| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The most notable change is DEFINE_SHOW_ATTRIBUTE macro split in
seq_file.h.
Conversion rule is:
llseek => proc_lseek
unlocked_ioctl => proc_ioctl
xxx => proc_xxx
delete ".owner = THIS_MODULE" line
[akpm@linux-foundation.org: fix drivers/isdn/capi/kcapi_proc.c]
[sfr@canb.auug.org.au: fix kernel/sched/psi.c]
Link: http://lkml.kernel.org/r/20200122180545.36222f50@canb.auug.org.au
Link: http://lkml.kernel.org/r/20191225172546.GB13378@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Removal of the NPU DMA code, used by the out-of-tree Nvidia driver,
as well as some other functions only used by drivers that haven't
(yet?) made it upstream.
- A fix for a bug in our handling of hardware watchpoints (eg. perf
record -e mem: ...) which could lead to register corruption and
kernel crashes.
- Enable HAVE_ARCH_HUGE_VMAP, which allows us to use large pages for
vmalloc when using the Radix MMU.
- A large but incremental rewrite of our exception handling code to
use gas macros rather than multiple levels of nested CPP macros.
And the usual small fixes, cleanups and improvements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Andreas Schwab,
Aneesh Kumar K.V, Anju T Sudhakar, Anton Blanchard, Arnd Bergmann,
Athira Rajeev, Cédric Le Goater, Christian Lamparter, Christophe
Leroy, Christophe Lombard, Christoph Hellwig, Daniel Axtens, Denis
Efremov, Enrico Weigelt, Frederic Barrat, Gautham R. Shenoy, Geert
Uytterhoeven, Geliang Tang, Gen Zhang, Greg Kroah-Hartman, Greg Kurz,
Gustavo Romero, Krzysztof Kozlowski, Madhavan Srinivasan, Masahiro
Yamada, Mathieu Malaterre, Michael Neuling, Nathan Lynch, Naveen N.
Rao, Nicholas Piggin, Nishad Kamdar, Oliver O'Halloran, Qian Cai, Ravi
Bangoria, Sachin Sant, Sam Bobroff, Satheesh Rajendran, Segher
Boessenkool, Shaokun Zhang, Shawn Anastasio, Stewart Smith, Suraj
Jitindar Singh, Thiago Jung Bauermann, YueHaibing"
* tag 'powerpc-5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (163 commits)
powerpc/powernv/idle: Fix restore of SPRN_LDBAR for POWER9 stop state.
powerpc/eeh: Handle hugepages in ioremap space
ocxl: Update for AFU descriptor template version 1.1
powerpc/boot: pass CONFIG options in a simpler and more robust way
powerpc/boot: add {get, put}_unaligned_be32 to xz_config.h
powerpc/irq: Don't WARN continuously in arch_local_irq_restore()
powerpc/module64: Use symbolic instructions names.
powerpc/module32: Use symbolic instructions names.
powerpc: Move PPC_HA() PPC_HI() and PPC_LO() to ppc-opcode.h
powerpc/module64: Fix comment in R_PPC64_ENTRY handling
powerpc/boot: Add lzo support for uImage
powerpc/boot: Add lzma support for uImage
powerpc/boot: don't force gzipped uImage
powerpc/8xx: Add microcode patch to move SMC parameter RAM.
powerpc/8xx: Use IO accessors in microcode programming.
powerpc/8xx: replace #ifdefs by IS_ENABLED() in microcode.c
powerpc/8xx: refactor programming of microcode CPM params.
powerpc/8xx: refactor printing of microcode patch name.
powerpc/8xx: Refactor microcode write
powerpc/8xx: refactor writing of CPM microcode arrays
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we fail to parse min_common_depth from device tree we boot with
numa disabled. Reflect the same by updating numa_enabled variable
to false. Also, switch all min_common_depth failure check to
if (!numa_enabled) check.
This helps us to avoid checking for both in different code paths.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we boot with numa=off, we need to make sure we return NUMA_NO_NODE when
looking up associativity details of resources. Without this, we hit crash
like below
BUG: Unable to handle kernel data access at 0x40000000008
Faulting instruction address: 0xc000000008f31704
cpu 0x1b: Vector: 380 (Data SLB Access) at [c00000000b9bb320]
pc: c000000008f31704: _raw_spin_lock+0x14/0x100
lr: c0000000083f41fc: ____cache_alloc_node+0x5c/0x290
sp: c00000000b9bb5b0
msr: 800000010280b033
dar: 40000000008
current = 0xc00000000b9a2700
paca = 0xc00000000a740c00 irqmask: 0x03 irq_happened: 0x01
pid = 1, comm = swapper/27
Linux version 5.2.0-rc4-00925-g74e188c620b1 (root@linux-d8ip) (gcc version 7.4.1 20190424 [gcc-7-branch revision 270538] (SUSE Linux)) #34 SMP Sat Jun 29 00:41:02 EDT 2019
enter ? for help
[link register ] c0000000083f41fc ____cache_alloc_node+0x5c/0x290
[c00000000b9bb5b0] 0000000000000dc0 (unreliable)
[c00000000b9bb5f0] c0000000083f48c8 kmem_cache_alloc_node_trace+0x138/0x360
[c00000000b9bb670] c000000008aa789c devres_alloc_node+0x4c/0xa0
[c00000000b9bb6a0] c000000008337218 devm_memremap+0x58/0x130
[c00000000b9bb6f0] c000000008aed00c devm_nsio_enable+0xdc/0x170
[c00000000b9bb780] c000000008af3b6c nd_pmem_probe+0x4c/0x180
[c00000000b9bb7b0] c000000008ad84cc nvdimm_bus_probe+0xac/0x260
[c00000000b9bb840] c000000008aa0628 really_probe+0x148/0x500
[c00000000b9bb8d0] c000000008aa0d7c driver_probe_device+0x19c/0x1d0
[c00000000b9bb950] c000000008aa11bc device_driver_attach+0xcc/0x100
[c00000000b9bb990] c000000008aa12ec __driver_attach+0xfc/0x1e0
[c00000000b9bba10] c000000008a9d0a4 bus_for_each_dev+0xb4/0x130
[c00000000b9bba70] c000000008a9fc04 driver_attach+0x34/0x50
[c00000000b9bba90] c000000008a9f118 bus_add_driver+0x1d8/0x300
[c00000000b9bbb20] c000000008aa2358 driver_register+0x98/0x1a0
[c00000000b9bbb90] c000000008ad7e6c __nd_driver_register+0x5c/0x100
[c00000000b9bbbf0] c0000000093efbac nd_pmem_driver_init+0x34/0x48
[c00000000b9bbc10] c0000000080106c0 do_one_initcall+0x60/0x2d0
[c00000000b9bbce0] c00000000938463c kernel_init_freeable+0x384/0x48c
[c00000000b9bbdb0] c000000008010a5c kernel_init+0x2c/0x160
[c00000000b9bbe20] c00000000800ba54 ret_from_kernel_thread+0x5c/0x68
Reported-and-debugged-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we fail to parse the associativity array we should default to
NUMA_NO_NODE instead of NODE 0. Rest of the code fallback to the
right default if we find the numa node value NUMA_NO_NODE.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
For Shared Processor LPARs, the POWER Hypervisor maintains a
relatively static mapping of the LPAR processors (vcpus) to physical
processor chips (representing the "home" node) and tries to always
dispatch vcpus on their associated physical processor chip. However,
under certain scenarios, vcpus may be dispatched on a different
processor chip (away from its home node). The actual physical
processor number on which a certain vcpu is dispatched is available to
the guest in the 'processor_id' field of each DTL entry.
