1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
|
// SPDX-License-Identifier: GPL-2.0
/*
* Nuvoton NPCM7xx SMB Controller driver
*
* Copyright (C) 2018 Nuvoton Technologies tali.perry@nuvoton.com
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk/nuvoton.h>
#include <linux/crc8.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define I2C_VERSION "0.0.3"
enum smb_mode {
SMB_SLAVE = 1,
SMB_MASTER
};
/*
* External SMB Interface driver xfer indication values, which indicate status
* of the bus.
*/
enum smb_state_ind {
SMB_NO_STATUS_IND = 0,
SMB_SLAVE_RCV_IND = 1,
SMB_SLAVE_XMIT_IND = 2,
SMB_SLAVE_XMIT_MISSING_DATA_IND = 3,
SMB_SLAVE_RESTART_IND = 4,
SMB_SLAVE_DONE_IND = 5,
SMB_MASTER_DONE_IND = 6,
SMB_NO_DATA_IND = 7,
SMB_NACK_IND = 8,
SMB_BUS_ERR_IND = 9,
SMB_WAKE_UP_IND = 10,
SMB_MASTER_PEC_ERR_IND = 11,
SMB_BLOCK_BYTES_ERR_IND = 12,
SMB_SLAVE_PEC_ERR_IND = 13,
SMB_SLAVE_RCV_MISSING_DATA_IND = 14,
};
// SMBus Operation type values
enum smb_oper {
SMB_NO_OPER = 0,
SMB_WRITE_OPER = 1,
SMB_READ_OPER = 2
};
// SMBus Bank (FIFO mode)
enum smb_bank {
SMB_BANK_0 = 0,
SMB_BANK_1 = 1
};
// Internal SMB states values (for the SMB module state machine).
enum smb_state {
SMB_DISABLE = 0,
SMB_IDLE,
SMB_MASTER_START,
SMB_SLAVE_MATCH,
SMB_OPER_STARTED,
SMB_REPEATED_START,
SMB_STOP_PENDING
};
// Module supports setting multiple own slave addresses:
enum smb_addr {
SMB_SLAVE_ADDR1 = 0,
SMB_SLAVE_ADDR2,
SMB_SLAVE_ADDR3,
SMB_SLAVE_ADDR4,
SMB_SLAVE_ADDR5,
SMB_SLAVE_ADDR6,
SMB_SLAVE_ADDR7,
SMB_SLAVE_ADDR8,
SMB_SLAVE_ADDR9,
SMB_SLAVE_ADDR10,
SMB_GC_ADDR,
SMB_ARP_ADDR
};
// global regs
static struct regmap *gcr_regmap;
static struct regmap *clk_regmap;
#define NPCM_I2CSEGCTL 0xE4
#define NPCM_SECCNT 0x68
#define NPCM_CNTR25M 0x6C
#define I2CSEGCTL_VAL 0x0333F000
// Common regs
#define NPCM_SMBSDA 0x000
#define NPCM_SMBST 0x002
#define NPCM_SMBCST 0x004
#define NPCM_SMBCTL1 0x006
#define NPCM_SMBADDR1 0x008
#define NPCM_SMBCTL2 0x00A
#define NPCM_SMBADDR2 0x00C
#define NPCM_SMBCTL3 0x00E
#define NPCM_SMBCST2 0x018
#define NPCM_SMBCST3 0x019
#define SMB_VER 0x01F
// BANK 0 regs
#define NPCM_SMBADDR3 0x010
#define NPCM_SMBADDR7 0x011
#define NPCM_SMBADDR4 0x012
#define NPCM_SMBADDR8 0x013
#define NPCM_SMBADDR5 0x014
#define NPCM_SMBADDR9 0x015
#define NPCM_SMBADDR6 0x016
#define NPCM_SMBADDR10 0x017
// SMBADDR array: because the addr regs are sprincled all over the address space
const int NPCM_SMBADDR[10] = {NPCM_SMBADDR1, NPCM_SMBADDR2, NPCM_SMBADDR3,
NPCM_SMBADDR4, NPCM_SMBADDR5, NPCM_SMBADDR6,
NPCM_SMBADDR7, NPCM_SMBADDR8, NPCM_SMBADDR9,
NPCM_SMBADDR10};
#define NPCM_SMBCTL4 0x01A
#define NPCM_SMBCTL5 0x01B
#define NPCM_SMBSCLLT 0x01C // SCL Low Time
#define NPCM_SMBFIF_CTL 0x01D // FIFO Control
#define NPCM_SMBSCLHT 0x01E // SCL High Time
// BANK 1 regs
#define NPCM_SMBFIF_CTS 0x010 // FIFO Control
#define NPCM_SMBTXF_CTL 0x012 // Tx-FIFO Control
#define NPCM_SMBT_OUT 0x014 // Bus T.O.
#define NPCM_SMBPEC 0x016 // PEC Data
#define NPCM_SMBTXF_STS 0x01A // Tx-FIFO Status
#define NPCM_SMBRXF_STS 0x01C // Rx-FIFO Status
#define NPCM_SMBRXF_CTL 0x01E // Rx-FIFO Control
// NPCM_SMBST reg fields
#define NPCM_SMBST_XMIT BIT(0)
#define NPCM_SMBST_MASTER BIT(1)
#define NPCM_SMBST_NMATCH BIT(2)
#define NPCM_SMBST_STASTR BIT(3)
#define NPCM_SMBST_NEGACK BIT(4)
#define NPCM_SMBST_BER BIT(5)
#define NPCM_SMBST_SDAST BIT(6)
#define NPCM_SMBST_SLVSTP BIT(7)
// NPCM_SMBCST reg fields
#define NPCM_SMBCST_BUSY BIT(0)
#define NPCM_SMBCST_BB BIT(1)
#define NPCM_SMBCST_MATCH BIT(2)
#define NPCM_SMBCST_GCMATCH BIT(3)
#define NPCM_SMBCST_TSDA BIT(4)
#define NPCM_SMBCST_TGSCL BIT(5)
#define NPCM_SMBCST_MATCHAF BIT(6)
#define NPCM_SMBCST_ARPMATCH BIT(7)
// NPCM_SMBCTL1 reg fields
#define NPCM_SMBCTL1_START BIT(0)
#define NPCM_SMBCTL1_STOP BIT(1)
#define NPCM_SMBCTL1_INTEN BIT(2)
#define NPCM_SMBCTL1_EOBINTE BIT(3)
#define NPCM_SMBCTL1_ACK BIT(4)
#define NPCM_SMBCTL1_GCMEN BIT(5)
#define NPCM_SMBCTL1_NMINTE BIT(6)
#define NPCM_SMBCTL1_STASTRE BIT(7)
// RW1S fields (inside a RW reg):
#define NPCM_SMBCTL1_RWS_FIELDS (NPCM_SMBCTL1_START | NPCM_SMBCTL1_STOP | \
NPCM_SMBCTL1_ACK)
// NPCM_SMBADDR reg fields
#define NPCM_SMBADDR_ADDR GENMASK(6, 0)
#define NPCM_SMBADDR_SAEN BIT(7)
// NPCM_SMBCTL2 reg fields
#define SMBCTL2_ENABLE BIT(0)
#define SMBCTL2_SCLFRQ6_0 GENMASK(7, 1)
// NPCM_SMBCTL3 reg fields
#define SMBCTL3_SCLFRQ8_7 GENMASK(1, 0)
#define SMBCTL3_ARPMEN BIT(2)
#define SMBCTL3_IDL_START BIT(3)
#define SMBCTL3_400K_MODE BIT(4)
#define SMBCTL3_BNK_SEL BIT(5)
#define SMBCTL3_SDA_LVL BIT(6)
#define SMBCTL3_SCL_LVL BIT(7)
// NPCM_SMBCST2 reg fields
#define NPCM_SMBCST2_MATCHA1F BIT(0)
#define NPCM_SMBCST2_MATCHA2F BIT(1)
#define NPCM_SMBCST2_MATCHA3F BIT(2)
#define NPCM_SMBCST2_MATCHA4F BIT(3)
#define NPCM_SMBCST2_MATCHA5F BIT(4)
#define NPCM_SMBCST2_MATCHA6F BIT(5)
#define NPCM_SMBCST2_MATCHA7F BIT(5)
#define NPCM_SMBCST2_INTSTS BIT(7)
// NPCM_SMBCST3 reg fields
#define NPCM_SMBCST3_MATCHA8F BIT(0)
#define NPCM_SMBCST3_MATCHA9F BIT(1)
#define NPCM_SMBCST3_MATCHA10F BIT(2)
#define NPCM_SMBCST3_EO_BUSY BIT(7)
// NPCM_SMBCTL4 reg fields
#define SMBCTL4_HLDT GENMASK(5, 0)
#define SMBCTL4_LVL_WE BIT(7)
// NPCM_SMBCTL5 reg fields
#define SMBCTL5_DBNCT GENMASK(3, 0)
// NPCM_SMBFIF_CTS reg fields
#define NPCM_SMBFIF_CTS_RXF_TXE BIT(1)
#define NPCM_SMBFIF_CTS_RFTE_IE BIT(3)
#define NPCM_SMBFIF_CTS_CLR_FIFO BIT(6)
#define NPCM_SMBFIF_CTS_SLVRSTR BIT(7)
// NPCM_SMBTXF_CTL reg fields
#ifdef SMB_CAPABILITY_32B_FIFO
#define NPCM_SMBTXF_CTL_TX_THR GENMASK(5, 0)
#else
#define NPCM_SMBTXF_CTL_TX_THR GENMASK(4, 0)
#endif
#define NPCM_SMBTXF_CTL_THR_TXIE BIT(6)
// NPCM_SMBT_OUT reg fields
#define NPCM_SMBT_OUT_TO_CKDIV GENMASK(5, 0)
#define NPCM_SMBT_OUT_T_OUTIE BIT(6)
#define NPCM_SMBT_OUT_T_OUTST BIT(7)
// NPCM_SMBTXF_STS reg fields
#ifdef SMB_CAPABILITY_32B_FIFO
#define NPCM_SMBTXF_STS_TX_BYTES GENMASK(5, 0)
#else
#define NPCM_SMBTXF_STS_TX_BYTES GENMASK(4, 0)
#endif
#define NPCM_SMBTXF_STS_TX_THST BIT(6)
// NPCM_SMBRXF_STS reg fields
#ifdef SMB_CAPABILITY_32B_FIFO
#define NPCM_SMBRXF_STS_RX_BYTES GENMASK(5, 0)
#else
#define NPCM_SMBRXF_STS_RX_BYTES GENMASK(4, 0)
#endif
#define NPCM_SMBRXF_STS_RX_THST BIT(6)
// NPCM_SMBFIF_CTL reg fields
#define NPCM_SMBFIF_CTL_FIFO_EN BIT(4)
// NPCM_SMBRXF_CTL reg fields
// Note: on the next HW version of this module, this HW is about to switch to
// 32 bytes FIFO. This size will be set using a config.
