summaryrefslogtreecommitdiffstats
path: root/drivers/net/fsl-mc/dpio/qbman_portal.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/fsl-mc/dpio/qbman_portal.h')
-rw-r--r--drivers/net/fsl-mc/dpio/qbman_portal.h157
1 files changed, 157 insertions, 0 deletions
diff --git a/drivers/net/fsl-mc/dpio/qbman_portal.h b/drivers/net/fsl-mc/dpio/qbman_portal.h
new file mode 100644
index 0000000000..bb67c3bd06
--- /dev/null
+++ b/drivers/net/fsl-mc/dpio/qbman_portal.h
@@ -0,0 +1,157 @@
+/*
+ * Copyright (C) 2014 Freescale Semiconductor
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include "qbman_private.h"
+#include <fsl-mc/fsl_qbman_portal.h>
+#include <fsl-mc/fsl_dpaa_fd.h>
+
+/* All QBMan command and result structures use this "valid bit" encoding */
+#define QB_VALID_BIT ((uint32_t)0x80)
+
+/* Management command result codes */
+#define QBMAN_MC_RSLT_OK 0xf0
+
+/* --------------------- */
+/* portal data structure */
+/* --------------------- */
+
+struct qbman_swp {
+ const struct qbman_swp_desc *desc;
+ /* The qbman_sys (ie. arch/OS-specific) support code can put anything it
+ * needs in here. */
+ struct qbman_swp_sys sys;
+ /* Management commands */
+ struct {
+#ifdef QBMAN_CHECKING
+ enum swp_mc_check {
+ swp_mc_can_start, /* call __qbman_swp_mc_start() */
+ swp_mc_can_submit, /* call __qbman_swp_mc_submit() */
+ swp_mc_can_poll, /* call __qbman_swp_mc_result() */
+ } check;
+#endif
+ uint32_t valid_bit; /* 0x00 or 0x80 */
+ } mc;
+ /* Push dequeues */
+ uint32_t sdq;
+ /* Volatile dequeues */
+ struct {
+ /* VDQCR supports a "1 deep pipeline", meaning that if you know
+ * the last-submitted command is already executing in the
+ * hardware (as evidenced by at least 1 valid dequeue result),
+ * you can write another dequeue command to the register, the
+ * hardware will start executing it as soon as the
+ * already-executing command terminates. (This minimises latency
+ * and stalls.) With that in mind, this "busy" variable refers
+ * to whether or not a command can be submitted, not whether or
+ * not a previously-submitted command is still executing. In
+ * other words, once proof is seen that the previously-submitted
+ * command is executing, "vdq" is no longer "busy". TODO:
+ * convert this to "atomic_t" so that it is thread-safe (without
+ * locking). */
+ int busy;
+ uint32_t valid_bit; /* 0x00 or 0x80 */
+ /* We need to determine when vdq is no longer busy. This depends
+ * on whether the "busy" (last-submitted) dequeue command is
+ * targetting DQRR or main-memory, and detected is based on the
+ * presence of the dequeue command's "token" showing up in
+ * dequeue entries in DQRR or main-memory (respectively). Debug
+ * builds will, when submitting vdq commands, verify that the
+ * dequeue result location is not already equal to the command's
+ * token value. */
+ struct ldpaa_dq *storage; /* NULL if DQRR */
+ uint32_t token;
+ } vdq;
+ /* DQRR */
+ struct {
+ uint32_t next_idx;
+ uint32_t valid_bit;
+ } dqrr;
+};
+
+/* -------------------------- */
+/* portal management commands */
+/* -------------------------- */
+
+/* Different management commands all use this common base layer of code to issue
+ * commands and poll for results. The first function returns a pointer to where
+ * the caller should fill in their MC command (though they should ignore the
+ * verb byte), the second function commits merges in the caller-supplied command
+ * verb (which should not include the valid-bit) and submits the command to
+ * hardware, and the third function checks for a completed response (returns
+ * non-NULL if only if the response is complete). */
+void *qbman_swp_mc_start(struct qbman_swp *p);
+void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint32_t cmd_verb);
+void *qbman_swp_mc_result(struct qbman_swp *p);
+
+/* Wraps up submit + poll-for-result */
+static inline void *qbman_swp_mc_complete(struct qbman_swp *swp, void *cmd,
+ uint32_t cmd_verb)
+{
+ int loopvar;
+
+ qbman_swp_mc_submit(swp, cmd, cmd_verb);
+ DBG_POLL_START(loopvar);
+ do {
+ DBG_POLL_CHECK(loopvar);
+ cmd = qbman_swp_mc_result(swp);
+ } while (!cmd);
+ return cmd;
+}
+
+/* ------------ */
+/* qb_attr_code */
+/* ------------ */
+
+/* This struct locates a sub-field within a QBMan portal (CENA) cacheline which
+ * is either serving as a configuration command or a query result. The
+ * representation is inherently little-endian, as the indexing of the words is
+ * itself little-endian in nature and layerscape is little endian for anything
+ * that crosses a word boundary too (64-bit fields are the obvious examples).
+ */
+struct qb_attr_code {
+ unsigned int word; /* which uint32_t[] array member encodes the field */
+ unsigned int lsoffset; /* encoding offset from ls-bit */
+ unsigned int width; /* encoding width. (bool must be 1.) */
+};
+
+/* Macros to define codes */
+#define QB_CODE(a, b, c) { a, b, c}
+
+/* decode a field from a cacheline */
+static inline uint32_t qb_attr_code_decode(const struct qb_attr_code *code,
+ const uint32_t *cacheline)
+{
+ return d32_uint32_t(code->lsoffset, code->width, cacheline[code->word]);
+}
+
+/* encode a field to a cacheline */
+static inline void qb_attr_code_encode(const struct qb_attr_code *code,
+ uint32_t *cacheline, uint32_t val)
+{
+ cacheline[code->word] =
+ r32_uint32_t(code->lsoffset, code->width, cacheline[code->word])
+ | e32_uint32_t(code->lsoffset, code->width, val);
+}
+
+/* ---------------------- */
+/* Descriptors/cachelines */
+/* ---------------------- */
+
+/* To avoid needless dynamic allocation, the driver API often gives the caller
+ * a "descriptor" type that the caller can instantiate however they like.
+ * Ultimately though, it is just a cacheline of binary storage (or something
+ * smaller when it is known that the descriptor doesn't need all 64 bytes) for
+ * holding pre-formatted pieces of harware commands. The performance-critical
+ * code can then copy these descriptors directly into hardware command
+ * registers more efficiently than trying to construct/format commands
+ * on-the-fly. The API user sees the descriptor as an array of 32-bit words in
+ * order for the compiler to know its size, but the internal details are not
+ * exposed. The following macro is used within the driver for converting *any*
+ * descriptor pointer to a usable array pointer. The use of a macro (instead of
+ * an inline) is necessary to work with different descriptor types and to work
+ * correctly with const and non-const inputs (and similarly-qualified outputs).
+ */
+#define qb_cl(d) (&(d)->dont_manipulate_directly[0])
OpenPOWER on IntegriCloud