rp->lock);
	clear_bit(vid, rp->active_vlans);
	rhine_update_vcam(dev);
	spin_unlock_bh(&rp->lock);
	return 0;
}

static void init_registers(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int i;

	for (i = 0; i < 6; i++)
		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);

	/* Initialize other registers. */
	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
	/* Configure initial FIFO thresholds. */
	iowrite8(0x20, ioaddr + TxConfig);
	rp->tx_thresh = 0x20;
	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */

	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);

	rhine_set_rx_mode(dev);

	if (rp->pdev->revision >= VT6105M)
		rhine_init_cam_filter(dev);

	napi_enable(&rp->napi);

	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);

	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
	       ioaddr + ChipCmd);
	rhine_check_media(dev, 1);
}

/* Enable MII link status auto-polling (required for IntrLinkChange) */
static void rhine_enable_linkmon(struct rhine_private *rp)
{
	void __iomem *ioaddr = rp->base;

	iowrite8(0, ioaddr + MIICmd);
	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
	iowrite8(0x80, ioaddr + MIICmd);

	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);

	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
}

/* Disable MII link status auto-polling (required for MDIO access) */
static void rhine_disable_linkmon(struct rhine_private *rp)
{
	void __iomem *ioaddr = rp->base;

	iowrite8(0, ioaddr + MIICmd);

	if (rp->quirks & rqRhineI) {
		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR

		/* Can be called from ISR. Evil. */
		mdelay(1);

		/* 0x80 must be set immediately before turning it off */
		iowrite8(0x80, ioaddr + MIICmd);

		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);

		/* Heh. Now clear 0x80 again. */
		iowrite8(0, ioaddr + MIICmd);
	}
	else
		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
}

/* Read and write over the MII Management Data I/O (MDIO) interface. */

static int mdio_read(struct net_device *dev, int phy_id, int regnum)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int result;

	rhine_disable_linkmon(rp);

	/* rhine_disable_linkmon already cleared MIICmd */
	iowrite8(phy_id, ioaddr + MIIPhyAddr);
	iowrite8(regnum, ioaddr + MIIRegAddr);
	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
	rhine_wait_bit_low(rp, MIICmd, 0x40);
	result = ioread16(ioaddr + MIIData);

	rhine_enable_linkmon(rp);
	return result;
}

static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	rhine_disable_linkmon(rp);

	/* rhine_disable_linkmon already cleared MIICmd */
	iowrite8(phy_id, ioaddr + MIIPhyAddr);
	iowrite8(regnum, ioaddr + MIIRegAddr);
	iowrite16(value, ioaddr + MIIData);
	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
	rhine_wait_bit_low(rp, MIICmd, 0x20);

	rhine_enable_linkmon(rp);
}

static void rhine_task_disable(struct rhine_private *rp)
{
	mutex_lock(&rp->task_lock);
	rp->task_enable = false;
	mutex_unlock(&rp->task_lock);

	cancel_work_sync(&rp->slow_event_task);
	cancel_work_sync(&rp->reset_task);
}

static void rhine_task_enable(struct rhine_private *rp)
{
	mutex_lock(&rp->task_lock);
	rp->task_enable = true;
	mutex_unlock(&rp->task_lock);
}

static int rhine_open(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int rc;

	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
			dev);
	if (rc)
		return rc;

	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);

	rc = alloc_ring(dev);
	if (rc) {
		free_irq(rp->pdev->irq, dev);
		return rc;
	}
	alloc_rbufs(dev);
	alloc_tbufs(dev);
	rhine_chip_reset(dev);
	rhine_task_enable(rp);
	init_registers(dev);

	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
		  __func__, ioread16(ioaddr + ChipCmd),
		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));

	netif_start_queue(dev);

	return 0;
}

static void rhine_reset_task(struct work_struct *work)
{
	struct rhine_private *rp = container_of(work, struct rhine_private,
						reset_task);
	struct net_device *dev = rp->dev;

	mutex_lock(&rp->task_lock);

	if (!rp->task_enable)
		goto out_unlock;

	napi_disable(&rp->napi);
	spin_lock_bh(&rp->lock);