// on current version 16 bytes FIFO is set using a define
#ifdef SMB_CAPABILITY_32B_FIFO
#define NPCM_SMBRXF_CTL_RX_THR GENMASK(5, 0)
#define NPCM_SMBRXF_CTL_THR_RXIE BIT(6)
#define NPCM_SMBRXF_CTL_LAST_PEC BIT(7)
#define SMBUS_FIFO_SIZE 32
#else
#define NPCM_SMBRXF_CTL_RX_THR GENMASK(4, 0)
#define NPCM_SMBRXF_CTL_LAST_PEC BIT(5)
#define NPCM_SMBRXF_CTL_THR_RXIE BIT(6)
#define SMBUS_FIFO_SIZE 16
#endif
// SMB_VER reg fields
#define SMB_VER_VERSION GENMASK(6, 0)
#define SMB_VER_FIFO_EN BIT(7)
// stall/stuck timeout
const unsigned int DEFAULT_STALL_COUNT = 25;
// Data abort timeout
const unsigned int ABORT_TIMEOUT = 1000;
// SMBus spec. values in KHZ
const unsigned int SMBUS_FREQ_MIN = 10;
const unsigned int SMBUS_FREQ_MAX = 1000;
const unsigned int SMBUS_FREQ_100KHZ = 100;
const unsigned int SMBUS_FREQ_400KHZ = 400;
const unsigned int SMBUS_FREQ_1MHZ = 1000;
// SCLFRQ min/max field values
const unsigned int SCLFRQ_MIN = 10;
const unsigned int SCLFRQ_MAX = 511;
// SCLFRQ field position
#define SCLFRQ_0_TO_6 GENMASK(6, 0)
#define SCLFRQ_7_TO_8 GENMASK(8, 7)
// SMB Maximum Retry Trials (on Bus Arbitration Loss)
const unsigned int SMB_RETRY_MAX_COUNT = 2;
const unsigned int SMB_NUM_OF_ADDR = 10;
// for logging:
#define NPCM_I2C_EVENT_START BIT(0)
#define NPCM_I2C_EVENT_STOP BIT(1)
#define NPCM_I2C_EVENT_ABORT BIT(2)
#define NPCM_I2C_EVENT_WRITE BIT(3)
#define NPCM_I2C_EVENT_READ BIT(4)
#define NPCM_I2C_EVENT_BER BIT(5)
#define NPCM_I2C_EVENT_NACK BIT(6)
#define NPCM_I2C_EVENT_TO BIT(7)
#define NPCM_I2C_EVENT_EOB BIT(8)
#define NPCM_I2C_EVENT_LOG(event) (bus->event_log |= event)
#define SMB_RECOVERY_SUPPORT
// slave mode: if end device reads more data than available, ask issuer or
// request for more data:
#define SMB_WRAP_AROUND_BUFFER
// Status of one SMBus module
struct npcm_i2c {
struct i2c_adapter adap;
struct device *dev;
unsigned char __iomem *reg;
spinlock_t lock; /* IRQ synchronization */
struct completion cmd_complete;
int irq;
int cmd_err;
struct i2c_msg *msgs;
int msgs_num;
int num;
u32 apb_clk;
enum smb_state state;
enum smb_oper operation;
enum smb_mode master_or_slave;
enum smb_state_ind stop_ind;
u8 dest_addr;
u8 *rd_buf;
u16 rd_size;
u16 rd_ind;
u8 *wr_buf;
u16 wr_size;
u16 wr_ind;
bool fifo_use;
u8 threshold_fifo;
// PEC bit mask per slave address.
// 1: use PEC for this address,
// 0: do not use PEC for this address
u16 PEC_mask;
bool PEC_use;
u8 crc_data;
bool read_block_use;
u8 retry_count;
u8 int_cnt;
u32 event_log;
u32 clk_period_us;
u32 int_time_stamp[2];
};
static inline void _npcm7xx_get_time_stamp(u32 *time_quad0, u32 *time_quad1)
{
u32 seconds, seconds_last;
u32 ref_clock;
regmap_read(clk_regmap, NPCM_SECCNT, &seconds_last);
do {
regmap_read(clk_regmap, NPCM_SECCNT, &seconds);
regmap_read(clk_regmap, NPCM_CNTR25M, &ref_clock);
regmap_read(clk_regmap, NPCM_SECCNT, &seconds_last);
} while (seconds_last != seconds);
*time_quad0 = ref_clock;
*time_quad1 = seconds;
}
#define EXT_CLOCK_FREQUENCY_MHZ 25
#define CNTR25M_ACCURECY EXT_CLOCK_FREQUENCY_MHZ // minimum accurecy
// Function: _npcm7xx_delay_relative
// Parameters:
// us_delay - number of microseconds to delay since t0_time.
// if zero: no delay.
//
// t0_time - start time , to measure time from.
// get a time stamp, delay us_delay from it. If us_delay has already passed
// since the time stamp , then no delay is executed. returns the time elapsed
// since t0_time
static inline u32 _npcm7xx_delay_relative(u32 us_delay, u32 t0_time0,
u32 t0_time1)
{
u32 t1_time_0, t1_time_1;
u32 time_elapsed;
u32 minimum_delay = (us_delay * EXT_CLOCK_FREQUENCY_MHZ)
+ CNTR25M_ACCURECY;
// this is equivalent to microSec/0.64 + minimal tic length.
do {
_npcm7xx_get_time_stamp(&t1_time_0, &t1_time_1);
time_elapsed = ((EXT_CLOCK_FREQUENCY_MHZ * 1000000) *
(t1_time_1 - t0_time1)) +
(t1_time_0 - t0_time0);
} while (time_elapsed < minimum_delay);
// return elapsed time
return (u32)(time_elapsed / EXT_CLOCK_FREQUENCY_MHZ);
}
static inline void npcm_smb_select_bank(struct npcm_i2c *bus,
enum smb_bank bank)
{
if (bus->fifo_use)
iowrite8((ioread8(bus->reg + NPCM_SMBCTL3) & ~SMBCTL3_BNK_SEL) |
FIELD_PREP(SMBCTL3_BNK_SEL, bank),
bus->reg + NPCM_SMBCTL3);
}
DECLARE_CRC8_TABLE(npcm7xx_crc8);
static u8 npcm_smb_calc_crc8(u8 crc_data, u8 data)
{
crc_data = crc8(npcm7xx_crc8, &data, 1, crc_data);
return crc_data;
}
static void npcm_smb_calc_PEC(struct npcm_i2c *bus, u8 data)
{
if (bus->PEC_use)
bus->crc_data = npcm_smb_calc_crc8(bus->crc_data, data);
}
static inline void npcm_smb_wr_byte(struct npcm_i2c *bus, u8 data)
{
iowrite8(data, bus->reg + NPCM_SMBSDA);
npcm_smb_calc_PEC(bus, data);
}
static inline void npcm_smb_rd_byte(struct npcm_i2c *bus, u8 *data)
{
*data = ioread8(bus->reg + NPCM_SMBSDA);
npcm_smb_calc_PEC(bus, *data);
}
static inline u8 npcm_smb_get_PEC(struct npcm_i2c *bus)
{
if (bus->PEC_use)
return bus->crc_data;
else
return 0;
}
static inline void npcm_smb_write_PEC(struct npcm_i2c *bus)
{
if (bus->PEC_use) {
// get PAC value and write to the bus:
npcm_smb_wr_byte(bus, npcm_smb_get_PEC(bus));
}
}
//
// NPCM7XX SMB module allows writing to SCL and SDA pins directly
// without the need to change muxing of pins.
