diff options
author | Linus Walleij <linus.walleij@stericsson.com> | 2010-09-13 00:35:22 +0200 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2010-10-25 00:33:48 +0100 |
commit | 6c009ab89a212b4364cdb74192d438f542fb291c (patch) | |
tree | 8306b42b83b25401ddd1faa017187a0f3a94faed /drivers/mtd | |
parent | 3866f673ebd86e5be2533923f5c0aed91fe1669f (diff) | |
download | blackbird-op-linux-6c009ab89a212b4364cdb74192d438f542fb291c.tar.gz blackbird-op-linux-6c009ab89a212b4364cdb74192d438f542fb291c.zip |
mtd: generic FSMC NAND MTD driver
This is the same driver submitted by ST Micros SPEAr team but
generalized and tested on the ST-Ericsson U300. It probably
easily works on the NHK8815 too.
Signed-off-by: Vipin Kumar <vipin.kumar@st.com>
Signed-off-by: Rajeev Kumar <rajeev-dlh.kumar@st.com>
Signed-off-by: Shiraz Hashim <shiraz.hashim@st.com>
Signed-off-by: Viresh Kumar <viresh.kumar@st.com>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/Kconfig | 7 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/fsmc_nand.c | 866 |
3 files changed, 874 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index a6f22f5bbef6..a494cce704b9 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -524,4 +524,11 @@ config MTD_NAND_JZ4740 help Enables support for NAND Flash on JZ4740 SoC based boards. +config MTD_NAND_FSMC + tristate "Support for NAND on ST Micros FSMC" + depends on PLAT_SPEAR || PLAT_NOMADIK || MACH_U300 + help + Enables support for NAND Flash chips on the ST Microelectronics + Flexible Static Memory Controller (FSMC) + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index ac83dcdac5d6..8ad6faec72cb 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -19,6 +19,7 @@ obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o +obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o obj-$(CONFIG_MTD_NAND_H1900) += h1910.o obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c new file mode 100644 index 000000000000..02edfba25b0c --- /dev/null +++ b/drivers/mtd/nand/fsmc_nand.c @@ -0,0 +1,866 @@ +/* + * drivers/mtd/nand/fsmc_nand.c + * + * ST Microelectronics + * Flexible Static Memory Controller (FSMC) + * Driver for NAND portions + * + * Copyright © 2010 ST Microelectronics + * Vipin Kumar <vipin.kumar@st.com> + * Ashish Priyadarshi + * + * Based on drivers/mtd/nand/nomadik_nand.c + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/resource.h> +#include <linux/sched.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/platform_device.h> +#include <linux/mtd/partitions.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/mtd/fsmc.h> +#include <mtd/mtd-abi.h> + +static struct nand_ecclayout fsmc_ecc1_layout = { + .eccbytes = 24, + .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, + 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, + .oobfree = { + {.offset = 8, .length = 8}, + {.offset = 24, .length = 8}, + {.offset = 40, .length = 8}, + {.offset = 56, .length = 8}, + {.offset = 72, .length = 8}, + {.offset = 88, .length = 8}, + {.offset = 104, .length = 8}, + {.offset = 120, .length = 8} + } +}; + +static struct nand_ecclayout fsmc_ecc4_lp_layout = { + .eccbytes = 104, + .eccpos = { 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, + 18, 19, 20, 21, 22, 23, 24, + 25, 26, 27, 28, 29, 30, + 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, + 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 61, 62, + 66, 67, 68, 69, 70, 71, 72, + 73, 74, 75, 76, 77, 78, + 82, 83, 84, 85, 86, 87, 88, + 89, 90, 91, 92, 93, 94, + 98, 99, 100, 101, 102, 103, 104, + 105, 106, 107, 108, 109, 110, + 114, 115, 116, 117, 118, 119, 120, + 121, 122, 123, 124, 125, 126 + }, + .oobfree = { + {.offset = 15, .length = 3}, + {.offset = 31, .length = 3}, + {.offset = 47, .length = 3}, + {.offset = 63, .length = 3}, + {.offset = 79, .length = 3}, + {.offset = 95, .length = 3}, + {.offset = 111, .length = 3}, + {.offset = 127, .length = 1} + } +}; + +/* + * ECC placement definitions in oobfree type format. + * There are 13 bytes of ecc for every 512 byte block and it has to be read + * consecutively and immediately after the 512 byte data block for hardware to + * generate the error bit offsets in 512 byte data. + * Managing the ecc bytes in the following way makes it easier for software to + * read ecc bytes consecutive to data bytes. This way is similar to + * oobfree structure maintained already in generic nand driver + */ +static struct fsmc_eccplace fsmc_ecc4_lp_place = { + .eccplace = { + {.offset = 2, .length = 13}, + {.offset = 18, .length = 13}, + {.offset = 34, .length = 13}, + {.offset = 50, .length = 13}, + {.offset = 66, .length = 13}, + {.offset = 82, .length = 13}, + {.offset = 98, .length = 13}, + {.offset = 114, .length = 13} + } +}; + +static struct nand_ecclayout fsmc_ecc4_sp_layout = { + .eccbytes = 13, + .eccpos = { 0, 1, 2, 3, 6, 7, 8, + 9, 10, 11, 12, 13, 14 + }, + .oobfree = { + {.offset = 15, .length = 1}, + } +}; + +static struct fsmc_eccplace fsmc_ecc4_sp_place = { + .eccplace = { + {.offset = 0, .length = 4}, + {.offset = 6, .length = 9} + } +}; + +/* + * Default partition tables to be used if the partition information not + * provided through platform data + */ +#define PARTITION(n, off, sz) {.name = n, .offset = off, .size = sz} + +/* + * Default partition layout for small page(= 512 bytes) devices + * Size for "Root file system" is updated in driver based on actual device size + */ +static struct mtd_partition partition_info_16KB_blk[] = { + PARTITION("X-loader", 0, 4 * 0x4000), + PARTITION("U-Boot", 0x10000, 20 * 0x4000), + PARTITION("Kernel", 0x60000, 256 * 0x4000), + PARTITION("Root File System", 0x460000, 0), +}; + +/* + * Default partition layout for large page(> 512 bytes) devices + * Size for "Root file system" is updated in driver based on actual device size + */ +static struct mtd_partition partition_info_128KB_blk[] = { + PARTITION("X-loader", 0, 4 * 0x20000), + PARTITION("U-Boot", 0x80000, 12 * 0x20000), + PARTITION("Kernel", 0x200000, 48 * 0x20000), + PARTITION("Root File System", 0x800000, 0), +}; + +#ifdef CONFIG_MTD_CMDLINE_PARTS +const char *part_probes[] = { "cmdlinepart", NULL }; +#endif + +/** + * struct fsmc_nand_data - atructure for FSMC NAND device state + * + * @mtd: MTD info for a NAND flash. + * @nand: Chip related info for a NAND flash. + * @partitions: Partition info for a NAND Flash. + * @nr_partitions: Total number of partition of a NAND flash. + * + * @ecc_place: ECC placing locations in oobfree type format. + * @bank: Bank number for probed device. + * @clk: Clock structure for FSMC. + * + * @data_va: NAND port for Data. + * @cmd_va: NAND port for Command. + * @addr_va: NAND port for Address. + * @regs_va: FSMC regs base address. + */ +struct fsmc_nand_data { + struct mtd_info mtd; + struct nand_chip nand; + struct mtd_partition *partitions; + unsigned int nr_partitions; + + struct fsmc_eccplace *ecc_place; + unsigned int bank; + struct clk *clk; + + struct resource *resregs; + struct resource *rescmd; + struct resource *resaddr; + struct resource *resdata; + + void __iomem *data_va; + void __iomem *cmd_va; + void __iomem *addr_va; + void __iomem *regs_va; + + void (*select_chip)(uint32_t bank, uint32_t busw); +}; + +/* Assert CS signal based on chipnr */ +static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + struct fsmc_nand_data *host; + + host = container_of(mtd, struct fsmc_nand_data, mtd); + + switch (chipnr) { + case -1: + chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + break; + case 0: + case 1: + case 2: + case 3: + if (host->select_chip) + host->select_chip(chipnr, + chip->options & NAND_BUSWIDTH_16); + break; + + default: + BUG(); + } +} + +/* + * fsmc_cmd_ctrl - For facilitaing Hardware access + * This routine allows hardware specific access to control-lines(ALE,CLE) + */ +static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_regs *regs = host->regs_va; + unsigned int bank = host->bank; + + if (ctrl & NAND_CTRL_CHANGE) { + if (ctrl & NAND_CLE) { + this->IO_ADDR_R = (void __iomem *)host->cmd_va; + this->IO_ADDR_W = (void __iomem *)host->cmd_va; + } else if (ctrl & NAND_ALE) { + this->IO_ADDR_R = (void __iomem *)host->addr_va; + this->IO_ADDR_W = (void __iomem *)host->addr_va; + } else { + this->IO_ADDR_R = (void __iomem *)host->data_va; + this->IO_ADDR_W = (void __iomem *)host->data_va; + } + + if (ctrl & NAND_NCE) { + writel(readl(®s->bank_regs[bank].pc) | FSMC_ENABLE, + ®s->bank_regs[bank].pc); + } else { + writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ENABLE, + ®s->bank_regs[bank].pc); + } + } + + mb(); + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +/* + * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine + * + * This routine initializes timing parameters related to NAND memory access in + * FSMC registers + */ +static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank, + uint32_t busw) +{ + uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; + + if (busw) + writel(value | FSMC_DEVWID_16, ®s->bank_regs[bank].pc); + else + writel(value | FSMC_DEVWID_8, ®s->bank_regs[bank].pc); + + writel(readl(®s->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1, + ®s->bank_regs[bank].pc); + writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, + ®s->bank_regs[bank].comm); + writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, + ®s->bank_regs[bank].attrib); +} + +/* + * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers + */ +static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_regs *regs = host->regs_va; + uint32_t bank = host->bank; + + writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256, + ®s->bank_regs[bank].pc); + writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCEN, + ®s->bank_regs[bank].pc); + writel(readl(®s->bank_regs[bank].pc) | FSMC_ECCEN, + ®s->bank_regs[bank].pc); +} + +/* + * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by + * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction upto + * max of 8-bits) + */ +static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_regs *regs = host->regs_va; + uint32_t bank = host->bank; + uint32_t ecc_tmp; + unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; + + do { + if (readl(®s->bank_regs[bank].sts) & FSMC_CODE_RDY) + break; + else + cond_resched(); + } while (!time_after_eq(jiffies, deadline)); + + ecc_tmp = readl(®s->bank_regs[bank].ecc1); + ecc[0] = (uint8_t) (ecc_tmp >> 0); + ecc[1] = (uint8_t) (ecc_tmp >> 8); + ecc[2] = (uint8_t) (ecc_tmp >> 16); + ecc[3] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl(®s->bank_regs[bank].ecc2); + ecc[4] = (uint8_t) (ecc_tmp >> 0); + ecc[5] = (uint8_t) (ecc_tmp >> 8); + ecc[6] = (uint8_t) (ecc_tmp >> 16); + ecc[7] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl(®s->bank_regs[bank].ecc3); + ecc[8] = (uint8_t) (ecc_tmp >> 0); + ecc[9] = (uint8_t) (ecc_tmp >> 8); + ecc[10] = (uint8_t) (ecc_tmp >> 16); + ecc[11] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl(®s->bank_regs[bank].sts); + ecc[12] = (uint8_t) (ecc_tmp >> 16); + + return 0; +} + +/* + * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by + * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction upto + * max of 1-bit) + */ +static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_regs *regs = host->regs_va; + uint32_t bank = host->bank; + uint32_t ecc_tmp; + + ecc_tmp = readl(®s->bank_regs[bank].ecc1); + ecc[0] = (uint8_t) (ecc_tmp >> 