summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c
blob: 71fe60e5f01f1e05e99b45d35db3e47e3dba0bf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/*
 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>

#include "dsi_pll.h"
#include "dsi.xml.h"

/*
 * DSI PLL 14nm - clock diagram (eg: DSI0):
 *
 *         dsi0n1_postdiv_clk
 *                         |
 *                         |
 *                 +----+  |  +----+
 *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
 *                 +----+  |  +----+
 *                         |           dsi0n1_postdivby2_clk
 *                         |   +----+  |
 *                         o---| /2 |--o--|\
 *                         |   +----+     | \   +----+
 *                         |              |  |--| n2 |-- dsi0pll
 *                         o--------------| /   +----+
 *                                        |/
 */

#define POLL_MAX_READS			15
#define POLL_TIMEOUT_US			1000

#define NUM_PROVIDED_CLKS		2

#define VCO_REF_CLK_RATE		19200000
#define VCO_MIN_RATE			1300000000UL
#define VCO_MAX_RATE			2600000000UL

#define DSI_BYTE_PLL_CLK		0
#define DSI_PIXEL_PLL_CLK		1

#define DSI_PLL_DEFAULT_VCO_POSTDIV	1

struct dsi_pll_input {
	u32 fref;	/* reference clk */
	u32 fdata;	/* bit clock rate */
	u32 dsiclk_sel; /* Mux configuration (see diagram) */
	u32 ssc_en;	/* SSC enable/disable */
	u32 ldo_en;

	/* fixed params */
	u32 refclk_dbler_en;
	u32 vco_measure_time;
	u32 kvco_measure_time;
	u32 bandgap_timer;
	u32 pll_wakeup_timer;
	u32 plllock_cnt;
	u32 plllock_rng;
	u32 ssc_center;
	u32 ssc_adj_period;
	u32 ssc_spread;
	u32 ssc_freq;
	u32 pll_ie_trim;
	u32 pll_ip_trim;
	u32 pll_iptat_trim;
	u32 pll_cpcset_cur;
	u32 pll_cpmset_cur;

	u32 pll_icpmset;
	u32 pll_icpcset;

	u32 pll_icpmset_p;
	u32 pll_icpmset_m;

	u32 pll_icpcset_p;
	u32 pll_icpcset_m;

	u32 pll_lpf_res1;
	u32 pll_lpf_cap1;
	u32 pll_lpf_cap2;
	u32 pll_c3ctrl;
	u32 pll_r3ctrl;
};

struct dsi_pll_output {
	u32 pll_txclk_en;
	u32 dec_start;
	u32 div_frac_start;
	u32 ssc_period;
	u32 ssc_step_size;
	u32 plllock_cmp;
	u32 pll_vco_div_ref;
	u32 pll_vco_count;
	u32 pll_kvco_div_ref;
	u32 pll_kvco_count;
	u32 pll_misc1;
	u32 pll_lpf2_postdiv;
	u32 pll_resetsm_cntrl;
	u32 pll_resetsm_cntrl2;
	u32 pll_resetsm_cntrl5;
	u32 pll_kvco_code;

	u32 cmn_clk_cfg0;
	u32 cmn_clk_cfg1;
	u32 cmn_ldo_cntrl;

	u32 pll_postdiv;
	u32 fcvo;
};

struct pll_14nm_cached_state {
	unsigned long vco_rate;
	u8 n2postdiv;
	u8 n1postdiv;
};

struct dsi_pll_14nm {
	struct msm_dsi_pll base;

	int id;
	struct platform_device *pdev;

	void __iomem *phy_cmn_mmio;
	void __iomem *mmio;

	int vco_delay;

	struct dsi_pll_input in;
	struct dsi_pll_output out;

	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
	spinlock_t postdiv_lock;

	u64 vco_current_rate;
	u64 vco_ref_clk_rate;

	/* private clocks: */
	struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
	u32 num_hws;

	/* clock-provider: */
	struct clk_hw_onecell_data *hw_data;

	struct pll_14nm_cached_state cached_state;

	enum msm_dsi_phy_usecase uc;
	struct dsi_pll_14nm *slave;
};

