1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
|
/*
* SH RSPI driver
*
* Copyright (C) 2012, 2013 Renesas Solutions Corp.
*
* Based on spi-sh.c:
* Copyright (C) 2011 Renesas Solutions Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/sh_dma.h>
#include <linux/spi/spi.h>
#include <linux/spi/rspi.h>
#define RSPI_SPCR 0x00 /* Control Register */
#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
#define RSPI_SPPCR 0x02 /* Pin Control Register */
#define RSPI_SPSR 0x03 /* Status Register */
#define RSPI_SPDR 0x04 /* Data Register */
#define RSPI_SPSCR 0x08 /* Sequence Control Register */
#define RSPI_SPSSR 0x09 /* Sequence Status Register */
#define RSPI_SPBR 0x0a /* Bit Rate Register */
#define RSPI_SPDCR 0x0b /* Data Control Register */
#define RSPI_SPCKD 0x0c /* Clock Delay Register */
#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
#define RSPI_SPND 0x0e /* Next-Access Delay Register */
#define RSPI_SPCR2 0x0f /* Control Register 2 */
#define RSPI_SPCMD0 0x10 /* Command Register 0 */
#define RSPI_SPCMD1 0x12 /* Command Register 1 */
#define RSPI_SPCMD2 0x14 /* Command Register 2 */
#define RSPI_SPCMD3 0x16 /* Command Register 3 */
#define RSPI_SPCMD4 0x18 /* Command Register 4 */
#define RSPI_SPCMD5 0x1a /* Command Register 5 */
#define RSPI_SPCMD6 0x1c /* Command Register 6 */
#define RSPI_SPCMD7 0x1e /* Command Register 7 */
#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
/*qspi only */
#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
/* SPCR - Control Register */
#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
#define SPCR_SPE 0x40 /* Function Enable */
#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
/* QSPI on R-Car M2 only */
#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
/* SSLP - Slave Select Polarity Register */
#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
#define SPPCR_SPOM 0x04
#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
/* SPSR - Status Register */
#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
#define SPSR_TEND 0x40 /* Transmit End */
#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
#define SPSR_PERF 0x08 /* Parity Error Flag */
#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
#define SPSR_OVRF 0x01 /* Overrun Error Flag */
/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
/* SPDCR - Data Control Register */
#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD SPDCR_SPLW1
#define SPDCR_SPLBYTE SPDCR_SPLW0
#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select */
#define SPDCR_SLSEL1 0x08
#define SPDCR_SLSEL0 0x04
#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select */
#define SPDCR_SPFC1 0x02
#define SPDCR_SPFC0 0x01
#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) */
/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
/* SPCR2 - Control Register 2 */
#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE 0x01 /* Parity Enable */
/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
#define SPCMD_LSBF 0x1000 /* LSB First */
#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
#define SPCMD_SPB_8BIT 0x0000 /* qspi only */
#define SPCMD_SPB_16BIT 0x0100
#define SPCMD_SPB_20BIT 0x0000
#define SPCMD_SPB_24BIT 0x0100
#define SPCMD_SPB_32BIT 0x0200
#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1 0x0040
#define SPCMD_SPIMOD0 0x0020
#define SPCMD_SPIMOD_SINGLE 0
#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
/* SPBFCR - Buffer Control Register */
#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset (qspi only) */
#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset (qspi only) */
#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
#define DUMMY_DATA 0x00
struct rspi_data {
void __iomem *addr;
u32 max_speed_hz;
struct spi_master *master;
wait_queue_head_t wait;
struct clk *clk;
u8 spsr;
u16 spcmd;
int rx_irq, tx_irq;
const struct spi_ops *ops;
/* for dmaengine */
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
unsigned dma_width_16bit:1;
unsigned dma_callbacked:1;
unsigned byte_access:1;
};
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
{
iowrite8(data, rspi->addr + offset);
}
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
{
iowrite16(data, rspi->addr + offset);
}
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
{
iowrite32(data, rspi->addr + offset);
}
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
{
return ioread8(rspi->addr + offset);
}
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
{
return ioread16(rspi->addr + offset);
}
static void rspi_write_data(const struct rspi_data *rspi, u16 data)
{
if (rspi->byte_access)
rspi_write8(rspi, data, RSPI_SPDR);
else /* 16 bit */
