1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
|
/*
* Driver for NAND MLC Controller in LPC32xx
*
* Author: Roland Stigge <stigge@antcom.de>
*
* Copyright © 2011 WORK Microwave GmbH
* Copyright © 2011, 2012 Roland Stigge
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* NAND Flash Controller Operation:
* - Read: Auto Decode
* - Write: Auto Encode
* - Tested Page Sizes: 2048, 4096
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mtd/lpc32xx_mlc.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mtd/nand_ecc.h>
#define DRV_NAME "lpc32xx_mlc"
/**********************************************************************
* MLC NAND controller register offsets
**********************************************************************/
#define MLC_BUFF(x) (x + 0x00000)
#define MLC_DATA(x) (x + 0x08000)
#define MLC_CMD(x) (x + 0x10000)
#define MLC_ADDR(x) (x + 0x10004)
#define MLC_ECC_ENC_REG(x) (x + 0x10008)
#define MLC_ECC_DEC_REG(x) (x + 0x1000C)
#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
#define MLC_RPR(x) (x + 0x10018)
#define MLC_WPR(x) (x + 0x1001C)
#define MLC_RUBP(x) (x + 0x10020)
#define MLC_ROBP(x) (x + 0x10024)
#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
#define MLC_ICR(x) (x + 0x10030)
#define MLC_TIME_REG(x) (x + 0x10034)
#define MLC_IRQ_MR(x) (x + 0x10038)
#define MLC_IRQ_SR(x) (x + 0x1003C)
#define MLC_LOCK_PR(x) (x + 0x10044)
#define MLC_ISR(x) (x + 0x10048)
#define MLC_CEH(x) (x + 0x1004C)
/**********************************************************************
* MLC_CMD bit definitions
**********************************************************************/
#define MLCCMD_RESET 0xFF
/**********************************************************************
* MLC_ICR bit definitions
**********************************************************************/
#define MLCICR_WPROT (1 << 3)
#define MLCICR_LARGEBLOCK (1 << 2)
#define MLCICR_LONGADDR (1 << 1)
#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
/**********************************************************************
* MLC_TIME_REG bit definitions
**********************************************************************/
#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
/**********************************************************************
* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
**********************************************************************/
#define MLCIRQ_NAND_READY (1 << 5)
#define MLCIRQ_CONTROLLER_READY (1 << 4)
#define MLCIRQ_DECODE_FAILURE (1 << 3)
#define MLCIRQ_DECODE_ERROR (1 << 2)
#define MLCIRQ_ECC_READY (1 << 1)
#define MLCIRQ_WRPROT_FAULT (1 << 0)
/**********************************************************************
* MLC_LOCK_PR bit definitions
**********************************************************************/
#define MLCLOCKPR_MAGIC 0xA25E
/**********************************************************************
* MLC_ISR bit definitions
**********************************************************************/
#define MLCISR_DECODER_FAILURE (1 << 6)
#define MLCISR_ERRORS ((1 << 4) | (1 << 5))
#define MLCISR_ERRORS_DETECTED (1 << 3)
#define MLCISR_ECC_READY (1 << 2)
#define MLCISR_CONTROLLER_READY (1 << 1)
#define MLCISR_NAND_READY (1 << 0)
/**********************************************************************
* MLC_CEH bit definitions
**********************************************************************/
#define MLCCEH_NORMAL (1 << 0)
struct lpc32xx_nand_cfg_mlc {
uint32_t tcea_delay;
uint32_t busy_delay;
uint32_t nand_ta;
uint32_t rd_high;
uint32_t rd_low;
uint32_t wr_high;
uint32_t wr_low;
int wp_gpio;
struct mtd_partition *parts;
unsigned num_parts;
};
static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
oobregion->length = nand_chip->ecc.bytes;
return 0;
}
static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = 16 * section;
oobregion->length = 16 - nand_chip->ecc.bytes;
return 0;
}
static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
.ecc = lpc32xx_ooblayout_ecc,
.free = lpc32xx_ooblayout_free,
};
static struct nand_bbt_descr lpc32xx_nand_bbt = {
.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
NAND_BBT_WRITE,
.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
};
static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
NAND_BBT_WRITE,
.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
};
struct lpc32xx_nand_host {
struct platform_device *pdev;
struct nand_chip nand_chip;
struct lpc32xx_mlc_platform_data *pdata;
struct clk *clk;
void __iomem *io_base;
int irq;
struct lpc32xx_nand_cfg_mlc *ncfg;
struct completion comp_nand;
struct completion comp_controller;
uint32_t llptr;
/*
* Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
*/
dma_addr_t oob_buf_phy;
/*
* Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
*/
uint8_t *oob_buf;
/* Physical address of DMA base address */
dma_addr_t io_base_phy;
struct completion comp_dma;
struct dma_chan *dma_chan;
struct dma_slave_config dma_slave_config;
struct scatterlist sgl;
uint8_t *dma_buf;
uint8_t *dummy_buf;
int mlcsubpages; /* number of 512bytes-subpages */
};
/*
* Activate/Deactivate DMA Operation:
*
* Using the PL080 DMA Controller for transferring the 512 byte subpages
* instead of doing readl() / writel() in a loop slows it down significantly.
* Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
*
* - readl() of 128 x 32 bits in a loop: ~20us
* - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
* - DMA read of 512 bytes (32 bit, no bursts): ~100us
*
* This applies to the transfer itself. In the DMA case: only the
* wait_for_completion() (DMA setup _not_ included).
*
* Note that the 512 bytes subpage transfer is done directly from/to a
* FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
* 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
* controller transferring data between its internal buffer to/from the NAND
* chip.)
*
* Therefore, using the PL080 DMA is disabled by default, for now.
*
*/
static int use_dma;
static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
{
uint32_t clkrate, tmp;
/* Reset MLC controller */
writel(MLCCMD_RESET, MLC_CMD(host->io_base));
udelay(1000);
/* Get base clock for MLC block */
clkrate = clk_get_rate(host->clk);
if (clkrate == 0)
clkrate = 104000000;
/* Unlock MLC_ICR
* (among others, will be locked again automatically) */
writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
/* Configure MLC Controller: Large Block, 5 Byte Address */
tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
writel(tmp, MLC_ICR(host->io_base));
/* Unlock MLC_TIME_REG
* (among others, will be locked again automatically) */
writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
/* Compute clock setup values, see LPC and NAND manual */
tmp = 0;
tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
writel(tmp, MLC_TIME_REG(host->io_base));
/* Enable IRQ for CONTROLLER_READY and NAND_READY */
writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
MLC_IRQ_MR(host->io_base));
/* Normal nCE operation: nCE controlled by controller */
writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
}
/*
* Hardware specific access to control lines
*/
static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
if (cmd != NAND_CMD_NONE) {
if (ctrl & NAND_CLE)
writel(cmd, MLC_CMD(host->io_base));
else
writel(cmd, MLC_ADDR(host->io_base));
}
}
/*
* Read Device Ready (NAND device _and_ controller ready)
*/
static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
if ((readb(MLC_ISR(host->io_base)) &
(MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
(MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
return 1;
return 0;
}
static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
{
uint8_t sr;
/* Clear interrupt flag by reading status */
sr = readb(MLC_IRQ_SR(host->io_base));
if (sr & MLCIRQ_NAND_READY)
complete(&host->comp_nand);
if (sr & MLCIRQ_CONTROLLER_READY)
complete(&host->comp_controller);
return IRQ_HANDLED;
}
static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
goto exit;
wait_for_completion(&host->comp_nand);
while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
/* Seems to be delayed sometimes by controller */
dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
cpu_relax();
}
exit:
return NAND_STATUS_READY;
}
static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
struct nand_chip *chip)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
goto exit;
wait_for_completion(&host->comp_controller);
while (!(readb(MLC_ISR(host->io_base)) &
MLCISR_CONTROLLER_READY)) {
dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
cpu_relax();
}
exit:
return NAND_STATUS_READY;
}
static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
lpc32xx_waitfunc_nand(mtd, chip);
lpc32xx_waitfunc_controller(mtd, chip);
return NAND_STATUS_READY;
}
/*
* Enable NAND write protect
*/
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
{
if (gpio_is_valid(host->ncfg->wp_gpio))
gpio_set_value(host->ncfg->wp_gpio, 0);
}
/*
* Disable NAND write protect
*/
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
{
if (gpio_is_valid(host->ncfg->wp_gpio))
gpio_set_value(host->ncfg->wp_gpio, 1);
}
static void lpc32xx_dma_complete_func(void *completion)
{
complete(completion);
}
static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
enum dma_transfer_direction dir)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct dma_async_tx_descriptor *desc;
int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
int res;
sg_init_one(&host->sgl, mem, len);
res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
if (res != 1) {
dev_err(mtd->dev.parent, "Failed to map sg list\n");
return -ENXIO;
}
desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
flags);
if (!desc) {
dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
goto out1;
}
init_completion(&host->comp_dma);
desc->callback = lpc32xx_dma_complete_func;
desc->callback_param = &host->comp_dma;
dmaengine_submit(desc);
dma_async_issue_pending(host->dma_chan);
wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