#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, base)

/*
 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
 * the generic clk_divider class of clocks. The only difference is that it
 * also sets the slave DSI PLL's post-dividers if in Dual DSI mode
 */
struct dsi_pll_14nm_postdiv {
	struct clk_hw hw;

	/* divider params */
	u8 shift;
	u8 width;
	u8 flags; /* same flags as used by clk_divider struct */

	struct dsi_pll_14nm *pll;
};

#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)

/*
 * Global list of private DSI PLL struct pointers. We need this for Dual DSI
 * mode, where the master PLL's clk_ops needs access the slave's private data
 */
static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];

static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
				    u32 nb_tries, u32 timeout_us)
{
	bool pll_locked = false;
	void __iomem *base = pll_14nm->mmio;
	u32 tries, val;

	tries = nb_tries;
	while (tries--) {
		val = pll_read(base +
			       REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
		pll_locked = !!(val & BIT(5));

		if (pll_locked)
			break;

		udelay(timeout_us);
	}

	if (!pll_locked) {
		tries = nb_tries;
		while (tries--) {
			val = pll_read(base +
				REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
			pll_locked = !!(val & BIT(0));

			if (pll_locked)
				break;

			udelay(timeout_us);
		}
	}

	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");

	return pll_locked;
}

static void dsi_pll_14nm_input_init(struct dsi_pll_14nm *pll)
{
	pll->in.fref = pll->vco_ref_clk_rate;
	pll->in.fdata = 0;
	pll->in.dsiclk_sel = 1;	/* Use the /2 path in Mux */
	pll->in.ldo_en = 0;	/* disabled for now */

	/* fixed input */
	pll->in.refclk_dbler_en = 0;
	pll->in.vco_measure_time = 5;
	pll->in.kvco_measure_time = 5;
	pll->in.bandgap_timer = 4;
	pll->in.pll_wakeup_timer = 5;
	pll->in.plllock_cnt = 1;
	pll->in.plllock_rng = 0;

	/*
	 * SSC is enabled by default. We might need DT props for configuring
	 * some SSC params like PPM and center/down spread etc.
	 */
	pll->in.ssc_en = 1;
	pll->in.ssc_center = 0;		/* down spread by default */
	pll->in.ssc_spread = 5;		/* PPM / 1000 */
	pll->in.ssc_freq = 31500;	/* default recommended */
	pll->in.ssc_adj_period = 37;

	pll->in.pll_ie_trim = 4;
	pll->in.pll_ip_trim = 4;
	pll->in.pll_cpcset_cur = 1;
	pll->in.pll_cpmset_cur = 1;
	pll->in.pll_icpmset = 4;
	pll->in.pll_icpcset = 4;
	pll->in.pll_icpmset_p = 0;
	pll->in.pll_icpmset_m = 0;
	pll->in.pll_icpcset_p = 0;
	pll->in.pll_icpcset_m = 0;
	pll->in.pll_lpf_res1 = 3;
	pll->in.pll_lpf_cap1 = 11;
	pll->in.pll_lpf_cap2 = 1;
	pll->in.pll_iptat_trim = 7;
	pll->in.pll_c3ctrl = 2;
	pll->in.pll_r3ctrl = 1;
}

#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))

static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll)
{
	u32 period, ssc_period;
	u32 ref, rem;
	u64 step_size;

	DBG("vco=%lld ref=%lld", pll->vco_current_rate, pll->vco_ref_clk_rate);

	ssc_period = pll->in.ssc_freq / 500;
	period = (u32)pll->vco_ref_clk_rate / 1000;
	ssc_period  = CEIL(period, ssc_period);
	ssc_period -= 1;
	pll->out.ssc_period = ssc_period;

	DBG("ssc freq=%d spread=%d period=%d", pll->in.ssc_freq,
	    pll->in.ssc_spread, pll->out.ssc_period);

	step_size = (u32)pll->vco_current_rate;
	ref = pll->vco_ref_clk_rate;
	ref /= 1000;
	step_size = div_u64(step_size, ref);
	step_size <<= 20;
	step_size = div_u64(step_size, 1000);
	step_size *= pll->in.ssc_spread;
	step_size = div_u64(step_size, 1000);
	step_size *= (pll->in.ssc_adj_period + 1);

	rem = 0;
	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
	if (rem)
		step_size++;

