summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/gma500/psb_intel_display.c
blob: 30dc22a7156ce88446d1a11ff2d484c2581c82e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
/*
 * Copyright © 2006-2011 Intel Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 */

#include <linux/i2c.h>
#include <linux/pm_runtime.h>

#include <drm/drmP.h>
#include "framebuffer.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "psb_intel_display.h"
#include "power.h"

struct psb_intel_clock_t {
	/* given values */
	int n;
	int m1, m2;
	int p1, p2;
	/* derived values */
	int dot;
	int vco;
	int m;
	int p;
};

struct psb_intel_range_t {
	int min, max;
};

struct psb_intel_p2_t {
	int dot_limit;
	int p2_slow, p2_fast;
};

#define INTEL_P2_NUM		      2

struct psb_intel_limit_t {
	struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
	struct psb_intel_p2_t p2;
};

#define I8XX_DOT_MIN		  25000
#define I8XX_DOT_MAX		 350000
#define I8XX_VCO_MIN		 930000
#define I8XX_VCO_MAX		1400000
#define I8XX_N_MIN		      3
#define I8XX_N_MAX		     16
#define I8XX_M_MIN		     96
#define I8XX_M_MAX		    140
#define I8XX_M1_MIN		     18
#define I8XX_M1_MAX		     26
#define I8XX_M2_MIN		      6
#define I8XX_M2_MAX		     16
#define I8XX_P_MIN		      4
#define I8XX_P_MAX		    128
#define I8XX_P1_MIN		      2
#define I8XX_P1_MAX		     33
#define I8XX_P1_LVDS_MIN	      1
#define I8XX_P1_LVDS_MAX	      6
#define I8XX_P2_SLOW		      4
#define I8XX_P2_FAST		      2
#define I8XX_P2_LVDS_SLOW	      14
#define I8XX_P2_LVDS_FAST	      14	/* No fast option */
#define I8XX_P2_SLOW_LIMIT	 165000

#define I9XX_DOT_MIN		  20000
#define I9XX_DOT_MAX		 400000
#define I9XX_VCO_MIN		1400000
#define I9XX_VCO_MAX		2800000
#define I9XX_N_MIN		      3
#define I9XX_N_MAX		      8
#define I9XX_M_MIN		     70
#define I9XX_M_MAX		    120
#define I9XX_M1_MIN		     10
#define I9XX_M1_MAX		     20
#define I9XX_M2_MIN		      5
#define I9XX_M2_MAX		      9
#define I9XX_P_SDVO_DAC_MIN	      5
#define I9XX_P_SDVO_DAC_MAX	     80
#define I9XX_P_LVDS_MIN		      7
#define I9XX_P_LVDS_MAX		     98
#define I9XX_P1_MIN		      1
#define I9XX_P1_MAX		      8
#define I9XX_P2_SDVO_DAC_SLOW		     10
#define I9XX_P2_SDVO_DAC_FAST		      5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
#define I9XX_P2_LVDS_SLOW		     14
#define I9XX_P2_LVDS_FAST		      7
#define I9XX_P2_LVDS_SLOW_LIMIT		 112000

#define INTEL_LIMIT_I8XX_DVO_DAC    0
#define INTEL_LIMIT_I8XX_LVDS	    1
#define INTEL_LIMIT_I9XX_SDVO_DAC   2
#define INTEL_LIMIT_I9XX_LVDS	    3

static const struct psb_intel_limit_t psb_intel_limits[] = {
	{			/* INTEL_LIMIT_I8XX_DVO_DAC */
	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
	 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
		.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
	 },
	{			/* INTEL_LIMIT_I8XX_LVDS */
	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
	 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
		.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
	 },
	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
	 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
	 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
		.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
		I9XX_P2_SDVO_DAC_FAST},
	 },
	{			/* INTEL_LIMIT_I9XX_LVDS */
	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
	 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
	 /* The single-channel range is 25-112Mhz, and dual-channel
	  * is 80-224Mhz.  Prefer single channel as much as possible.
	  */
	 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
		.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
	 },
};

static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
{
	const struct psb_intel_limit_t *limit;

	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
	else
		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
	return limit;
}

/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */

static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
{
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / (clock->n + 2);
	clock->dot = clock->vco / clock->p;
}

/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */

static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
{
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / (clock->n + 2);
	clock->dot = clock->vco / clock->p;
}

static void psb_intel_clock(struct drm_device *dev, int refclk,
			struct psb_intel_clock_t *clock)
{
	return i9xx_clock(refclk, clock);
}