rspi_write16(rspi, data, RSPI_SPDR);
}
static u16 rspi_read_data(const struct rspi_data *rspi)
{
if (rspi->byte_access)
return rspi_read8(rspi, RSPI_SPDR);
else /* 16 bit */
return rspi_read16(rspi, RSPI_SPDR);
}
/* optional functions */
struct spi_ops {
int (*set_config_register)(struct rspi_data *rspi, int access_size);
int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer);
};
/*
* functions for RSPI
*/
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
{
int spbr;
/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
rspi_write8(rspi, 0x00, RSPI_SPPCR);
/* Sets transfer bit rate */
spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
/* Disable dummy transmission, set 16-bit word access, 1 frame */
rspi_write8(rspi, 0, RSPI_SPDCR);
rspi->byte_access = 0;
/* Sets RSPCK, SSL, next-access delay value */
rspi_write8(rspi, 0x00, RSPI_SPCKD);
rspi_write8(rspi, 0x00, RSPI_SSLND);
rspi_write8(rspi, 0x00, RSPI_SPND);
/* Sets parity, interrupt mask */
rspi_write8(rspi, 0x00, RSPI_SPCR2);
/* Sets SPCMD */
rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd,
RSPI_SPCMD0);
/* Sets RSPI mode */
rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
return 0;
}
/*
* functions for QSPI
*/
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
{
u16 spcmd;
int spbr;
/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
rspi_write8(rspi, 0x00, RSPI_SPPCR);
/* Sets transfer bit rate */
spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
/* Disable dummy transmission, set byte access */
rspi_write8(rspi, 0, RSPI_SPDCR);
rspi->byte_access = 1;
/* Sets RSPCK, SSL, next-access delay value */
rspi_write8(rspi, 0x00, RSPI_SPCKD);
rspi_write8(rspi, 0x00, RSPI_SSLND);
rspi_write8(rspi, 0x00, RSPI_SPND);
/* Data Length Setting */
if (access_size == 8)
spcmd = SPCMD_SPB_8BIT;
else if (access_size == 16)
spcmd = SPCMD_SPB_16BIT;
else
spcmd = SPCMD_SPB_32BIT;
spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN;
/* Resets transfer data length */
rspi_write32(rspi, 0, QSPI_SPBMUL0);
/* Resets transmit and receive buffer */
rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
/* Sets buffer to allow normal operation */
rspi_write8(rspi, 0x00, QSPI_SPBFCR);
/* Sets SPCMD */
rspi_write16(rspi, spcmd, RSPI_SPCMD0);
/* Enables SPI function in a master mode */
rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
return 0;
}
#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
{
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
{
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}
static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
u8 enable_bit)
{
int ret;
rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
rspi_enable_irq(rspi, enable_bit);
ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
if (ret == 0 && !(rspi->spsr & wait_mask))
return -ETIMEDOUT;
return 0;
}
static int rspi_data_out(struct rspi_data *rspi, u8 data)
{
if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
dev_err(&rspi->master->dev, "transmit timeout\n");
return -ETIMEDOUT;
}
rspi_write_data(rspi, data);
return 0;
}
static int rspi_data_in(struct rspi_data *rspi)
{
u8 data;
if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
dev_err(&rspi->master->dev, "receive timeout\n");
return -ETIMEDOUT;
}
data = rspi_read_data(rspi);
return data;
}
static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
{
int ret;
ret = rspi_data_out(rspi, data);
if (ret < 0)
return ret;
return rspi_data_in(rspi);
}
static void rspi_dma_complete(void *arg)
{
struct rspi_data *rspi = arg;
rspi->dma_callbacked = 1;
wake_up_interruptible(&rspi->wait);
}
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
unsigned len, struct dma_chan *chan,
enum dma_transfer_direction dir)
{
sg_init_table(sg, 1);
sg_set_buf(sg, buf, len);
sg_dma_len(sg) = len;
return dma_map_sg(chan->device->dev, sg, 1, dir);
}
static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
enum dma_transfer_direction dir)
{
dma_unmap_sg(chan->device->dev, sg, 1, dir);
}
static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
{
u16 *dst = buf;
const u8 *src = data;
while (len) {
*dst++ = (u16)(*src++);
len--;
}
}
static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
{
u8 *dst = buf;
const u16 *src = data;
while (len) {
*dst++ = (u8)*src++;
len--;
}
}
static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
struct scatterlist sg;
const void *buf = NULL;
struct dma_async_tx_descriptor *desc;
unsigned int len;
int ret = 0;
if (rspi->dma_width_16bit) {
void *tmp;
/*
* If DMAC bus width is 16-bit, the driver allocates a dummy
* buffer. And, the driver converts original data into the
* DMAC data as the following format:
* original data: 1st byte, 2nd byte ...