	DBG("step_size=%lld", step_size);

	step_size &= 0x0ffff;	/* take lower 16 bits */

	pll->out.ssc_step_size = step_size;
}

static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll)
{
	struct dsi_pll_input *pin = &pll->in;
	struct dsi_pll_output *pout = &pll->out;
	u64 multiplier = BIT(20);
	u64 dec_start_multiple, dec_start, pll_comp_val;
	u32 duration, div_frac_start;
	u64 vco_clk_rate = pll->vco_current_rate;
	u64 fref = pll->vco_ref_clk_rate;

	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);

	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
	div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);

	dec_start = div_u64(dec_start_multiple, multiplier);

	pout->dec_start = (u32)dec_start;
	pout->div_frac_start = div_frac_start;

	if (pin->plllock_cnt == 0)
		duration = 1024;
	else if (pin->plllock_cnt == 1)
		duration = 256;
	else if (pin->plllock_cnt == 2)
		duration = 128;
	else
		duration = 32;

	pll_comp_val = duration * dec_start_multiple;
	pll_comp_val = div_u64(pll_comp_val, multiplier);
	do_div(pll_comp_val, 10);

	pout->plllock_cmp = (u32)pll_comp_val;

	pout->pll_txclk_en = 1;
	pout->cmn_ldo_cntrl = 0x3c;
}

static u32 pll_14nm_kvco_slop(u32 vrate)
{
	u32 slop = 0;

	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
		slop =  600;
	else if (vrate > 1800000000UL && vrate < 2300000000UL)
		slop = 400;
	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
		slop = 280;

	return slop;
}

static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll)
{
	struct dsi_pll_input *pin = &pll->in;
	struct dsi_pll_output *pout = &pll->out;
	u64 vco_clk_rate = pll->vco_current_rate;
	u64 fref = pll->vco_ref_clk_rate;
	u64 data;
	u32 cnt;

	data = fref * pin->vco_measure_time;
	do_div(data, 1000000);
	data &= 0x03ff;	/* 10 bits */
	data -= 2;
	pout->pll_vco_div_ref = data;

	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
	data *= pin->vco_measure_time;
	do_div(data, 10);
	pout->pll_vco_count = data;

	data = fref * pin->kvco_measure_time;
	do_div(data, 1000000);
	data &= 0x03ff;	/* 10 bits */
	data -= 1;
	pout->pll_kvco_div_ref = data;

	cnt = pll_14nm_kvco_slop(vco_clk_rate);
	cnt *= 2;
	cnt /= 100;
	cnt *= pin->kvco_measure_time;
	pout->pll_kvco_count = cnt;

	pout->pll_misc1 = 16;
	pout->pll_resetsm_cntrl = 48;
	pout->pll_resetsm_cntrl2 = pin->bandgap_timer << 3;
	pout->pll_resetsm_cntrl5 = pin->pll_wakeup_timer;
	pout->pll_kvco_code = 0;
}

static void pll_db_commit_ssc(struct dsi_pll_14nm *pll)
{
	void __iomem *base = pll->mmio;
	struct dsi_pll_input *pin = &pll->in;
	struct dsi_pll_output *pout = &pll->out;
	u8 data;

	data = pin->ssc_adj_period;
	data &= 0x0ff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
	data = (pin->ssc_adj_period >> 8);
	data &= 0x03;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);

	data = pout->ssc_period;
	data &= 0x0ff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
	data = (pout->ssc_period >> 8);
	data &= 0x0ff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);

	data = pout->ssc_step_size;
	data &= 0x0ff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
	data = (pout->ssc_step_size >> 8);
	data &= 0x0ff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);

	data = (pin->ssc_center & 0x01);
	data <<= 1;
	data |= 0x01; /* enable */
	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);

	wmb();	/* make sure register committed */
}

static void pll_db_commit_common(struct dsi_pll_14nm *pll,
				 struct dsi_pll_input *pin,
				 struct dsi_pll_output *pout)
{
	void __iomem *base = pll->mmio;
	u8 data;