// This feature will be used for recovery sequences i.e.
//
static void npcm_smb_set_SCL(struct i2c_adapter *_adap, int level)
{
#ifdef SMB_CAPABILITY_FORCE_SCL_SDA
unsigned long flags;
struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
// Select Bank 0 to access NPCM_SMBCTL4
spin_lock_irqsave(&bus->lock, flags);
npcm_smb_select_bank(bus, SMB_BANK_0);
// Set SCL_LVL, SDA_LVL bits as Read/Write (R/W)
iowrite8(ioread8(bus->reg + NPCM_SMBCTL4) | SMBCTL4_LVL_WE,
bus->reg + NPCM_SMBCTL4);
// Set level
iowrite8((ioread8(bus->reg + NPCM_SMBCTL3)
& ~SMBCTL3_SCL_LVL) | FIELD_PREP(SMBCTL3_SCL_LVL,
level), bus->reg + NPCM_SMBCTL3);
// Set SCL_LVL, SDA_LVL bits as Read Only (RO)
iowrite8(ioread8(bus->reg + NPCM_SMBCTL4)
& ~SMBCTL4_LVL_WE, bus->reg + NPCM_SMBCTL4);
// Return to Bank 1
npcm_smb_select_bank(bus, SMB_BANK_1);
spin_unlock_irqrestore(&bus->lock, flags);
#endif
}
static int npcm_smb_get_SCL(struct i2c_adapter *_adap)
{
unsigned long flags;
unsigned int ret = 0;
struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
// Select Bank 0 to access NPCM_SMBCTL4
spin_lock_irqsave(&bus->lock, flags);
npcm_smb_select_bank(bus, SMB_BANK_0);
// Get SCL level
ret = FIELD_GET(SMBCTL3_SCL_LVL, ioread8(bus->reg + NPCM_SMBCTL3));
// Return to Bank 1
npcm_smb_select_bank(bus, SMB_BANK_1);
spin_unlock_irqrestore(&bus->lock, flags);
return ret;
}
static int npcm_smb_get_SDA(struct i2c_adapter *_adap)
{
unsigned long flags;
unsigned int ret = 0;
struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
// Select Bank 0 to access NPCM_SMBCTL4
spin_lock_irqsave(&bus->lock, flags);
npcm_smb_select_bank(bus, SMB_BANK_0);
// Get SDA level
ret = FIELD_GET(SMBCTL3_SDA_LVL, ioread8(bus->reg + NPCM_SMBCTL3));
// Return to Bank 1
npcm_smb_select_bank(bus, SMB_BANK_1);
spin_unlock_irqrestore(&bus->lock, flags);
return ret;
}
static inline u16 npcm_smb_get_index(struct npcm_i2c *bus)
{
u16 index = 0;
if (bus->operation == SMB_READ_OPER)
index = bus->rd_ind;
else if (bus->operation == SMB_WRITE_OPER)
index = bus->wr_ind;
return index;
}
// quick protocol:
static inline bool npcm_smb_is_quick(struct npcm_i2c *bus)
{
if (bus->wr_size == 0 && bus->rd_size == 0)
return true;
return false;
}
static void npcm_smb_disable(struct npcm_i2c *bus)
{
int i;
// select bank 0 for SMB addresses
npcm_smb_select_bank(bus, SMB_BANK_0);
// Slave Addresses Removal
for (i = SMB_SLAVE_ADDR1; i < SMB_NUM_OF_ADDR; i++)
iowrite8(0, bus->reg + NPCM_SMBADDR[i]);
// select bank 0 for SMB addresses
npcm_smb_select_bank(bus, SMB_BANK_1);
// Disable module.
iowrite8(ioread8(bus->reg + NPCM_SMBCTL2) & ~SMBCTL2_ENABLE,
bus->reg + NPCM_SMBCTL2);
// Set module disable
bus->state = SMB_DISABLE;
}
static void npcm_smb_enable(struct npcm_i2c *bus)
{
iowrite8((ioread8(bus->reg + NPCM_SMBCTL2) | SMBCTL2_ENABLE),
bus->reg + NPCM_SMBCTL2);
}
// enable\disable end of busy (EOB) interrupt
static inline void npcm_smb_eob_int(struct npcm_i2c *bus, bool enable)
{
if (enable) {
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) |
NPCM_SMBCTL1_EOBINTE) & ~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
} else {
iowrite8(ioread8(bus->reg + NPCM_SMBCTL1) &
~NPCM_SMBCTL1_EOBINTE & ~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
// Clear EO_BUSY pending bit:
iowrite8(ioread8(bus->reg + NPCM_SMBCST3) |
NPCM_SMBCST3_EO_BUSY, bus->reg + NPCM_SMBCST3);
}
}
static inline bool npcm_smb_tx_fifo_full(struct npcm_i2c *bus)
{
// check if TX FIFO full:
return (bool)FIELD_GET(NPCM_SMBTXF_STS_TX_THST,
ioread8(bus->reg + NPCM_SMBTXF_STS));
}
static inline bool npcm_smb_rx_fifo_full(struct npcm_i2c *bus)
{
// check if RX FIFO full:
return (bool)FIELD_GET(NPCM_SMBRXF_STS_RX_THST,
ioread8(bus->reg + NPCM_SMBRXF_STS));
}
static inline void npcm_smb_clear_tx_fifo(struct npcm_i2c *bus)
{
// clear TX FIFO:
iowrite8(ioread8(bus->reg + NPCM_SMBTXF_STS) |
NPCM_SMBTXF_STS_TX_THST,
bus->reg + NPCM_SMBTXF_STS);
}
static inline void npcm_smb_clear_rx_fifo(struct npcm_i2c *bus)
{
// clear RX FIFO:
iowrite8(ioread8(bus->reg + NPCM_SMBRXF_STS) |
NPCM_SMBRXF_STS_RX_THST,
bus->reg + NPCM_SMBRXF_STS);
}
static void npcm_smb_int_enable(struct npcm_i2c *bus, bool enable)
{
if (enable)
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) |
NPCM_SMBCTL1_INTEN) & ~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
else
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) &
~NPCM_SMBCTL1_INTEN) & ~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
}
static inline void npcm_smb_master_start(struct npcm_i2c *bus)
{
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_START);
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) | NPCM_SMBCTL1_START) &
~(NPCM_SMBCTL1_STOP | NPCM_SMBCTL1_ACK),
bus->reg + NPCM_SMBCTL1);
}
static inline void npcm_smb_master_stop(struct npcm_i2c *bus)
{
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_STOP);
// override HW issue: SMBus may fail to supply stop condition in Master
// Write operation.
