summaryrefslogtreecommitdiffstats
path: root/fs/yaffs2/mtdemul/nandemul2k.c
blob: bcbf16ad1c9c6df641ca17beada59f27d3dcccdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/*
 * YAFFS: Yet Another Flash File System. A NAND-flash specific file system.
 *
 * Copyright (C) 2002-2007 Aleph One Ltd.
 *   for Toby Churchill Ltd and Brightstar Engineering
 *
 * Created by Charles Manning <charles@aleph1.co.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/*
 *  This version hacked for emulating 2kpage NAND for YAFFS2 testing.
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/pagemap.h>
#include <linux/mtd/mtd.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0))
#include <linux/locks.h>
#endif

#include <asm/uaccess.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand.h>
#include "../yaffs_nandemul2k.h"

#define ALLOCATE(x) kmalloc(x,GFP_KERNEL)
#define FREE(x)     kfree(x)





#define NAND_SHIFT      (11)   // Shifter for 2k
#define PAGE_DATA_SIZE  (1 << NAND_SHIFT)
#define PAGE_SPARE_SIZE (64)
#define BLK_SHIFT	6
#define PAGES_PER_BLOCK (1 << BLK_SHIFT)	// = 64


#define EM_SIZE_IN_MEG 4
#define EM_SIZE_IN_BYTES (EM_SIZE_IN_MEG * (1<<20))

#define PAGE_TOTAL_SIZE (PAGE_DATA_SIZE+PAGE_SPARE_SIZE)

#define BLOCK_TOTAL_SIZE (PAGES_PER_BLOCK * PAGE_TOTAL_SIZE)

#define BLOCKS_PER_MEG ((1<<20)/(PAGES_PER_BLOCK * PAGE_DATA_SIZE))


static struct mtd_info nandemul2k_mtd;

typedef struct 
{
	__u8 data[PAGE_TOTAL_SIZE]; // Data + spare
	int empty;      // is this empty?
} nandemul_Page;


typedef struct
{
	nandemul_Page *page[PAGES_PER_BLOCK];
	int damaged;	
} nandemul_Block;



typedef struct
{
	nandemul_Block**block;
	int nBlocks;
} nandemul_Device;

static nandemul_Device ned;

static int sizeInMB = EM_SIZE_IN_MEG;


static void nandemul_yield(int n)
{
#ifdef __KERNEL__
	if(n > 0) schedule_timeout(n);
#endif

}


static void nandemul2k_Read(void *buffer, int page, int start, int nBytes)
{
	int pg = page%PAGES_PER_BLOCK;
	int blk = page/PAGES_PER_BLOCK;
	if(buffer && nBytes > 0)
	{
		memcpy(buffer,&ned.block[blk]->page[pg]->data[start],nBytes);
	}
	
}

static void nandemul2k_Program(const void *buffer, int page, int start, int nBytes)
{
	int pg = page%PAGES_PER_BLOCK;
	int blk = page/PAGES_PER_BLOCK;
	__u8 *p;
	__u8 *b = (__u8 *)buffer;

	p = &ned.block[blk]->page[pg]->data[start];
	
	while(buffer && nBytes>0)
	{
		*p = *p & *b;
		p++;
		b++;
		nBytes--;
	}
}

static void nandemul2k_DoErase(int blockNumber)
{
	int i;
	
	nandemul_Block *blk;
	
	if(blockNumber < 0 || blockNumber >= ned.nBlocks)
	{
		return;
	}
	
	blk = ned.block[blockNumber];
	
	for(i = 0; i < PAGES_PER_BLOCK; i++)
	{
		memset(blk->page[i],0xff,sizeof(nandemul_Page));
		blk->page[i]->empty = 1;
	}
	nandemul_yield(2);
}


static int nandemul2k_CalcNBlocks(void)
{
	return EM_SIZE_IN_MEG * BLOCKS_PER_MEG;
}



static int  CheckInit(void)
{
	static int initialised = 0;
	
	int i,j;
	
	int fail = 0;
	int nBlocks; 

	int nAllocated = 0;
	
	if(initialised) 
	{
		return 0;
	}
	
	
	ned.nBlocks = nBlocks = nandemul2k_CalcNBlocks();

	
	ned.block = ALLOCATE(sizeof(nandemul_Block*) * nBlocks );
	
	if(!ned.block) return ENOMEM;
	
	
	

		
	for(i=fail=0; i <nBlocks; i++)
	{
		
		nandemul_Block *blk;
		
		if(!(blk = ned.block[i] = ALLOCATE(sizeof(nandemul_Block))))
		{
		 fail = 1;
		}  
		else
		{
			for(j = 0; j < PAGES_PER_BLOCK; j++)
			{
				if((blk->page[j] = ALLOCATE(sizeof(nandemul_Page))) == 0)
				{
					fail = 1;
				}
			}
			nandemul2k_DoErase(i);
			ned.block[i]->damaged = 0;
			nAllocated++;
		}
	}
	
	if(fail)
	{
		//Todo thump pages
		
		for(i = 0; i < nAllocated; i++)
		{
			FREE(ned.block[i]);
		}
		FREE(ned.block);
		
		return ENOMEM;
	}
	
	ned.nBlocks = nBlocks;
	
	initialised = 1;
	
	return 1;
}



static void nandemul2k_CleanUp(void)
{
	int i,j;
	
	for(i = 0; i < ned.nBlocks; i++)
	{
		for(j = 0; j < PAGES_PER_BLOCK; j++)
		{
		   FREE(ned.block[i]->page[j]);
		}
		FREE(ned.block[i]);
		
	}
	FREE(ned.block);
	ned.block = 0;
}

int nandemul2k_GetBytesPerChunk(void) { return PAGE_DATA_SIZE;}

int nandemul2k_GetChunksPerBlock(void) { return PAGES_PER_BLOCK; }
int nandemul2k_GetNumberOfBlocks(void) {return nandemul2k_CalcNBlocks();}



static int nandemul2k_ReadId(__u8 *vendorId, __u8 *deviceId)
{
	*vendorId = 'Y'; 
	*deviceId = '2';
	
	return 1;
}


static int nandemul2k_ReadStatus(__u8 *status)
{
		*status = 0;
		return 1;
}


#ifdef CONFIG_MTD_NAND_ECC
#include <linux/mtd/nand_ecc.h>
#endif

/*
 * NAND low-level MTD interface functions
 */
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf);
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
				size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *dummy);
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
				size_t *retlen, u_char *buf);
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len,
			size_t *retlen, const u_char *buf);
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
				size_t *retlen, const u_char *buf,
				u_char *oob_buf, struct nand_oobinfo *dummy);
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
				size_t *retlen, const u_char *buf);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,7))
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
				unsigned long count, loff_t to, size_t *retlen);
#else
static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs,
				unsigned long count, loff_t to, size_t *retlen);
#endif
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync (struct mtd_info *mtd);



/*
 * NAND read
 */
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	return nand_read_ecc (mtd, from, len, retlen, buf, NULL,NULL);
}


/*
 * NAND read with ECC
 */
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
				size_t *retlen, u_char *buf, u_char *oob_buf,struct nand_oobinfo *oobsel)
{
	int 	start, page;
	int n = len;
	int nToCopy;



	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
		*retlen = 0;
		return -EINVAL;
	}


	/* Initialize return value */
	*retlen = 0;

	while(n > 0)
	{

		/* First we calculate the starting page */
		page = from >> NAND_SHIFT;

		/* Get raw starting column */

		start = from & (mtd->oobblock-1);

		// OK now check for the curveball where the start and end are in
		// the same page
		if((start + n) < mtd->oobblock)
		{
			nToCopy = n;
		}
		else
		{
			nToCopy =  mtd->oobblock - start;
		}

		nandemul2k_Read(buf, page, start, nToCopy);
		nandemul2k_Read(oob_buf,page,PAGE_DATA_SIZE,PAGE_SPARE_SIZE);

		n -= nToCopy;
		from += nToCopy;
		buf += nToCopy;
		if(oob_buf) oob_buf += PAGE_SPARE_SIZE;
		*retlen += nToCopy;

	}


	return 0;
}

/*
 * NAND read out-of-band
 */
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
				size_t *retlen, u_char *buf)
{
	int col, page;

	T(0,("nand_read_oob: from = 0x%08x, buf = 0x%08x, len = %i\n", (unsigned int) from, (unsigned int) buf,
		(int) len));

	/* Shift to get page */
	page = ((int) from) >> NAND_SHIFT;

	/* Mask to get column */
	col = from & 0x0f;

	/* Initialize return length value */
	*retlen = 0;

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
		T(0,
			("nand_read_oob: Attempt read beyond end of device\n"));
		*retlen = 0;
		return -EINVAL;
	}

	nandemul2k_Read(buf,page,PAGE_DATA_SIZE + col,len);

	/* Return happy */
	*retlen = len;
	return 0;
}

/*
 * NAND write
 */
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len,
			size_t *retlen, const u_char *buf)
{
	return nand_write_ecc (mtd, to, len, retlen, buf, NULL,NULL);
}

/*
 * NAND write with ECC
 */
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
				size_t *retlen, const u_char *buf,
				u_char *oob_buf, struct nand_oobinfo *dummy)
{

	int 	start, page;
	int n = len;
	int nToCopy;



	/* Do not allow reads past end of device */
	if ((to + len) > mtd->size) {
		*retlen = 0;
		return -EINVAL;
	}


	/* Initialize return value */
	*retlen = 0;

	while(n > 0)
	{

		/* First we calculate the starting page */
		page = to >> NAND_SHIFT;

		/* Get raw starting column */

		start = to & (mtd->oobblock - 1);

		// OK now check for the curveball where the start and end are in
		// the same page
		if((start + n) < mtd->oobblock)
		{
			nToCopy = n;
		}
		else
		{
			nToCopy =  mtd->oobblock - start;
		}

		nandemul2k_Program(buf, page, start, nToCopy);
		nandemul2k_Program(oob_buf, page, PAGE_DATA_SIZE, PAGE_SPARE_SIZE);

		n -= nToCopy;
		to += nToCopy;
		buf += nToCopy;
		if(oob_buf) oob_buf += PAGE_SPARE_SIZE;
		*retlen += nToCopy;

	}


	return 0;
}

/*
 * NAND write out-of-band
 */
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
				size_t *retlen, const u_char *buf)
{
	int col, page;


	T(0,(
		"nand_read_oob: to = 0x%08x, len = %i\n", (unsigned int) to,
		(int) len));

	/* Shift to get page */
	page = ((int) to) >> NAND_SHIFT;

	/* Mask to get column */
	col = to & 0x0f;

	/* Initialize return length value */
	*retlen = 0;

	/* Do not allow reads past end of device */
	if ((to + len) > mtd->size) {
		T(0,(
		   "nand_read_oob: Attempt read beyond end of device\n"));
		*retlen = 0;
		return -EINVAL;
	}

	nandemul2k_Program(buf,page,512 + col,len);

	/* Return happy */
	*retlen = len;
	return 0;

}

/*
 * NAND write with iovec
 */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,7))
static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
				unsigned long count, loff_t to, size_t *retlen)
#else
static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs,
				unsigned long count, loff_t to, size_t *retlen)
#endif
{
	return -EINVAL;
}

/*
 * NAND erase a block
 */
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
{
	int i, nBlocks,block;

	T(0,(
		"nand_erase: start = 0x%08x, len = %i\n",
		(unsigned int) instr->addr, (unsigned int) instr->len));

	/* Start address must align on block boundary */
	if (instr->addr & (mtd->erasesize - 1)) {
		T(0,(
			"nand_erase: Unaligned address\n"));
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (instr->len & (mtd->erasesize - 1)) {
		T(0,(
			"nand_erase: Length not block aligned\n"));
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if ((instr->len + instr->addr) > mtd->size) {
		T(0,(
			"nand_erase: Erase past end of device\n"));
		return -EINVAL;
	}

	nBlocks = instr->len >> (NAND_SHIFT + BLK_SHIFT);
	block = instr->addr >> (NAND_SHIFT + BLK_SHIFT);

	for(i = 0; i < nBlocks; i++)
	{
		nandemul2k_DoErase(block);
		block++;
	}

	instr->state = MTD_ERASE_DONE;  * change state to ERASE_DONE */

	instr->callback(instr);  * wake up */

	return 0;


}


static int nand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
	return 0;
}

static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	return 0;
}


/*
 * NAND sync
 */
static void nand_sync (struct mtd_info *mtd)
{
	T(0,("nand_sync: called\n"));

}

/*
 * Scan for the NAND device
 */
static int nandemul2k_scan (struct mtd_info *mtd,int nchips)
{
	mtd->oobblock = PAGE_DATA_SIZE;
	mtd->oobsize =  PAGE_SPARE_SIZE;
	mtd->erasesize = PAGE_DATA_SIZE * PAGES_PER_BLOCK;
	mtd->size = sizeInMB * 1024*1024;



	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
	mtd->flags = MTD_CAP_NANDFLASH;
	mtd->owner = THIS_MODULE;
	mtd->ecctype = MTD_ECC_NONE;
	mtd->erase = nand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = nand_read;
	mtd->write = nand_write;
	mtd->read_ecc = nand_read_ecc;
	mtd->write_ecc = nand_write_ecc;
	mtd->read_oob = nand_read_oob;
	mtd->write_oob = nand_write_oob;
	mtd->block_isbad = nand_block_isbad;
	mtd->block_markbad = nand_block_markbad;
	mtd->readv = NULL;
	mtd->writev = nand_writev;
	mtd->sync = nand_sync;
	mtd->lock = NULL;
	mtd->unlock = NULL;
	mtd->suspend = NULL;
	mtd->resume = NULL;

	mtd->name = "NANDemul2k";

	/* Return happy */
	return 0;
}

#if 0
#ifdef MODULE
MODULE_PARM(sizeInMB, "i");

__setup("sizeInMB=",sizeInMB);
#endif
#endif

/*
 * Define partitions for flash devices
 */

static struct mtd_partition nandemul2k_partition[] =
{
	{ .name		= "NANDemul partition 1",
	  .offset	= 0,
	  .size		= 0 },
};

static int nPartitions = sizeof(nandemul2k_partition)/sizeof(nandemul2k_partition[0]);

/*
 * Main initialization routine
 */
int __init nandemul2k_init (void)
{

	// Do the nand init
	
	CheckInit();

	nandemul2k_scan(&nandemul2k_mtd,1);

	// Build the partition table

	nandemul2k_partition[0].size = sizeInMB * 1024 * 1024;

	// Register the partition
	add_mtd_partitions(&nandemul2k_mtd,nandemul2k_partition,nPartitions);

	return 0;

}

module_init(nandemul2k_init);

/*
 * Clean up routine
 */
#ifdef MODULE
static void __exit nandemul2k_cleanup (void)
{

	nandemul2k_CleanUp();

	/* Unregister partitions */
	del_mtd_partitions(&nandemul2k_mtd);

	/* Unregister the device */
	del_mtd_device (&nandemul2k_mtd);

}
module_exit(nandemul2k_cleanup);
#endif

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Charles Manning <manningc@aleph1.co.uk>");
MODULE_DESCRIPTION("2k Page/128k Block NAND emulated in RAM");




OpenPOWER on IntegriCloud