	/* confgiure the non frequency dependent pll registers */
	data = 0;
	pll_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);

	data = pout->pll_txclk_en;
	pll_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, data);

	data = pout->pll_resetsm_cntrl;
	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, data);
	data = pout->pll_resetsm_cntrl2;
	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, data);
	data = pout->pll_resetsm_cntrl5;
	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, data);

	data = pout->pll_vco_div_ref & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
	data = (pout->pll_vco_div_ref >> 8) & 0x3;
	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);

	data = pout->pll_kvco_div_ref & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
	data = (pout->pll_kvco_div_ref >> 8) & 0x3;
	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);

	data = pout->pll_misc1;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, data);

	data = pin->pll_ie_trim;
	pll_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, data);

	data = pin->pll_ip_trim;
	pll_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, data);

	data = pin->pll_cpmset_cur << 3 | pin->pll_cpcset_cur;
	pll_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, data);

	data = pin->pll_icpcset_p << 3 | pin->pll_icpcset_m;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, data);

	data = pin->pll_icpmset_p << 3 | pin->pll_icpcset_m;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, data);

	data = pin->pll_icpmset << 3 | pin->pll_icpcset;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, data);

	data = pin->pll_lpf_cap2 << 4 | pin->pll_lpf_cap1;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, data);

	data = pin->pll_iptat_trim;
	pll_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, data);

	data = pin->pll_c3ctrl | pin->pll_r3ctrl << 4;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, data);
}

static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
{
	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;

	/* de assert pll start and apply pll sw reset */

	/* stop pll */
	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);

	/* pll sw reset */
	pll_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
	wmb();	/* make sure register committed */

	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
	wmb();	/* make sure register committed */
}

static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
			       struct dsi_pll_input *pin,
			       struct dsi_pll_output *pout)
{
	void __iomem *base = pll->mmio;
	void __iomem *cmn_base = pll->phy_cmn_mmio;
	u8 data;

	DBG("DSI%d PLL", pll->id);

	data = pout->cmn_ldo_cntrl;
	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);

	pll_db_commit_common(pll, pin, pout);

	pll_14nm_software_reset(pll);

	data = pin->dsiclk_sel; /* set dsiclk_sel = 1  */
	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, data);

	data = 0xff; /* data, clk, pll normal operation */
	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);

	/* configure the frequency dependent pll registers */
	data = pout->dec_start;
	pll_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);

	data = pout->div_frac_start & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
	data = (pout->div_frac_start >> 8) & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
	data = (pout->div_frac_start >> 16) & 0xf;
	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);

	data = pout->plllock_cmp & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);

	data = (pout->plllock_cmp >> 8) & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);

	data = (pout->plllock_cmp >> 16) & 0x3;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);

	data = pin->plllock_cnt << 1 | pin->plllock_rng << 3;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);

	data = pout->pll_vco_count & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
	data = (pout->pll_vco_count >> 8) & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);

	data = pout->pll_kvco_count & 0xff;
	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
	data = (pout->pll_kvco_count >> 8) & 0x3;
	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);

	data = (pout->pll_postdiv - 1) << 4 | pin->pll_lpf_res1;
	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, data);

	if (pin->ssc_en)
		pll_db_commit_ssc(pll);

	wmb();	/* make sure register committed */
}

/*
 * VCO clock Callbacks
 */
static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
				     unsigned long parent_rate)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	struct dsi_pll_input *pin = &pll_14nm->in;
	struct dsi_pll_output *pout = &pll_14nm->out;

	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->id, rate,
	    parent_rate);

	pll_14nm->vco_current_rate = rate;
	pll_14nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;

	dsi_pll_14nm_input_init(pll_14nm);

	/*
	 * This configures the post divider internal to the VCO. It's
	 * fixed to divide by 1 for now.
	 *
	 * tx_band = pll_postdiv.
	 * 0: divided by 1
	 * 1: divided by 2
	 * 2: divided by 4
	 * 3: divided by 8
	 */
	pout->pll_postdiv = DSI_PLL_DEFAULT_VCO_POSTDIV;

	pll_14nm_dec_frac_calc(pll_14nm);

	if (pin->ssc_en)
		pll_14nm_ssc_calc(pll_14nm);

	pll_14nm_calc_vco_count(pll_14nm);