return 0;
out1:
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
return -ENXIO;
}
static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
int i, j;
uint8_t *oobbuf = chip->oob_poi;
uint32_t mlc_isr;
int res;
uint8_t *dma_buf;
bool dma_mapped;
if ((void *)buf <= high_memory) {
dma_buf = buf;
dma_mapped = true;
} else {
dma_buf = host->dma_buf;
dma_mapped = false;
}
/* Writing Command and Address */
nand_read_page_op(chip, page, 0, NULL, 0);
/* For all sub-pages */
for (i = 0; i < host->mlcsubpages; i++) {
/* Start Auto Decode Command */
writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
/* Wait for Controller Ready */
lpc32xx_waitfunc_controller(mtd, chip);
/* Check ECC Error status */
mlc_isr = readl(MLC_ISR(host->io_base));
if (mlc_isr & MLCISR_DECODER_FAILURE) {
mtd->ecc_stats.failed++;
dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
}
/* Read 512 + 16 Bytes */
if (use_dma) {
res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
DMA_DEV_TO_MEM);
if (res)
return res;
} else {
for (j = 0; j < (512 >> 2); j++) {
*((uint32_t *)(buf)) =
readl(MLC_BUFF(host->io_base));
buf += 4;
}
}
for (j = 0; j < (16 >> 2); j++) {
*((uint32_t *)(oobbuf)) =
readl(MLC_BUFF(host->io_base));
oobbuf += 4;
}
}
if (use_dma && !dma_mapped)
memcpy(buf, dma_buf, mtd->writesize);
return 0;
}
static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
const uint8_t *oobbuf = chip->oob_poi;
uint8_t *dma_buf = (uint8_t *)buf;
int res;
int i, j;
if (use_dma && (void *)buf >= high_memory) {
dma_buf = host->dma_buf;
memcpy(dma_buf, buf, mtd->writesize);
}
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
for (i = 0; i < host->mlcsubpages; i++) {
/* Start Encode */
writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
/* Write 512 + 6 Bytes to Buffer */
if (use_dma) {
res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
DMA_MEM_TO_DEV);
if (res)
return res;
} else {
for (j = 0; j < (512 >> 2); j++) {
writel(*((uint32_t *)(buf)),
MLC_BUFF(host->io_base));
buf += 4;
}
}
writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
oobbuf += 4;
writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
oobbuf += 12;
/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
/* Wait for Controller Ready */
lpc32xx_waitfunc_controller(mtd, chip);
}
return nand_prog_page_end_op(chip);
}
static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
/* Read whole page - necessary with MLC controller! */
lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
return 0;
}
static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
return 0;
}
/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
{
/* Always enabled! */
}
static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
{
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
dma_cap_mask_t mask;
if (!host->pdata || !host->pdata->dma_filter) {
dev_err(mtd->dev.parent, "no DMA platform data\n");
return -ENOENT;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
"nand-mlc");
if (!host->dma_chan) {
dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
return -EBUSY;
}
/*
* Set direction to a sensible value even if the dmaengine driver
* should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
* driver criticizes it as "alien transfer direction".
*/
host->dma_slave_config.direction = DMA_DEV_TO_MEM;
host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_slave_config.src_maxburst = 128;
host->dma_slave_config.dst_maxburst = 128;
/* DMA controller does flow control: */
host->dma_slave_config.device_fc = false;
host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
goto out1;
}
return 0;
out1:
dma_release_channel(host->dma_chan);
return -ENXIO;
}
static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
{
struct lpc32xx_nand_cfg_mlc *ncfg;
struct device_node *np = dev->of_node;
ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
if (!ncfg)
return NULL;
of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
!ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
!ncfg->wr_low) {
dev_err(dev, "chip parameters not specified correctly\n");
return NULL;
}
ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
return ncfg;
}
static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct device *dev = &host->pdev->dev;
host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
if (!host->dma_buf)
return -ENOMEM;
host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
if (!host->dummy_buf)
return -ENOMEM;
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = 512;
mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
host->mlcsubpages = mtd->writesize / 512;
return 0;
}
static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
.attach_chip = lpc32xx_nand_attach_chip,
};
/*
* Probe for NAND controller