The guest can discover the home node of each vcpu through the
H_HOME_NODE_ASSOCIATIVITY(flags=1) hcall. The guest can also discover
the associativity of physical processors, as represented in the DTL
entry, through the H_HOME_NODE_ASSOCIATIVITY(flags=2) hcall.
These can then be compared to determine if the vcpu was dispatched on
its home node or not. If the vcpu was not dispatched on the home node,
it is possible to determine if the vcpu was dispatched in a different
chip, socket or drawer.
Introduce a procfs file /proc/powerpc/vcpudispatch_stats that can be
used to obtain these statistics. Writing '1' to this file enables
collecting the statistics, while writing '0' disables the statistics.
The statistics themselves are available by reading the procfs file. By
default, the DTLB log for each vcpu is processed 50 times a second so
as not to miss any entries. This processing frequency can be changed
through /proc/powerpc/vcpudispatch_stats_freq.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
hcall_vphn() is specific to pseries and will be used in a subsequent
patch. So, move it to a more appropriate place under
arch/powerpc/platforms/pseries. Also merge vphn.h into lppaca.h
and update vphn selftest to use the new files.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
H_HOME_NODE_ASSOCIATIVITY hcall can take two different flags and return
different associativity information in each case. Generalize the
existing hcall_vphn() function to take flags as an argument and to
return the result. Update the only existing user to pass the proper
arguments.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
Many files in arch/powerpc/mm are only for book3S64. This patch
creates a subdirectory for them.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Update the selftest sym links, shorten new filenames, cleanup some
whitespace and formatting in the new files.]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
Changing the NUMA associations for CPUs and memory at runtime is
basically unsupported by the core mm, scheduler etc. We see all manner
of crashes, warnings and instability when the pseries code tries to do
this. Disable this behavior by default, and document the switch a bit.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When booted with "topology_updates=no", or when "off" is written to
/proc/powerpc/topology_updates, NUMA reassignments are inhibited for
PRRN and VPHN events. However, migration and suspend unconditionally
re-enable reassignments via start_topology_update(). This is
incoherent.
Check the topology_updates_enabled flag in
start/stop_topology_update() so that callers of those APIs need not be
aware of whether reassignments are enabled. This allows the
administrative decision on reassignments to remain in force across
migrations and suspensions.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
| |
Remove duplicate headers inclusions.
Signed-off-by: Jagadeesh Pagadala <jagdsh.linux@gmail.com>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The memblock_phys_alloc_try_nid() function tries to allocate memory from
the requested node and then falls back to allocation from any node in
the system. The memblock_alloc_base() fallback used by this function
panics if the allocation fails.
Replace the memblock_alloc_base() fallback with the direct call to
memblock_alloc_range_nid() and update the memblock_phys_alloc_try_nid()
callers to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-7-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Enable THREAD_INFO_IN_TASK to move thread_info off the stack.
- A big series from Christoph reworking our DMA code to use more of
the generic infrastructure, as he said:
"This series switches the powerpc port to use the generic swiotlb
and noncoherent dma ops, and to use more generic code for the
coherent direct mapping, as well as removing a lot of dead
code."
- Increase our vmalloc space to 512T with the Hash MMU on modern
CPUs, allowing us to support machines with larger amounts of total
RAM or distance between nodes.
- Two series from Christophe, one to optimise TLB miss handlers on
6xx, and another to optimise the way STRICT_KERNEL_RWX is
implemented on some 32-bit CPUs.
- Support for KCOV coverage instrumentation which means we can run
syzkaller and discover even more bugs in our code.
And as always many clean-ups, reworks and minor fixes etc.
Thanks to: Alan Modra, Alexey Kardashevskiy, Alistair Popple, Andrea
Arcangeli, Andrew Donnellan, Aneesh Kumar K.V, Aravinda Prasad, Balbir
Singh, Brajeswar Ghosh, Breno Leitao, Christian Lamparter, Christian
Zigotzky, Christophe Leroy, Christoph Hellwig, Corentin Labbe, Daniel
Axtens, David Gibson, Diana Craciun, Firoz Khan, Gustavo A. R. Silva,
Igor Stoppa, Joe Lawrence, Joel Stanley, Jonathan Neuschäfer, Jordan
Niethe, Laurent Dufour, Madhavan Srinivasan, Mahesh Salgaonkar, Mark
Cave-Ayland, Masahiro Yamada, Mathieu Malaterre, Matteo Croce, Meelis
Roos, Michael W. Bringmann, Nathan Chancellor, Nathan Fontenot,
Nicholas Piggin, Nick Desaulniers, Nicolai Stange, Oliver O'Halloran,
Paul Mackerras, Peter Xu, PrasannaKumar Muralidharan, Qian Cai,
Rashmica Gupta, Reza Arbab, Robert P. J. Day, Russell Currey,
Sabyasachi Gupta, Sam Bobroff, Sandipan Das, Sergey Senozhatsky,
Souptick Joarder, Stewart Smith, Tyrel Datwyler, Vaibhav Jain,
YueHaibing"
* tag 'powerpc-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (200 commits)
powerpc/32: Clear on-stack exception marker upon exception return
powerpc: Remove export of save_stack_trace_tsk_reliable()
powerpc/mm: fix "section_base" set but not used
powerpc/mm: Fix "sz" set but not used warning
powerpc/mm: Check secondary hash page table
powerpc: remove nargs from __SYSCALL
powerpc/64s: Fix unrelocated interrupt trampoline address test
powerpc/powernv/ioda: Fix locked_vm counting for memory used by IOMMU tables
powerpc/fsl: Fix the flush of branch predictor.