	/* clear all descriptors */
	free_tbufs(dev);
	free_rbufs(dev);
	alloc_tbufs(dev);
	alloc_rbufs(dev);

	/* Reinitialize the hardware. */
	rhine_chip_reset(dev);
	init_registers(dev);

	spin_unlock_bh(&rp->lock);

	dev->trans_start = jiffies; /* prevent tx timeout */
	dev->stats.tx_errors++;
	netif_wake_queue(dev);

out_unlock:
	mutex_unlock(&rp->task_lock);
}

static void rhine_tx_timeout(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
		    ioread16(ioaddr + IntrStatus),
		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));

	schedule_work(&rp->reset_task);
}

static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
				  struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	unsigned entry;

	/* Caution: the write order is important here, set the field
	   with the "ownership" bits last. */

	/* Calculate the next Tx descriptor entry. */
	entry = rp->cur_tx % TX_RING_SIZE;

	if (skb_padto(skb, ETH_ZLEN))
		return NETDEV_TX_OK;

	rp->tx_skbuff[entry] = skb;

	if ((rp->quirks & rqRhineI) &&
	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
		/* Must use alignment buffer. */
		if (skb->len > PKT_BUF_SZ) {
			/* packet too long, drop it */
			dev_kfree_skb(skb);
			rp->tx_skbuff[entry] = NULL;
			dev->stats.tx_dropped++;
			return NETDEV_TX_OK;
		}

		/* Padding is not copied and so must be redone. */
		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
		if (skb->len < ETH_ZLEN)
			memset(rp->tx_buf[entry] + skb->len, 0,
			       ETH_ZLEN - skb->len);
		rp->tx_skbuff_dma[entry] = 0;
		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
						      (rp->tx_buf[entry] -
						       rp->tx_bufs));
	} else {
		rp->tx_skbuff_dma[entry] =
			pci_map_single(rp->pdev, skb->data, skb->len,
				       PCI_DMA_TODEVICE);
		if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
			dev_kfree_skb(skb);
			rp->tx_skbuff_dma[entry] = 0;
			dev->stats.tx_dropped++;
			return NETDEV_TX_OK;
		}
		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
	}

	rp->tx_ring[entry].desc_length =
		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));

	if (unlikely(vlan_tx_tag_present(skb))) {
		rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
		/* request tagging */
		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
	}
	else
		rp->tx_ring[entry].tx_status = 0;

	/* lock eth irq */
	wmb();
	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
	wmb();

	rp->cur_tx++;

	/* Non-x86 Todo: explicitly flush cache lines here. */

	if (vlan_tx_tag_present(skb))
		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);

	/* Wake the potentially-idle transmit channel */
	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
	       ioaddr + ChipCmd1);
	IOSYNC;

	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
		netif_stop_queue(dev);

	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
		  rp->cur_tx - 1, entry);

	return NETDEV_TX_OK;
}

static void rhine_irq_disable(struct rhine_private *rp)
{
	iowrite16(0x0000, rp->base + IntrEnable);
	mmiowb();
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
{
	struct net_device *dev = dev_instance;
	struct rhine_private *rp = netdev_priv(dev);
	u32 status;
	int handled = 0;

	status = rhine_get_events(rp);

	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);

	if (status & RHINE_EVENT) {
		handled = 1;

		rhine_irq_disable(rp);
		napi_schedule(&rp->napi);
	}

	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
			  status);
	}

	return IRQ_RETVAL(handled);
}

/* This routine is logically part of the interrupt handler, but isolated
   for clarity. */
static void rhine_tx(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;