// Need to delay at least 5 us from the last int, before issueing a stop
_npcm7xx_delay_relative(5, bus->int_time_stamp[0],
bus->int_time_stamp[1]);
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) | NPCM_SMBCTL1_STOP) &
~(NPCM_SMBCTL1_START | NPCM_SMBCTL1_ACK),
bus->reg + NPCM_SMBCTL1);
if (bus->fifo_use) {
npcm_smb_select_bank(bus, SMB_BANK_1);
if (bus->operation == SMB_READ_OPER)
npcm_smb_clear_rx_fifo(bus);
else
npcm_smb_clear_tx_fifo(bus);
iowrite8(ioread8(bus->reg + NPCM_SMBFIF_CTS) |
NPCM_SMBFIF_CTS_SLVRSTR |
NPCM_SMBFIF_CTS_RXF_TXE,
bus->reg + NPCM_SMBFIF_CTS);
iowrite8(0, bus->reg + NPCM_SMBTXF_CTL);
}
}
static inline void npcm_smb_abort_data(struct npcm_i2c *bus)
{
unsigned int timeout = ABORT_TIMEOUT;
u8 data;
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_ABORT);
// Generate a STOP condition
npcm_smb_master_stop(bus);
npcm_smb_rd_byte(bus, &data);
// Clear NEGACK, STASTR and BER bits
iowrite8(NPCM_SMBST_STASTR | NPCM_SMBST_NEGACK |
NPCM_SMBST_BER, bus->reg + NPCM_SMBST);
// Wait till STOP condition is generated
while (FIELD_GET(NPCM_SMBCTL1_STOP, ioread8(bus->reg + NPCM_SMBCTL1))) {
timeout--;
if (!FIELD_GET(NPCM_SMBCTL1_STOP,
ioread8(bus->reg + NPCM_SMBCTL1)))
break;
if (timeout <= 1) {
dev_err(bus->dev, "%s, abort timeout!\n", __func__);
break;
}
}
}
static inline void npcm_smb_stall_after_start(struct npcm_i2c *bus, bool stall)
{
if (stall)
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) |
NPCM_SMBCTL1_STASTRE) & ~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
else
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) &
~NPCM_SMBCTL1_STASTRE) & ~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
}
static inline void npcm_smb_nack(struct npcm_i2c *bus)
{
if (bus->rd_ind < (bus->rd_size - 1))
dev_info(bus->dev,
"\tNACK err bus%d, SA=0x%x, rd(%d\%d), op=%d st=%d\n",
bus->num, bus->dest_addr, bus->rd_ind, bus->rd_size,
bus->operation, bus->state);
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) | NPCM_SMBCTL1_ACK) &
~(NPCM_SMBCTL1_STOP | NPCM_SMBCTL1_START),
bus->reg + NPCM_SMBCTL1);
}
static void npcm_smb_reset(struct npcm_i2c *bus)
{
// Save NPCM_SMBCTL1 relevant bits. It is being cleared when the
// module is disabled
u8 smbctl1 = ioread8(bus->reg + NPCM_SMBCTL1) & (NPCM_SMBCTL1_GCMEN
| NPCM_SMBCTL1_INTEN
| NPCM_SMBCTL1_NMINTE);
// Disable the SMB module
iowrite8((ioread8(bus->reg + NPCM_SMBCTL2) & ~SMBCTL2_ENABLE),
bus->reg + NPCM_SMBCTL2);
// Enable the SMB module
npcm_smb_enable(bus);
// Restore NPCM_SMBCTL1 status
iowrite8(smbctl1 & ~NPCM_SMBCTL1_RWS_FIELDS, bus->reg + NPCM_SMBCTL1);
// Reset driver status
bus->state = SMB_IDLE;
//
// Configure FIFO disabled mode so slave will not use fifo
// (master will set it on if supported)
iowrite8(ioread8(bus->reg + NPCM_SMBFIF_CTL) &
~NPCM_SMBFIF_CTL_FIFO_EN,
bus->reg + NPCM_SMBFIF_CTL);
bus->fifo_use = false;
}
static inline bool npcm_smb_is_master(struct npcm_i2c *bus)
{
return (bool)FIELD_GET(NPCM_SMBST_MASTER,
ioread8(bus->reg + NPCM_SMBST));
}
static int npcm_smb_master_abort(struct npcm_i2c *bus)
{
int ret = -(EIO);
// Only current master is allowed to issue Stop Condition
if (npcm_smb_is_master(bus)) {
npcm_smb_abort_data(bus);
ret = 0;
}
npcm_smb_reset(bus);
return ret;
}
static void npcm_smb_callback(struct npcm_i2c *bus,
enum smb_state_ind op_status, u16 info)
{
struct i2c_msg *msgs = bus->msgs;
int msgs_num = bus->msgs_num;
switch (op_status) {
case SMB_MASTER_DONE_IND:
// Master transaction finished and all transmit bytes were sent
// info: number of bytes actually received after the Master
// receive operation (if Master didn't issue receive it
// should be 0)
// Notify that not all data was received on Master or Slave
// info:
// on receive: number of actual bytes received
// when PEC is used even if 'info' is the expected number
// of bytes, it means that PEC error occurred.
{
if (msgs[0].flags & I2C_M_RD)
msgs[0].len = info;
else if (msgs_num == 2 && msgs[1].flags & I2C_M_RD)
msgs[1].len = info;
bus->cmd_err = 0;
complete(&bus->cmd_complete);
}
break;
case SMB_NO_DATA_IND:
// Notify that not all data was received on Master or Slave
// info:
//on receive: number of actual bytes received
// when PEC is used even if 'info' is the expected number
// of bytes,it means that PEC error occurred.
{
if (msgs[0].flags & I2C_M_RD)
msgs[0].len = info;
else if (msgs_num == 2 && msgs[1].flags & I2C_M_RD)
msgs[1].len = info;
bus->cmd_err = -EFAULT;
complete(&bus->cmd_complete);
}
break;
case SMB_NACK_IND:
// MASTER transmit got a NAK before transmitting all bytes
// info: number of transmitted bytes
bus->cmd_err = -EAGAIN;
complete(&bus->cmd_complete);
break;
case SMB_BUS_ERR_IND:
// Bus error
// info: has no meaning
bus->cmd_err = -EIO;
complete(&bus->cmd_complete);
break;
case SMB_WAKE_UP_IND:
// SMBus wake up
// info: has no meaning
break;
default:
break;
}
}
static u32 npcm_smb_get_fifo_fullness(struct npcm_i2c *bus)
{
if (bus->operation == SMB_WRITE_OPER)
return FIELD_GET(NPCM_SMBTXF_STS_TX_BYTES,
ioread8(bus->reg + NPCM_SMBTXF_STS));
else if (bus->operation == SMB_READ_OPER)
return FIELD_GET(NPCM_SMBRXF_STS_RX_BYTES,
ioread8(bus->reg + NPCM_SMBRXF_STS));
return 0;
}
static void npcm_smb_write_to_fifo(struct npcm_i2c *bus, u16 max_bytes_to_send)
{
// Fill the FIFO, while the FIFO is not full and there are more bytes to
// write
while ((max_bytes_to_send--) && (SMBUS_FIFO_SIZE -
npcm_smb_get_fifo_fullness(bus))) {
// write the data
if (bus->wr_ind < bus->wr_size) {
if (bus->PEC_use &&
(bus->wr_ind + 1 == bus->wr_size) &&
(bus->rd_size == 0 ||
bus->master_or_slave == SMB_SLAVE)) {
// Master send PEC in write protocol, Slave send
// PEC in read protocol.
npcm_smb_write_PEC(bus);
bus->wr_ind++;
} else {
npcm_smb_wr_byte(bus,
bus->wr_buf[bus->wr_ind++]);
}
} else {
#ifdef SMB_WRAP_AROUND_BUFFER
// We're out of bytes. Ask the higher level for
// more bytes. Let it know that driver
// used all its' bytes
npcm_smb_clear_tx_fifo(bus);
// Reset state for the remaining bytes transaction
bus->state = SMB_SLAVE_MATCH;
// Notify upper layer of transaction completion
npcm_smb_callback(bus, SMB_SLAVE_XMIT_MISSING_DATA_IND,
bus->wr_ind);
iowrite8(NPCM_SMBST_SDAST, bus->reg + NPCM_SMBST);
#else
npcm_smb_wr_byte(bus, 0xFF);
#endif
}
}
}
// configure the FIFO before using it. If nread is -1 RX FIFO will not be
// configured. same for nwrite
static void npcm_smb_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
{
if (!bus->fifo_use)
return;
npcm_smb_select_bank(bus, SMB_BANK_1);
npcm_smb_clear_tx_fifo(bus);
npcm_smb_clear_rx_fifo(bus);
// configure RX FIFO
if (nread > 0) {
// clear LAST bit:
iowrite8(ioread8(bus->reg + NPCM_SMBRXF_CTL) &
(~NPCM_SMBRXF_CTL_LAST_PEC),
bus->reg + NPCM_SMBRXF_CTL);
if (nread > SMBUS_FIFO_SIZE)
iowrite8((ioread8(bus->reg + NPCM_SMBRXF_CTL) &
~NPCM_SMBRXF_CTL_RX_THR)
| FIELD_PREP(NPCM_SMBRXF_CTL_RX_THR,
SMBUS_FIFO_SIZE), bus->reg + NPCM_SMBRXF_CTL);
else
iowrite8((ioread8(bus->reg + NPCM_SMBRXF_CTL) &
~NPCM_SMBRXF_CTL_RX_THR) |
FIELD_PREP(NPCM_SMBRXF_CTL_RX_THR,
(u8)(nread)),
bus->reg + NPCM_SMBRXF_CTL);
if (nread <= SMBUS_FIFO_SIZE && !bus->read_block_use)
iowrite8(ioread8(bus->reg + NPCM_SMBRXF_CTL) |
NPCM_SMBRXF_CTL_LAST_PEC,
bus->reg + NPCM_SMBRXF_CTL);
}
// configure TX FIFO
if (nwrite > 0) {
if (nwrite > SMBUS_FIFO_SIZE)
// data to send is more then FIFO size.
// Configure the FIFO int to be mid of FIFO.
iowrite8(NPCM_SMBTXF_CTL_THR_TXIE |
(SMBUS_FIFO_SIZE / 2),
bus->reg + NPCM_SMBTXF_CTL);
else if (nwrite > (SMBUS_FIFO_SIZE / 2) &&
bus->wr_ind != 0)
// wr_ind != 0 means that this is not the first
// write. since int is in the mid of FIFO, only
// half of the fifo is empty.