* DMAC data: 1st byte, dummy, 2nd byte, dummy ...
*/
len = t->len * 2;
tmp = kmalloc(len, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
buf = tmp;
} else {
len = t->len;
buf = t->tx_buf;
}
if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
ret = -EFAULT;
goto end_nomap;
}
desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
ret = -EIO;
goto end;
}
/*
* DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
* called. So, this driver disables the IRQ while DMA transfer.
*/
disable_irq(rspi->tx_irq);
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
rspi_enable_irq(rspi, SPCR_SPTIE);
rspi->dma_callbacked = 0;
desc->callback = rspi_dma_complete;
desc->callback_param = rspi;
dmaengine_submit(desc);
dma_async_issue_pending(rspi->chan_tx);
ret = wait_event_interruptible_timeout(rspi->wait,
rspi->dma_callbacked, HZ);
if (ret > 0 && rspi->dma_callbacked)
ret = 0;
else if (!ret)
ret = -ETIMEDOUT;
rspi_disable_irq(rspi, SPCR_SPTIE);
enable_irq(rspi->tx_irq);
end:
rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
if (rspi->dma_width_16bit)
kfree(buf);
return ret;
}
static void rspi_receive_init(const struct rspi_data *rspi)
{
u8 spsr;
spsr = rspi_read8(rspi, RSPI_SPSR);
if (spsr & SPSR_SPRF)
rspi_read_data(rspi); /* dummy read */
if (spsr & SPSR_OVRF)
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
RSPI_SPSR);
}
static void qspi_receive_init(const struct rspi_data *rspi)
{
u8 spsr;
spsr = rspi_read8(rspi, RSPI_SPSR);
if (spsr & SPSR_SPRF)
rspi_read_data(rspi); /* dummy read */
rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
rspi_write8(rspi, 0, QSPI_SPBFCR);
}
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
struct scatterlist sg, sg_dummy;
void *dummy = NULL, *rx_buf = NULL;
struct dma_async_tx_descriptor *desc, *desc_dummy;
unsigned int len;
int ret = 0;
if (rspi->dma_width_16bit) {
/*
* If DMAC bus width is 16-bit, the driver allocates a dummy
* buffer. And, finally the driver converts the DMAC data into
* actual data as the following format:
* DMAC data: 1st byte, dummy, 2nd byte, dummy ...
* actual data: 1st byte, 2nd byte ...
*/
len = t->len * 2;
rx_buf = kmalloc(len, GFP_KERNEL);
if (!rx_buf)
return -ENOMEM;
} else {
len = t->len;
rx_buf = t->rx_buf;
}
/* prepare dummy transfer to generate SPI clocks */
dummy = kzalloc(len, GFP_KERNEL);
if (!dummy) {
ret = -ENOMEM;
goto end_nomap;
}
if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
DMA_TO_DEVICE)) {
ret = -EFAULT;
goto end_nomap;
}
desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_dummy) {
ret = -EIO;
goto end_dummy_mapped;
}
/* prepare receive transfer */
if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
DMA_FROM_DEVICE)) {
ret = -EFAULT;
goto end_dummy_mapped;
}
desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
ret = -EIO;
goto end;
}
rspi_receive_init(rspi);
/*
* DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
* called. So, this driver disables the IRQ while DMA transfer.