	/* find and cleanup dirty tx descriptors */
	while (rp->dirty_tx != rp->cur_tx) {
		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
			  entry, txstatus);
		if (txstatus & DescOwn)
			break;
		if (txstatus & 0x8000) {
			netif_dbg(rp, tx_done, dev,
				  "Transmit error, Tx status %08x\n", txstatus);
			dev->stats.tx_errors++;
			if (txstatus & 0x0400)
				dev->stats.tx_carrier_errors++;
			if (txstatus & 0x0200)
				dev->stats.tx_window_errors++;
			if (txstatus & 0x0100)
				dev->stats.tx_aborted_errors++;
			if (txstatus & 0x0080)
				dev->stats.tx_heartbeat_errors++;
			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
				dev->stats.tx_fifo_errors++;
				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
				break; /* Keep the skb - we try again */
			}
			/* Transmitter restarted in 'abnormal' handler. */
		} else {
			if (rp->quirks & rqRhineI)
				dev->stats.collisions += (txstatus >> 3) & 0x0F;
			else
				dev->stats.collisions += txstatus & 0x0F;
			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
				  (txstatus >> 3) & 0xF, txstatus & 0xF);

			u64_stats_update_begin(&rp->tx_stats.syncp);
			rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
			rp->tx_stats.packets++;
			u64_stats_update_end(&rp->tx_stats.syncp);
		}
		/* Free the original skb. */
		if (rp->tx_skbuff_dma[entry]) {
			pci_unmap_single(rp->pdev,
					 rp->tx_skbuff_dma[entry],
					 rp->tx_skbuff[entry]->len,
					 PCI_DMA_TODEVICE);
		}
		dev_kfree_skb(rp->tx_skbuff[entry]);
		rp->tx_skbuff[entry] = NULL;
		entry = (++rp->dirty_tx) % TX_RING_SIZE;
	}
	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
		netif_wake_queue(dev);
}

/**
 * rhine_get_vlan_tci - extract TCI from Rx data buffer
 * @skb: pointer to sk_buff
 * @data_size: used data area of the buffer including CRC
 *
 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
 * aligned following the CRC.
 */
static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
{
	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
	return be16_to_cpup((__be16 *)trailer);
}

/* Process up to limit frames from receive ring */
static int rhine_rx(struct net_device *dev, int limit)
{
	struct rhine_private *rp = netdev_priv(dev);
	int count;
	int entry = rp->cur_rx % RX_RING_SIZE;

	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
		  entry, le32_to_cpu(rp->rx_head_desc->rx_status));

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	for (count = 0; count < limit; ++count) {
		struct rx_desc *desc = rp->rx_head_desc;
		u32 desc_status = le32_to_cpu(desc->rx_status);
		u32 desc_length = le32_to_cpu(desc->desc_length);
		int data_size = desc_status >> 16;

		if (desc_status & DescOwn)
			break;

		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
			  desc_status);

		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
			if ((desc_status & RxWholePkt) != RxWholePkt) {
				netdev_warn(dev,
	"Oversized Ethernet frame spanned multiple buffers, "
	"entry %#x length %d status %08x!\n",
					    entry, data_size,
					    desc_status);
				netdev_warn(dev,
					    "Oversized Ethernet frame %p vs %p\n",
					    rp->rx_head_desc,
					    &rp->rx_ring[entry]);
				dev->stats.rx_length_errors++;
			} else if (desc_status & RxErr) {
				/* There was a error. */
				netif_dbg(rp, rx_err, dev,
					  "%s() Rx error %08x\n", __func__,
					  desc_status);
				dev->stats.rx_errors++;
				if (desc_status & 0x0030)
					dev->stats.rx_length_errors++;
				if (desc_status & 0x0048)
					dev->stats.rx_fifo_errors++;
				if (desc_status & 0x0004)
					dev->stats.rx_frame_errors++;
				if (desc_status & 0x0002) {
					/* this can also be updated outside the interrupt handler */
					spin_lock(&rp->lock);
					dev->stats.rx_crc_errors++;
					spin_unlock(&rp->lock);
				}
			}
		} else {
			struct sk_buff *skb = NULL;
			/* Length should omit the CRC */
			int pkt_len = data_size - 4;
			u16 vlan_tci = 0;