// Continue to configure the FIFO int to be mid
// of FIFO.
iowrite8(NPCM_SMBTXF_CTL_THR_TXIE |
(SMBUS_FIFO_SIZE / 2),
bus->reg + NPCM_SMBTXF_CTL);
else
// This is the either first write (wr_ind = 0)
// and data to send is less or equal to FIFO
// size.
// Or this is the last write and data to send
// is less or equal half FIFO size.
// In both cases disable the FIFO threshold int.
// The next int will happen after the FIFO will
// get empty.
iowrite8(0, bus->reg + NPCM_SMBTXF_CTL);
npcm_smb_clear_tx_fifo(bus);
}
}
static void npcm_smb_read_from_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
{
while (bytes_in_fifo--) {
// Keep read data
u8 data = ioread8(bus->reg + NPCM_SMBSDA);
npcm_smb_calc_PEC(bus, data);
if (bus->rd_ind < bus->rd_size) {
bus->rd_buf[bus->rd_ind++] = data;
if (bus->rd_ind == 1 && bus->read_block_use)
// First byte indicates length in block protocol
bus->rd_size = data;
}
}
}
static void npcm_smb_master_fifo_read(struct npcm_i2c *bus)
{
u16 rcount;
u8 fifo_bytes;
enum smb_state_ind ind = SMB_MASTER_DONE_IND;
rcount = bus->rd_size - bus->rd_ind;
// In order not to change the RX_TRH during transaction (we found that
// this might be problematic if it takes too much time to read the FIFO)
// we read the data in the following way. If the number of bytes to
// read == FIFO Size + C (where C < FIFO Size)then first read C bytes
// and in the next int we read rest of the data.
if (rcount < (2 * SMBUS_FIFO_SIZE) && rcount > SMBUS_FIFO_SIZE)
fifo_bytes = (u8)(rcount - SMBUS_FIFO_SIZE);
else
fifo_bytes = npcm_smb_get_fifo_fullness(bus);
if (rcount - fifo_bytes == 0) {
// last byte is about to be read - end of transaction.
// Stop should be set before reading last byte.
npcm_smb_eob_int(bus, true);
npcm_smb_master_stop(bus);
npcm_smb_read_from_fifo(bus, fifo_bytes);
if (npcm_smb_get_PEC(bus) != 0)
ind = SMB_MASTER_PEC_ERR_IND;
bus->state = SMB_STOP_PENDING;
bus->stop_ind = ind;
} else {
npcm_smb_read_from_fifo(bus, fifo_bytes);
rcount = bus->rd_size - bus->rd_ind;
npcm_smb_set_fifo(bus, rcount, -1);
}
}
static void npcm_smb_int_master_handler_write(struct npcm_i2c *bus)
{
u16 wcount;
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_WRITE);
if (bus->fifo_use)
npcm_smb_clear_tx_fifo(bus);
// Master write operation - last byte handling
if (bus->wr_ind == bus->wr_size) {
if (bus->fifo_use && npcm_smb_get_fifo_fullness(bus) > 0)
// No more bytes to send (to add to the FIFO), however the FIFO is not
// empty yet. It is still in the middle of tx. Currently there's nothing
// to do except for waiting to the end of the tx.
// We will get an int when the FIFO will get empty.
return;
if (bus->rd_size == 0) {
// all bytes have been written, in a pure wr operation
npcm_smb_eob_int(bus, true);
// Issue a STOP condition on the bus
npcm_smb_master_stop(bus);
// Clear SDA Status bit (by writing dummy byte)
npcm_smb_wr_byte(bus, 0xFF);
bus->state = SMB_STOP_PENDING;
bus->stop_ind = SMB_MASTER_DONE_IND;
} else {
// last write-byte written on previous int - need to
// restart & send slave address
if (bus->PEC_use && !bus->read_block_use &&
!npcm_smb_is_quick(bus))
// PEC is used but the protocol is not block read
// then we add extra bytes for PEC support
bus->rd_size += 1;
if (bus->fifo_use) {
if (bus->rd_size == 1 || bus->read_block_use) {
// SMBus Block read transaction.
iowrite8(0, bus->reg + NPCM_SMBTXF_CTL);
iowrite8(1, bus->reg + NPCM_SMBRXF_CTL);
}
}
npcm_smb_set_fifo(bus, bus->rd_size, -1);
// Generate (Repeated) Start upon next write to SDA
npcm_smb_master_start(bus);
if (bus->rd_size == 1)
// Receiving one byte only - stall after successful completion of send
// address byte. If we NACK here, and slave doesn't ACK the address, we
// might unintentionally NACK the next multi-byte read
npcm_smb_stall_after_start(bus, true);
// send the slave address in read direction
npcm_smb_wr_byte(bus, bus->dest_addr | 0x1);
// Next int will occur on read
bus->operation = SMB_READ_OPER;
}
} else {
if (bus->PEC_use && !npcm_smb_is_quick(bus))
// extra bytes for PEC support
bus->wr_size += 1;
// write next byte not last byte and not slave address
if (!bus->fifo_use || bus->wr_size == 1) {
if (bus->PEC_use && bus->rd_size == 0 &&
(bus->wr_ind + 1 == bus->wr_size)) {
// Master write protocol to send PEC byte.
npcm_smb_write_PEC(bus);
bus->wr_ind++;
} else {
npcm_smb_wr_byte(bus,
bus->wr_buf[bus->wr_ind++]);
}
} else { // FIFO is used
wcount = bus->wr_size - bus->wr_ind;
npcm_smb_set_fifo(bus, -1, wcount);
npcm_smb_write_to_fifo(bus, wcount);
}
}
}
static void npcm_smb_int_master_handler_read(struct npcm_i2c *bus)
{
u16 block_zero_bytes;
u32 fifo_bytes;
// Master read operation (pure read or following a write operation).
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_READ);
// Initialize number of bytes to include only the first byte (presents
// a case where number of bytes to read is zero); add PEC if applicable
block_zero_bytes = 1;
if (bus->PEC_use)
block_zero_bytes++;
fifo_bytes = FIELD_GET(NPCM_SMBRXF_CTL_RX_THR,
ioread8(bus->reg + NPCM_SMBRXF_CTL));
// Perform master read, distinguishing between last byte and the rest of
// the bytes. The last byte should be read when the clock is stopped
if ((bus->rd_ind < (bus->rd_size - 1)) || bus->fifo_use) {
u8 data;
// byte to be read is not the last one
// Check if byte-before-last is about to be read
if ((bus->rd_ind == (bus->rd_size - 2)) &&
!bus->fifo_use){
// Set nack before reading byte-before-last, so that
// nack will be generated after receive of last byte
npcm_smb_nack(bus);
if (!FIELD_GET(NPCM_SMBST_SDAST,
ioread8(bus->reg + NPCM_SMBST))) {
// No data available - reset state for new xfer
bus->state = SMB_IDLE;
// Notify upper layer of rx completion
npcm_smb_callback(bus, SMB_NO_DATA_IND,
bus->rd_ind);
}
} else if (bus->rd_ind == 0) { //first byte handling:
// in block protocol first byte is the size
if (bus->read_block_use) {
npcm_smb_rd_byte(bus, &data);
// First byte indicates length in block protocol
bus->rd_buf[bus->rd_ind++] = data;
bus->rd_size = data + 1;
if (bus->PEC_use) {
bus->rd_size += 1;
data += 1;
}
if (bus->fifo_use) {
iowrite8(NPCM_SMBFIF_CTS_RXF_TXE |
ioread8(bus->reg +
NPCM_SMBFIF_CTS),
bus->reg + NPCM_SMBFIF_CTS);
// first byte in block protocol
// is zero -> not supported. read at
// least one byte
if (data == 0)
data = 1;
}
npcm_smb_set_fifo(bus, bus->rd_size, -1);
} else {
if (!bus->fifo_use) {
npcm_smb_rd_byte(bus, &data);
bus->rd_buf[bus->rd_ind++] = data;
} else {
npcm_smb_clear_tx_fifo(bus);
npcm_smb_master_fifo_read(bus);
}
}
} else {
if (bus->fifo_use) {
if (bus->rd_size == block_zero_bytes &&
bus->read_block_use) {
npcm_smb_eob_int(bus, true);
npcm_smb_master_stop(bus);
npcm_smb_read_from_fifo(bus,
fifo_bytes);
bus->state = SMB_STOP_PENDING;
bus->stop_ind = SMB_BLOCK_BYTES_ERR_IND;
} else {
npcm_smb_master_fifo_read(bus);
}
} else {
npcm_smb_rd_byte(bus, &data);
bus->rd_buf[bus->rd_ind++] = data;
}
}
} else {
// last byte is about to be read - end of transaction.