/**
 * Returns whether any output on the specified pipe is of the specified type
 */
bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *l_entry;

	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
			struct psb_intel_encoder *psb_intel_encoder =
					psb_intel_attached_encoder(l_entry);
			if (psb_intel_encoder->type == type)
				return true;
		}
	}
	return false;
}

#define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
/**
 * Returns whether the given set of divisors are valid for a given refclk with
 * the given connectors.
 */

static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
			       struct psb_intel_clock_t *clock)
{
	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);

	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
		INTELPllInvalid("p1 out of range\n");
	if (clock->p < limit->p.min || limit->p.max < clock->p)
		INTELPllInvalid("p out of range\n");
	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
		INTELPllInvalid("m2 out of range\n");
	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
		INTELPllInvalid("m1 out of range\n");
	if (clock->m1 <= clock->m2)
		INTELPllInvalid("m1 <= m2\n");
	if (clock->m < limit->m.min || limit->m.max < clock->m)
		INTELPllInvalid("m out of range\n");
	if (clock->n < limit->n.min || limit->n.max < clock->n)
		INTELPllInvalid("n out of range\n");
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
		INTELPllInvalid("vco out of range\n");
	/* XXX: We may need to be checking "Dot clock"
	 * depending on the multiplier, connector, etc.,
	 * rather than just a single range.
	 */
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
		INTELPllInvalid("dot out of range\n");

	return true;
}

/**
 * Returns a set of divisors for the desired target clock with the given
 * refclk, or FALSE.  The returned values represent the clock equation:
 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 */
static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
				int refclk,
				struct psb_intel_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	struct psb_intel_clock_t clock;
	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
	int err = target;

	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
		/*
		 * For LVDS, if the panel is on, just rely on its current
		 * settings for dual-channel.  We haven't figured out how to
		 * reliably set up different single/dual channel state, if we
		 * even can.
		 */
		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset(best_clock, 0, sizeof(*best_clock));

	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
	     clock.m1++) {
		for (clock.m2 = limit->m2.min;
		     clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
		     clock.m2++) {
			for (clock.n = limit->n.min;
			     clock.n <= limit->n.max; clock.n++) {
				for (clock.p1 = limit->p1.min;
				     clock.p1 <= limit->p1.max;
				     clock.p1++) {
					int this_err;

					psb_intel_clock(dev, refclk, &clock);

					if (!psb_intel_PLL_is_valid
					    (crtc, &clock))
						continue;

					this_err = abs(clock.dot - target);
					if (this_err < err) {
						*best_clock = clock;
						err = this_err;
					}
				}
			}
		}
	}

	return err != target;
}

void psb_intel_wait_for_vblank(struct drm_device *dev)
{
	/* Wait for 20ms, i.e. one cycle at 50hz. */
	mdelay(20);
}

static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
			    int x, int y, struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
	int pipe = psb_intel_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	unsigned long start, offset;
	u32 dspcntr;
	int ret = 0;

	if (!gma_power_begin(dev, true))
		return 0;

	/* no fb bound */
	if (!crtc->fb) {
		dev_dbg(dev->dev, "No FB bound\n");
		goto psb_intel_pipe_cleaner;
	}

	/* We are displaying this buffer, make sure it is actually loaded
	   into the GTT */
	ret = psb_gtt_pin(psbfb->gtt);
	if (ret < 0)
		goto psb_intel_pipe_set_base_exit;
	start = psbfb->gtt->offset;

	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);

	REG_WRITE(map->stride, crtc->fb->pitches[0]);

	dspcntr = REG_READ(map->cntr);
	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;

	switch (crtc->fb->bits_per_pixel) {
	case 8:
		dspcntr |= DISPPLANE_8BPP;
		break;
	case 16:
		if (crtc->fb->depth == 15)
			dspcntr |= DISPPLANE_15_16BPP;
		else
			dspcntr |= DISPPLANE_16BPP;
		break;
	case 24:
	case 32:
		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
		break;
	default:
		dev_err(dev->dev, "Unknown color depth\n");
		ret = -EINVAL;
		psb_gtt_unpin(psbfb->gtt);
		goto psb_intel_pipe_set_base_exit;
	}
	REG_WRITE(map->cntr, dspcntr);