*/
disable_irq(rspi->tx_irq);
if (rspi->rx_irq != rspi->tx_irq)
disable_irq(rspi->rx_irq);
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
rspi->dma_callbacked = 0;
desc->callback = rspi_dma_complete;
desc->callback_param = rspi;
dmaengine_submit(desc);
dma_async_issue_pending(rspi->chan_rx);
desc_dummy->callback = NULL; /* No callback */
dmaengine_submit(desc_dummy);
dma_async_issue_pending(rspi->chan_tx);
ret = wait_event_interruptible_timeout(rspi->wait,
rspi->dma_callbacked, HZ);
if (ret > 0 && rspi->dma_callbacked)
ret = 0;
else if (!ret)
ret = -ETIMEDOUT;
rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
enable_irq(rspi->tx_irq);
if (rspi->rx_irq != rspi->tx_irq)
enable_irq(rspi->rx_irq);
end:
rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
if (rspi->dma_width_16bit) {
if (!ret)
rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
kfree(rx_buf);
}
kfree(dummy);
return ret;
}
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
{
if (t->tx_buf && rspi->chan_tx)
return 1;
/* If the module receives data by DMAC, it also needs TX DMAC */
if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
return 1;
return 0;
}
static int rspi_transfer_out_in(struct rspi_data *rspi,
struct spi_transfer *xfer)
{
int remain = xfer->len, ret;
const u8 *tx_buf = xfer->tx_buf;
u8 *rx_buf = xfer->rx_buf;
u8 spcr, data;
rspi_receive_init(rspi);
spcr = rspi_read8(rspi, RSPI_SPCR);
if (rx_buf)
spcr &= ~SPCR_TXMD;
else
spcr |= SPCR_TXMD;
rspi_write8(rspi, spcr, RSPI_SPCR);
while (remain > 0) {
data = tx_buf ? *tx_buf++ : DUMMY_DATA;
ret = rspi_data_out(rspi, data);
if (ret < 0)
return ret;
if (rx_buf) {
ret = rspi_data_in(rspi);
if (ret < 0)
return ret;
*rx_buf++ = ret;
}
remain--;
}
/* Wait for the last transmission */
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
return 0;
}
static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct rspi_data *rspi = spi_master_get_devdata(master);
int ret;
if (!rspi_is_dma(rspi, xfer))
return rspi_transfer_out_in(rspi, xfer);
if (xfer->tx_buf) {
ret = rspi_send_dma(rspi, xfer);
if (ret < 0)
return ret;
}
if (xfer->rx_buf)
return rspi_receive_dma(rspi, xfer);
return 0;
}
static int qspi_transfer_out_in(struct rspi_data *rspi,
struct spi_transfer *xfer)
{
int remain = xfer->len, ret;
const u8 *tx_buf = xfer->tx_buf;
u8 *rx_buf = xfer->rx_buf;
u8 data;
qspi_receive_init(rspi);
while (remain > 0) {
data = tx_buf ? *tx_buf++ : DUMMY_DATA;
ret = rspi_data_out_in(rspi, data);
if (ret < 0)
return ret;
if (rx_buf)
*rx_buf++ = ret;
remain--;
}
/* Wait for the last transmission */
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
return 0;
}
static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct rspi_data *rspi = spi_master_get_devdata(master);
return qspi_transfer_out_in(rspi, xfer);
}
static int rspi_setup(struct spi_device *spi)
{
struct rspi_data *rspi = spi_master_get_devdata(spi->master);
rspi->max_speed_hz = spi->max_speed_hz;
rspi->spcmd = SPCMD_SSLKP;
if (spi->mode & SPI_CPOL)
rspi->spcmd |= SPCMD_CPOL;
if (spi->mode & SPI_CPHA)
rspi->spcmd |= SPCMD_CPHA;
set_config_register(rspi, 8);
return 0;
}
static void rspi_cleanup(struct spi_device *spi)
{
}
static int rspi_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct rspi_data *rspi = spi_master_get_devdata(master);