// Stop should be set before reading last byte.
u8 data;
enum smb_state_ind ind = SMB_MASTER_DONE_IND;
npcm_smb_eob_int(bus, true);
npcm_smb_master_stop(bus);
npcm_smb_rd_byte(bus, &data);
if (bus->rd_size == block_zero_bytes && bus->read_block_use) {
ind = SMB_BLOCK_BYTES_ERR_IND;
} else {
bus->rd_buf[bus->rd_ind++] = data;
if (npcm_smb_get_PEC(bus) != 0)
ind = SMB_MASTER_PEC_ERR_IND;
}
bus->state = SMB_STOP_PENDING;
bus->stop_ind = ind;
}
}
static void npcm_smb_int_master_handler(struct npcm_i2c *bus)
{
// A negative acknowledge has occurred
if (FIELD_GET(NPCM_SMBST_NEGACK, ioread8(bus->reg + NPCM_SMBST))) {
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_NACK);
if (bus->fifo_use) {
// if there are still untransmitted bytes in TX FIFO
// reduce them from wr_ind
if (bus->operation == SMB_WRITE_OPER)
bus->wr_ind -= npcm_smb_get_fifo_fullness(bus);
// clear the FIFO
iowrite8(NPCM_SMBFIF_CTS_CLR_FIFO,
bus->reg + NPCM_SMBFIF_CTS);
}
// In master write operation, NACK is a problem
// number of bytes sent to master less than required
npcm_smb_master_abort(bus);
bus->state = SMB_IDLE;
// In Master mode, NEGACK should be cleared only after
// generating STOP.
// In such case, the bus is released from stall only after the
// software clears NEGACK bit.
// Then a Stop condition is sent.
iowrite8(NPCM_SMBST_NEGACK, bus->reg + NPCM_SMBST);
npcm_smb_callback(bus, SMB_NACK_IND, bus->wr_ind);
return;
}
// Master mode: a Bus Error has been identified
if (FIELD_GET(NPCM_SMBST_BER, ioread8(bus->reg + NPCM_SMBST))) {
// Check whether bus arbitration or Start or Stop during data
// xfer bus arbitration problem should not result in recovery
if (npcm_smb_is_master(bus)) {
// Only current master is allowed to issue stop
npcm_smb_master_abort(bus);
} else {
// Bus arbitration loss
if (bus->retry_count-- > 0) {
// Perform a retry (generate a start condition)
// as soon as the SMBus is free
iowrite8(NPCM_SMBST_BER, bus->reg + NPCM_SMBST);
npcm_smb_master_start(bus);
return;
}
}
iowrite8(NPCM_SMBST_BER, bus->reg + NPCM_SMBST);
bus->state = SMB_IDLE;
npcm_smb_callback(bus, SMB_BUS_ERR_IND,
npcm_smb_get_index(bus));
return;
}
// A Master End of Busy (meaning Stop Condition happened)
// End of Busy int is on and End of Busy is set
if ((FIELD_GET(NPCM_SMBCTL1_EOBINTE,
ioread8(bus->reg + NPCM_SMBCTL1)) == 1) &&
(FIELD_GET(NPCM_SMBCST3_EO_BUSY,
ioread8(bus->reg + NPCM_SMBCST3)))) {
NPCM_I2C_EVENT_LOG(NPCM_I2C_EVENT_EOB);
npcm_smb_eob_int(bus, false);
bus->state = SMB_IDLE;
if (npcm_smb_is_quick(bus))
npcm_smb_callback(bus, bus->stop_ind, 0);
else
npcm_smb_callback(bus, bus->stop_ind, bus->rd_ind);
return;
}
// Address sent and requested stall occurred (Master mode)
if (FIELD_GET(NPCM_SMBST_STASTR, ioread8(bus->reg + NPCM_SMBST))) {
// Check for Quick Command SMBus protocol
if (npcm_smb_is_quick(bus)) {
npcm_smb_eob_int(bus, true);
npcm_smb_master_stop(bus);
// Update status
bus->state = SMB_STOP_PENDING;
bus->stop_ind = SMB_MASTER_DONE_IND;
} else if (bus->rd_size == 1) {
// Receiving one byte only - set NACK after ensuring
// slave ACKed the address byte
npcm_smb_nack(bus);
}
// Reset stall-after-address-byte
npcm_smb_stall_after_start(bus, false);
// Clear stall only after setting STOP
iowrite8(NPCM_SMBST_STASTR, bus->reg + NPCM_SMBST);
return;
}
// SDA status is set - transmit or receive, master
if (FIELD_GET(NPCM_SMBST_SDAST, ioread8(bus->reg + NPCM_SMBST)) ||
(bus->fifo_use &&
(npcm_smb_tx_fifo_full(bus) || npcm_smb_rx_fifo_full(bus)))) {
// Status Bit is cleared by writing to or reading from SDA
// (depending on current direction)
switch (bus->state) {
// Handle unsuccessful bus mastership
case SMB_IDLE:
npcm_smb_master_abort(bus);
return;
case SMB_MASTER_START:
if (npcm_smb_is_master(bus)) {
u8 addr_byte = bus->dest_addr;
bus->crc_data = 0;
if (npcm_smb_is_quick(bus)) {
// Need to stall after successful
// completion of sending address byte
npcm_smb_stall_after_start(bus, true);
} else if (bus->wr_size == 0) {
// Set direction to Read
addr_byte |= (u8)0x1;
bus->operation = SMB_READ_OPER;
} else {
bus->operation = SMB_WRITE_OPER;
}
// Receiving one byte only - stall after successful completion of
// sending address byte. If we NACK here, and slave doesn't ACK the
// address, we might unintentionally NACK the next multi-byte read
if (bus->wr_size == 0 && bus->rd_size == 1)
npcm_smb_stall_after_start(bus, true);
// Write the address to the bus
bus->state = SMB_OPER_STARTED;
npcm_smb_wr_byte(bus, addr_byte);
} else {
dev_err(bus->dev,
"SDA, bus%d is not master, wr %d 0x%x...\n",
bus->num, bus->wr_size,
bus->wr_buf[0]);
}
break;
// SDA status is set - transmit or receive: Handle master mode
case SMB_OPER_STARTED:
if (bus->operation == SMB_WRITE_OPER)
npcm_smb_int_master_handler_write(bus);
else if (bus->operation == SMB_READ_OPER)
npcm_smb_int_master_handler_read(bus);
else
pr_err("I2C%d: unknown operation\n", bus->num);
break;
default:
dev_err(bus->dev, "i2c%d master sda err on state machine\n",
bus->num);
}
}
}
static int npcm_smb_recovery(struct i2c_adapter *_adap)
{
u8 iter = 27; // Allow one byte to be sent by the Slave
u16 timeout;
bool done = false;
struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
dev_info(bus->dev, "recovery bus%d\n", bus->num);
might_sleep();
// Disable int
npcm_smb_int_enable(bus, false);
// Check If the SDA line is active (low)
if (FIELD_GET(NPCM_SMBCST_TSDA, ioread8(bus->reg + NPCM_SMBCST)) == 0) {
// Repeat the following sequence until SDA is released
do {
// Issue a single SCL cycle
iowrite8(NPCM_SMBCST_TGSCL, bus->reg + NPCM_SMBCST);
timeout = ABORT_TIMEOUT;
while (timeout != 0 &&
FIELD_GET(NPCM_SMBCST_TGSCL,
ioread8(bus->reg + NPCM_SMBCST) == 0))
timeout--;
// If SDA line is inactive (high), stop
if (FIELD_GET(NPCM_SMBCST_TSDA,
ioread8(bus->reg + NPCM_SMBCST)) == 1)
done = true;
} while ((!done) && (--iter != 0));
// If SDA line is released (high)
if (done) {
// Clear BB (BUS BUSY) bit
iowrite8(NPCM_SMBCST_BB, bus->reg + NPCM_SMBCST);
// Generate a START, to synchronize Master and Slave
npcm_smb_master_start(bus);
// Wait until START condition is sent, or timeout
timeout = ABORT_TIMEOUT;
while (timeout != 0 && !npcm_smb_is_master(bus))
timeout--;
// If START condition was sent
if (timeout > 0) {
// Send an address byte
npcm_smb_wr_byte(bus, bus->dest_addr);
// Generate a STOP condition
npcm_smb_master_stop(bus);
}
return 0;
}
}
// check if success:
if (npcm_smb_get_SCL(_adap) == 1 && npcm_smb_get_SDA(_adap) == 1)
goto npcm_smb_recovery_done;
// hold clock low for 35ms: 25 and some spair:
npcm_smb_set_SCL(_adap, 0);
usleep_range(35000, 40000);
npcm_smb_set_SCL(_adap, 1);
usleep_range(1000, 2000);
// check if success:
if (npcm_smb_get_SCL(_adap) == 1 && npcm_smb_get_SDA(_adap) == 1)
goto npcm_smb_recovery_done;
return 0;
npcm_smb_recovery_done:
npcm_smb_int_enable(bus, true);
return -(ENOTRECOVERABLE);
}
static bool npcm_smb_init_clk(struct npcm_i2c *bus, enum smb_mode mode,
u32 bus_freq)
{
u32 k1 = 0;
u32 k2 = 0;
u8 dbnct = 0;
u32 sclfrq = 0;
u8 hldt = 7;
bool fast_mode = false;
u32 src_clk_freq; // in KHz
src_clk_freq = bus->apb_clk / 1000;
if (bus_freq <= SMBUS_FREQ_100KHZ) {
sclfrq = src_clk_freq / (bus_freq * 4);
if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
return false;
if (src_clk_freq >= 40000)
hldt = 17;
else if (src_clk_freq >= 12500)
hldt = 15;
else
hldt = 7;
}
else if (bus_freq == SMBUS_FREQ_400KHZ) {
sclfrq = 0;
fast_mode = true;
if ((mode == SMB_MASTER && src_clk_freq < 7500) ||
(mode == SMB_SLAVE && src_clk_freq < 10000))
// 400KHZ cannot be supported for master core clock < 7.5 MHZ
// or slave core clock < 10 MHZ
return false;
// Master or Slave with frequency > 25 MHZ
if (mode == SMB_MASTER || src_clk_freq > 25000) {
hldt = (u8)__KERNEL_DIV_ROUND_UP(src_clk_freq * 300,
1000000) + 7;
if (mode == SMB_MASTER) {
k1 = __KERNEL_DIV_ROUND_UP(src_clk_freq * 1600,
1000000);
k2 = __KERNEL_DIV_ROUND_UP(src_clk_freq * 900,
1000000);
k1 = round_up(k1, 2);
k2 = round_up(k2 + 1, 2);
if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
return false;
}
} else { // Slave with frequency 10-25 MHZ
hldt = 7;
dbnct = 2;
}
}
else if (bus_freq == SMBUS_FREQ_1MHZ) {
sclfrq = 0;
fast_mode = true;
if ((mode == SMB_MASTER && src_clk_freq < 15000) ||
(mode == SMB_SLAVE && src_clk_freq < 24000))
// 1MHZ cannot be supported for master core clock < 15 MHZ
// or slave core clock < 24 MHZ
return false;
if (mode == SMB_MASTER) {
k1 = round_up((__KERNEL_DIV_ROUND_UP(src_clk_freq * 620,
1000000)), 2);
k2 = round_up((__KERNEL_DIV_ROUND_UP(src_clk_freq * 380,
1000000) + 1), 2);
if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX) {
return false;
}
}
// Master or Slave with frequency > 40 MHZ
if (mode == SMB_MASTER || src_clk_freq > 40000) {
// Set HLDT:
// SDA hold time: (HLDT-7) * T(CLK) >= 120
// HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
hldt = (u8)__KERNEL_DIV_ROUND_UP(src_clk_freq * 120,
1000000) + 7;
// Slave with frequency 24-40 MHZ
} else {
hldt = 7;
dbnct = 2;
}
}
// Frequency larger than 1 MHZ
else
return false;
// After clock parameters calculation update the reg
iowrite8((ioread8(bus->reg + NPCM_SMBCTL2)
& ~SMBCTL2_SCLFRQ6_0) | FIELD_PREP(SMBCTL2_SCLFRQ6_0,
sclfrq & 0x7F), bus->reg + NPCM_SMBCTL2);
iowrite8((ioread8(bus->reg + NPCM_SMBCTL3) & ~SMBCTL3_SCLFRQ8_7) |
FIELD_PREP(SMBCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
bus->reg + NPCM_SMBCTL3);
iowrite8((ioread8(bus->reg + NPCM_SMBCTL3) & ~SMBCTL3_400K_MODE) |
FIELD_PREP(SMBCTL3_400K_MODE, fast_mode),
bus->reg + NPCM_SMBCTL3);
// Select Bank 0 to access NPCM_SMBCTL4/NPCM_SMBCTL5
npcm_smb_select_bank(bus, SMB_BANK_0);
if (bus_freq >= SMBUS_FREQ_400KHZ) {
// k1 and k2 are relevant for master mode only
if (mode == SMB_MASTER) {
// Set SCL Low/High Time:
// k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
// k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
iowrite8((u8)k1 / 2, bus->reg + NPCM_SMBSCLLT);
iowrite8((u8)k2 / 2, bus->reg + NPCM_SMBSCLHT);
} else { // DBNCT is relevant for slave mode only
iowrite8((ioread8(bus->reg + NPCM_SMBCTL5) &
~SMBCTL5_DBNCT) |
FIELD_PREP(SMBCTL5_DBNCT, dbnct),
bus->reg + NPCM_SMBCTL5);
}
}
iowrite8((ioread8(bus->reg + NPCM_SMBCTL4) & ~SMBCTL4_HLDT)
| FIELD_PREP(SMBCTL4_HLDT, hldt), bus->reg + NPCM_SMBCTL4);
// Return to Bank 1, and stay there by default:
npcm_smb_select_bank(bus, SMB_BANK_1);
dev_dbg(bus->dev, "k1 = %d k2 = %d dbnct = %d sclfrq = %d hldt = %d src_clk_freq %d fast_mode %d\n",
k1, k2, dbnct, sclfrq, hldt, src_clk_freq, fast_mode);
return true;
}
static bool npcm_smb_init_module(struct npcm_i2c *bus, enum smb_mode mode,
u32 bus_freq)
{
// Check whether module already enabled or frequency is out of bounds
if ((bus->state != SMB_DISABLE && bus->state != SMB_IDLE) ||
bus_freq < SMBUS_FREQ_MIN || bus_freq > SMBUS_FREQ_MAX)
return false;
// Configure FIFO disabled mode so slave will not use fifo
// (maste will set it on if supported)
bus->threshold_fifo = SMBUS_FIFO_SIZE;
iowrite8(ioread8(bus->reg + NPCM_SMBFIF_CTL) & ~NPCM_SMBFIF_CTL_FIFO_EN,
bus->reg + NPCM_SMBFIF_CTL);
bus->fifo_use = false;
// Configure SMB module clock frequency
if (!npcm_smb_init_clk(bus, mode, bus_freq)) {
pr_err("npcm_smb_init_clk failed\n");
return false;
}
npcm_smb_disable(bus);
// Enable module (before configuring CTL1)
npcm_smb_enable(bus);
bus->state = SMB_IDLE;
// Enable SMB int and New Address Match int source
iowrite8((ioread8(bus->reg + NPCM_SMBCTL1) | NPCM_SMBCTL1_NMINTE) &
~NPCM_SMBCTL1_RWS_FIELDS,
bus->reg + NPCM_SMBCTL1);
npcm_smb_int_enable(bus, true);
return true;
}
static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
{
u32 clk_freq;
int ret;
// Initialize the internal data structures
bus->state = SMB_DISABLE;
bus->master_or_slave = SMB_SLAVE;
ret = of_property_read_u32(pdev->dev.of_node,
"bus-frequency", &clk_freq);
if (ret < 0) {
dev_err(&pdev->dev,
"Could not read bus-frequency property\n");
clk_freq = 100000;
}
ret = npcm_smb_init_module(bus, SMB_MASTER, clk_freq / 1000);
if (!ret) {
dev_err(&pdev->dev,
"npcm_smb_init_module() failed\n");
return -1;
}
crc8_populate_lsb(npcm7xx_crc8, 0x07);
crc8_populate_msb(npcm7xx_crc8, 0x07);
return 0;
}
static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
{
struct npcm_i2c *bus = dev_id;
bus->int_cnt++;
_npcm7xx_get_time_stamp(&bus->int_time_stamp[0],
&bus->int_time_stamp[1]);
if (bus->master_or_slave == SMB_MASTER) {
npcm_smb_int_master_handler(bus);
return IRQ_HANDLED;
}
dev_err(bus->dev, "int unknown on bus%d\n", bus->num);
return IRQ_NONE;
}
static bool npcm_smb_master_start_xmit(struct npcm_i2c *bus,
u8 slave_addr, u16 nwrite, u16 nread,
u8 *write_data, u8 *read_data,
bool use_PEC)
{
//
// Allow only if bus is not busy
//
if (bus->state != SMB_IDLE) {
dev_info(bus->dev, "\tbus%d->state != SMB_IDLE\n", bus->num);
return false;
}
// Configure FIFO mode :
if (FIELD_GET(SMB_VER_FIFO_EN, ioread8(bus->reg + SMB_VER))) {
bus->fifo_use = true;
iowrite8(ioread8(bus->reg + NPCM_SMBFIF_CTL) |
NPCM_SMBFIF_CTL_FIFO_EN, bus->reg + NPCM_SMBFIF_CTL);
} else {
bus->fifo_use = false;
}
// Update driver state
bus->master_or_slave = SMB_MASTER;
bus->state = SMB_MASTER_START;
if (nwrite > 0)
bus->operation = SMB_WRITE_OPER;
else
bus->operation = SMB_READ_OPER;
if (npcm_smb_is_quick(bus))
bus->operation = SMB_WRITE_OPER; // send the address with W bit.
bus->dest_addr = (u8)(slave_addr << 1);// Translate 7bit to 8bit format
bus->wr_buf = write_data;
bus->wr_size = nwrite;
bus->wr_ind = 0;
bus->rd_buf = read_data;
bus->rd_size = nread;
bus->rd_ind = 0;
bus->PEC_use = use_PEC;
bus->retry_count = SMB_RETRY_MAX_COUNT;
// clear BER just in case it is set due to a previous transaction
iowrite8(NPCM_SMBST_BER, bus->reg + NPCM_SMBST);
// Initiate SMBus master transaction
// Generate a Start condition on the SMBus
if (bus->fifo_use) {
// select bank 1 for FIFO regs
npcm_smb_select_bank(bus, SMB_BANK_1);
// clear FIFO and relevant status bits.
iowrite8(ioread8(bus->reg + NPCM_SMBFIF_CTS) |
NPCM_SMBFIF_CTS_SLVRSTR |
NPCM_SMBFIF_CTS_CLR_FIFO |
NPCM_SMBFIF_CTS_RXF_TXE, bus->reg + NPCM_SMBFIF_CTS);
if (bus->operation == SMB_READ_OPER) {
//This is a read only operation. Configure the FIFO
//threshold according to the needed # of bytes to read.
npcm_smb_set_fifo(bus, nread, -1);
} else if (bus->operation == SMB_WRITE_OPER) {
npcm_smb_set_fifo(bus, -1, nwrite);
}
}
bus->int_cnt = 0;
bus->event_log = 0;
npcm_smb_master_start(bus);
return true;
}
static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num)
{
struct npcm_i2c *bus = adap->algo_data;
struct i2c_msg *msg0, *msg1;
unsigned long time_left, flags;
u16 nwrite, nread;
u8 *write_data, *read_data;
u8 slave_addr;
int ret = 0;
spin_lock_irqsave(&bus->lock, flags);
bus->cmd_err = -EPERM;
bus->int_cnt = 0;
bus->stop_ind = SMB_NO_STATUS_IND;
bus->read_block_use = false;
iowrite8(0xFF, bus->reg + NPCM_SMBST);
if (num > 2 || num < 1) {
pr_err("I2C command not supported, num of msgs = %d\n", num);
spin_unlock_irqrestore(&bus->lock, flags);
return -EINVAL;
}
msg0 = &msgs[0];
slave_addr = msg0->addr;
if (msg0->flags & I2C_M_RD) { // read
if (num == 2) {
pr_err(" num = 2 but first msg is rd instead of wr\n");
spin_unlock_irqrestore(&bus->lock, flags);
return -EINVAL;
}
nwrite = 0;
write_data = NULL;
if (msg0->flags & I2C_M_RECV_LEN) {
nread = 1;
bus->read_block_use = true;
} else {
nread = msg0->len;
}
read_data = msg0->buf;
} else { // write
nwrite = msg0->len;
write_data = msg0->buf;
nread = 0;
read_data = NULL;
if (num == 2) {
msg1 = &msgs[1];
if (slave_addr != msg1->addr) {
pr_err("SA==%02x but msg1->addr == %02x\n",
slave_addr, msg1->addr);
spin_unlock_irqrestore(&bus->lock, flags);
return -EINVAL;
}
if ((msg1->flags & I2C_M_RD) == 0) {
pr_err("num = 2 but both msg are write.\n");
spin_unlock_irqrestore(&bus->lock, flags);
return -EINVAL;
}
if (msg1->flags & I2C_M_RECV_LEN) {
nread = 1;
bus->read_block_use = true;
} else {
nread = msg1->len;
bus->read_block_use = false;
}
read_data = msg1->buf;
}
}
bus->msgs = msgs;
bus->msgs_num = num;
if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
pr_err("i2c%d buffer too big\n", bus->num);
return -EINVAL;
}
reinit_completion(&bus->cmd_complete);
if (npcm_smb_master_start_xmit(bus, slave_addr, nwrite, nread,
write_data, read_data, 0) == false)
ret = -(EBUSY);
if (ret != -(EBUSY)) {
time_left = wait_for_completion_timeout(&bus->cmd_complete,
bus->adap.timeout);
if (time_left == 0 && bus->cmd_err == -EPERM) {
npcm_smb_master_abort(bus);
ret = -ETIMEDOUT;
} else {
ret = bus->cmd_err;
}
}
bus->msgs = NULL;
bus->msgs_num = 0;
spin_unlock_irqrestore(&bus->lock, flags);
// If nothing went wrong, return number of messages xferred.
if (ret >= 0)
return num;
else
return ret;
}
static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA;
}
static const struct i2c_algorithm npcm_i2c_algo = {
.master_xfer = npcm_i2c_master_xfer,
.functionality = npcm_i2c_functionality,
};
static struct i2c_bus_recovery_info npcm_i2c_recovery = {
.recover_bus = npcm_smb_recovery,
.get_scl = npcm_smb_get_SCL,
.set_scl = npcm_smb_set_SCL,
.get_sda = npcm_smb_get_SDA,
};
static int npcm_i2c_probe_bus(struct platform_device *pdev)
{
struct npcm_i2c *bus;
struct resource *res;
struct clk *i2c_clk;
int ret;
int num;
bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
if (!bus)
return -ENOMEM;
#ifdef CONFIG_OF
num = of_alias_get_id(pdev->dev.of_node, "i2c");
bus->num = num;
i2c_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2c_clk)) {
pr_err(" I2C probe failed: can't read clk.\n");
return -EPROBE_DEFER;
}
bus->apb_clk = clk_get_rate(i2c_clk);
dev_dbg(bus->dev, "I2C APB clock is %d\n", bus->apb_clk);
#endif // CONFIG_OF
gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
if (IS_ERR(gcr_regmap)) {
pr_err("%s: failed to find nuvoton,npcm750-gcr\n", __func__);
return IS_ERR(gcr_regmap);
}
regmap_write(gcr_regmap, NPCM_I2CSEGCTL, I2CSEGCTL_VAL);
dev_dbg(bus->dev, "I2C%d: gcr mapped\n", bus->num);
clk_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-clk");
if (IS_ERR(clk_regmap)) {
pr_err("%s: failed to find nuvoton,npcm750-clk\n", __func__);
return IS_ERR(clk_regmap);
}
dev_dbg(bus->dev, "I2C%d: clk mapped\n", bus->num);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev_dbg(bus->dev, "resource: %pR\n", res);
bus->reg = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR((bus)->reg))
return PTR_ERR((bus)->reg);
dev_dbg(bus->dev, "base = %p\n", bus->reg);
// Initialize the I2C adapter
spin_lock_init(&bus->lock);
init_completion(&bus->cmd_complete);
bus->adap.owner = THIS_MODULE;
bus->adap.class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
bus->adap.retries = 0;
bus->adap.timeout = 500 * HZ / 1000;
bus->adap.algo = &npcm_i2c_algo;
bus->adap.algo_data = bus;
bus->adap.dev.parent = &pdev->dev;
bus->adap.dev.of_node = pdev->dev.of_node;
bus->adap.bus_recovery_info = &npcm_i2c_recovery;
snprintf(bus->adap.name, sizeof(bus->adap.name), "Nuvoton i2c");
bus->dev = &pdev->dev;
ret = __npcm_i2c_init(bus, pdev);
if (ret < 0)
return ret;
bus->irq = platform_get_irq(pdev, 0);
if (bus->irq < 0) {
pr_err("I2C platform_get_irq error.");
return -ENODEV;
}
dev_dbg(bus->dev, "irq = %d\n", bus->irq);
ret = request_irq(bus->irq, npcm_i2c_bus_irq, 0,
dev_name(&pdev->dev), (void *)bus);
if (ret) {
dev_err(&pdev->dev, "I2C%d: request_irq fail\n", bus->num);
return ret;
}
ret = i2c_add_adapter(&bus->adap);
if (ret < 0) {
dev_err(&pdev->dev, "I2C%d: i2c_add_adapter fail\n", bus->num);
return ret;
}
platform_set_drvdata(pdev, bus);
pr_info("i2c bus %d registered\n", bus->adap.nr);
return 0;
}
static int npcm_i2c_remove_bus(struct platform_device *pdev)
{
unsigned long lock_flags;
struct npcm_i2c *bus = platform_get_drvdata(pdev);
spin_lock_irqsave(&bus->lock, lock_flags);
npcm_smb_disable(bus);
spin_unlock_irqrestore(&bus->lock, lock_flags);
i2c_del_adapter(&bus->adap);
return 0;
}
static const struct of_device_id npcm_i2c_bus_of_table[] = {
{ .compatible = "nuvoton,npcm750-i2c", },
{},
};
MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
static struct platform_driver npcm_i2c_bus_driver = {
.probe = npcm_i2c_probe_bus,
.remove = npcm_i2c_remove_bus,
.driver = {
.name = "nuvoton-i2c",
.of_match_table = npcm_i2c_bus_of_table,
}
};
module_platform_driver(npcm_i2c_bus_driver);
MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(I2C_VERSION);
|