*/
static int lpc32xx_nand_probe(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
struct resource *rc;
int res;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->pdev = pdev;
rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->io_base = devm_ioremap_resource(&pdev->dev, rc);
if (IS_ERR(host->io_base))
return PTR_ERR(host->io_base);
host->io_base_phy = rc->start;
nand_chip = &host->nand_chip;
mtd = nand_to_mtd(nand_chip);
if (pdev->dev.of_node)
host->ncfg = lpc32xx_parse_dt(&pdev->dev);
if (!host->ncfg) {
dev_err(&pdev->dev,
"Missing or bad NAND config from device tree\n");
return -ENOENT;
}
if (host->ncfg->wp_gpio == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (gpio_is_valid(host->ncfg->wp_gpio) &&
gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
dev_err(&pdev->dev, "GPIO not available\n");
return -EBUSY;
}
lpc32xx_wp_disable(host);
host->pdata = dev_get_platdata(&pdev->dev);
/* link the private data structures */
nand_set_controller_data(nand_chip, host);
nand_set_flash_node(nand_chip, pdev->dev.of_node);
mtd->dev.parent = &pdev->dev;
/* Get NAND clock */
host->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "Clock initialization failure\n");
res = -ENOENT;
goto free_gpio;
}
res = clk_prepare_enable(host->clk);
if (res)
goto put_clk;
nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
nand_chip->dev_ready = lpc32xx_nand_device_ready;
nand_chip->chip_delay = 25; /* us */
nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
/* Init NAND controller */
lpc32xx_nand_setup(host);
platform_set_drvdata(pdev, host);
/* Initialize function pointers */
nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
nand_chip->ecc.read_page_raw = lpc32xx_read_page;
nand_chip->ecc.read_page = lpc32xx_read_page;
nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
nand_chip->ecc.write_oob = lpc32xx_write_oob;
nand_chip->ecc.read_oob = lpc32xx_read_oob;
nand_chip->ecc.strength = 4;
nand_chip->ecc.bytes = 10;
nand_chip->waitfunc = lpc32xx_waitfunc;
nand_chip->options = NAND_NO_SUBPAGE_WRITE;
nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
nand_chip->bbt_td = &lpc32xx_nand_bbt;
nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
if (use_dma) {
res = lpc32xx_dma_setup(host);
if (res) {
res = -EIO;
goto unprepare_clk;
}
}
/* initially clear interrupt status */
readb(MLC_IRQ_SR(host->io_base));
init_completion(&host->comp_nand);
init_completion(&host->comp_controller);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
dev_err(&pdev->dev, "failed to get platform irq\n");
res = -EINVAL;
goto release_dma_chan;
}
if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
res = -ENXIO;
goto release_dma_chan;
}
/*
* Scan to find existence of the device and get the type of NAND device:
* SMALL block or LARGE block.
*/
nand_chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
res = nand_scan(mtd, 1);
if (res)
goto free_irq;
mtd->name = DRV_NAME;
res = mtd_device_register(mtd, host->ncfg->parts,
host->ncfg->num_parts);
if (res)
goto cleanup_nand;
return 0;
cleanup_nand:
nand_cleanup(nand_chip);
free_irq:
free_irq(host->irq, host);
release_dma_chan:
if (use_dma)
dma_release_channel(host->dma_chan);
unprepare_clk:
clk_disable_unprepare(host->clk);
put_clk:
clk_put(host->clk);
free_gpio:
lpc32xx_wp_enable(host);
gpio_free(host->ncfg->wp_gpio);
return res;
}
/*
* Remove NAND device
*/
static int lpc32xx_nand_remove(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
nand_release(mtd);
free_irq(host->irq, host);
if (use_dma)
dma_release_channel(host->dma_chan);
clk_disable_unprepare(host->clk);
clk_put(host->clk);
lpc32xx_wp_enable(host);
gpio_free(host->ncfg->wp_gpio);
return 0;
}
#ifdef CONFIG_PM
static int lpc32xx_nand_resume(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
int ret;
/* Re-enable NAND clock */
ret = clk_prepare_enable(host->clk);
if (ret)
return ret;
/* Fresh init of NAND controller */
lpc32xx_nand_setup(host);
/* Disable write protect */
lpc32xx_wp_disable(host);
return 0;
}
static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
/* Enable write protect for safety */
lpc32xx_wp_enable(host);
/* Disable clock */
clk_disable_unprepare(host->clk);
return 0;
}
#else
#define lpc32xx_nand_resume NULL
#define lpc32xx_nand_suspend NULL
#endif
static const struct of_device_id lpc32xx_nand_match[] = {
{ .compatible = "nxp,lpc3220-mlc" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
static struct platform_driver lpc32xx_nand_driver = {
.probe = lpc32xx_nand_probe,
.remove = lpc32xx_nand_remove,
.resume = lpc32xx_nand_resume,
.suspend = lpc32xx_nand_suspend,
.driver = {
.name = DRV_NAME,
.of_match_table = lpc32xx_nand_match,
},
};
module_platform_driver(lpc32xx_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
|