summaryrefslogtreecommitdiffstats
path: root/Documentation/hwmon/gl518sm.rst
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2019-05-06 19:56:51 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2019-05-06 19:56:51 -0700
commit7aefd944f038c7469571adb37769cb6f3924ecfa (patch)
treef0a8dc23633b6bbbc4f0bff932f332e847fb6c1b /Documentation/hwmon/gl518sm.rst
parentffa6f55eb6188ee73339cab710fabf30d13110a7 (diff)
parent39abe9d88b30a51029b0b29a708a4f4459034565 (diff)
downloadblackbird-op-linux-7aefd944f038c7469571adb37769cb6f3924ecfa.tar.gz
blackbird-op-linux-7aefd944f038c7469571adb37769cb6f3924ecfa.zip
Merge tag 'hwmon-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging
Pull hwmon updates from Guenter Roeck: - Add driver for Intersil ISL68137 PWM Controller - Add driver for Lochnagar 2 - Add driver for Infineon IR38064 Voltage Regulator - Add support for TMP75B to lm75 driver - Convert documentation to ReST format - Use request_muxed_region for Super-IO accesses in several drivers - Add 'samples' attribute to ABI, and start using it - Add support for custom sysfs attributes to pmbus drivers (used in ISL68137 driver) - Introduce HWMON_CHANNEL_INFO macro - Automated changes: - Use permission specific [SENSOR_][DEVICE_]ATTR variants - Fix build warnings due to unused of_device_id structures - Use HWMON_CHANNEL_INFO macro - Various minor improvements and fixes * tag 'hwmon-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: (125 commits) hwmon: (lm75) Add support for TMP75B dt-bindings: hwmon: Add tmp75b to lm75.txt hwmon: (s3c) Use dev_get_drvdata() hwmon: (max6650) Drop call to thermal_cdev_update docs: hwmon: remove the extension from .rst files docs: hwmon: convert three docs to ReST format hwmon: (max6650) add thermal cooling device capability hwmon: (ina3221) Add voltage conversion time settings hwmon: (ina3221) Do not read-back to cache reg_config docs: hwmon: Add an index file and rename docs to *.rst docs: hwmon: convert remaining files to ReST format docs: hwmon: misc files: convert to ReST format docs: hwmon: pmbus files: convert to ReST format docs: hwmon: k8temp, w83793: convert to ReST format docs: hwmon: da9052, da9055: convert to ReST format docs: hwmon: wm831x, wm8350: convert to ReST format docs: hwmon: dme1737, vt1211: convert to ReST format docs: hwmon: ads1015: convert to ReST format docs: hwmon: asc7621: convert to ReST format docs: hwmon: ibmpowernv: convert to ReST format ...
Diffstat (limited to 'Documentation/hwmon/gl518sm.rst')
-rw-r--r--Documentation/hwmon/gl518sm.rst80
1 files changed, 80 insertions, 0 deletions
diff --git a/Documentation/hwmon/gl518sm.rst b/Documentation/hwmon/gl518sm.rst
new file mode 100644
index 000000000000..bf1e0b5e824b
--- /dev/null
+++ b/Documentation/hwmon/gl518sm.rst
@@ -0,0 +1,80 @@
+Kernel driver gl518sm
+=====================
+
+Supported chips:
+
+ * Genesys Logic GL518SM release 0x00
+
+ Prefix: 'gl518sm'
+
+ Addresses scanned: I2C 0x2c and 0x2d
+
+ * Genesys Logic GL518SM release 0x80
+
+ Prefix: 'gl518sm'
+
+ Addresses scanned: I2C 0x2c and 0x2d
+
+ Datasheet: http://www.genesyslogic.com/
+
+Authors:
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Kyösti Mälkki <kmalkki@cc.hut.fi>
+ - Hong-Gunn Chew <hglinux@gunnet.org>
+ - Jean Delvare <jdelvare@suse.de>
+
+Description
+-----------
+
+.. important::
+
+ For the revision 0x00 chip, the in0, in1, and in2 values (+5V, +3V,
+ and +12V) CANNOT be read. This is a limitation of the chip, not the driver.
+
+This driver supports the Genesys Logic GL518SM chip. There are at least
+two revision of this chip, which we call revision 0x00 and 0x80. Revision
+0x80 chips support the reading of all voltages and revision 0x00 only
+for VIN3.
+
+The GL518SM implements one temperature sensor, two fan rotation speed
+sensors, and four voltage sensors. It can report alarms through the
+computer speakers.
+
+Temperatures are measured in degrees Celsius. An alarm goes off while the
+temperature is above the over temperature limit, and has not yet dropped
+below the hysteresis limit. The alarm always reflects the current
+situation. Measurements are guaranteed between -10 degrees and +110
+degrees, with a accuracy of +/-3 degrees.
+
+Rotation speeds are reported in RPM (rotations per minute). An alarm is
+triggered if the rotation speed has dropped below a programmable limit. In
+case when you have selected to turn fan1 off, no fan1 alarm is triggered.
+
+Fan readings can be divided by a programmable divider (1, 2, 4 or 8) to
+give the readings more range or accuracy. Not all RPM values can
+accurately be represented, so some rounding is done. With a divider
+of 2, the lowest representable value is around 1900 RPM.
+
+Voltage sensors (also known as VIN sensors) report their values in volts.
+An alarm is triggered if the voltage has crossed a programmable minimum or
+maximum limit. Note that minimum in this case always means 'closest to
+zero'; this is important for negative voltage measurements. The VDD input
+measures voltages between 0.000 and 5.865 volt, with a resolution of 0.023
+volt. The other inputs measure voltages between 0.000 and 4.845 volt, with
+a resolution of 0.019 volt. Note that revision 0x00 chips do not support
+reading the current voltage of any input except for VIN3; limit setting and
+alarms work fine, though.
+
+When an alarm is triggered, you can be warned by a beeping signal through your
+computer speaker. It is possible to enable all beeping globally, or only the
+beeping for some alarms.
+
+If an alarm triggers, it will remain triggered until the hardware register
+is read at least once (except for temperature alarms). This means that the
+cause for the alarm may already have disappeared! Note that in the current
+implementation, all hardware registers are read whenever any data is read
+(unless it is less than 1.5 seconds since the last update). This means that
+you can easily miss once-only alarms.
+
+The GL518SM only updates its values each 1.5 seconds; reading it more often
+will do no harm, but will return 'old' values.
OpenPOWER on IntegriCloud