0); + ecc[1] = (uint8_t) (ecc_tmp >> 8); + ecc[2] = (uint8_t) (ecc_tmp >> 16); + + return 0; +} + +/* + * fsmc_read_page_hwecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read + * + * This routine is needed for fsmc verison 8 as reading from NAND chip has to be + * performed in a strict sequence as follows: + * data(512 byte) -> ecc(13 byte) + * After this read, fsmc hardware generates and reports error data bits(upto a + * max of 8 bits) + */ +static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_eccplace *ecc_place = host->ecc_place; + int i, j, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + int off, len, group = 0; + /* + * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we + * end up reading 14 bytes (7 words) from oob. The local array is + * to maintain word alignment + */ + uint16_t ecc_oob[7]; + uint8_t *oob = (uint8_t *)&ecc_oob[0]; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { + + chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + + for (j = 0; j < eccbytes;) { + off = ecc_place->eccplace[group].offset; + len = ecc_place->eccplace[group].length; + group++; + + /* + * length is intentionally kept a higher multiple of 2 + * to read at least 13 bytes even in case of 16 bit NAND + * devices + */ + len = roundup(len, 2); + chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); + chip->read_buf(mtd, oob + j, len); + j += len; + } + + memcpy(&ecc_code[i], oob, 13); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + + return 0; +} + +/* + * fsmc_correct_data + * @mtd: mtd info structure + * @dat: buffer of read data + * @read_ecc: ecc read from device spare area + * @calc_ecc: ecc calculated from read data + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset informations of 13 bits each in 512 bytes of read data. + */ +static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + struct fsmc_nand_data *host = container_of(mtd, + struct fsmc_nand_data, mtd); + struct fsmc_regs *regs = host->regs_va; + unsigned int bank = host->bank; + uint16_t err_idx[8]; + uint64_t ecc_data[2]; + uint32_t num_err, i; + + /* The calculated ecc is actually the correction index in data */ + memcpy(ecc_data, calc_ecc, 13); + + /* + * ------------------- calc_ecc[] bit wise -----------|--13 bits--| + * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset informations of 13 bits each. calc_ecc is copied into a + * uint64_t array and error offset indexes are populated in err_idx + * array + */ + for (i = 0; i < 8; i++) { + if (i == 4) { + err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0]; + ecc_data[1] >>= 1; + continue; + } + err_idx[i] = (ecc_data[i/4] & 0x1FFF); + ecc_data[i/4] >>= 13; + } + + num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; + + if (num_err == 0xF) + return -EBADMSG; + + i = 0; + while (num_err--) { + change_bit(0, (unsigned long *)&err_idx[i]); + change_bit(1, (unsigned long *)&err_idx[i]); + + if (err_idx[i] <= 512 * 8) { + change_bit(err_idx[i], (unsigned long *)dat); + i++; + } + } + return i; +} + +/* + * fsmc_nand_probe - Probe function + * @pdev: platform device structure + */ +static int __init fsmc_nand_probe(struct platform_device *pdev) +{ + struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct fsmc_nand_data *host; + struct mtd_info *mtd; + struct nand_chip *nand; + struct fsmc_regs *regs; + struct resource *res; + int nr_parts, ret = 0; + + if (!pdata) { + dev_err(&pdev->dev, "platform data is NULL\n"); + return -EINVAL; + } + + /* Allocate memory for the device structure (and zero it) */ + host = kzalloc(sizeof(*host), GFP_KERNEL); + if (!host) { + dev_err(&pdev->dev, "failed to allocate device structure\n"); + return -ENOMEM; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); + if (!res) { + ret = -EIO; + goto err_probe1; + } + + host->resdata = request_mem_region(res->start, resource_size(res), + pdev->name); + if (!host->resdata) { + ret = -EIO; + goto err_probe1; + } + + host->data_va = ioremap(res->start, resource_size(res)); + if (!host->data_va) { + ret = -EIO; + goto err_probe1; + } + + host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE, + resource_size(res), pdev->name); + if (!host->resaddr) { + ret = -EIO; + goto err_probe1; + } + + host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res)); + if (!host->addr_va) { + ret = -EIO; + goto err_probe1; + } + + host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE, + resource_size(res), pdev->name); + if (!host->rescmd) { + ret = -EIO; + goto err_probe1; + } + + host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res)); + if (!host->cmd_va) { + ret = -EIO; + goto err_probe1; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); + if (!res) { + ret = -EIO; + goto err_probe1; + } + + host->resregs = request_mem_region(res->start, resource_size(res), + pdev->name); + if (!host->resregs) { + ret = -EIO; + goto err_probe1; + } + + host->regs_va = ioremap(res->start, resource_size(res)); + if (!host->regs_va) { + ret = -EIO; + goto err_probe1; + } + + host->clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "failed to fetch block clock\n"); + ret = PTR_ERR(host->clk); + host->clk = NULL; + goto err_probe1; + } + + ret = clk_enable(host->clk); + if (ret) + goto err_probe1; + + host->bank = pdata->bank; + host->select_chip = pdata->select_bank; + regs = host->regs_va; + + /* Link all private pointers */ + mtd = &host->mtd; + nand = &host->nand; + mtd->priv = nand; + nand->priv = host; + + host->mtd.owner = THIS_MODULE; + nand->IO_ADDR_R = host->data_va; + nand->IO_ADDR_W = host->data_va; + nand->cmd_ctrl = fsmc_cmd_ctrl; + nand->chip_delay = 30; + + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.hwctl = fsmc_enable_hwecc; + nand->ecc.size = 512; + nand->options = pdata->options; + nand->select_chip = fsmc_select_chip; + + if (pdata->width == FSMC_NAND_BW16) + nand->options |= NAND_BUSWIDTH_16; + + fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16); + + if (get_fsmc_version(host->regs_va) == FSMC_VER8) { + nand->ecc.read_page = fsmc_read_page_hwecc; + nand->ecc.calculate = fsmc_read_hwecc_ecc4; + nand->ecc.correct = fsmc_correct_data; + nand->ecc.bytes = 13; + } else { + nand->ecc.calculate = fsmc_read_hwecc_ecc1; + nand->ecc.correct = nand_correct_data; + nand->ecc.bytes = 3; + } + + /* + * Scan to find existance of the device + */ + if (nand_scan_ident(&host->mtd, 1, NULL)) { + ret = -ENXIO; + dev_err(&pdev->dev, "No NAND Device found!\n"); + goto err_probe; + } + + if (get_fsmc_version(host->regs_va) == FSMC_VER8) { + if (host->mtd.writesize == 512) { + nand->ecc.layout = &fsmc_ecc4_sp_layout; + host->ecc_place = &fsmc_ecc4_sp_place; + } else { + nand->ecc.layout = &fsmc_ecc4_lp_layout; + host->ecc_place = &fsmc_ecc4_lp_place; + } + } else { + nand->ecc.layout = &fsmc_ecc1_layout; + } + + /* Second stage of scan to fill MTD data-structures */ + if (nand_scan_tail(&host->mtd)) { + ret = -ENXIO; + goto err_probe; + } + + /* + * The partition information can is accessed by (in the same precedence) + * + * command line through Bootloader, + * platform data, + * default partition information present in driver. + */ +#ifdef CONFIG_MTD_PARTITIONS +#ifdef CONFIG_MTD_CMDLINE_PARTS + /* + * Check if partition info passed via command line + */ + host->mtd.name = "nand"; + nr_parts = parse_mtd_partitions(&host->mtd, part_probes, + &host->partitions, 0); + if (nr_parts > 0) { + host->nr_partitions = nr_parts; + } else { +#endif + /* + * Check if partition info passed via command line + */ + if (pdata->partitions) { + host->partitions = pdata->partitions; + host->nr_partitions = pdata->nr_partitions; + } else { + struct mtd_partition *partition; + int i; + + /* Select the default partitions info */ + switch (host->mtd.size) { + case 0x01000000: + case 0x02000000: + case 0x04000000: + host->partitions = partition_info_16KB_blk; + host->nr_partitions = + sizeof(partition_info_16KB_blk) / + sizeof(struct mtd_partition); + break; + case 0x08000000: + case 0x10000000: + case 0x20000000: + case 0x40000000: + host->partitions = partition_info_128KB_blk; + host->nr_partitions = + sizeof(partition_info_128KB_blk) / + sizeof(struct mtd_partition); + break; + default: + ret = -ENXIO; + pr_err("Unsupported NAND size\n"); + goto err_probe; + } + + partition = host->partitions; + for (i = 0; i < host->nr_partitions; i++, partition++) { + if (partition->size == 0) { + partition->size = host->mtd.size - + partition->offset; + break; + } + } + } +#ifdef CONFIG_MTD_CMDLINE_PARTS + } +#endif + + if (host->partitions) { + ret = add_mtd_partitions(&host->mtd, host->partitions, + host->nr_partitions); + if (ret) + goto err_probe; + } +#else + dev_info(&pdev->dev, "Registering %s as whole device\n", mtd->name); + if (!add_mtd_device(mtd)) { + ret = -ENXIO; + goto err_probe; + } +#endif + + platform_set_drvdata(pdev, host); + dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); + return 0; + +err_probe: + clk_disable(host->clk); +err_probe1: + if (host->clk) + clk_put(host->clk); + if (host->regs_va) + iounmap(host->regs_va); + if (host->resregs) + release_mem_region(host->resregs->start, + resource_size(host->resregs)); + if (host->cmd_va) + iounmap(host->cmd_va); + if (host->rescmd) + release_mem_region(host->rescmd->start, + resource_size(host->rescmd)); + if (host->addr_va) + iounmap(host->addr_va); + if (host->resaddr) + release_mem_region(host->resaddr->start, + resource_size(host->resaddr)); + if (host->data_va) + iounmap(host->data_va); + if (host->resdata) + release_mem_region(host->resdata->start, + resource_size(host->resdata)); + + kfree(host); + return ret; +} + +/* + * Clean up routine + */ +static int fsmc_nand_remove(struct platform_device *pdev) +{ + struct fsmc_nand_data *host = platform_get_drvdata(pdev); + + platform_set_drvdata(pdev, NULL); + + if (host) { +#ifdef CONFIG_MTD_PARTITIONS + del_mtd_partitions(&host->mtd); +#else + del_mtd_device(&host->mtd); +#endif + clk_disable(host->clk); + clk_put(host->clk); + + iounmap(host->regs_va); + release_mem_region(host->resregs->start, + resource_size(host->resregs)); + iounmap(host->cmd_va); + release_mem_region(host->rescmd->start, + resource_size(host->rescmd)); + iounmap(host->addr_va); + release_mem_region(host->resaddr->start, + resource_size(host->resaddr)); + iounmap(host->data_va); + release_mem_region(host->resdata->start, + resource_size(host->resdata)); + + kfree(host); + } + return 0; +} + +#ifdef CONFIG_PM +static int fsmc_nand_suspend(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + if (host) + clk_disable(host->clk); + return 0; +} + +static int fsmc_nand_resume(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + if (host) + clk_enable(host->clk); + return 0; +} + +static const struct dev_pm_ops fsmc_nand_pm_ops = { + .suspend = fsmc_nand_suspend, + .resume = fsmc_nand_resume, +}; +#endif + +static struct platform_driver fsmc_nand_driver = { + .remove = fsmc_nand_remove, + .driver = { + .owner = THIS_MODULE, + .name = "fsmc-nand", +#ifdef CONFIG_PM + .pm = &fsmc_nand_pm_ops, +#endif + }, +}; + +static int __init fsmc_nand_init(void) +{ + return platform_driver_probe(&fsmc_nand_driver, + fsmc_nand_probe); +} +module_init(fsmc_nand_init); + +static void __exit fsmc_nand_exit(void) +{ + platform_driver_unregister(&fsmc_nand_driver); +} +module_exit(fsmc_nand_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); +MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |