summaryrefslogtreecommitdiffstats
path: root/Documentation/hwmon/vt1211.rst
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2019-05-06 19:56:51 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2019-05-06 19:56:51 -0700
commit7aefd944f038c7469571adb37769cb6f3924ecfa (patch)
treef0a8dc23633b6bbbc4f0bff932f332e847fb6c1b /Documentation/hwmon/vt1211.rst
parentffa6f55eb6188ee73339cab710fabf30d13110a7 (diff)
parent39abe9d88b30a51029b0b29a708a4f4459034565 (diff)
downloadblackbird-op-linux-7aefd944f038c7469571adb37769cb6f3924ecfa.tar.gz
blackbird-op-linux-7aefd944f038c7469571adb37769cb6f3924ecfa.zip
Merge tag 'hwmon-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging
Pull hwmon updates from Guenter Roeck: - Add driver for Intersil ISL68137 PWM Controller - Add driver for Lochnagar 2 - Add driver for Infineon IR38064 Voltage Regulator - Add support for TMP75B to lm75 driver - Convert documentation to ReST format - Use request_muxed_region for Super-IO accesses in several drivers - Add 'samples' attribute to ABI, and start using it - Add support for custom sysfs attributes to pmbus drivers (used in ISL68137 driver) - Introduce HWMON_CHANNEL_INFO macro - Automated changes: - Use permission specific [SENSOR_][DEVICE_]ATTR variants - Fix build warnings due to unused of_device_id structures - Use HWMON_CHANNEL_INFO macro - Various minor improvements and fixes * tag 'hwmon-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: (125 commits) hwmon: (lm75) Add support for TMP75B dt-bindings: hwmon: Add tmp75b to lm75.txt hwmon: (s3c) Use dev_get_drvdata() hwmon: (max6650) Drop call to thermal_cdev_update docs: hwmon: remove the extension from .rst files docs: hwmon: convert three docs to ReST format hwmon: (max6650) add thermal cooling device capability hwmon: (ina3221) Add voltage conversion time settings hwmon: (ina3221) Do not read-back to cache reg_config docs: hwmon: Add an index file and rename docs to *.rst docs: hwmon: convert remaining files to ReST format docs: hwmon: misc files: convert to ReST format docs: hwmon: pmbus files: convert to ReST format docs: hwmon: k8temp, w83793: convert to ReST format docs: hwmon: da9052, da9055: convert to ReST format docs: hwmon: wm831x, wm8350: convert to ReST format docs: hwmon: dme1737, vt1211: convert to ReST format docs: hwmon: ads1015: convert to ReST format docs: hwmon: asc7621: convert to ReST format docs: hwmon: ibmpowernv: convert to ReST format ...
Diffstat (limited to 'Documentation/hwmon/vt1211.rst')
-rw-r--r--Documentation/hwmon/vt1211.rst226
1 files changed, 226 insertions, 0 deletions
diff --git a/Documentation/hwmon/vt1211.rst b/Documentation/hwmon/vt1211.rst
new file mode 100644
index 000000000000..ddbcde7dd642
--- /dev/null
+++ b/Documentation/hwmon/vt1211.rst
@@ -0,0 +1,226 @@
+Kernel driver vt1211
+====================
+
+Supported chips:
+
+ * VIA VT1211
+
+ Prefix: 'vt1211'
+
+ Addresses scanned: none, address read from Super-I/O config space
+
+ Datasheet: Provided by VIA upon request and under NDA
+
+Authors: Juerg Haefliger <juergh@gmail.com>
+
+This driver is based on the driver for kernel 2.4 by Mark D. Studebaker and
+its port to kernel 2.6 by Lars Ekman.
+
+Thanks to Joseph Chan and Fiona Gatt from VIA for providing documentation and
+technical support.
+
+
+Module Parameters
+-----------------
+
+
+* uch_config: int
+ Override the BIOS default universal channel (UCH)
+ configuration for channels 1-5.
+ Legal values are in the range of 0-31. Bit 0 maps to
+ UCH1, bit 1 maps to UCH2 and so on. Setting a bit to 1
+ enables the thermal input of that particular UCH and
+ setting a bit to 0 enables the voltage input.