	REG_WRITE(map->base, start + offset);
	REG_READ(map->base);

psb_intel_pipe_cleaner:
	/* If there was a previous display we can now unpin it */
	if (old_fb)
		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);

psb_intel_pipe_set_base_exit:
	gma_power_end(dev);
	return ret;
}

/**
 * Sets the power management mode of the pipe and plane.
 *
 * This code should probably grow support for turning the cursor off and back
 * on appropriately at the same time as we're turning the pipe off/on.
 */
static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	int pipe = psb_intel_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	u32 temp;

	/* XXX: When our outputs are all unaware of DPMS modes other than off
	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
	 */
	switch (mode) {
	case DRM_MODE_DPMS_ON:
	case DRM_MODE_DPMS_STANDBY:
	case DRM_MODE_DPMS_SUSPEND:
		/* Enable the DPLL */
		temp = REG_READ(map->dpll);
		if ((temp & DPLL_VCO_ENABLE) == 0) {
			REG_WRITE(map->dpll, temp);
			REG_READ(map->dpll);
			/* Wait for the clocks to stabilize. */
			udelay(150);
			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
			REG_READ(map->dpll);
			/* Wait for the clocks to stabilize. */
			udelay(150);
			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
			REG_READ(map->dpll);
			/* Wait for the clocks to stabilize. */
			udelay(150);
		}

		/* Enable the pipe */
		temp = REG_READ(map->conf);
		if ((temp & PIPEACONF_ENABLE) == 0)
			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);

		/* Enable the plane */
		temp = REG_READ(map->cntr);
		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
			REG_WRITE(map->cntr,
				  temp | DISPLAY_PLANE_ENABLE);
			/* Flush the plane changes */
			REG_WRITE(map->base, REG_READ(map->base));
		}

		psb_intel_crtc_load_lut(crtc);

		/* Give the overlay scaler a chance to enable
		 * if it's on this pipe */
		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
		break;
	case DRM_MODE_DPMS_OFF:
		/* Give the overlay scaler a chance to disable
		 * if it's on this pipe */
		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */

		/* Disable the VGA plane that we never use */
		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);

		/* Disable display plane */
		temp = REG_READ(map->cntr);
		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
			REG_WRITE(map->cntr,
				  temp & ~DISPLAY_PLANE_ENABLE);
			/* Flush the plane changes */
			REG_WRITE(map->base, REG_READ(map->base));
			REG_READ(map->base);
		}

		/* Next, disable display pipes */
		temp = REG_READ(map->conf);
		if ((temp & PIPEACONF_ENABLE) != 0) {
			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
			REG_READ(map->conf);
		}

		/* Wait for vblank for the disable to take effect. */
		psb_intel_wait_for_vblank(dev);

		temp = REG_READ(map->dpll);
		if ((temp & DPLL_VCO_ENABLE) != 0) {
			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
			REG_READ(map->dpll);
		}

		/* Wait for the clocks to turn off. */
		udelay(150);
		break;
	}

	/*Set FIFO Watermarks*/
	REG_WRITE(DSPARB, 0x3F3E);
}

static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
{
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}

static void psb_intel_crtc_commit(struct drm_crtc *crtc)
{
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}

void psb_intel_encoder_prepare(struct drm_encoder *encoder)
{
	struct drm_encoder_helper_funcs *encoder_funcs =
	    encoder->helper_private;
	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}

void psb_intel_encoder_commit(struct drm_encoder *encoder)
{
	struct drm_encoder_helper_funcs *encoder_funcs =
	    encoder->helper_private;
	/* lvds has its own version of commit see psb_intel_lvds_commit */
	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}

void psb_intel_encoder_destroy(struct drm_encoder *encoder)
{
	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);

	drm_encoder_cleanup(encoder);
	kfree(intel_encoder);
}

static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
				  const struct drm_display_mode *mode,
				  struct drm_display_mode *adjusted_mode)
{
	return true;
}


/**
 * Return the pipe currently connected to the panel fitter,
 * or -1 if the panel fitter is not present or not in use
 */
static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
{
	u32 pfit_control;

	pfit_control = REG_READ(PFIT_CONTROL);

	/* See if the panel fitter is in use */
	if ((pfit_control & PFIT_ENABLE) == 0)
		return -1;
	/* Must be on PIPE 1 for PSB */
	return 1;
}

static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
			       struct drm_display_mode *mode,
			       struct drm_display_mode *adjusted_mode,
			       int x, int y,
			       struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	int pipe = psb_intel_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	int refclk;
	struct psb_intel_clock_t clock;
	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
	bool ok, is_sdvo = false;
	bool is_lvds = false, is_tv = false;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;

