1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
|
/*
* (C) Copyright 2001
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*************************************************************************
* adaption for the Marvell DB64360 Board
* Ingo Assmus (ingo.assmus@keymile.com)
************************************************************************/
/* sdram_init.c - automatic memory sizing */
#include <common.h>
#include <74xx_7xx.h>
#include "../include/memory.h"
#include "../include/pci.h"
#include "../include/mv_gen_reg.h"
#include <net.h>
#include "eth.h"
#include "mpsc.h"
#include "../common/i2c.h"
#include "64360.h"
#include "mv_regs.h"
DECLARE_GLOBAL_DATA_PTR;
#define MAP_PCI
int set_dfcdlInit (void); /* setup delay line of Mv64360 */
int mvDmaIsChannelActive (int);
int mvDmaSetMemorySpace (ulong, ulong, ulong, ulong, ulong);
int mvDmaTransfer (int, ulong, ulong, ulong, ulong);
/* ------------------------------------------------------------------------- */
int
memory_map_bank (unsigned int bankNo,
unsigned int bankBase, unsigned int bankLength)
{
#ifdef MAP_PCI
PCI_HOST host;
#endif
#ifdef DEBUG
if (bankLength > 0) {
printf ("mapping bank %d at %08x - %08x\n",
bankNo, bankBase, bankBase + bankLength - 1);
} else {
printf ("unmapping bank %d\n", bankNo);
}
#endif
memoryMapBank (bankNo, bankBase, bankLength);
#ifdef MAP_PCI
for (host = PCI_HOST0; host <= PCI_HOST1; host++) {
const int features =
PREFETCH_ENABLE |
DELAYED_READ_ENABLE |
AGGRESSIVE_PREFETCH |
READ_LINE_AGGRESSIVE_PREFETCH |
READ_MULTI_AGGRESSIVE_PREFETCH |
MAX_BURST_4 | PCI_NO_SWAP;
pciMapMemoryBank (host, bankNo, bankBase, bankLength);
pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase,
bankLength);
pciSetRegionFeatures (host, bankNo, features, bankBase,
bankLength);
}
#endif
return 0;
}
#define GB (1 << 30)
/* much of this code is based on (or is) the code in the pip405 port */
/* thanks go to the authors of said port - Josh */
/* structure to store the relevant information about an sdram bank */
typedef struct sdram_info {
uchar drb_size;
uchar registered, ecc;
uchar tpar;
uchar tras_clocks;
uchar burst_len;
uchar banks, slot;
} sdram_info_t;
/* Typedefs for 'gtAuxilGetDIMMinfo' function */
typedef enum _memoryType { SDRAM, DDR } MEMORY_TYPE;
typedef enum _voltageInterface { TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
} VOLTAGE_INTERFACE;
typedef enum _max_CL_supported_DDR { DDR_CL_1 = 1, DDR_CL_1_5 = 2, DDR_CL_2 =
4, DDR_CL_2_5 = 8, DDR_CL_3 = 16, DDR_CL_3_5 =
32, DDR_CL_FAULT } MAX_CL_SUPPORTED_DDR;
typedef enum _max_CL_supported_SD { SD_CL_1 =
1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7,
SD_FAULT } MAX_CL_SUPPORTED_SD;
/* SDRAM/DDR information struct */
typedef struct _gtMemoryDimmInfo {
MEMORY_TYPE memoryType;
unsigned int numOfRowAddresses;
unsigned int numOfColAddresses;
unsigned int numOfModuleBanks;
unsigned int dataWidth;
VOLTAGE_INTERFACE voltageInterface;
unsigned int errorCheckType; /* ECC , PARITY.. */
unsigned int sdramWidth; /* 4,8,16 or 32 */ ;
unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */
unsigned int minClkDelay;
unsigned int burstLengthSupported;
unsigned int numOfBanksOnEachDevice;
unsigned int suportedCasLatencies;
unsigned int RefreshInterval;
unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */
unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */
MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
MAX_CL_SUPPORTED_SD maxClSupported_SD;
unsigned int moduleBankDensity;
/* module attributes (true for yes) */
bool bufferedAddrAndControlInputs;
bool registeredAddrAndControlInputs;
bool onCardPLL;
bool bufferedDQMBinputs;
bool registeredDQMBinputs;
bool differentialClockInput;
bool redundantRowAddressing;
/* module general attributes */
bool suportedAutoPreCharge;
bool suportedPreChargeAll;
bool suportedEarlyRasPreCharge;
bool suportedWrite1ReadBurst;
bool suported5PercentLowVCC;
bool suported5PercentUpperVCC;
/* module timing parameters */
unsigned int minRasToCasDelay;
unsigned int minRowActiveRowActiveDelay;
unsigned int minRasPulseWidth;
unsigned int minRowPrechargeTime; /* measured in ns */
int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */
int addrAndCommandSetupTime; /* (measured in ns/100) */
int dataInputSetupTime; /* LoP left of point (measured in ns) */
int dataInputHoldTime; /* LoP left of point (measured in ns) */
/* tAC times for highest 2nd and 3rd highest CAS Latency values */
unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */
unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */
unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */
/* Parameters calculated from
the extracted DIMM information */
unsigned int size;
unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */
unsigned int numberOfDevices;
uchar drb_size; /* DRAM size in n*64Mbit */
uchar slot; /* Slot Number this module is inserted in */
uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */
#ifdef DEBUG
uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */
uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */
uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */
unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */
unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */
unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */
uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */
#endif
} AUX_MEM_DIMM_INFO;
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NS10to10PS (unsigned char spd_byte)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return (ns * 100 + ns10 * 10);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NSto10PS (unsigned char spd_byte)
{
return (spd_byte * 100);
}
/* This code reads the SPD chip on the sdram and populates
* the array which is passed in with the relevant information */
/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo)
{
unsigned long spd_checksum;
#ifdef ZUMA_NTL
/* zero all the values */
memset (info, 0, sizeof (*info));
/*
if (!slot) {
info->slot = 0;
info->banks = 1;
info->registered = 0;
info->drb_size = 16;*/ /* 16 - 256MBit, 32 - 512MBit */
/* info->tpar = 3;
info->tras_clocks = 5;
info->burst_len = 4;
*/
#ifdef CONFIG_MV64360_ECC
/* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */
dimmInfo->errorCheckType = 2;
/* info->ecc = 2;*/
#endif
}
return 0;
#else
uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
int ret;
unsigned int i, j, density = 1;
#ifdef DEBUG
unsigned int k;
#endif
unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp;
int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint;
uchar supp_cal, cal_val;
ulong memclk, tmemclk;
ulong tmp;
uchar trp_clocks = 0, tras_clocks;
uchar data[128];
memclk = gd->bus_clk;
tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
debug("before i2c read\n");
ret = i2c_read (addr, 0, 1, data, 128);
debug("after i2c read\n");
/* zero all the values */
memset (dimmInfo, 0, sizeof (*dimmInfo));
/* copy the SPD content 1:1 into the dimmInfo structure */
for (i = 0; i <= 127; i++) {
dimmInfo->spd_raw_data[i] = data[i];
}
if (ret) {
debug("No DIMM in slot %d [err = %x]\n", slot, ret);
return 0;
} else
dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */
#ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT
for (i = 0; i <= 127; i++) {
printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i],
data[i]);
}
#endif
#ifdef DEBUG
/* find Manufactura of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->manufactura); i++) {
dimmInfo->manufactura[i] = data[64 + i];
}
printf ("\nThis RAM-Module is produced by: %s\n",
dimmInfo->manufactura);
/* find Manul-ID of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->modul_id); i++) {
dimmInfo->modul_id[i] = data[73 + i];
}
printf ("The Module-ID of this RAM-Module is: %s\n",
dimmInfo->modul_id);
/* find Vendor-Data of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) {
dimmInfo->vendor_data[i] = data[99 + i];
}
printf ("Vendor Data of this RAM-Module is: %s\n",
dimmInfo->vendor_data);
/* find modul_serial_no of Dimm Module */
dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95])));
printf ("Serial No. of this RAM-Module is: %ld (%lx)\n",
dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
/* find Manufac-Data of Dimm Module */
dimmInfo->manufac_date = (*((unsigned int *) (&data[93])));
printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */
/* find modul_revision of Dimm Module */
dimmInfo->modul_revision = (*((unsigned int *) (&data[91])));
printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */
/* find manufac_place of Dimm Module */
dimmInfo->manufac_place = (*((unsigned char *) (&data[72])));
printf ("manufac_place of this RAM-Module is: %d\n",
dimmInfo->manufac_place);
#endif
/*------------------------------------------------------------------------------------------------------------------------------*/
/* calculate SPD checksum */
/*------------------------------------------------------------------------------------------------------------------------------*/
spd_checksum = 0;
for (i = 0; i <= 62; i++) {
spd_checksum += data[i];
}
if ((spd_checksum & 0xff) != data[63]) {
printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]);
hang ();
}
else
printf ("SPD Checksum ok!\n");
/*------------------------------------------------------------------------------------------------------------------------------*/
for (i = 2; i <= 35; i++) {
switch (i) {
case 2: /* Memory type (DDR / SDRAM) */
dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM;
if (dimmInfo->memoryType == 0)
debug
("Dram_type in slot %d is: SDRAM\n",
dimmInfo->slot);
if (dimmInfo->memoryType == 1)
debug
("Dram_type in slot %d is: DDRAM\n",
dimmInfo->slot);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 3: /* Number Of Row Addresses */
dimmInfo->numOfRowAddresses = data[i];
debug
("Module Number of row addresses: %d\n",
dimmInfo->numOfRowAddresses);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 4: /* Number Of Column Addresses */
dimmInfo->numOfColAddresses = data[i];
debug
("Module Number of col addresses: %d\n",
dimmInfo->numOfColAddresses);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 5: /* Number Of Module Banks */
dimmInfo->numOfModuleBanks = data[i];
debug
("Number of Banks on Mod. : %d\n",
dimmInfo->numOfModuleBanks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 6: /* Data Width */
dimmInfo->dataWidth = data[i];
debug
("Module Data Width: %d\n",
dimmInfo->dataWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 8: /* Voltage Interface */
switch (data[i]) {
case 0x0:
dimmInfo->voltageInterface = TTL_5V_TOLERANT;
debug
("Module is TTL_5V_TOLERANT\n");
break;
case 0x1:
dimmInfo->voltageInterface = LVTTL;
debug
("Module is LVTTL\n");
break;
case 0x2:
dimmInfo->voltageInterface = HSTL_1_5V;
debug
("Module is TTL_5V_TOLERANT\n");
break;
case 0x3:
dimmInfo->voltageInterface = SSTL_3_3V;
debug
("Module is HSTL_1_5V\n");
break;
case 0x4:
dimmInfo->voltageInterface = SSTL_2_5V;
debug
("Module is SSTL_2_5V\n");
break;
default:
dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
debug
("Module is VOLTAGE_UNKNOWN\n");
break;
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 9: /* Minimum Cycle Time At Max CasLatancy */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP =
rightOfPoint;
debug
("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 10: /* Clock To Data Out */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOut_LoP = leftOfPoint;
dimmInfo->clockToDataOut_RoP = rightOfPoint;
debug("Clock To Data Out: %d.%2d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->clockToDataOut */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
/*#ifdef CONFIG_ECC */
case 11: /* Error Check Type */
dimmInfo->errorCheckType = data[i];
debug
("Error Check Type (0=NONE): %d\n",
dimmInfo->errorCheckType);
break;
/* #endif */
/*------------------------------------------------------------------------------------------------------------------------------*/
case 12: /* Refresh Interval */
dimmInfo->RefreshInterval = data[i];
debug
("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n",
dimmInfo->RefreshInterval);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 13: /* Sdram Width */
dimmInfo->sdramWidth = data[i];
debug
("Sdram Width: %d\n",
dimmInfo->sdramWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 14: /* Error Check Data Width */
dimmInfo->errorCheckDataWidth = data[i];
debug
("Error Check Data Width: %d\n",
dimmInfo->errorCheckDataWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 15: /* Minimum Clock Delay */
dimmInfo->minClkDelay = data[i];
debug
("Minimum Clock Delay: %d\n",
dimmInfo->minClkDelay);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 16: /* Burst Length Supported */
/******-******-******-*******
* bit3 | bit2 | bit1 | bit0 *
*******-******-******-*******
burst length = * 8 | 4 | 2 | 1 *
*****************************
If for example bit0 and bit2 are set, the burst
length supported are 1 and 4. */
dimmInfo->burstLengthSupported = data[i];
#ifdef DEBUG
debug
("Burst Length Supported: ");
if (dimmInfo->burstLengthSupported & 0x01)
debug("1, ");
if (dimmInfo->burstLengthSupported & 0x02)
debug("2, ");
if (dimmInfo->burstLengthSupported & 0x04)
debug("4, ");
if (dimmInfo->burstLengthSupported & 0x08)
debug("8, ");
debug(" Bit \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 17: /* Number Of Banks On Each Device */
dimmInfo->numOfBanksOnEachDevice = data[i];
debug
("Number Of Banks On Each Chip: %d\n",
dimmInfo->numOfBanksOnEachDevice);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 18: /* Suported Cas Latencies */
/* DDR:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 *
*********************************************************
SDRAM:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 *
********************************************************/
dimmInfo->suportedCasLatencies = data[i];
#ifdef DEBUG
debug
("Suported Cas Latencies: (CL) ");
if (dimmInfo->memoryType == 0) { /* SDRAM */
for (k = 0; k <= 7; k++) {
if (dimmInfo->
suportedCasLatencies & (1 << k))
debug
("%d, ",
k + 1);
}
} else { /* DDR-RAM */
if (dimmInfo->suportedCasLatencies & 1)
debug("1, ");
if (dimmInfo->suportedCasLatencies & 2)
debug("1.5, ");
if (dimmInfo->suportedCasLatencies & 4)
debug("2, ");
if (dimmInfo->suportedCasLatencies & 8)
debug("2.5, ");
if (dimmInfo->suportedCasLatencies & 16)
debug("3, ");
if (dimmInfo->suportedCasLatencies & 32)
debug("3.5, ");
}
debug("\n");
#endif
/* Calculating MAX CAS latency */
for (j = 7; j > 0; j--) {
if (((dimmInfo->
suportedCasLatencies >> j) & 0x1) ==
1) {
switch (dimmInfo->memoryType) {
case DDR:
/* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
switch (j) {
case 7:
debug
("Max. Cas Latencies (DDR): ERROR !!!\n");
dimmInfo->
maxClSupported_DDR
=
DDR_CL_FAULT;
hang ();
break;
case 6:
debug
("Max. Cas Latencies (DDR): ERROR !!!\n");
dimmInfo->
maxClSupported_DDR
=
DDR_CL_FAULT;
hang ();
break;
case 5:
debug
("Max. Cas Latencies (DDR): 3.5 clk's\n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_3_5;
break;
case 4:
debug
("Max. Cas Latencies (DDR): 3 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_3;
break;
case 3:
debug
("Max. Cas Latencies (DDR): 2.5 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_2_5;
break;
case 2:
debug
("Max. Cas Latencies (DDR): 2 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_2;
break;
case 1:
debug
("Max. Cas Latencies (DDR): 1.5 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_1_5;
break;
}
/* ronen - in case we have a DIMM with minimumCycleTimeAtMaxCasLatancy
lower then our SDRAM cycle count, we won't be able to support this CAL
and we will have to use lower CAL. (minus - means from 3.0 to 2.5) */
if ((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
<
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
||
((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
==
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
&& (dimmInfo->
minimumCycleTimeAtMaxCasLatancy_RoP
<
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
{
dimmInfo->
maxClSupported_DDR
=
dimmInfo->
maxClSupported_DDR
>> 1;
debug
("*** Change actual Cas Latencies cause of minimumCycleTime n");
}
/* ronen - checkif the Dimm frequency compared to the Sysclock. */
if ((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
>
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
||
((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
==
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
&& (dimmInfo->
minimumCycleTimeAtMaxCasLatancy_RoP
>
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
{
printf ("*********************************************************\n");
printf ("*** sysClock is higher than SDRAM's allowed frequency ***\n");
printf ("*********************************************************\n");
hang ();
}
dimmInfo->
maxCASlatencySupported_LoP
=
1 +
(int) (5 * j / 10);
if (((5 * j) % 10) != 0)
dimmInfo->
maxCASlatencySupported_RoP
= 5;
else
dimmInfo->
maxCASlatencySupported_RoP
= 0;
debug
("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
dimmInfo->
maxCASlatencySupported_LoP,
dimmInfo->
maxCASlatencySupported_RoP);
break;
case SDRAM:
/* CAS latency 1, 2, 3, 4, 5, 6, 7 */
dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */
debug
("Max. Cas Latencies (SD): %d\n",
dimmInfo->
maxClSupported_SD);
dimmInfo->
maxCASlatencySupported_LoP
= j;
dimmInfo->
maxCASlatencySupported_RoP
= 0;
debug
("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
dimmInfo->
maxCASlatencySupported_LoP,
dimmInfo->
maxCASlatencySupported_RoP);
break;
}
break;
}
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 21: /* Buffered Address And Control Inputs */
debug("\nModul Attributes (SPD Byte 21): \n");
dimmInfo->bufferedAddrAndControlInputs =
data[i] & BIT0;
dimmInfo->registeredAddrAndControlInputs =
(data[i] & BIT1) >> 1;
dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
dimmInfo->registeredDQMBinputs =
(data[i] & BIT4) >> 4;
dimmInfo->differentialClockInput =
(data[i] & BIT5) >> 5;
dimmInfo->redundantRowAddressing =
(data[i] & BIT6) >> 6;
#ifdef DEBUG
if (dimmInfo->bufferedAddrAndControlInputs == 1)
debug
(" - Buffered Address/Control Input: Yes \n");
else
debug
(" - Buffered Address/Control Input: No \n");
if (dimmInfo->registeredAddrAndControlInputs == 1)
debug
(" - Registered Address/Control Input: Yes \n");
else
debug
(" - Registered Address/Control Input: No \n");
if (dimmInfo->onCardPLL == 1)
debug
(" - On-Card PLL (clock): Yes \n");
else
debug
(" - On-Card PLL (clock): No \n");
if (dimmInfo->bufferedDQMBinputs == 1)
debug
(" - Bufferd DQMB Inputs: Yes \n");
else
debug
(" - Bufferd DQMB Inputs: No \n");
if (dimmInfo->registeredDQMBinputs == 1)
debug
(" - Registered DQMB Inputs: Yes \n");
else
debug
(" - Registered DQMB Inputs: No \n");
if (dimmInfo->differentialClockInput == 1)
debug
(" - Differential Clock Input: Yes \n");
else
debug
(" - Differential Clock Input: No \n");
if (dimmInfo->redundantRowAddressing == 1)
debug
(" - redundant Row Addressing: Yes \n");
else
debug
(" - redundant Row Addressing: No \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 22: /* Suported AutoPreCharge */
debug("\nModul Attributes (SPD Byte 22): \n");
dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0;
dimmInfo->suportedAutoPreCharge =
(data[i] & BIT1) >> 1;
dimmInfo->suportedPreChargeAll =
(data[i] & BIT2) >> 2;
dimmInfo->suportedWrite1ReadBurst =
(data[i] & BIT3) >> 3;
dimmInfo->suported5PercentLowVCC =
(data[i] & BIT4) >> 4;
dimmInfo->suported5PercentUpperVCC =
(data[i] & BIT5) >> 5;
#ifdef DEBUG
if (dimmInfo->suportedEarlyRasPreCharge == 1)
debug
(" - Early Ras Precharge: Yes \n");
else
debug
(" - Early Ras Precharge: No \n");
if (dimmInfo->suportedAutoPreCharge == 1)
debug
(" - AutoPreCharge: Yes \n");
else
debug
(" - AutoPreCharge: No \n");
if (dimmInfo->suportedPreChargeAll == 1)
debug
(" - Precharge All: Yes \n");
else
debug
(" - Precharge All: No \n");
if (dimmInfo->suportedWrite1ReadBurst == 1)
debug
(" - Write 1/ReadBurst: Yes \n");
else
debug
(" - Write 1/ReadBurst: No \n");
if (dimmInfo->suported5PercentLowVCC == 1)
debug
(" - lower VCC tolerance: 5 Percent \n");
else
debug
(" - lower VCC tolerance: 10 Percent \n");
if (dimmInfo->suported5PercentUpperVCC == 1)
debug
(" - upper VCC tolerance: 5 Percent \n");
else
debug
(" - upper VCC tolerance: 10 Percent \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP =
rightOfPoint;
debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 24: /* Clock To Data Out 2nd highest Cas Latency Value */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
debug
("Clock To Data Out (2nd CL value): %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP =
rightOfPoint;
debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 26: /* Clock To Data Out 3rd highest Cas Latency Value */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
debug
("Clock To Data Out (3rd CL value): %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 27: /* Minimum Row Precharge Time */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */
trp_clocks =
(dimmInfo->minRowPrechargeTime +
(tmemclk - 1)) / tmemclk;
debug
("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n",
tmemclk, tmemclk / 100, tmemclk % 100);
debug
("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 28: /* Minimum Row Active to Row Active Time */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
debug
("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 29: /* Minimum Ras-To-Cas Delay */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
debug
("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 30: /* Minimum Ras Pulse Width */
dimmInfo->minRasPulseWidth = data[i];
tras_clocks =
(NSto10PS (data[i]) +
(tmemclk - 1)) / tmemclk;
debug
("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n",
dimmInfo->minRasPulseWidth, tras_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 31: /* Module Bank Density */
dimmInfo->moduleBankDensity = data[i];
debug
("Module Bank Density: %d\n",
dimmInfo->moduleBankDensity);
#ifdef DEBUG
debug
("*** Offered Densities (more than 1 = Multisize-Module): ");
{
if (dimmInfo->moduleBankDensity & 1)
debug("4MB, ");
if (dimmInfo->moduleBankDensity & 2)
debug("8MB, ");
if (dimmInfo->moduleBankDensity & 4)
debug("16MB, ");
if (dimmInfo->moduleBankDensity & 8)
debug("32MB, ");
if (dimmInfo->moduleBankDensity & 16)
debug("64MB, ");
if (dimmInfo->moduleBankDensity & 32)
debug("128MB, ");
if ((dimmInfo->moduleBankDensity & 64)
|| (dimmInfo->moduleBankDensity & 128)) {
debug("ERROR, ");
hang ();
}
}
debug("\n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 32: /* Address And Command Setup Time (measured in ns/1000) */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandSetupTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Address And Command Setup Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 33: /* Address And Command Hold Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandHoldTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Address And Command Hold Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 34: /* Data Input Setup Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->dataInputSetupTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Data Input Setup Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 35: /* Data Input Hold Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->dataInputHoldTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Data Input Hold Time [ns]: %d.%d\n\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
}
}
/* calculating the sdram density */
for (i = 0;
i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;
i++) {
density = density * 2;
}
dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice *
dimmInfo->sdramWidth;
dimmInfo->numberOfDevices =
(dimmInfo->dataWidth / dimmInfo->sdramWidth) *
dimmInfo->numOfModuleBanks;
if ((dimmInfo->errorCheckType == 0x1)
|| (dimmInfo->errorCheckType == 0x2)
|| (dimmInfo->errorCheckType == 0x3)) {
dimmInfo->size =
(dimmInfo->deviceDensity / 8) *
(dimmInfo->numberOfDevices -
/* ronen on the 1G dimm we get wrong value. (was devicesForErrCheck) */
dimmInfo->numberOfDevices / 8);
} else {
dimmInfo->size =
(dimmInfo->deviceDensity / 8) *
dimmInfo->numberOfDevices;
}
/* compute the module DRB size */
tmp = (1 <<
(dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
tmp *= dimmInfo->numOfModuleBanks;
tmp *= dimmInfo->sdramWidth;
tmp = tmp >> 24; /* div by 0x4000000 (64M) */
dimmInfo->drb_size = (uchar) tmp;
debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size);
/* try a CAS latency of 3 first... */
/* bit 1 is CL2, bit 2 is CL3 */
supp_cal = (dimmInfo->suportedCasLatencies & 0x6) >> 1;
cal_val = 0;
if (supp_cal & 3) {
if (NS10to10PS (data[9]) <= tmemclk)
cal_val = 3;
}
/* then 2... */
if (supp_cal & 2) {
if (NS10to10PS (data[23]) <= tmemclk)
cal_val = 2;
}
debug("cal_val = %d\n", cal_val);
/* bummer, did't work... */
if (cal_val == 0) {
debug("Couldn't find a good CAS latency\n");
hang ();
return 0;
}
return true;
#endif
}
/* sets up the GT properly with information passed in */
int setup_sdram (AUX_MEM_DIMM_INFO * info)
{
ulong tmp, check;
ulong tmp_sdram_mode = 0; /* 0x141c */
ulong tmp_dunit_control_low = 0; /* 0x1404 */
int i;
/* added 8/21/2003 P. Marchese */
unsigned int sdram_config_reg;
/* added 10/10/2003 P. Marchese */
ulong sdram_chip_size;
/* sanity checking */
if (!info->numOfModuleBanks) {
printf ("setup_sdram called with 0 banks\n");
return 1;
}
/* delay line */
set_dfcdlInit (); /* may be its not needed */
debug("Delay line set done\n");
/* set SDRAM mode NOP */ /* To_do check it */
GT_REG_WRITE (SDRAM_OPERATION, 0x5);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug
("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n");
}
/* SDRAM configuration */
/* added 8/21/2003 P. Marchese */
/* code allows usage of registered DIMMS */
/* figure out the memory refresh internal */
switch (info->RefreshInterval) {
case 0x0:
case 0x80: /* refresh period is 15.625 usec */
sdram_config_reg =
(unsigned int) (((float) 15.625 * (float) CONFIG_SYS_BUS_CLK)
/ (float) 1000000.0);
break;
case 0x1:
case 0x81: /* refresh period is 3.9 usec */
sdram_config_reg =
(unsigned int) (((float) 3.9 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x2:
case 0x82: /* refresh period is 7.8 usec */
sdram_config_reg =
(unsigned int) (((float) 7.8 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x3:
case 0x83: /* refresh period is 31.3 usec */
sdram_config_reg =
(unsigned int) (((float) 31.3 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x4:
case 0x84: /* refresh period is 62.5 usec */
sdram_config_reg =
(unsigned int) (((float) 62.5 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x5:
case 0x85: /* refresh period is 125 usec */
sdram_config_reg =
(unsigned int) (((float) 125 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
default: /* refresh period undefined */
printf ("DRAM refresh period is unknown!\n");
printf ("Aborting DRAM setup with an error\n");
hang ();
break;
}
debug("calculated refresh interval %0x\n", sdram_config_reg);
/* make sure the refresh value is only 14 bits */
if (sdram_config_reg > 0x1fff)
sdram_config_reg = 0x1fff;
debug("adjusted refresh interval %0x\n", sdram_config_reg);
/* we want physical bank interleaving and */
/* virtual bank interleaving enabled so do nothing */
/* since these bits need to be zero to enable the interleaving */
/* registered DRAM ? */
if (info->registeredAddrAndControlInputs == 1) {
/* it's registered DRAM, so set the reg. DRAM bit */
sdram_config_reg = sdram_config_reg | BIT17;
debug("Enabling registered DRAM bit\n");
}
/* turn on DRAM ECC? */
#ifdef CONFIG_MV64360_ECC
if (info->errorCheckType == 0x2) {
/* DRAM has ECC, so turn it on */
sdram_config_reg = sdram_config_reg | BIT18;
debug("Enabling ECC\n");
}
#endif
/* set the data DQS pin configuration */
switch (info->sdramWidth) {
case 0x4: /* memory is x4 */
sdram_config_reg = sdram_config_reg | BIT20 | BIT21;
debug("Data DQS pins set for 16 pins\n");
break;
case 0x8: /* memory is x8 or x16 */
case 0x10:
sdram_config_reg = sdram_config_reg | BIT21;
debug("Data DQS pins set for 8 pins\n");
break;
case 0x20: /* memory is x32 */
/* both bits are cleared for x32 so nothing to do */
debug("Data DQS pins set for 2 pins\n");
break;
default: /* memory width unsupported */
printf ("DRAM chip width is unknown!\n");
printf ("Aborting DRAM setup with an error\n");
hang ();
break;
}
/* perform read buffer assignments */
/* we are going to use the Power-up defaults */
/* bit 26 = CPU = buffer 1 */
/* bit 27 = PCI bus #0 = buffer 0 */
/* bit 28 = PCI bus #1 = buffer 0 */
/* bit 29 = MPSC = buffer 0 */
/* bit 30 = IDMA = buffer 0 */
/* bit 31 = Gigabit = buffer 0 */
sdram_config_reg = sdram_config_reg | BIT26;
/* sdram_config_reg = sdram_config_reg | 0x58000000; */
/* sdram_config_reg = sdram_config_reg & 0xffffff00; */
/* write the value into the SDRAM configuration register */
GT_REG_WRITE (SDRAM_CONFIG, sdram_config_reg);
debug
("OOOOOOOOO sdram_conf 0x1400: %08x\n",
GTREGREAD (SDRAM_CONFIG));
/* SDRAM open pages control keep open as much as I can */
GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0);
debug
("sdram_open_pages_controll 0x1414: %08x\n",
GTREGREAD (SDRAM_OPEN_PAGES_CONTROL));
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
if (tmp == 0)
debug("Core Signals are sync (by HW-Setting)!!!\n");
else
debug
("Core Signals syncs. are bypassed (by HW-Setting)!!!\n");
/* SDRAM set CAS Latency according to SPD information */
switch (info->memoryType) {
case SDRAM:
printf ("### SD-RAM not supported !!!\n");
printf ("Aborting!!!\n");
hang ();
/* ToDo fill SD-RAM if needed !!!!! */
break;
/* Calculate the settings for SDRAM mode and Dunit control low registers */
/* Values set according to technical bulletin TB-92 rev. c */
case DDR:
debug("### SET-CL for DDR-RAM\n");
switch (info->maxClSupported_DDR) {
case DDR_CL_3:
tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x05110051;
else
tmp_dunit_control_low = 0x24110051;
debug
("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x2C1107F2;
else
tmp_dunit_control_low = 0x3C1107d2;
debug
("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_2_5:
tmp_sdram_mode = 0x62; /* CL=2.5 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x25110051;
else
tmp_dunit_control_low = 0x24110051;
debug
("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
printf ("CL = 2.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
printf ("Aborting!!!\n");
hang ();
} else
tmp_dunit_control_low = 0x1B1107d2;
debug
("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_2:
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x04110051;
else
tmp_dunit_control_low = 0x03110051;
debug
("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
printf ("CL = 2, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
printf ("Aborting!!!\n");
hang ();
} else
tmp_dunit_control_low = 0x3B1107d2;
debug
("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_1_5:
tmp_sdram_mode = 0x52; /* CL=1.5 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x24110051;
else
tmp_dunit_control_low = 0x23110051;
debug
("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
printf ("CL = 1.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
printf ("Aborting!!!\n");
hang ();
} else
tmp_dunit_control_low = 0x1A1107d2;
debug
("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
default:
printf ("Max. CL is out of range %d\n",
info->maxClSupported_DDR);
hang ();
break;
} /* end DDR switch */
break;
} /* end CL switch */
/* Write results of CL detection procedure */
/* set SDRAM mode reg. 0x141c */
GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode);
/* set SDRAM mode SetCommand 0x1418 */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug
("\n*** SDRAM_OPERATION 0x1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
GT_REG_WRITE (D_UNIT_CONTROL_LOW, tmp_dunit_control_low);
/* set SDRAM mode SetCommand 0x1418 */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug
("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n");
}
/*------------------------------------------------------------------------------ */
/* bank parameters */
/* SDRAM address decode register 0x1410 */
/* program this with the default value */
tmp = 0x02; /* power-up default address select decoding value */
debug("drb_size (n*64Mbit): %d\n", info->drb_size);
/* figure out the DRAM chip size */
sdram_chip_size =
(1 << (info->numOfRowAddresses + info->numOfColAddresses));
sdram_chip_size *= info->sdramWidth;
sdram_chip_size *= 4;
debug("computed sdram chip size is %#lx\n", sdram_chip_size);
/* divide sdram chip size by 64 Mbits */
sdram_chip_size = sdram_chip_size / 0x4000000;
switch (sdram_chip_size) {
case 1: /* 64 Mbit */
case 2: /* 128 Mbit */
debug("RAM-Device_size 64Mbit or 128Mbit)\n");
tmp |= (0x00 << 4);
break;
case 4: /* 256 Mbit */
case 8: /* 512 Mbit */
debug("RAM-Device_size 256Mbit or 512Mbit)\n");
tmp |= (0x01 << 4);
break;
case 16: /* 1 Gbit */
case 32: /* 2 Gbit */
debug("RAM-Device_size 1Gbit or 2Gbit)\n");
tmp |= (0x02 << 4);
break;
default:
printf ("Error in dram size calculation\n");
printf ("RAM-Device_size is unsupported\n");
hang ();
}
/* SDRAM address control */
GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp);
debug
("setting up sdram address control (0x1410) with: %08lx \n",
tmp);
/* ------------------------------------------------------------------------------ */
/* same settings for registerd & non-registerd DDR SDRAM */
debug
("setting up sdram_timing_control_low (0x1408) with: %08x \n",
0x11511220);
GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220);
/* ------------------------------------------------------------------------------ */
/* SDRAM configuration */
tmp = GTREGREAD (SDRAM_CONFIG);
if (info->registeredAddrAndControlInputs
|| info->registeredDQMBinputs) {
tmp |= (1 << 17);
debug
("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",
info->registeredAddrAndControlInputs,
info->registeredDQMBinputs);
}
/* Use buffer 1 to return read data to the CPU
* Page 426 MV64360 */
tmp |= (1 << 26);
debug
("Before Buffer assignment - sdram_conf (0x1400): %08x\n",
GTREGREAD (SDRAM_CONFIG));
debug
("After Buffer assignment - sdram_conf (0x1400): %08x\n",
GTREGREAD (SDRAM_CONFIG));
/* SDRAM timing To_do: */
/* ------------------------------------------------------------------------------ */
debug
("setting up sdram_timing_control_high (0x140c) with: %08x \n",
0x9);
GT_REG_WRITE (SDRAM_TIMING_CONTROL_HIGH, 0x9);
debug
("setting up sdram address pads control (0x14c0) with: %08x \n",
0x7d5014a);
GT_REG_WRITE (SDRAM_ADDR_CTRL_PADS_CALIBRATION, 0x7d5014a);
debug
("setting up sdram data pads control (0x14c4) with: %08x \n",
0x7d5014a);
GT_REG_WRITE (SDRAM_DATA_PADS_CALIBRATION, 0x7d5014a);
/* ------------------------------------------------------------------------------ */
/* set the SDRAM configuration for each bank */
/* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
{
i = info->slot;
debug
("\n*** Running a MRS cycle for bank %d ***\n", i);
/* map the bank */
memory_map_bank (i, 0, GB / 4);
/* set SDRAM mode */ /* To_do check it */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
check = GTREGREAD (SDRAM_OPERATION);
debug
("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
check);
/* switch back to normal operation mode */
GT_REG_WRITE (SDRAM_OPERATION, 0);
check = GTREGREAD (SDRAM_OPERATION);
debug
("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
check);
/* unmap the bank */
memory_map_bank (i, 0, 0);
}
return 0;
}
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
long int dram_size (long int *base, long int maxsize)
{
volatile long int *addr, *b = base;
long int cnt, val, save1, save2;
#define STARTVAL (1<<20) /* start test at 1M */
for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
save1 = *addr; /* save contents of addr */
save2 = *b; /* save contents of base */
*addr = cnt; /* write cnt to addr */
*b = 0; /* put null at base */
/* check at base address */
if ((*b) != 0) {
*addr = save1; /* restore *addr */
*b = save2; /* restore *b */
return (0);
}
val = *addr; /* read *addr */
val = *addr; /* read *addr */
*addr = save1;
*b = save2;
if (val != cnt) {
debug
("Found %08x at Address %08x (failure)\n",
(unsigned int) val, (unsigned int) addr);
/* fix boundary condition.. STARTVAL means zero */
if (cnt == STARTVAL / sizeof (long))
cnt = 0;
return (cnt * sizeof (long));
}
}
return maxsize;
}
/* ------------------------------------------------------------------------- */
/* ppcboot interface function to SDRAM init - this is where all the
* controlling logic happens */
phys_size_t initdram (int board_type)
{
int checkbank[4] = {[0 ... 3] = 0 };
ulong realsize, total;
AUX_MEM_DIMM_INFO dimmInfo1;
AUX_MEM_DIMM_INFO dimmInfo2;
int nhr, bank_no;
ulong dest, memSpaceAttr;
/* first, use the SPD to get info about the SDRAM/ DDRRAM */
/* check the NHR bit and skip mem init if it's already done */
nhr = get_hid0 () & (1 << 16);
if (nhr) {
printf ("Skipping SD- DDRRAM setup due to NHR bit being set\n");
} else {
/* DIMM0 */
check_dimm (0, &dimmInfo1);
/* DIMM1 */
check_dimm (1, &dimmInfo2);
memory_map_bank (0, 0, 0);
memory_map_bank (1, 0, 0);
memory_map_bank (2, 0, 0);
memory_map_bank (3, 0, 0);
/* ronen check correct set of DIMMS */
if (dimmInfo1.numOfModuleBanks && dimmInfo2.numOfModuleBanks) {
if (dimmInfo1.errorCheckType !=
dimmInfo2.errorCheckType)
printf ("***WARNNING***!!!! different ECC support of the DIMMS\n");
if (dimmInfo1.maxClSupported_DDR !=
dimmInfo2.maxClSupported_DDR)
printf ("***WARNNING***!!!! different CAL setting of the DIMMS\n");
if (dimmInfo1.registeredAddrAndControlInputs !=
dimmInfo2.registeredAddrAndControlInputs)
printf ("***WARNNING***!!!! different Registration setting of the DIMMS\n");
}
if (dimmInfo1.numOfModuleBanks && setup_sdram (&dimmInfo1)) {
printf ("Setup for DIMM1 failed.\n");
}
if (dimmInfo2.numOfModuleBanks && setup_sdram (&dimmInfo2)) {
printf ("Setup for DIMM2 failed.\n");
}
/* set the NHR bit */
set_hid0 (get_hid0 () | (1 << 16));
}
/* next, size the SDRAM banks */
realsize = total = 0;
if (dimmInfo1.numOfModuleBanks > 0) {
checkbank[0] = 1;
}
if (dimmInfo1.numOfModuleBanks > 1) {
checkbank[1] = 1;
}
if (dimmInfo1.numOfModuleBanks > 2)
printf ("Error, SPD claims DIMM1 has >2 banks\n");
printf ("-- DIMM1 has %d banks\n", dimmInfo1.numOfModuleBanks);
if (dimmInfo2.numOfModuleBanks > 0) {
checkbank[2] = 1;
}
if (dimmInfo2.numOfModuleBanks > 1) {
checkbank[3] = 1;
}
if (dimmInfo2.numOfModuleBanks > 2)
printf ("Error, SPD claims DIMM2 has >2 banks\n");
printf ("-- DIMM2 has %d banks\n", dimmInfo2.numOfModuleBanks);
for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
/* skip over banks that are not populated */
if (!checkbank[bank_no])
continue;
/* ronen - realsize = dram_size((long int *)total, check); */
if (bank_no == 0 || bank_no == 1) {
if (checkbank[1] == 1)
realsize = dimmInfo1.size / 2;
else
realsize = dimmInfo1.size;
}
if (bank_no == 2 || bank_no == 3) {
if (checkbank[3] == 1)
realsize = dimmInfo2.size / 2;
else
realsize = dimmInfo2.size;
}
memory_map_bank (bank_no, total, realsize);
/* ronen - initialize the DRAM for ECC */
#ifdef CONFIG_MV64360_ECC
if ((dimmInfo1.errorCheckType != 0) &&
((dimmInfo2.errorCheckType != 0)
|| (dimmInfo2.numOfModuleBanks == 0))) {
printf ("ECC Initialization of Bank %d:", bank_no);
memSpaceAttr = ((~(BIT0 << bank_no)) & 0xf) << 8;
mvDmaSetMemorySpace (0, 0, memSpaceAttr, total,
realsize);
for (dest = total; dest < total + realsize;
dest += _8M) {
mvDmaTransfer (0, total, dest, _8M,
BIT8 /*DMA_DTL_128BYTES */ |
BIT3 /*DMA_HOLD_SOURCE_ADDR */
|
BIT11
/*DMA_BLOCK_TRANSFER_MODE */ );
while (mvDmaIsChannelActive (0));
}
printf (" PASS\n");
}
#endif
total += realsize;
}
/* ronen- add DRAM conf prints */
switch ((GTREGREAD (0x141c) >> 4) & 0x7) {
case 0x2:
printf ("CAS Latency = 2");
break;
case 0x3:
printf ("CAS Latency = 3");
break;
case 0x5:
printf ("CAS Latency = 1.5");
break;
case 0x6:
printf ("CAS Latency = 2.5");
break;
}
printf (" tRP = %d tRAS = %d tRCD=%d\n",
((GTREGREAD (0x1408) >> 8) & 0xf) + 1,
((GTREGREAD (0x1408) >> 20) & 0xf) + 1,
((GTREGREAD (0x1408) >> 4) & 0xf) + 1);
/* Setup Ethernet DMA Adress window to DRAM Area */
if (total > _256M)
printf ("*** ONLY the first 256MB DRAM memory are used out of the ");
else
printf ("Total SDRAM memory is ");
/* (cause all the 4 BATS are taken) */
return (total);
}
/* ronen- add Idma functions for usage of the ecc dram init. */
/*******************************************************************************
* mvDmaIsChannelActive - Checks if a engine is busy.
********************************************************************************/
int mvDmaIsChannelActive (int engine)
{
ulong data;
data = GTREGREAD (MV64360_DMA_CHANNEL0_CONTROL + 4 * engine);
if (data & BIT14 /*activity status */ ) {
return 1;
}
return 0;
}
/*******************************************************************************
* mvDmaSetMemorySpace - Set a DMA memory window for the DMA's address decoding
* map.
*******************************************************************************/
int mvDmaSetMemorySpace (ulong memSpace,
ulong memSpaceTarget,
ulong memSpaceAttr, ulong baseAddress, ulong size)
{
ulong temp;
/* The base address must be aligned to the size. */
if (baseAddress % size != 0) {
return 0;
}
if (size >= 0x10000 /*64K */ ) {
size &= 0xffff0000;
baseAddress = (baseAddress & 0xffff0000);
/* Set the new attributes */
GT_REG_WRITE (MV64360_DMA_BASE_ADDR_REG0 + memSpace * 8,
(baseAddress | memSpaceTarget | memSpaceAttr));
GT_REG_WRITE ((MV64360_DMA_SIZE_REG0 + memSpace * 8),
(size - 1) & 0xffff0000);
temp = GTREGREAD (MV64360_DMA_BASE_ADDR_ENABLE_REG);
GT_REG_WRITE (DMA_BASE_ADDR_ENABLE_REG,
(temp & ~(BIT0 << memSpace)));
return 1;
}
return 0;
}
/*******************************************************************************
* mvDmaTransfer - Transfer data from sourceAddr to destAddr on one of the 4
* DMA channels.
********************************************************************************/
int mvDmaTransfer (int engine, ulong sourceAddr,
ulong destAddr, ulong numOfBytes, ulong command)
{
ulong engOffReg = 0; /* Engine Offset Register */
if (numOfBytes > 0xffff) {
command = command | BIT31 /*DMA_16M_DESCRIPTOR_MODE */ ;
}
command = command | ((command >> 6) & 0x7);
engOffReg = engine * 4;
GT_REG_WRITE (MV64360_DMA_CHANNEL0_BYTE_COUNT + engOffReg,
numOfBytes);
GT_REG_WRITE (MV64360_DMA_CHANNEL0_SOURCE_ADDR + engOffReg,
sourceAddr);
GT_REG_WRITE (MV64360_DMA_CHANNEL0_DESTINATION_ADDR + engOffReg,
destAddr);
command =
command | BIT12 /*DMA_CHANNEL_ENABLE */ | BIT9
/*DMA_NON_CHAIN_MODE */ ;
/* Activate DMA engine By writting to mvDmaControlRegister */
GT_REG_WRITE (MV64360_DMA_CHANNEL0_CONTROL + engOffReg, command);
return 1;
}
/****************************************************************************************
* SDRAM INIT *
* This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb *
* This procedure fits only the Atlantis *
* *
***************************************************************************************/
/****************************************************************************************
* DFCDL initialize MV643xx Design Considerations *
* *
***************************************************************************************/
int set_dfcdlInit (void)
{
int i;
unsigned int dfcdl_word = 0x391; /* 0x14f; ronen new dfcdl */
for (i = 0; i < 64; i++) {
GT_REG_WRITE (SRAM_DATA0, dfcdl_word);
/* dfcdl_word += 0x41; - ronen new dfcdl */
}
GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */
return (0);
}
|