	/* commit the slave DSI PLL registers if we're master. Note that we
	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
	 * of the master and slave are identical
	 */
	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;

		pll_db_commit_14nm(pll_14nm_slave, pin, pout);
	}

	pll_db_commit_14nm(pll_14nm, pin, pout);

	return 0;
}

static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	void __iomem *base = pll_14nm->mmio;
	u64 vco_rate, multiplier = BIT(20);
	u32 div_frac_start;
	u32 dec_start;
	u64 ref_clk = parent_rate;

	dec_start = pll_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
	dec_start &= 0x0ff;

	DBG("dec_start = %x", dec_start);

	div_frac_start = (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
				& 0xf) << 16;
	div_frac_start |= (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
				& 0xff) << 8;
	div_frac_start |= pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
				& 0xff;

	DBG("div_frac_start = %x", div_frac_start);

	vco_rate = ref_clk * dec_start;

	vco_rate += ((ref_clk * div_frac_start) / multiplier);

	/*
	 * Recalculating the rate from dec_start and frac_start doesn't end up
	 * the rate we originally set. Convert the freq to KHz, round it up and
	 * convert it back to MHz.
	 */
	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;

	DBG("returning vco rate = %lu", (unsigned long)vco_rate);

	return (unsigned long)vco_rate;
}

static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
	.round_rate = msm_dsi_pll_helper_clk_round_rate,
	.set_rate = dsi_pll_14nm_vco_set_rate,
	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
	.prepare = msm_dsi_pll_helper_clk_prepare,
	.unprepare = msm_dsi_pll_helper_clk_unprepare,
};

/*
 * N1 and N2 post-divider clock callbacks
 */
#define div_mask(width)	((1 << (width)) - 1)
static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
						      unsigned long parent_rate)
{
	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
	void __iomem *base = pll_14nm->phy_cmn_mmio;
	u8 shift = postdiv->shift;
	u8 width = postdiv->width;
	u32 val;

	DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, parent_rate);

	val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
	val &= div_mask(width);

	return divider_recalc_rate(hw, parent_rate, val, NULL,
				   postdiv->flags, width);
}

static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
					    unsigned long rate,
					    unsigned long *prate)
{
	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
	struct dsi_pll_14nm *pll_14nm = postdiv->pll;

	DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, rate);

	return divider_round_rate(hw, rate, prate, NULL,
				  postdiv->width,
				  postdiv->flags);
}

static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
					 unsigned long parent_rate)
{
	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
	void __iomem *base = pll_14nm->phy_cmn_mmio;
	spinlock_t *lock = &pll_14nm->postdiv_lock;
	u8 shift = postdiv->shift;
	u8 width = postdiv->width;
	unsigned int value;
	unsigned long flags = 0;
	u32 val;

	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->id, rate,
	    parent_rate);

	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
				postdiv->flags);

	spin_lock_irqsave(lock, flags);

	val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
	val &= ~(div_mask(width) << shift);

	val |= value << shift;
	pll_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);

	/* If we're master in dual DSI mode, then the slave PLL's post-dividers
	 * follow the master's post dividers
	 */
	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
		void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;

		pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
	}

	spin_unlock_irqrestore(lock, flags);

	return 0;
}

static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
	.round_rate = dsi_pll_14nm_postdiv_round_rate,
	.set_rate = dsi_pll_14nm_postdiv_set_rate,
};

/*
 * PLL Callbacks
 */

static int dsi_pll_14nm_enable_seq(struct msm_dsi_pll *pll)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	void __iomem *base = pll_14nm->mmio;
	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
	bool locked;

	DBG("");

	pll_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);

	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
					 POLL_TIMEOUT_US);

	if (unlikely(!locked))
		dev_err(&pll_14nm->pdev->dev, "DSI PLL lock failed\n");
	else
		DBG("DSI PLL lock success");

	return locked ? 0 : -EINVAL;
}

static void dsi_pll_14nm_disable_seq(struct msm_dsi_pll *pll)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;