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
return 0;
}
static int rspi_unprepare_message(struct spi_master *master,
struct spi_message *message)
{
struct rspi_data *rspi = spi_master_get_devdata(master);
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
return 0;
}
static irqreturn_t rspi_irq_mux(int irq, void *_sr)
{
struct rspi_data *rspi = _sr;
u8 spsr;
irqreturn_t ret = IRQ_NONE;
u8 disable_irq = 0;
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
if (spsr & SPSR_SPRF)
disable_irq |= SPCR_SPRIE;
if (spsr & SPSR_SPTEF)
disable_irq |= SPCR_SPTIE;
if (disable_irq) {
ret = IRQ_HANDLED;
rspi_disable_irq(rspi, disable_irq);
wake_up(&rspi->wait);
}
return ret;
}
static irqreturn_t rspi_irq_rx(int irq, void *_sr)
{
struct rspi_data *rspi = _sr;
u8 spsr;
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
if (spsr & SPSR_SPRF) {
rspi_disable_irq(rspi, SPCR_SPRIE);
wake_up(&rspi->wait);
return IRQ_HANDLED;
}
return 0;
}
static irqreturn_t rspi_irq_tx(int irq, void *_sr)
{
struct rspi_data *rspi = _sr;
u8 spsr;
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
if (spsr & SPSR_SPTEF) {
rspi_disable_irq(rspi, SPCR_SPTIE);
wake_up(&rspi->wait);
return IRQ_HANDLED;
}
return 0;
}
static int rspi_request_dma(struct rspi_data *rspi,
struct platform_device *pdev)
{
const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dma_cap_mask_t mask;
struct dma_slave_config cfg;
int ret;
if (!res || !rspi_pd)
return 0; /* The driver assumes no error. */
rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
/* If the module receives data by DMAC, it also needs TX DMAC */
if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
(void *)rspi_pd->dma_rx_id);
if (rspi->chan_rx) {
cfg.slave_id = rspi_pd->dma_rx_id;
cfg.direction = DMA_DEV_TO_MEM;
cfg.dst_addr = 0;
cfg.src_addr = res->start + RSPI_SPDR;
ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
if (!ret)
dev_info(&pdev->dev, "Use DMA when rx.\n");
else
return ret;
}
}
if (rspi_pd->dma_tx_id) {
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
(void *)rspi_pd->dma_tx_id);
if (rspi->chan_tx) {
cfg.slave_id = rspi_pd->dma_tx_id;
cfg.direction = DMA_MEM_TO_DEV;
cfg.dst_addr = res->start + RSPI_SPDR;
cfg.src_addr = 0;
ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
if (!ret)
dev_info(&pdev->dev, "Use DMA when tx\n");
else
return ret;
}
}
return 0;
}
static void rspi_release_dma(struct rspi_data *rspi)
{
if (rspi->chan_tx)
dma_release_channel(rspi->chan_tx);
if (rspi->chan_rx)
dma_release_channel(rspi->chan_rx);
}
static int rspi_remove(struct platform_device *pdev)
{
struct rspi_data *rspi = platform_get_drvdata(pdev);
rspi_release_dma(rspi);
clk_disable(rspi->clk);
return 0;
}
static int rspi_request_irq(struct device *dev, unsigned int irq,
irq_handler_t handler, const char *suffix,
void *dev_id)
{
const char *base = dev_name(dev);
size_t len = strlen(base) + strlen(suffix) + 2;
char *name = devm_kzalloc(dev, len, GFP_KERNEL);
if (!name)
return -ENOMEM;
snprintf(name, len, "%s:%s", base, suffix);
return devm_request_irq(dev, irq, handler, 0, name, dev_id);
}
static int rspi_probe(struct platform_device *pdev)
{
struct resource *res;
struct spi_master *master;
struct rspi_data *rspi;
int ret;
char clk_name[16];
const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