	/* No scan out no play */
	if (crtc->fb == NULL) {
		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
		return 0;
	}

	list_for_each_entry(connector, &mode_config->connector_list, head) {
		struct psb_intel_encoder *psb_intel_encoder =
					psb_intel_attached_encoder(connector);

		if (!connector->encoder
		    || connector->encoder->crtc != crtc)
			continue;

		switch (psb_intel_encoder->type) {
		case INTEL_OUTPUT_LVDS:
			is_lvds = true;
			break;
		case INTEL_OUTPUT_SDVO:
			is_sdvo = true;
			break;
		case INTEL_OUTPUT_TVOUT:
			is_tv = true;
			break;
		}
	}

	refclk = 96000;

	ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
				 &clock);
	if (!ok) {
		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
		return 0;
	}

	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;

	dpll = DPLL_VGA_MODE_DIS;
	if (is_lvds) {
		dpll |= DPLLB_MODE_LVDS;
		dpll |= DPLL_DVO_HIGH_SPEED;
	} else
		dpll |= DPLLB_MODE_DAC_SERIAL;
	if (is_sdvo) {
		int sdvo_pixel_multiply =
			    adjusted_mode->clock / mode->clock;
		dpll |= DPLL_DVO_HIGH_SPEED;
		dpll |=
		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
	}

	/* compute bitmask from p1 value */
	dpll |= (1 << (clock.p1 - 1)) << 16;
	switch (clock.p2) {
	case 5:
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
		break;
	case 7:
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
		break;
	case 10:
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
		break;
	case 14:
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
		break;
	}

	if (is_tv) {
		/* XXX: just matching BIOS for now */
/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
		dpll |= 3;
	}
	dpll |= PLL_REF_INPUT_DREFCLK;

	/* setup pipeconf */
	pipeconf = REG_READ(map->conf);

	/* Set up the display plane register */
	dspcntr = DISPPLANE_GAMMA_ENABLE;

	if (pipe == 0)
		dspcntr |= DISPPLANE_SEL_PIPE_A;
	else
		dspcntr |= DISPPLANE_SEL_PIPE_B;

	dspcntr |= DISPLAY_PLANE_ENABLE;
	pipeconf |= PIPEACONF_ENABLE;
	dpll |= DPLL_VCO_ENABLE;


	/* Disable the panel fitter if it was on our pipe */
	if (psb_intel_panel_fitter_pipe(dev) == pipe)
		REG_WRITE(PFIT_CONTROL, 0);

	drm_mode_debug_printmodeline(mode);

	if (dpll & DPLL_VCO_ENABLE) {
		REG_WRITE(map->fp0, fp);
		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
		REG_READ(map->dpll);
		udelay(150);
	}

	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
	 * This is an exception to the general rule that mode_set doesn't turn
	 * things on.
	 */
	if (is_lvds) {
		u32 lvds = REG_READ(LVDS);

		lvds &= ~LVDS_PIPEB_SELECT;
		if (pipe == 1)
			lvds |= LVDS_PIPEB_SELECT;

		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
		/* Set the B0-B3 data pairs corresponding to
		 * whether we're going to
		 * set the DPLLs for dual-channel mode or not.
		 */
		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
		if (clock.p2 == 7)
			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;

		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
		 * appropriately here, but we need to look more
		 * thoroughly into how panels behave in the two modes.
		 */

		REG_WRITE(LVDS, lvds);
		REG_READ(LVDS);
	}

	REG_WRITE(map->fp0, fp);
	REG_WRITE(map->dpll, dpll);
	REG_READ(map->dpll);
	/* Wait for the clocks to stabilize. */
	udelay(150);

	/* write it again -- the BIOS does, after all */
	REG_WRITE(map->dpll, dpll);

	REG_READ(map->dpll);
	/* Wait for the clocks to stabilize. */
	udelay(150);

	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
		  ((adjusted_mode->crtc_htotal - 1) << 16));
	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
		  ((adjusted_mode->crtc_vtotal - 1) << 16));
	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
	/* pipesrc and dspsize control the size that is scaled from,
	 * which should always be the user's requested size.
	 */
	REG_WRITE(map->size,
		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
	REG_WRITE(map->pos, 0);
	REG_WRITE(map->src,
		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
	REG_WRITE(map->conf, pipeconf);
	REG_READ(map->conf);

	psb_intel_wait_for_vblank(dev);

	REG_WRITE(map->cntr, dspcntr);

