summaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/timer-tegra.c
blob: e9635c25eef4dfefc88d4f647af107c55484dc39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2010 Google, Inc.
 *
 * Author:
 *	Colin Cross <ccross@google.com>
 */

#define pr_fmt(fmt)	"tegra-timer: " fmt

#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
#include <linux/sched_clock.h>
#include <linux/time.h>

#include "timer-of.h"

#define RTC_SECONDS		0x08
#define RTC_SHADOW_SECONDS	0x0c
#define RTC_MILLISECONDS	0x10

#define TIMERUS_CNTR_1US	0x10
#define TIMERUS_USEC_CFG	0x14
#define TIMERUS_CNTR_FREEZE	0x4c

#define TIMER_PTV		0x0
#define TIMER_PTV_EN		BIT(31)
#define TIMER_PTV_PER		BIT(30)
#define TIMER_PCR		0x4
#define TIMER_PCR_INTR_CLR	BIT(30)

#define TIMER1_BASE		0x00
#define TIMER2_BASE		0x08
#define TIMER3_BASE		0x50
#define TIMER4_BASE		0x58
#define TIMER10_BASE		0x90

#define TIMER1_IRQ_IDX		0
#define TIMER10_IRQ_IDX		10

#define TIMER_1MHz		1000000

static u32 usec_config;
static void __iomem *timer_reg_base;

static int tegra_timer_set_next_event(unsigned long cycles,
				      struct clock_event_device *evt)
{
	void __iomem *reg_base = timer_of_base(to_timer_of(evt));

	/*
	 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
	 * fire after one tick if 0 is loaded.
	 *
	 * The minimum and maximum numbers of oneshot ticks are defined
	 * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation
	 * below in the code. Hence the cycles (ticks) can't be outside of
	 * a range supportable by hardware.
	 */
	writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV);

	return 0;
}

static int tegra_timer_shutdown(struct clock_event_device *evt)
{
	void __iomem *reg_base = timer_of_base(to_timer_of(evt));

	writel_relaxed(0, reg_base + TIMER_PTV);

	return 0;
}

static int tegra_timer_set_periodic(struct clock_event_device *evt)
{
	void __iomem *reg_base = timer_of_base(to_timer_of(evt));
	unsigned long period = timer_of_period(to_timer_of(evt));

	writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1),
		       reg_base + TIMER_PTV);

	return 0;
}

static irqreturn_t tegra_timer_isr(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;
	void __iomem *reg_base = timer_of_base(to_timer_of(evt));

	writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
	evt->event_handler(evt);

	return IRQ_HANDLED;
}

static void tegra_timer_suspend(struct clock_event_device *evt)
{
	void __iomem *reg_base = timer_of_base(to_timer_of(evt));

	writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
}

static void tegra_timer_resume(struct clock_event_device *evt)
{
	writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
}

static DEFINE_PER_CPU(struct timer_of, tegra_to) = {
	.flags = TIMER_OF_CLOCK | TIMER_OF_BASE,

	.clkevt = {
		.name = "tegra_timer",
		.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
		.set_next_event = tegra_timer_set_next_event,
		.set_state_shutdown = tegra_timer_shutdown,
		.set_state_periodic = tegra_timer_set_periodic,
		.set_state_oneshot = tegra_timer_shutdown,
		.tick_resume = tegra_timer_shutdown,
		.suspend = tegra_timer_suspend,
		.resume = tegra_timer_resume,
	},
};

static int tegra_timer_setup(unsigned int cpu)
{
	struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);

	writel_relaxed(0, timer_of_base(to) + TIMER_PTV);
	writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR);

	irq_force_affinity(to->clkevt.irq, cpumask_of(cpu));
	enable_irq(to->clkevt.irq);

	/*
	 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
	 * fire after one tick if 0 is loaded and thus minimum number of
	 * ticks is 1. In result both of the clocksource's tick limits are
	 * higher than a minimum and maximum that hardware register can
	 * take by 1, this is then taken into account by set_next_event
	 * callback.
	 */
	clockevents_config_and_register(&to->clkevt, timer_of_rate(to),
					1, /* min */
					0x1fffffff + 1); /* max 29 bits + 1 */

	return 0;
}

static int tegra_timer_stop(unsigned int cpu)
{
	struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);

	to->clkevt.set_state_shutdown(&to->clkevt);
	disable_irq_nosync(to->clkevt.irq);

	return 0;
}

static u64 notrace tegra_read_sched_clock(void)
{
	return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
}

#ifdef CONFIG_ARM
static unsigned long tegra_delay_timer_read_counter_long(void)
{
	return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
}

static struct delay_timer tegra_delay_timer = {
	.read_current_timer = tegra_delay_timer_read_counter_long,
	.freq = TIMER_1MHz,
};
#endif

static struct timer_of suspend_rtc_to = {
	.flags = TIMER_OF_BASE | TIMER_OF_CLOCK,
};

/*
 * tegra_rtc_read - Reads the Tegra RTC registers
 * Care must be taken that this function is not called while the
 * tegra_rtc driver could be executing to avoid race conditions
 * on the RTC shadow register
 */
static u64 tegra_rtc_read_ms(struct clocksource *cs)
{
	void __iomem *reg_base = timer_of_base(&suspend_rtc_to);

	u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS);
	u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS);

	return (u64)s * MSEC_PER_SEC + ms;
}

static struct clocksource suspend_rtc_clocksource = {
	.name	= "tegra_suspend_timer",
	.rating	= 200,
	.read	= tegra_rtc_read_ms,
	.mask	= CLOCKSOURCE_MASK(32),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
};

static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20)
{
	if (tegra20) {
		switch (cpu) {
		case 0:
			return TIMER1_BASE;
		case 1:
			return TIMER2_BASE;
		case 2:
			return TIMER3_BASE;
		default:
			return TIMER4_BASE;
		}
	}

	return TIMER10_BASE + cpu * 8;
}

static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20)
{
	if (tegra20)
		return TIMER1_IRQ_IDX + cpu;

	return TIMER10_IRQ_IDX + cpu;
}

static inline unsigned long tegra_rate_for_timer(struct timer_of *to,
						 bool tegra20)
{
	/*
	 * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the
	 * parent clock.
	 */
	if (tegra20)
		return TIMER_1MHz;

	return timer_of_rate(to);
}

static int __init tegra_init_timer(struct device_node *np, bool tegra20,
				   int rating)
{
	struct timer_of *to;
	int cpu, ret;

	to = this_cpu_ptr(&tegra_to);
	ret = timer_of_init(np, to);
	if (ret)
		goto out;

	timer_reg_base = timer_of_base(to);

	/*
	 * Configure microsecond timers to have 1MHz clock
	 * Config register is 0xqqww, where qq is "dividend", ww is "divisor"
	 * Uses n+1 scheme
	 */
	switch (timer_of_rate(to)) {
	case 12000000:
		usec_config = 0x000b; /* (11+1)/(0+1) */
		break;
	case 12800000:
		usec_config = 0x043f; /* (63+1)/(4+1) */
		break;
	case 13000000:
		usec_config = 0x000c; /* (12+1)/(0+1) */
		break;
	case 16800000:
		usec_config = 0x0453; /* (83+1)/(4+1) */
		break;
	case 19200000:
		usec_config = 0x045f; /* (95+1)/(4+1) */
		break;
	case 26000000:
		usec_config = 0x0019; /* (25+1)/(0+1) */
		break;
	case 38400000:
		usec_config = 0x04bf; /* (191+1)/(4+1) */
		break;
	case 48000000:
		usec_config = 0x002f; /* (47+1)/(0+1) */
		break;
	default:
		ret = -EINVAL;
		goto out;
	}

	writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);

	for_each_possible_cpu(cpu) {
		struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu);
		unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING;
		unsigned long rate = tegra_rate_for_timer(to, tegra20);
		unsigned int base = tegra_base_for_cpu(cpu, tegra20);
		unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20);
		unsigned int irq = irq_of_parse_and_map(np, idx);

		if (!irq) {
			pr_err("failed to map irq for cpu%d\n", cpu);
			ret = -EINVAL;
			goto out_irq;
		}

		cpu_to->clkevt.irq = irq;
		cpu_to->clkevt.rating = rating;
		cpu_to->clkevt.cpumask = cpumask_of(cpu);
		cpu_to->of_base.base = timer_reg_base + base;
		cpu_to->of_clk.period = rate / HZ;
		cpu_to->of_clk.rate = rate;

		irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN);

		ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, flags,
				  cpu_to->clkevt.name, &cpu_to->clkevt);
		if (ret) {
			pr_err("failed to set up irq for cpu%d: %d\n",
			       cpu, ret);
			irq_dispose_mapping(cpu_to->clkevt.irq);
			cpu_to->clkevt.irq = 0;
			goto out_irq;
		}
	}

	sched_clock_register(tegra_read_sched_clock, 32, TIMER_1MHz);

	ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
				    "timer_us", TIMER_1MHz, 300, 32,
				    clocksource_mmio_readl_up);
	if (ret)
		pr_err("failed to register clocksource: %d\n", ret);

#ifdef CONFIG_ARM
	register_current_timer_delay(&tegra_delay_timer);
#endif

	ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING,
				"AP_TEGRA_TIMER_STARTING", tegra_timer_setup,
				tegra_timer_stop);
	if (ret)
		pr_err("failed to set up cpu hp state: %d\n", ret);

	return ret;

out_irq:
	for_each_possible_cpu(cpu) {
		struct timer_of *cpu_to;

		cpu_to = per_cpu_ptr(&tegra_to, cpu);
		if (cpu_to->clkevt.irq) {
			free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt);
			irq_dispose_mapping(cpu_to->clkevt.irq);
		}
	}

	to->of_base.base = timer_reg_base;
out:
	timer_of_cleanup(to);

	return ret;
}

static int __init tegra210_init_timer(struct device_node *np)
{
	/*
	 * Arch-timer can't survive across power cycle of CPU core and
	 * after CPUPORESET signal due to a system design shortcoming,
	 * hence tegra-timer is more preferable on Tegra210.
	 */
	return tegra_init_timer(np, false, 460);
}
TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer);

static int __init tegra20_init_timer(struct device_node *np)
{
	int rating;

	/*
	 * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer,
	 * that timer runs off the CPU clock and hence is subjected to
	 * a jitter caused by DVFS clock rate changes. Tegra-timer is
	 * more preferable for older Tegra's, while later SoC generations
	 * have arch-timer as a main per-CPU timer and it is not affected
	 * by DVFS changes.
	 */
	if (of_machine_is_compatible("nvidia,tegra20") ||
	    of_machine_is_compatible("nvidia,tegra30"))
		rating = 460;
	else
		rating = 330;

	return tegra_init_timer(np, true, rating);
}
TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer);

static int __init tegra20_init_rtc(struct device_node *np)
{
	int ret;

	ret = timer_of_init(np, &suspend_rtc_to);
	if (ret)
		return ret;

	return clocksource_register_hz(&suspend_rtc_clocksource, 1000);
}
TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc);
OpenPOWER on IntegriCloud