			/* Check if the packet is long enough to accept without
			   copying to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak)
				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
			if (skb) {
				pci_dma_sync_single_for_cpu(rp->pdev,
							    rp->rx_skbuff_dma[entry],
							    rp->rx_buf_sz,
							    PCI_DMA_FROMDEVICE);

				skb_copy_to_linear_data(skb,
						 rp->rx_skbuff[entry]->data,
						 pkt_len);
				skb_put(skb, pkt_len);
				pci_dma_sync_single_for_device(rp->pdev,
							       rp->rx_skbuff_dma[entry],
							       rp->rx_buf_sz,
							       PCI_DMA_FROMDEVICE);
			} else {
				skb = rp->rx_skbuff[entry];
				if (skb == NULL) {
					netdev_err(dev, "Inconsistent Rx descriptor chain\n");
					break;
				}
				rp->rx_skbuff[entry] = NULL;
				skb_put(skb, pkt_len);
				pci_unmap_single(rp->pdev,
						 rp->rx_skbuff_dma[entry],
						 rp->rx_buf_sz,
						 PCI_DMA_FROMDEVICE);
			}

			if (unlikely(desc_length & DescTag))
				vlan_tci = rhine_get_vlan_tci(skb, data_size);

			skb->protocol = eth_type_trans(skb, dev);

			if (unlikely(desc_length & DescTag))
				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
			netif_receive_skb(skb);

			u64_stats_update_begin(&rp->rx_stats.syncp);
			rp->rx_stats.bytes += pkt_len;
			rp->rx_stats.packets++;
			u64_stats_update_end(&rp->rx_stats.syncp);
		}
		entry = (++rp->cur_rx) % RX_RING_SIZE;
		rp->rx_head_desc = &rp->rx_ring[entry];
	}

	/* Refill the Rx ring buffers. */
	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
		struct sk_buff *skb;
		entry = rp->dirty_rx % RX_RING_SIZE;
		if (rp->rx_skbuff[entry] == NULL) {
			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
			rp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
			rp->rx_skbuff_dma[entry] =
				pci_map_single(rp->pdev, skb->data,
					       rp->rx_buf_sz,
					       PCI_DMA_FROMDEVICE);
			if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
				dev_kfree_skb(skb);
				rp->rx_skbuff_dma[entry] = 0;
				break;
			}
			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
		}
		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
	}

	return count;
}

static void rhine_restart_tx(struct net_device *dev) {
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int entry = rp->dirty_tx % TX_RING_SIZE;
	u32 intr_status;

	/*
	 * If new errors occurred, we need to sort them out before doing Tx.
	 * In that case the ISR will be back here RSN anyway.
	 */
	intr_status = rhine_get_events(rp);

	if ((intr_status & IntrTxErrSummary) == 0) {

		/* We know better than the chip where it should continue. */
		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
		       ioaddr + TxRingPtr);

		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
		       ioaddr + ChipCmd);

		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);

		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
		       ioaddr + ChipCmd1);
		IOSYNC;
	}
	else {
		/* This should never happen */
		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
			   intr_status);
	}

}

static void rhine_slow_event_task(struct work_struct *work)
{
	struct rhine_private *rp =
		container_of(work, struct rhine_private, slow_event_task);
	struct net_device *dev = rp->dev;
	u32 intr_status;

	mutex_lock(&rp->task_lock);

	if (!rp->task_enable)
		goto out_unlock;

	intr_status = rhine_get_events(rp);
	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);

	if (intr_status & IntrLinkChange)
		rhine_check_media(dev, 0);

	if (intr_status & IntrPCIErr)
		netif_warn(rp, hw, dev, "PCI error\n");