const struct spi_ops *ops;
const struct platform_device_id *id_entry = pdev->id_entry;
ops = (struct spi_ops *)id_entry->driver_data;
/* ops parameter check */
if (!ops->set_config_register) {
dev_err(&pdev->dev, "there is no set_config_register\n");
return -ENODEV;
}
master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
if (master == NULL) {
dev_err(&pdev->dev, "spi_alloc_master error.\n");
return -ENOMEM;
}
rspi = spi_master_get_devdata(master);
platform_set_drvdata(pdev, rspi);
rspi->ops = ops;
rspi->master = master;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rspi->addr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rspi->addr)) {
ret = PTR_ERR(rspi->addr);
goto error1;
}
snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
rspi->clk = devm_clk_get(&pdev->dev, clk_name);
if (IS_ERR(rspi->clk)) {
dev_err(&pdev->dev, "cannot get clock\n");
ret = PTR_ERR(rspi->clk);
goto error1;
}
clk_enable(rspi->clk);
init_waitqueue_head(&rspi->wait);
if (rspi_pd && rspi_pd->num_chipselect)
master->num_chipselect = rspi_pd->num_chipselect;
else
master->num_chipselect = 2; /* default */
master->bus_num = pdev->id;
master->setup = rspi_setup;
master->transfer_one = ops->transfer_one;
master->cleanup = rspi_cleanup;
master->prepare_message = rspi_prepare_message;
master->unprepare_message = rspi_unprepare_message;
master->mode_bits = SPI_CPHA | SPI_CPOL;
ret = platform_get_irq_byname(pdev, "rx");
if (ret < 0) {
ret = platform_get_irq_byname(pdev, "mux");
if (ret < 0)
ret = platform_get_irq(pdev, 0);
if (ret >= 0)
rspi->rx_irq = rspi->tx_irq = ret;
} else {
rspi->rx_irq = ret;
ret = platform_get_irq_byname(pdev, "tx");
if (ret >= 0)
rspi->tx_irq = ret;
}
if (ret < 0) {
dev_err(&pdev->dev, "platform_get_irq error\n");
goto error2;
}
if (rspi->rx_irq == rspi->tx_irq) {
/* Single multiplexed interrupt */
ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
"mux", rspi);
} else {
/* Multi-interrupt mode, only SPRI and SPTI are used */
ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
"rx", rspi);
if (!ret)
ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
rspi_irq_tx, "tx", rspi);
}
if (ret < 0) {
dev_err(&pdev->dev, "request_irq error\n");
goto error2;
}
ret = rspi_request_dma(rspi, pdev);
if (ret < 0) {
dev_err(&pdev->dev, "rspi_request_dma failed.\n");
goto error3;
}
ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_master error.\n");
goto error3;
}
dev_info(&pdev->dev, "probed\n");
return 0;
error3:
rspi_release_dma(rspi);
error2:
clk_disable(rspi->clk);
error1:
spi_master_put(master);
return ret;
}
static struct spi_ops rspi_ops = {
.set_config_register = rspi_set_config_register,
.transfer_one = rspi_transfer_one,
};
static struct spi_ops qspi_ops = {
.set_config_register = qspi_set_config_register,
.transfer_one = qspi_transfer_one,
};
static struct platform_device_id spi_driver_ids[] = {
{ "rspi", (kernel_ulong_t)&rspi_ops },
{ "qspi", (kernel_ulong_t)&qspi_ops },
{},
};
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
static struct platform_driver rspi_driver = {
.probe = rspi_probe,
.remove = rspi_remove,
.id_table = spi_driver_ids,
.driver = {
.name = "renesas_spi",
.owner = THIS_MODULE,
},
};
module_platform_driver(rspi_driver);
MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");
|