+
+* int_mode: int
+ Override the BIOS default temperature interrupt mode.
+ The only possible value is 0 which forces interrupt
+ mode 0. In this mode, any pending interrupt is cleared
+ when the status register is read but is regenerated as
+ long as the temperature stays above the hysteresis
+ limit.
+
+Be aware that overriding BIOS defaults might cause some unwanted side effects!
+
+
+Description
+-----------
+
+The VIA VT1211 Super-I/O chip includes complete hardware monitoring
+capabilities. It monitors 2 dedicated temperature sensor inputs (temp1 and
+temp2), 1 dedicated voltage (in5) and 2 fans. Additionally, the chip
+implements 5 universal input channels (UCH1-5) that can be individually
+programmed to either monitor a voltage or a temperature.
+
+This chip also provides manual and automatic control of fan speeds (according
+to the datasheet). The driver only supports automatic control since the manual
+mode doesn't seem to work as advertised in the datasheet. In fact I couldn't
+get manual mode to work at all! Be aware that automatic mode hasn't been
+tested very well (due to the fact that my EPIA M10000 doesn't have the fans
+connected to the PWM outputs of the VT1211 :-().
+
+The following table shows the relationship between the vt1211 inputs and the
+sysfs nodes.
+
+=============== ============== =========== ================================
+Sensor Voltage Mode Temp Mode Default Use (from the datasheet)
+=============== ============== =========== ================================
+Reading 1 temp1 Intel thermal diode
+Reading 3 temp2 Internal thermal diode
+UCH1/Reading2 in0 temp3 NTC type thermistor
+UCH2 in1 temp4 +2.5V
+UCH3 in2 temp5 VccP (processor core)
+UCH4 in3 temp6 +5V
+UCH5 in4 temp7 +12V
++3.3V in5 Internal VCC (+3.3V)
+=============== ============== =========== ================================
+
+
+Voltage Monitoring
+------------------
+
+Voltages are sampled by an 8-bit ADC with a LSB of ~10mV. The supported input
+range is thus from 0 to 2.60V. Voltage values outside of this range need
+external scaling resistors. This external scaling needs to be compensated for
+via compute lines in sensors.conf, like:
+
+compute inx @*(1+R1/R2), @/(1+R1/R2)
+
+The board level scaling resistors according to VIA's recommendation are as
+follows. And this is of course totally dependent on the actual board
+implementation :-) You will have to find documentation for your own
+motherboard and edit sensors.conf accordingly.
+
+============= ====== ====== ========= ============
+ Expected
+Voltage R1 R2 Divider Raw Value
+============= ====== ====== ========= ============
++2.5V 2K 10K 1.2 2083 mV
+VccP --- --- 1.0 1400 mV [1]_
++5V 14K 10K 2.4 2083 mV
++12V 47K 10K 5.7 2105 mV
++3.3V (int) 2K 3.4K 1.588 3300 mV [2]_
++3.3V (ext) 6.8K 10K 1.68 1964 mV
+============= ====== ====== ========= ============
+
+.. [1] Depending on the CPU (1.4V is for a VIA C3 Nehemiah).
+
+.. [2] R1 and R2 for 3.3V (int) are internal to the VT1211 chip and the driver
+ performs the scaling and returns the properly scaled voltage value.
+
+Each measured voltage has an associated low and high limit which triggers an
+alarm when crossed.
+
+
+Temperature Monitoring
+----------------------
+
+Temperatures are reported in millidegree Celsius. Each measured temperature
+has a high limit which triggers an alarm if crossed. There is an associated
+hysteresis value with each temperature below which the temperature has to drop
+before the alarm is cleared (this is only true for interrupt mode 0). The
+interrupt mode can be forced to 0 in case the BIOS doesn't do it
+automatically. See the 'Module Parameters' section for details.
+
+All temperature channels except temp2 are external. Temp2 is the VT1211
+internal thermal diode and the driver does all the scaling for temp2 and
+returns the temperature in millidegree Celsius. For the external channels
+temp1 and temp3-temp7, scaling depends on the board implementation and needs
+to be performed in userspace via sensors.conf.