powerpc/powernv: Make opal log only readable by root
powerpc/xmon: Fix opcode being uninitialized in print_insn_powerpc
powerpc/powernv: move OPAL call wrapper tracing and interrupt handling to C
powerpc/64s: Fix data interrupts vs d-side MCE reentrancy
powerpc/64s: Prepare to handle data interrupts vs d-side MCE reentrancy
powerpc/64s: system reset interrupt preserve HSRRs
powerpc/64s: Fix HV NMI vs HV interrupt recoverability test
powerpc/mm/hash: Handle mmap_min_addr correctly in get_unmapped_area topdown search
powerpc/hugetlb: Handle mmap_min_addr correctly in get_unmapped_area callback
selftests/powerpc: Remove duplicate header
powerpc sstep: Add support for modsd, modud instructions
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On pseries systems, performing a partition migration can result in
altering the nodes a CPU is assigned to on the destination system. For
exampl, pre-migration on the source system CPUs are in node 1 and 3,
post-migration on the destination system CPUs are in nodes 2 and 3.
Handling the node change for a CPU can cause corruption in the slab
cache if we hit a timing where a CPUs node is changed while cache_reap()
is invoked. The corruption occurs because the slab cache code appears
to rely on the CPU and slab cache pages being on the same node.
The current dynamic updating of a CPUs node done in arch/powerpc/mm/numa.c
does not prevent us from hitting this scenario.
Changing the device tree property update notification handler that
recognizes an affinity change for a CPU to do a full DLPAR remove and
add of the CPU instead of dynamically changing its node resolves this
issue.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael W. Bringmann <mwb@linux.vnet.ibm.com>
Tested-by: Michael W. Bringmann <mwb@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Number of NUMA nodes can't be negative.
This saves a few bytes on x86_64:
add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238)
Function old new delta
hv_synic_alloc.cold 88 110 +22
prealloc_shrinker 260 262 +2
bootstrap 249 251 +2
sched_init_numa 1566 1567 +1
show_slab_objects 778 777 -1
s_show 1201 1200 -1
kmem_cache_init 346 345 -1
__alloc_workqueue_key 1146 1145 -1
mem_cgroup_css_alloc 1614 1612 -2
__do_sys_swapon 4702 4699 -3
__list_lru_init 655 651 -4
nic_probe 2379 2374 -5
store_user_store 118 111 -7
red_zone_store 106 99 -7
poison_store 106 99 -7
wq_numa_init 348 338 -10
__kmem_cache_empty 75 65 -10
task_numa_free 186 173 -13
merge_across_nodes_store 351 336 -15
irq_create_affinity_masks 1261 1246 -15
do_numa_crng_init 343 321 -22
task_numa_fault 4760 4737 -23
swapfile_init 179 156 -23
hv_synic_alloc 536 492 -44
apply_wqattrs_prepare 746 695 -51
Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove directly accessing device_node.type pointer and use the
accessors instead. This will eventually allow removing the type
pointer.
Replace the open coded iterating over child nodes with
for_each_child_of_node() while we're here.
Signed-off-by: Rob Herring <robh@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
| |
When VPHN function is not supported and during cpu hotplug event,
kernel prints message 'VPHN function not supported. Disabling
polling...'. Currently it prints on every hotplug event, it floods
dmesg when a KVM guest tries to hotplug huge number of vcpus, let's
just print once and suppress further kernel prints.
Signed-off-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make it explicit that the caller gets a physical address rather than a
virtual one.
This will also allow using meblock_alloc prefix for memblock allocations
returning virtual address, which is done in the following patches.
The conversion is done using the following semantic patch:
@@
expression e1, e2, e3;
@@
(
- memblock_alloc(e1, e2)
+ memblock_phys_alloc(e1, e2)
|
- memblock_alloc_nid(e1, e2, e3)
+ memblock_phys_alloc_nid(e1, e2, e3)
|
- memblock_alloc_try_nid(e1, e2, e3)
+ memblock_phys_alloc_try_nid(e1, e2, e3)
)
Link: http://lkml.kernel.org/r/1536927045-23536-7-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The powerpc mobility code may receive RTAS requests to perform PRRN
(Platform Resource Reassignment Notification) topology changes at any
time, including during LPAR migration operations.
In some configurations where the affinity of CPUs or memory is being
changed on that platform, the PRRN requests may apply or refer to
outdated information prior to the complete update of the device-tree.
This patch changes the duration for which topology updates are
suppressed during LPAR migrations from just the rtas_ibm_suspend_me()
/ 'ibm,suspend-me' call(s) to cover the entire migration_store()
operation to allow all changes to the device-tree to be applied prior
to accepting and applying any PRRN requests.
For tracking purposes, pr_info notices are added to the functions
start_topology_update() and stop_topology_update() of 'numa.c'.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With commit 2ea626306810 ("powerpc/topology: Get topology for shared
processors at boot"), kdump kernel on shared LPAR may crash.
The necessary conditions are
- Shared LPAR with at least 2 nodes having memory and CPUs.
- Memory requirement for kdump kernel must be met by the first N-1
nodes where there are at least N nodes with memory and CPUs.
Example numactl of such a machine.