	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);

out_unlock:
	mutex_unlock(&rp->task_lock);
}

static struct rtnl_link_stats64 *
rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
	struct rhine_private *rp = netdev_priv(dev);
	unsigned int start;

	spin_lock_bh(&rp->lock);
	rhine_update_rx_crc_and_missed_errord(rp);
	spin_unlock_bh(&rp->lock);

	netdev_stats_to_stats64(stats, &dev->stats);

	do {
		start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
		stats->rx_packets = rp->rx_stats.packets;
		stats->rx_bytes = rp->rx_stats.bytes;
	} while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));

	do {
		start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
		stats->tx_packets = rp->tx_stats.packets;
		stats->tx_bytes = rp->tx_stats.bytes;
	} while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));

	return stats;
}

static void rhine_set_rx_mode(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 mc_filter[2];	/* Multicast hash filter */
	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
		rx_mode = 0x1C;
		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
		   (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
	} else if (rp->pdev->revision >= VT6105M) {
		int i = 0;
		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
		netdev_for_each_mc_addr(ha, dev) {
			if (i == MCAM_SIZE)
				break;
			rhine_set_cam(ioaddr, i, ha->addr);
			mCAMmask |= 1 << i;
			i++;
		}
		rhine_set_cam_mask(ioaddr, mCAMmask);
	} else {
		memset(mc_filter, 0, sizeof(mc_filter));
		netdev_for_each_mc_addr(ha, dev) {
			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;

			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		}
		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
	}
	/* enable/disable VLAN receive filtering */
	if (rp->pdev->revision >= VT6105M) {
		if (dev->flags & IFF_PROMISC)
			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
		else
			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
	}
	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
}

static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct rhine_private *rp = netdev_priv(dev);

	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
}

static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	mutex_lock(&rp->task_lock);
	rc = mii_ethtool_gset(&rp->mii_if, cmd);
	mutex_unlock(&rp->task_lock);

	return rc;
}

static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	mutex_lock(&rp->task_lock);
	rc = mii_ethtool_sset(&rp->mii_if, cmd);
	rhine_set_carrier(&rp->mii_if);
	mutex_unlock(&rp->task_lock);

	return rc;
}

static int netdev_nway_reset(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return mii_nway_restart(&rp->mii_if);
}

static u32 netdev_get_link(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return mii_link_ok(&rp->mii_if);
}

static u32 netdev_get_msglevel(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return rp->msg_enable;
}

static void netdev_set_msglevel(struct net_device *dev, u32 value)
{
	struct rhine_private *rp = netdev_priv(dev);

	rp->msg_enable = value;
}

static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct rhine_private *rp = netdev_priv(dev);

	if (!(rp->quirks & rqWOL))
		return;

	spin_lock_irq(&rp->lock);
	wol->supported = WAKE_PHY | WAKE_MAGIC |
			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
	wol->wolopts = rp->wolopts;
	spin_unlock_irq(&rp->lock);
}

static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct rhine_private *rp = netdev_priv(dev);
	u32 support = WAKE_PHY | WAKE_MAGIC |
		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */

	if (!(rp->quirks & rqWOL))
		return -EINVAL;

	if (wol->wolopts & ~support)
		return -EINVAL;

	spin_lock_irq(&rp->lock);
	rp->wolopts = wol->wolopts;
	spin_unlock_irq(&rp->lock);

	return 0;
}

static const struct ethtool_ops netdev_ethtool_ops = {
	.get_drvinfo		= netdev_get_drvinfo,
	.get_settings		= netdev_get_settings,
	.set_settings		= netdev_set_settings,
	.nway_reset		= netdev_nway_reset,
	.get_link		= netdev_get_link,
	.get_msglevel		= netdev_get_msglevel,
	.set_msglevel		= netdev_set_msglevel,
	.get_wol		= rhine_get_wol,
	.set_wol		= rhine_set_wol,
};

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	if (!netif_running(dev))
		return -EINVAL;

	mutex_lock(&rp->task_lock);
	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
	rhine_set_carrier(&rp->mii_if);
	mutex_unlock(&rp->task_lock);

	return rc;
}

static int rhine_close(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	rhine_task_disable(rp);
	napi_disable(&rp->napi);
	netif_stop_queue(dev);

	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
		  ioread16(ioaddr + ChipCmd));

	/* Switch to loopback mode to avoid hardware races. */
	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);

	rhine_irq_disable(rp);