+
+Temp1 is an Intel-type thermal diode which requires the following formula to
+convert between sysfs readings and real temperatures:
+
+compute temp1 (@-Offset)/Gain, (@*Gain)+Offset
+
+According to the VIA VT1211 BIOS porting guide, the following gain and offset
+values should be used:
+
+=============== ======== ===========
+Diode Type Offset Gain
+=============== ======== ===========
+Intel CPU 88.638 0.9528
+ 65.000 0.9686 [3]_
+VIA C3 Ezra 83.869 0.9528
+VIA C3 Ezra-T 73.869 0.9528
+=============== ======== ===========
+
+.. [3] This is the formula from the lm_sensors 2.10.0 sensors.conf file. I don't
+ know where it comes from or how it was derived, it's just listed here for
+ completeness.
+
+Temp3-temp7 support NTC thermistors. For these channels, the driver returns
+the voltages as seen at the individual pins of UCH1-UCH5. The voltage at the
+pin (Vpin) is formed by a voltage divider made of the thermistor (Rth) and a
+scaling resistor (Rs)::
+
+ Vpin = 2200 * Rth / (Rs + Rth) (2200 is the ADC max limit of 2200 mV)
+
+The equation for the thermistor is as follows (google it if you want to know
+more about it)::
+
+ Rth = Ro * exp(B * (1 / T - 1 / To)) (To is 298.15K (25C) and Ro is the
+ nominal resistance at 25C)
+
+Mingling the above two equations and assuming Rs = Ro and B = 3435 yields the
+following formula for sensors.conf::
+
+ compute tempx 1 / (1 / 298.15 - (` (2200 / @ - 1)) / 3435) - 273.15,
+ 2200 / (1 + (^ (3435 / 298.15 - 3435 / (273.15 + @))))
+
+
+Fan Speed Control
+-----------------
+
+The VT1211 provides 2 programmable PWM outputs to control the speeds of 2
+fans. Writing a 2 to any of the two pwm[1-2]_enable sysfs nodes will put the
+PWM controller in automatic mode. There is only a single controller that
+controls both PWM outputs but each PWM output can be individually enabled and
+disabled.
+
+Each PWM has 4 associated distinct output duty-cycles: full, high, low and
+off. Full and off are internally hard-wired to 255 (100%) and 0 (0%),
+respectively. High and low can be programmed via
+pwm[1-2]_auto_point[2-3]_pwm. Each PWM output can be associated with a
+different thermal input but - and here's the weird part - only one set of
+thermal thresholds exist that controls both PWMs output duty-cycles. The
+thermal thresholds are accessible via pwm[1-2]_auto_point[1-4]_temp. Note
+that even though there are 2 sets of 4 auto points each, they map to the same
+registers in the VT1211 and programming one set is sufficient (actually only
+the first set pwm1_auto_point[1-4]_temp is writable, the second set is
+read-only).
+
+========================== =========================================
+PWM Auto Point PWM Output Duty-Cycle
+========================== =========================================
+pwm[1-2]_auto_point4_pwm full speed duty-cycle (hard-wired to 255)
+pwm[1-2]_auto_point3_pwm high speed duty-cycle
+pwm[1-2]_auto_point2_pwm low speed duty-cycle
+pwm[1-2]_auto_point1_pwm off duty-cycle (hard-wired to 0)
+========================== =========================================
+
+========================== =================
+Temp Auto Point Thermal Threshold
+========================== =================
+pwm[1-2]_auto_point4_temp full speed temp
+pwm[1-2]_auto_point3_temp high speed temp
+pwm[1-2]_auto_point2_temp low speed temp
+pwm[1-2]_auto_point1_temp off temp
+========================== =================
+
+Long story short, the controller implements the following algorithm to set the
+PWM output duty-cycle based on the input temperature:
+
+=================== ======================= ========================
+Thermal Threshold Output Duty-Cycle Output Duty-Cycle
+ (Rising Temp) (Falling Temp)
+=================== ======================= ========================
+- full speed duty-cycle full speed duty-cycle
+full speed temp
+- high speed duty-cycle full speed duty-cycle
+high speed temp
+- low speed duty-cycle high speed duty-cycle
+low speed temp
+- off duty-cycle low speed duty-cycle
+off temp
+=================== ======================= ========================
OpenPOWER on IntegriCloud