$ numactl -H
available: 5 nodes (0,2,5-7)
node 0 cpus:
node 0 size: 0 MB
node 0 free: 0 MB
node 2 cpus:
node 2 size: 255 MB
node 2 free: 189 MB
node 5 cpus: 24 25 26 27 28 29 30 31
node 5 size: 4095 MB
node 5 free: 4024 MB
node 6 cpus: 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23
node 6 size: 6353 MB
node 6 free: 5998 MB
node 7 cpus: 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39
node 7 size: 7640 MB
node 7 free: 7164 MB
node distances:
node 0 2 5 6 7
0: 10 40 40 40 40
2: 40 10 40 40 40
5: 40 40 10 40 40
6: 40 40 40 10 20
7: 40 40 40 20 10
Steps to reproduce.
1. Load / start kdump service.
2. Trigger a kdump (for example : echo c > /proc/sysrq-trigger)
When booting a kdump kernel with 2048M:
kexec: Starting switchover sequence.
I'm in purgatory
Using 1TB segments
hash-mmu: Initializing hash mmu with SLB
Linux version 4.19.0-rc5-master+ (srikar@linux-xxu6) (gcc version 4.8.5 (SUSE Linux)) #1 SMP Thu Sep 27 19:45:00 IST 2018
Found initrd at 0xc000000009e70000:0xc00000000ae554b4
Using pSeries machine description
-----------------------------------------------------
ppc64_pft_size = 0x1e
phys_mem_size = 0x88000000
dcache_bsize = 0x80
icache_bsize = 0x80
cpu_features = 0x000000ff8f5d91a7
possible = 0x0000fbffcf5fb1a7
always = 0x0000006f8b5c91a1
cpu_user_features = 0xdc0065c2 0xef000000
mmu_features = 0x7c006001
firmware_features = 0x00000007c45bfc57
htab_hash_mask = 0x7fffff
physical_start = 0x8000000
-----------------------------------------------------
numa: NODE_DATA [mem 0x87d5e300-0x87d67fff]
numa: NODE_DATA(0) on node 6
numa: NODE_DATA [mem 0x87d54600-0x87d5e2ff]
Top of RAM: 0x88000000, Total RAM: 0x88000000
Memory hole size: 0MB
Zone ranges:
DMA [mem 0x0000000000000000-0x0000000087ffffff]
DMA32 empty
Normal empty
Movable zone start for each node
Early memory node ranges
node 6: [mem 0x0000000000000000-0x0000000087ffffff]
Could not find start_pfn for node 0
Initmem setup node 0 [mem 0x0000000000000000-0x0000000000000000]
On node 0 totalpages: 0
Initmem setup node 6 [mem 0x0000000000000000-0x0000000087ffffff]
On node 6 totalpages: 34816
Unable to handle kernel paging request for data at address 0x00000060
Faulting instruction address: 0xc000000008703a54
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 11 PID: 1 Comm: swapper/11 Not tainted 4.19.0-rc5-master+ #1
NIP: c000000008703a54 LR: c000000008703a38 CTR: 0000000000000000
REGS: c00000000b673440 TRAP: 0380 Not tainted (4.19.0-rc5-master+)
MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 24022022 XER: 20000002
CFAR: c0000000086fc238 IRQMASK: 0
GPR00: c000000008703a38 c00000000b6736c0 c000000009281900 0000000000000000
GPR04: 0000000000000000 0000000000000000 fffffffffffff001 c00000000b660080
GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000220
GPR12: 0000000000002200 c000000009e51400 0000000000000000 0000000000000008
GPR16: 0000000000000000 c000000008c152e8 c000000008c152a8 0000000000000000
GPR20: c000000009422fd8 c000000009412fd8 c000000009426040 0000000000000008
GPR24: 0000000000000000 0000000000000000 c000000009168bc8 c000000009168c78
GPR28: c00000000b126410 0000000000000000 c00000000916a0b8 c00000000b126400
NIP [c000000008703a54] bus_add_device+0x84/0x1e0
LR [c000000008703a38] bus_add_device+0x68/0x1e0
Call Trace:
[c00000000b6736c0] [c000000008703a38] bus_add_device+0x68/0x1e0 (unreliable)
[c00000000b673740] [c000000008700194] device_add+0x454/0x7c0
[c00000000b673800] [c00000000872e660] __register_one_node+0xb0/0x240
[c00000000b673860] [c00000000839a6bc] __try_online_node+0x12c/0x180
[c00000000b673900] [c00000000839b978] try_online_node+0x58/0x90
[c00000000b673930] [c0000000080846d8] find_and_online_cpu_nid+0x158/0x190
[c00000000b673a10] [c0000000080848a0] numa_update_cpu_topology+0x190/0x580
[c00000000b673c00] [c000000008d3f2e4] smp_cpus_done+0x94/0x108
[c00000000b673c70] [c000000008d5c00c] smp_init+0x174/0x19c
[c00000000b673d00] [c000000008d346b8] kernel_init_freeable+0x1e0/0x450
[c00000000b673dc0] [c0000000080102e8] kernel_init+0x28/0x160
[c00000000b673e30] [c00000000800b65c] ret_from_kernel_thread+0x5c/0x80
Instruction dump:
60000000 60000000 e89e0020 7fe3fb78 4bff87d5 60000000 7c7d1b79 4082008c
e8bf0050 e93e0098 3b9f0010 2fa50000 <e8690060> 38630018 419e0114 7f84e378
---[ end trace 593577668c2daa65 ]---
However a regular kernel with 4096M (2048 gets reserved for crash
kernel) boots properly.
Unlike regular kernels, which mark all available nodes as online,
kdump kernel only marks just enough nodes as online and marks the rest
as offline at boot. However kdump kernel boots with all available
CPUs. With Commit 2ea626306810 ("powerpc/topology: Get topology for
shared processors at boot"), all CPUs are onlined on their respective
nodes at boot time. try_online_node() tries to online the offline
nodes but fails as all needed subsystems are not yet initialized.
As part of fix, detect and skip early onlining of a offline node.
Fixes: 2ea626306810 ("powerpc/topology: Get topology for shared processors at boot")
Reported-by: Pavithra Prakash <pavrampu@in.ibm.com>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently associativity is used to lookup node-id even if the
preceding VPHN hcall failed. However this can cause CPU to be made
part of the wrong node, (most likely to be node 0). This is because
VPHN is not enabled on KVM guests.
With 2ea6263 ("powerpc/topology: Get topology for shared processors at
boot"), associativity is used to set to the wrong node. Hence KVM
guest topology is broken.
For example : A 4 node KVM guest before would have reported.
[root@localhost ~]# numactl -H
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3
node 0 size: 1746 MB
node 0 free: 1604 MB
node 1 cpus: 4 5 6 7
node 1 size: 2044 MB
node 1 free: 1765 MB
node 2 cpus: 8 9 10 11
node 2 size: 2044 MB
node 2 free: 1837 MB
node 3 cpus: 12 13 14 15
node 3 size: 2044 MB
node 3 free: 1903 MB
node distances:
node 0 1 2 3
0: 10 40 40 40
1: 40 10 40 40
2: 40 40 10 40
3: 40 40 40 10
Would now report:
[root@localhost ~]# numactl -H
available: 4 nodes (0-3)
node 0 cpus: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
node 0 size: 1746 MB
node 0 free: 1244 MB
node 1 cpus:
node 1 size: 2044 MB
node 1 free: 2032 MB
node 2 cpus: 1
node 2 size: 2044 MB
node 2 free: 2028 MB
node 3 cpus:
node 3 size: 2044 MB
node 3 free: 2032 MB
node distances:
node 0 1 2 3
0: 10 40 40 40
1: 40 10 40 40
2: 40 40 10 40
3: 40 40 40 10
Fix this by skipping associativity lookup if the VPHN hcall failed.
Fixes: 2ea626306810 ("powerpc/topology: Get topology for shared processors at boot")
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After migration of a powerpc LPAR, the kernel executes code to
update the system state to reflect new platform characteristics.
Such changes include modifications to device tree properties provided
to the system by PHYP. Property notifications received by the
post_mobility_fixup() code are passed along to the kernel in general
through a call to of_update_property() which in turn passes such
events back to all modules through entries like the '.notifier_call'
function within the NUMA module.
When the NUMA module updates its state, it resets its event timer. If
this occurs after a previous call to stop_topology_update() or on a
system without VPHN enabled, the code runs into an unitialized timer
structure and crashes. This patch adds a safety check along this path
toward the problem code.
An example crash log is as follows.
ibmvscsi 30000081: Re-enabling adapter!
------------[ cut here ]------------
kernel BUG at kernel/time/timer.c:958!
Oops: Exception in kernel mode, sig: 5 [#1]
LE SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: nfsv3 nfs_acl nfs tcp_diag udp_diag inet_diag lockd unix_diag af_packet_diag netlink_diag grace fscache sunrpc xts vmx_crypto pseries_rng sg binfmt_misc ip_tables xfs libcrc32c sd_mod ibmvscsi ibmveth scsi_transport_srp dm_mirror dm_region_hash dm_log dm_mod
CPU: 11 PID: 3067 Comm: drmgr Not tainted 4.17.0+ #179
...
NIP mod_timer+0x4c/0x400
LR reset_topology_timer+0x40/0x60
Call Trace:
0xc0000003f9407830 (unreliable)
reset_topology_timer+0x40/0x60
dt_update_callback+0x100/0x120
notifier_call_chain+0x90/0x100
__blocking_notifier_call_chain+0x60/0x90
of_property_notify+0x90/0xd0
of_update_property+0x104/0x150
update_dt_property+0xdc/0x1f0
pseries_devicetree_update+0x2d0/0x510
post_mobility_fixup+0x7c/0xf0
migration_store+0xa4/0xc0
kobj_attr_store+0x30/0x60
sysfs_kf_write+0x64/0xa0
kernfs_fop_write+0x16c/0x240
__vfs_write+0x40/0x200
vfs_write+0xc8/0x240
ksys_write+0x5c/0x100
system_call+0x58/0x6c
Fixes: 5d88aa85c00b ("powerpc/pseries: Update CPU maps when device tree is updated")
Cc: stable@vger.kernel.org # v3.10+
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On a shared LPAR, Phyp will not update the CPU associativity at boot
time. Just after the boot system does recognize itself as a shared
LPAR and trigger a request for correct CPU associativity. But by then
the scheduler would have already created/destroyed its sched domains.
This causes
- Broken load balance across Nodes causing islands of cores.
- Performance degradation esp if the system is lightly loaded
- dmesg to wrongly report all CPUs to be in Node 0.
- Messages in dmesg saying borken topology.
- With commit 051f3ca02e46 ("sched/topology: Introduce NUMA identity
node sched domain"), can cause rcu stalls at boot up.
The sched_domains_numa_masks table which is used to generate cpumasks
is only created at boot time just before creating sched domains and
never updated. Hence, its better to get the topology correct before
the sched domains are created.
For example on 64 core Power 8 shared LPAR, dmesg reports
Brought up 512 CPUs
Node 0 CPUs: 0-511
Node 1 CPUs:
Node 2 CPUs:
Node 3 CPUs:
Node 4 CPUs:
Node 5 CPUs:
Node 6 CPUs:
Node 7 CPUs:
Node 8 CPUs:
Node 9 CPUs:
Node 10 CPUs:
Node 11 CPUs:
...
BUG: arch topology borken
the DIE domain not a subset of the NUMA domain
BUG: arch topology borken
the DIE domain not a subset of the NUMA domain
numactl/lscpu output will still be correct with cores spreading across
all nodes:
Socket(s): 64
NUMA node(s): 12
Model: 2.0 (pvr 004d 0200)
Model name: POWER8 (architected), altivec supported
Hypervisor vendor: pHyp
Virtualization type: para
L1d cache: 64K
L1i cache: 32K
NUMA node0 CPU(s): 0-7,32-39,64-71,96-103,176-183,272-279,368-375,464-471
NUMA node1 CPU(s): 8-15,40-47,72-79,104-111,184-191,280-287,376-383,472-479
NUMA node2 CPU(s): 16-23,48-55,80-87,112-119,192-199,288-295,384-391,480-487
NUMA node3 CPU(s): 24-31,56-63,88-95,120-127,200-207,296-303,392-399,488-495
NUMA node4 CPU(s): 208-215,304-311,400-407,496-503
NUMA node5 CPU(s): 168-175,264-271,360-367,456-463
NUMA node6 CPU(s): 128-135,224-231,320-327,416-423
NUMA node7 CPU(s): 136-143,232-239,328-335,424-431
NUMA node8 CPU(s): 216-223,312-319,408-415,504-511
NUMA node9 CPU(s): 144-151,240-247,336-343,432-439
NUMA node10 CPU(s): 152-159,248-255,344-351,440-447
NUMA node11 CPU(s): 160-167,256-263,352-359,448-455
Currently on this LPAR, the scheduler detects 2 levels of Numa and
created numa sched domains for all CPUs, but it finds a single DIE
domain consisting of all CPUs. Hence it deletes all numa sched
domains.
To address this, detect the shared processor and update topology soon
after CPUs are setup so that correct topology is updated just before
scheduler creates sched domain.
With the fix, dmesg reports:
numa: Node 0 CPUs: 0-7 32-39 64-71 96-103 176-183 272-279 368-375 464-471
numa: Node 1 CPUs: 8-15 40-47 72-79 104-111 184-191 280-287 376-383 472-479
numa: Node 2 CPUs: 16-23 48-55 80-87 112-119 192-199 288-295 384-391 480-487
numa: Node 3 CPUs: 24-31 56-63 88-95 120-127 200-207 296-303 392-399 488-495
numa: Node 4 CPUs: 208-215 304-311 400-407 496-503
numa: Node 5 CPUs: 168-175 264-271 360-367 456-463
numa: Node 6 CPUs: 128-135 224-231 320-327 416-423
numa: Node 7 CPUs: 136-143 232-239 328-335 424-431
numa: Node 8 CPUs: 216-223 312-319 408-415 504-511
numa: Node 9 CPUs: 144-151 240-247 336-343 432-439
numa: Node 10 CPUs: 152-159 248-255 344-351 440-447
numa: Node 11 CPUs: 160-167 256-263 352-359 448-455
and lscpu also reports:
Socket(s): 64
NUMA node(s): 12
Model: 2.0 (pvr 004d 0200)
Model name: POWER8 (architected), altivec supported
Hypervisor vendor: pHyp
Virtualization type: para
L1d cache: 64K
L1i cache: 32K
NUMA node0 CPU(s): 0-7,32-39,64-71,96-103,176-183,272-279,368-375,464-471
NUMA node1 CPU(s): 8-15,40-47,72-79,104-111,184-191,280-287,376-383,472-479
NUMA node2 CPU(s): 16-23,48-55,80-87,112-119,192-199,288-295,384-391,480-487
NUMA node3 CPU(s): 24-31,56-63,88-95,120-127,200-207,296-303,392-399,488-495
NUMA node4 CPU(s): 208-215,304-311,400-407,496-503
NUMA node5 CPU(s): 168-175,264-271,360-367,456-463
NUMA node6 CPU(s): 128-135,224-231,320-327,416-423
NUMA node7 CPU(s): 136-143,232-239,328-335,424-431
NUMA node8 CPU(s): 216-223,312-319,408-415,504-511
NUMA node9 CPU(s): 144-151,240-247,336-343,432-439
NUMA node10 CPU(s): 152-159,248-255,344-351,440-447
NUMA node11 CPU(s): 160-167,256-263,352-359,448-455
Reported-by: Manjunatha H R <manjuhr1@in.ibm.com>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[mpe: Trim / format change log]
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|\
| |
| |
| |
| |
| |
| |
| | |
Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
|
| |
| |
| |
| |
| |
| |
| |
| | |
Split sparsemem initialisation from basic numa topology discovery.
Move the parsing earlier in boot, before pacas are allocated.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We no longer allocate lppacas in an array, so this patch removes the
1kB static alignment for the structure, and enforces the PAPR
alignment requirements at allocation time. We can not reduce the 1kB
allocation size however, due to existing KVM hypervisors.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When DLPAR removing a CPU, the unmapping of the cpu from a node in
unmap_cpu_from_node() should also invalidate the CPUs entry in the
numa_cpu_lookup_table. There is not a guarantee that on a subsequent
DLPAR add of the CPU the associativity will be the same and thus
could be in a different node. Invalidating the entry in the
numa_cpu_lookup_table causes the associativity to be read from the
device tree at the time of the add.
The current behavior of not invalidating the CPUs entry in the
numa_cpu_lookup_table can result in scenarios where the the topology
layout of CPUs in the partition does not match the device tree
or the topology reported by the HMC.
This bug looks like it was introduced in 2004 in the commit titled
"ppc64: cpu hotplug notifier for numa", which is 6b15e4e87e32 in the
linux-fullhist tree. Hence tag it for all stable releases.
Cc: stable@vger.kernel.org
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Reviewed-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On powerpc systems with shared configurations of CPUs and memory and
memoryless nodes at boot, an event ordering problem was observed on a
SLES12 build platforms with the hot-add of CPUs to the memoryless
nodes.
* The most common error occurred when the memory SLAB driver attempted
to reference the memoryless node to which a CPU was being added
before the kernel had finished initializing all of the data
structures for the CPU and exited 'device_online' under
DLPAR/hot-add.
Normally the memoryless node would be initialized through the call
path device_online ... arch_update_cpu_topology ... find_cpu_nid ...
try_online_node. This patch ensures that the powerpc node will be
initialized as early as possible, even if it was memoryless and
CPU-less at the point when we are trying to hot-add a new CPU to it.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes some problems encountered at runtime with
configurations that support memory-less nodes, or that hot-add CPUs
into nodes that are memoryless during system execution after boot. The
problems of interest include:
* Nodes known to powerpc to be memoryless at boot, but to have CPUs in
them are allowed to be 'possible' and 'online'. Memory allocations
for those nodes are taken from another node that does have memory
until and if memory is hot-added to the node.
* Nodes which have no resources assigned at boot, but which may still
be referenced subsequently by affinity or associativity attributes,
are kept in the list of 'possible' nodes for powerpc. Hot-add of
memory or CPUs to the system can reference these nodes and bring
them online instead of redirecting the references to one of the set
of nodes known to have memory at boot.