	DBG("");

	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
}

static void dsi_pll_14nm_save_state(struct msm_dsi_pll *pll)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
	u32 data;

	data = pll_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);

	cached_state->n1postdiv = data & 0xf;
	cached_state->n2postdiv = (data >> 4) & 0xf;

	DBG("DSI%d PLL save state %x %x", pll_14nm->id,
	    cached_state->n1postdiv, cached_state->n2postdiv);

	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
}

static int dsi_pll_14nm_restore_state(struct msm_dsi_pll *pll)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
	u32 data;
	int ret;

	ret = dsi_pll_14nm_vco_set_rate(&pll->clk_hw,
					cached_state->vco_rate, 0);
	if (ret) {
		dev_err(&pll_14nm->pdev->dev,
			"restore vco rate failed. ret=%d\n", ret);
		return ret;
	}

	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);

	DBG("DSI%d PLL restore state %x %x", pll_14nm->id,
	    cached_state->n1postdiv, cached_state->n2postdiv);

	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);

	/* also restore post-dividers for slave DSI PLL */
	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
		void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;

		pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
	}

	return 0;
}

static int dsi_pll_14nm_set_usecase(struct msm_dsi_pll *pll,
				    enum msm_dsi_phy_usecase uc)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	void __iomem *base = pll_14nm->mmio;
	u32 clkbuflr_en, bandgap = 0;

	switch (uc) {
	case MSM_DSI_PHY_STANDALONE:
		clkbuflr_en = 0x1;
		break;
	case MSM_DSI_PHY_MASTER:
		clkbuflr_en = 0x3;
		pll_14nm->slave = pll_14nm_list[(pll_14nm->id + 1) % DSI_MAX];
		break;
	case MSM_DSI_PHY_SLAVE:
		clkbuflr_en = 0x0;
		bandgap = 0x3;
		break;
	default:
		return -EINVAL;
	}

	pll_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
	if (bandgap)
		pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);

	pll_14nm->uc = uc;

	return 0;
}

static int dsi_pll_14nm_get_provider(struct msm_dsi_pll *pll,
				     struct clk **byte_clk_provider,
				     struct clk **pixel_clk_provider)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	struct clk_hw_onecell_data *hw_data = pll_14nm->hw_data;

	if (byte_clk_provider)
		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
	if (pixel_clk_provider)
		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;

	return 0;
}

static void dsi_pll_14nm_destroy(struct msm_dsi_pll *pll)
{
	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
	struct platform_device *pdev = pll_14nm->pdev;
	int num_hws = pll_14nm->num_hws;

	of_clk_del_provider(pdev->dev.of_node);

	while (num_hws--)
		clk_hw_unregister(pll_14nm->hws[num_hws]);
}

static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
						const char *name,
						const char *parent_name,
						unsigned long flags,
						u8 shift)
{
	struct dsi_pll_14nm_postdiv *pll_postdiv;
	struct device *dev = &pll_14nm->pdev->dev;
	struct clk_init_data postdiv_init = {
		.parent_names = (const char *[]) { parent_name },
		.num_parents = 1,
		.name = name,
		.flags = flags,
		.ops = &clk_ops_dsi_pll_14nm_postdiv,
	};
	int ret;

	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
	if (!pll_postdiv)
		return ERR_PTR(-ENOMEM);

	pll_postdiv->pll = pll_14nm;
	pll_postdiv->shift = shift;
	/* both N1 and N2 postdividers are 4 bits wide */
	pll_postdiv->width = 4;
	/* range of each divider is from 1 to 15 */
	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
	pll_postdiv->hw.init = &postdiv_init;

	ret = clk_hw_register(dev, &pll_postdiv->hw);
	if (ret)
		return ERR_PTR(ret);

	return &pll_postdiv->hw;
}

static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm)
{
	char clk_name[32], parent[32], vco_name[32];
	struct clk_init_data vco_init = {
		.parent_names = (const char *[]){ "xo" },
		.num_parents = 1,
		.name = vco_name,
		.flags = CLK_IGNORE_UNUSED,
		.ops = &clk_ops_dsi_pll_14nm_vco,
	};
	struct device *dev = &pll_14nm->pdev->dev;
	struct clk_hw **hws = pll_14nm->hws;
	struct clk_hw_onecell_data *hw_data;
	struct clk_hw *hw;
	int num = 0;
	int ret;