	/* Stop the chip's Tx and Rx processes. */
	iowrite16(CmdStop, ioaddr + ChipCmd);

	free_irq(rp->pdev->irq, dev);
	free_rbufs(dev);
	free_tbufs(dev);
	free_ring(dev);

	return 0;
}


static void rhine_remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);

	unregister_netdev(dev);

	pci_iounmap(pdev, rp->base);
	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static void rhine_shutdown (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	if (!(rp->quirks & rqWOL))
		return; /* Nothing to do for non-WOL adapters */

	rhine_power_init(dev);

	/* Make sure we use pattern 0, 1 and not 4, 5 */
	if (rp->quirks & rq6patterns)
		iowrite8(0x04, ioaddr + WOLcgClr);

	spin_lock(&rp->lock);

	if (rp->wolopts & WAKE_MAGIC) {
		iowrite8(WOLmagic, ioaddr + WOLcrSet);
		/*
		 * Turn EEPROM-controlled wake-up back on -- some hardware may
		 * not cooperate otherwise.
		 */
		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
	}

	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
		iowrite8(WOLbmcast, ioaddr + WOLcgSet);

	if (rp->wolopts & WAKE_PHY)
		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);

	if (rp->wolopts & WAKE_UCAST)
		iowrite8(WOLucast, ioaddr + WOLcrSet);

	if (rp->wolopts) {
		/* Enable legacy WOL (for old motherboards) */
		iowrite8(0x01, ioaddr + PwcfgSet);
		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
	}

	spin_unlock(&rp->lock);

	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);

		pci_wake_from_d3(pdev, true);
		pci_set_power_state(pdev, PCI_D3hot);
	}
}

#ifdef CONFIG_PM_SLEEP
static int rhine_suspend(struct device *device)
{
	struct pci_dev *pdev = to_pci_dev(device);
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);

	if (!netif_running(dev))
		return 0;

	rhine_task_disable(rp);
	rhine_irq_disable(rp);
	napi_disable(&rp->napi);

	netif_device_detach(dev);

	rhine_shutdown(pdev);

	return 0;
}

static int rhine_resume(struct device *device)
{
	struct pci_dev *pdev = to_pci_dev(device);
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);

	if (!netif_running(dev))
		return 0;

#ifdef USE_MMIO
	enable_mmio(rp->pioaddr, rp->quirks);
#endif
	rhine_power_init(dev);
	free_tbufs(dev);
	free_rbufs(dev);
	alloc_tbufs(dev);
	alloc_rbufs(dev);
	rhine_task_enable(rp);
	spin_lock_bh(&rp->lock);
	init_registers(dev);
	spin_unlock_bh(&rp->lock);

	netif_device_attach(dev);

	return 0;
}

static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
#define RHINE_PM_OPS	(&rhine_pm_ops)

#else

#define RHINE_PM_OPS	NULL

#endif /* !CONFIG_PM_SLEEP */

static struct pci_driver rhine_driver = {
	.name		= DRV_NAME,
	.id_table	= rhine_pci_tbl,
	.probe		= rhine_init_one,
	.remove		= rhine_remove_one,
	.shutdown	= rhine_shutdown,
	.driver.pm	= RHINE_PM_OPS,
};

static struct dmi_system_id rhine_dmi_table[] __initdata = {
	{
		.ident = "EPIA-M",
		.matches = {
			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
		},
	},
	{
		.ident = "KV7",
		.matches = {
			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
		},
	},
	{ NULL }
};

static int __init rhine_init(void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	pr_info("%s\n", version);
#endif
	if (dmi_check_system(rhine_dmi_table)) {
		/* these BIOSes fail at PXE boot if chip is in D3 */
		avoid_D3 = true;
		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
	}
	else if (avoid_D3)
		pr_info("avoid_D3 set\n");

	return pci_register_driver(&rhine_driver);
}


static void __exit rhine_cleanup(void)
{
	pci_unregister_driver(&rhine_driver);
}


module_init(rhine_init);
module_exit(rhine_cleanup);
OpenPOWER on IntegriCloud