diff options
author | Patrick Bellasi <patrick.bellasi@arm.com> | 2019-08-22 14:28:06 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2019-09-03 09:17:37 +0200 |
commit | 2480c093130f64ac3a410504fa8b3db1fc4b87ce (patch) | |
tree | 1dbeca7920dfcadd75249ab41de421bbb2a3ad85 /Documentation/admin-guide/cgroup-v2.rst | |
parent | a55c7454a8c887b226a01d7eed088ccb5374d81e (diff) | |
download | blackbird-op-linux-2480c093130f64ac3a410504fa8b3db1fc4b87ce.tar.gz blackbird-op-linux-2480c093130f64ac3a410504fa8b3db1fc4b87ce.zip |
sched/uclamp: Extend CPU's cgroup controller
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.
With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.
Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.
Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.
Specifically:
- uclamp.min: defines the minimum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run at least at a
minimum frequency which corresponds to the uclamp.min
utilization
- uclamp.max: defines the maximum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run up to a
maximum frequency which corresponds to the uclamp.max
utilization
These attributes:
a) are available only for non-root nodes, both on default and legacy
hierarchies, while system wide clamps are defined by a generic
interface which does not depends on cgroups. This system wide
interface enforces constraints on tasks in the root node.
b) enforce effective constraints at each level of the hierarchy which
are a restriction of the group requests considering its parent's
effective constraints. Root group effective constraints are defined
by the system wide interface.
This mechanism allows each (non-root) level of the hierarchy to:
- request whatever clamp values it would like to get
- effectively get only up to the maximum amount allowed by its parent
c) have higher priority than task-specific clamps, defined via
sched_setattr(), thus allowing to control and restrict task requests.
Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.
Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'Documentation/admin-guide/cgroup-v2.rst')
-rw-r--r-- | Documentation/admin-guide/cgroup-v2.rst | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index 3b29005aa981..5f1c266131b0 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -951,6 +951,13 @@ controller implements weight and absolute bandwidth limit models for normal scheduling policy and absolute bandwidth allocation model for realtime scheduling policy. +In all the above models, cycles distribution is defined only on a temporal +base and it does not account for the frequency at which tasks are executed. +The (optional) utilization clamping support allows to hint the schedutil +cpufreq governor about the minimum desired frequency which should always be +provided by a CPU, as well as the maximum desired frequency, which should not +be exceeded by a CPU. + WARNING: cgroup2 doesn't yet support control of realtime processes and the cpu controller can only be enabled when all RT processes are in the root cgroup. Be aware that system management software may already @@ -1016,6 +1023,33 @@ All time durations are in microseconds. Shows pressure stall information for CPU. See Documentation/accounting/psi.rst for details. + cpu.uclamp.min + A read-write single value file which exists on non-root cgroups. + The default is "0", i.e. no utilization boosting. + + The requested minimum utilization (protection) as a percentage + rational number, e.g. 12.34 for 12.34%. + + This interface allows reading and setting minimum utilization clamp + values similar to the sched_setattr(2). This minimum utilization + value is used to clamp the task specific minimum utilization clamp. + + The requested minimum utilization (protection) is always capped by + the current value for the maximum utilization (limit), i.e. + `cpu.uclamp.max`. + + cpu.uclamp.max + A read-write single value file which exists on non-root cgroups. + The default is "max". i.e. no utilization capping + + The requested maximum utilization (limit) as a percentage rational + number, e.g. 98.76 for 98.76%. + + This interface allows reading and setting maximum utilization clamp + values similar to the sched_setattr(2). This maximum utilization + value is used to clamp the task specific maximum utilization clamp. + + Memory ------ |