	DBG("DSI%d", pll_14nm->id);

	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
			       GFP_KERNEL);
	if (!hw_data)
		return -ENOMEM;

	snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->id);
	pll_14nm->base.clk_hw.init = &vco_init;

	ret = clk_hw_register(dev, &pll_14nm->base.clk_hw);
	if (ret)
		return ret;

	hws[num++] = &pll_14nm->base.clk_hw;

	snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
	snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->id);

	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
				       CLK_SET_RATE_PARENT, 0);
	if (IS_ERR(hw))
		return PTR_ERR(hw);

	hws[num++] = hw;

	snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->id);
	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);

	/* DSI Byte clock = VCO_CLK / N1 / 8 */
	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
					  CLK_SET_RATE_PARENT, 1, 8);
	if (IS_ERR(hw))
		return PTR_ERR(hw);

	hws[num++] = hw;
	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;

	snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);

	/*
	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
	 * on the way. Don't let it set parent.
	 */
	hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
	if (IS_ERR(hw))
		return PTR_ERR(hw);

	hws[num++] = hw;

	snprintf(clk_name, 32, "dsi%dpll", pll_14nm->id);
	snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);

	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
	 * This is the output of N2 post-divider, bits 4-7 in
	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
	 */
	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
	if (IS_ERR(hw))
		return PTR_ERR(hw);

	hws[num++] = hw;
	hw_data->hws[DSI_PIXEL_PLL_CLK]	= hw;

	pll_14nm->num_hws = num;

	hw_data->num = NUM_PROVIDED_CLKS;
	pll_14nm->hw_data = hw_data;

	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
				     pll_14nm->hw_data);
	if (ret) {
		dev_err(dev, "failed to register clk provider: %d\n", ret);
		return ret;
	}

	return 0;
}

struct msm_dsi_pll *msm_dsi_pll_14nm_init(struct platform_device *pdev, int id)
{
	struct dsi_pll_14nm *pll_14nm;
	struct msm_dsi_pll *pll;
	int ret;

	if (!pdev)
		return ERR_PTR(-ENODEV);

	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
	if (!pll_14nm)
		return ERR_PTR(-ENOMEM);

	DBG("PLL%d", id);

	pll_14nm->pdev = pdev;
	pll_14nm->id = id;
	pll_14nm_list[id] = pll_14nm;

	pll_14nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
	if (IS_ERR_OR_NULL(pll_14nm->phy_cmn_mmio)) {
		dev_err(&pdev->dev, "failed to map CMN PHY base\n");
		return ERR_PTR(-ENOMEM);
	}

	pll_14nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
	if (IS_ERR_OR_NULL(pll_14nm->mmio)) {
		dev_err(&pdev->dev, "failed to map PLL base\n");
		return ERR_PTR(-ENOMEM);
	}

	spin_lock_init(&pll_14nm->postdiv_lock);

	pll = &pll_14nm->base;
	pll->min_rate = VCO_MIN_RATE;
	pll->max_rate = VCO_MAX_RATE;
	pll->get_provider = dsi_pll_14nm_get_provider;
	pll->destroy = dsi_pll_14nm_destroy;
	pll->disable_seq = dsi_pll_14nm_disable_seq;
	pll->save_state = dsi_pll_14nm_save_state;
	pll->restore_state = dsi_pll_14nm_restore_state;
	pll->set_usecase = dsi_pll_14nm_set_usecase;

	pll_14nm->vco_delay = 1;

	pll->en_seq_cnt = 1;
	pll->enable_seqs[0] = dsi_pll_14nm_enable_seq;

	ret = pll_14nm_register(pll_14nm);
	if (ret) {
		dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
		return ERR_PTR(ret);
	}

	return pll;
}
OpenPOWER on IntegriCloud