Note that this software operates under the context of CPU hotplug. We
are not doing memory hotplug in this code, but rather updating the
kernel's CPU topology (i.e. arch_update_cpu_topology /
numa_update_cpu_topology). We are initializing a node that may be used
by CPUs or memory before it can be referenced as invalid by a CPU
hotplug operation. CPU hotplug operations are protected by a range of
APIs including cpu_maps_update_begin/cpu_maps_update_done,
cpus_read/write_lock / cpus_read/write_unlock, device locks, and more.
Memory hotplug operations, including try_online_node, are protected by
mem_hotplug_begin/mem_hotplug_done, device locks, and more. In the
case of CPUs being hot-added to a previously memoryless node, the
try_online_node operation occurs wholly within the CPU locks with no
overlap. Using HMC hot-add/hot-remove operations, we have been able to
add and remove CPUs to any possible node without failures. HMC
operations involve a degree self-serialization, though.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On powerpc systems which allow 'hot-add' of CPU or memory resources,
it may occur that the new resources are to be inserted into nodes that
were not used for these resources at bootup. In the kernel, any node
that is used must be defined and initialized. These empty nodes may
occur when,
* Dedicated vs. shared resources. Shared resources require information
such as the VPHN hcall for CPU assignment to nodes. Associativity
decisions made based on dedicated resource rules, such as
associativity properties in the device tree, may vary from decisions
made using the values returned by the VPHN hcall.
* memoryless nodes at boot. Nodes need to be defined as 'possible' at
boot for operation with other code modules. Previously, the powerpc
code would limit the set of possible nodes to those which have
memory assigned at boot, and were thus online. Subsequent add/remove
of CPUs or memory would only work with this subset of possible
nodes.
* memoryless nodes with CPUs at boot. Due to the previous restriction
on nodes, nodes that had CPUs but no memory were being collapsed
into other nodes that did have memory at boot. In practice this
meant that the node assignment presented by the runtime kernel
differed from the affinity and associativity attributes presented by
the device tree or VPHN hcalls. Nodes that might be known to the
pHyp were not 'possible' in the runtime kernel because they did not
have memory at boot.
This patch ensures that sufficient nodes are defined to support
configuration requirements after boot, as well as at boot. This patch
set fixes a couple of problems.
* Nodes known to powerpc to be memoryless at boot, but to have CPUs in
them are allowed to be 'possible' and 'online'. Memory allocations
for those nodes are taken from another node that does have memory
until and if memory is hot-added to the node. * Nodes which have no
resources assigned at boot, but which may still be referenced
subsequently by affinity or associativity attributes, are kept in
the list of 'possible' nodes for powerpc. Hot-add of memory or CPUs
to the system can reference these nodes and bring them online
instead of redirecting to one of the set of nodes that were known to
have memory at boot.
This patch extracts the value of the lowest domain level (number of
allocable resources) from the device tree property
"ibm,max-associativity-domains" to use as the maximum number of nodes
to setup as possibly available in the system. This new setting will
override the instruction:
nodes_and(node_possible_map, node_possible_map, node_online_map);
presently seen in the function arch/powerpc/mm/numa.c:initmem_init().
If the "ibm,max-associativity-domains" property is not present at
boot, no operation will be performed to define or enable additional
nodes, or enable the above 'nodes_and()'.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update code in powerpc/numa.c to use the walk_drmem_lmbs()
routine instead of parsing the device tree directly. This is
in anticipation of introducing a new ibm,dynamic-memory-v2
property with a different format. This will allow the numa code
to use a single initialization routine per-LMB irregardless of
the device tree format.
Additionally, to support additional routines in numa.c that need
to look up LMB information, an late_init routine is added to drmem.c
to allocate the array of LMB information. This LMB array will provide
per-LMB information to separate the LMB data from the device tree
format.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
| |
Look up the associativity arrays in of_drconf_to_nid_single when
deriving the nid for a LMB instead of having it passed in as a
parameter.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
Look up the device node for the usable memory property instead
of having it passed in as a parameter. This changes precedes an update
in which the calling routines for of_get_usable_memory() will not have
the device node pointer to pass in.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
Look up the device node for the associativity array property instead
of having it passed in as a parameter. This changes precedes an update
in which the calling routines for of_get_assoc_arrays() will not have
the device node pointer to pass in.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
|
| |\
| | |
| | |
| | |
| | |
| | | |
We have some dependencies & conflicts between patches in fixes and
things to go in next, both in the radix TLB flush code and the IMC PMU
driver. So merge fixes into next.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
powerpc/vphn: On Power systems with shared configurations of CPUs
and memory, there are some issues with the association of additional
CPUs and memory to nodes when hot-adding resources. This patch
fixes an end-of-updates processing problem observed occasionally
in numa_update_cpu_topology().
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
powerpc/hotplug: On Power systems with shared configurations of CPUs
and memory, there are some issues with the association of additional
CPUs and memory to nodes when hot-adding resources. During hotplug
CPU operations, this patch resets the timer on topology update work
function to a small value to better ensure that the CPU topology is
detected and configured sooner.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
powerpc/vphn: On Power systems with shared configurations of CPUs
and memory, there are some issues with the association of additional
CPUs and memory to nodes when hot-adding resources. This patch
updates the initialization checks to independently recognize PRRN
or VPHN support.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
powerpc/vphn: On Power systems with shared configurations of CPUs
and memory, there are some issues with the association of additional
CPUs and memory to nodes when hot-adding resources. This patch
corrects the currently broken capability to set the topology for
shared CPUs in LPARs. At boot time for shared CPU lpars, the
topology for each CPU was being set to node zero. Now when
numa_update_cpu_topology() is called appropriately, the Virtual
Processor Home Node (VPHN) capabilities information provided by the
pHyp allows the appropriate node in the shared configuration to be
selected for the CPU.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Yet another big pile of changes:
- More year 2038 work from Arnd slowly reaching the point where we
need to think about the syscalls themself.
- A new timer function which allows to conditionally (re)arm a timer
only when it's either not running or the new expiry time is sooner
than the armed expiry time. This allows to use a single timer for
multiple timeout requirements w/o caring about the first expiry
time at the call site.
- A new NMI safe accessor to clock real time for the printk timestamp
work. Can be used by tracing, perf as well if required.
- A large number of timer setup conversions from Kees which got
collected here because either maintainers requested so or they
simply got ignored. As Kees pointed out already there are a few
trivial merge conflicts and some redundant commits which was
unavoidable due to the size of this conversion effort.
- Avoid a redundant iteration in the timer wheel softirq processing.
- Provide a mechanism to treat RTC implementations depending on their
hardware properties, i.e. don't inflict the write at the 0.5
seconds boundary which originates from the PC CMOS RTC to all RTCs.
No functional change as drivers need to be updated separately.
- The usual small updates to core code clocksource drivers. Nothing
really exciting"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (111 commits)
timers: Add a function to start/reduce a timer
pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday()
timer: Prepare to change all DEFINE_TIMER() callbacks
netfilter: ipvs: Convert timers to use timer_setup()
scsi: qla2xxx: Convert timers to use timer_setup()
block/aoe: discover_timer: Convert timers to use timer_setup()
ide: Convert timers to use timer_setup()
drbd: Convert timers to use timer_setup()
mailbox: Convert timers to use timer_setup()
crypto: Convert timers to use timer_setup()
drivers/pcmcia: omap1: Fix error in automated timer conversion
ARM: footbridge: Fix typo in timer conversion
drivers/sgi-xp: Convert timers to use timer_setup()
drivers/pcmcia: Convert timers to use timer_setup()
drivers/memstick: Convert timers to use timer_setup()
drivers/macintosh: Convert timers to use timer_setup()
hwrng/xgene-rng: Convert timers to use timer_setup()
auxdisplay: Convert timers to use timer_setup()
sparc/led: Convert timers to use timer_setup()
mips: ip22/32: Convert timers to use timer_setup()
...
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This refactors the only users of init_timer_deferrable() to use
the new timer_setup() and from_timer(). Removes definition of
init_timer_deferrable().
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David S. Miller <davem@davemloft.net> # for networking parts
Acked-by: Sebastian Reichel <sre@kernel.org> # for drivers/hsi parts
Cc: linux-mips@linux-mips.org
Cc: Petr Mladek <pmladek@suse.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kalle Valo <kvalo@qca.qualcomm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: linux1394-devel@lists.sourceforge.net
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: linux-s390@vger.kernel.org
Cc: "James E.J. Bottomley" <jejb@linux.vnet.ibm.com>
Cc: Wim Van Sebroeck <wim@iguana.be>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ursula Braun <ubraun@linux.vnet.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Harish Patil <harish.patil@cavium.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Manish Chopra <manish.chopra@cavium.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-pm@vger.kernel.org
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Julian Wiedmann <jwi@linux.vnet.ibm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mark Gross <mark.gross@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-watchdog@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linux-wireless@vger.kernel.org
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Michael Reed <mdr@sgi.com>
Cc: netdev@vger.kernel.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Link: https://lkml.kernel.org/r/1507159627-127660-6-git-send-email-keescook@chromium.org
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out that not all paths calling arch_update_cpu_topology() hold
cpu_hotplug_lock, but that's OK because those paths can't race with
any concurrent hotplug events.
Warnings were reported with the following trace:
lockdep_assert_cpus_held
arch_update_cpu_topology
sched_init_domains
sched_init_smp
kernel_init_freeable
kernel_init
ret_from_kernel_thread
Which is safe because it's called early in boot when hotplug is not
live yet.
And also this trace:
lockdep_assert_cpus_held
arch_update_cpu_topology
partition_sched_domains
cpuset_update_active_cpus
sched_cpu_deactivate
cpuhp_invoke_callback
cpuhp_down_callbacks
cpuhp_thread_fun
smpboot_thread_fn
kthread
ret_from_kernel_thread
Which is safe because it's called as part of CPU hotplug, so although
we don't hold the CPU hotplug lock, there is another thread driving
the CPU hotplug operation which does hold the lock, and there is no
race.
Thanks to tglx for deciphering it for us.
Fixes: 3e401f7a2e51 ("powerpc: Only obtain cpu_hotplug_lock if called by rtasd")
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Calling arch_update_cpu_topology from a CPU hotplug state machine callback
hits a deadlock because the function tries to get a read lock on
cpu_hotplug_lock while the state machine still holds a write lock on it.
Since all callers of arch_update_cpu_topology except rtasd already hold
cpu_hotplug_lock, this patch changes the function to use
stop_machine_cpuslocked and creates a separate function for rtasd which
still tries to obtain the lock.
Michael Bringmann investigated the bug and provided a detailed analysis
of the deadlock on this previous RFC for an alternate solution:
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michael Bringmann <mwb@linux.vnet.ibm.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/1497996510-4032-1-git-send-email-bauerman@linux.vnet.ibm.com
Link: https://patchwork.ozlabs.org/patch/771293/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Generic core VM already prints these information in the log
buffer, hence there is no need for a second print. This just
removes the second print from arch powerpc NUMA init path.
Before the patch:
$ dmesg | grep "Initmem"
numa: Initmem setup node 0 [mem 0x00000000-0xffffffff]
numa: Initmem setup node 1 [mem 0x100000000-0x1ffffffff]
numa: Initmem setup node 2 [mem 0x200000000-0x2ffffffff]
numa: Initmem setup node 3 [mem 0x300000000-0x3ffffffff]
numa: Initmem setup node 4 [mem 0x400000000-0x4ffffffff]
numa: Initmem setup node 5 [mem 0x500000000-0x5ffffffff]
numa: Initmem setup node 6 [mem 0x600000000-0x6ffffffff]
numa: Initmem setup node 7 [mem 0x700000000-0x7ffffffff]
Initmem setup node 0 [mem 0x0000000000000000-0x00000000ffffffff]
Initmem setup node 1 [mem 0x0000000100000000-0x00000001ffffffff]
Initmem setup node 2 [mem 0x0000000200000000-0x00000002ffffffff]
Initmem setup node 3 [mem 0x0000000300000000-0x00000003ffffffff]
Initmem setup node 4 [mem 0x0000000400000000-0x00000004ffffffff]
Initmem setup node 5 [mem 0x0000000500000000-0x00000005ffffffff]
Initmem setup node 6 [mem 0x0000000600000000-0x00000006ffffffff]
Initmem setup node 7 [mem 0x0000000700000000-0x00000007ffffffff]
After the patch just the latter set is printed.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|