	/* Flush the plane changes */
	crtc_funcs->mode_set_base(crtc, x, y, old_fb);

	psb_intel_wait_for_vblank(dev);

	return 0;
}

/** Loads the palette/gamma unit for the CRTC with the prepared values */
void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
	int palreg = map->palette;
	int i;

	/* The clocks have to be on to load the palette. */
	if (!crtc->enabled)
		return;

	switch (psb_intel_crtc->pipe) {
	case 0:
	case 1:
		break;
	default:
		dev_err(dev->dev, "Illegal Pipe Number.\n");
		return;
	}

	if (gma_power_begin(dev, false)) {
		for (i = 0; i < 256; i++) {
			REG_WRITE(palreg + 4 * i,
				  ((psb_intel_crtc->lut_r[i] +
				  psb_intel_crtc->lut_adj[i]) << 16) |
				  ((psb_intel_crtc->lut_g[i] +
				  psb_intel_crtc->lut_adj[i]) << 8) |
				  (psb_intel_crtc->lut_b[i] +
				  psb_intel_crtc->lut_adj[i]));
		}
		gma_power_end(dev);
	} else {
		for (i = 0; i < 256; i++) {
			dev_priv->regs.pipe[0].palette[i] =
				  ((psb_intel_crtc->lut_r[i] +
				  psb_intel_crtc->lut_adj[i]) << 16) |
				  ((psb_intel_crtc->lut_g[i] +
				  psb_intel_crtc->lut_adj[i]) << 8) |
				  (psb_intel_crtc->lut_b[i] +
				  psb_intel_crtc->lut_adj[i]);
		}

	}
}

/**
 * Save HW states of giving crtc
 */
static void psb_intel_crtc_save(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
	uint32_t paletteReg;
	int i;

	if (!crtc_state) {
		dev_err(dev->dev, "No CRTC state found\n");
		return;
	}

	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
	crtc_state->savePIPECONF = REG_READ(map->conf);
	crtc_state->savePIPESRC = REG_READ(map->src);
	crtc_state->saveFP0 = REG_READ(map->fp0);
	crtc_state->saveFP1 = REG_READ(map->fp1);
	crtc_state->saveDPLL = REG_READ(map->dpll);
	crtc_state->saveHTOTAL = REG_READ(map->htotal);
	crtc_state->saveHBLANK = REG_READ(map->hblank);
	crtc_state->saveHSYNC = REG_READ(map->hsync);
	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
	crtc_state->saveVBLANK = REG_READ(map->vblank);
	crtc_state->saveVSYNC = REG_READ(map->vsync);
	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);

	/*NOTE: DSPSIZE DSPPOS only for psb*/
	crtc_state->saveDSPSIZE = REG_READ(map->size);
	crtc_state->saveDSPPOS = REG_READ(map->pos);

	crtc_state->saveDSPBASE = REG_READ(map->base);

	paletteReg = map->palette;
	for (i = 0; i < 256; ++i)
		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
}

/**
 * Restore HW states of giving crtc
 */
static void psb_intel_crtc_restore(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
	uint32_t paletteReg;
	int i;

	if (!crtc_state) {
		dev_err(dev->dev, "No crtc state\n");
		return;
	}

	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
		REG_WRITE(map->dpll,
			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
		REG_READ(map->dpll);
		udelay(150);
	}

	REG_WRITE(map->fp0, crtc_state->saveFP0);
	REG_READ(map->fp0);

	REG_WRITE(map->fp1, crtc_state->saveFP1);
	REG_READ(map->fp1);

	REG_WRITE(map->dpll, crtc_state->saveDPLL);
	REG_READ(map->dpll);
	udelay(150);

	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);

	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
	REG_WRITE(map->pos, crtc_state->saveDSPPOS);

	REG_WRITE(map->src, crtc_state->savePIPESRC);
	REG_WRITE(map->base, crtc_state->saveDSPBASE);
	REG_WRITE(map->conf, crtc_state->savePIPECONF);

	psb_intel_wait_for_vblank(dev);

	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
	REG_WRITE(map->base, crtc_state->saveDSPBASE);

	psb_intel_wait_for_vblank(dev);

	paletteReg = map->palette;
	for (i = 0; i < 256; ++i)
		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
}

static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
				 struct drm_file *file_priv,
				 uint32_t handle,
				 uint32_t width, uint32_t height)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	int pipe = psb_intel_crtc->pipe;
	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
	uint32_t temp;
	size_t addr = 0;
	struct gtt_range *gt;
	struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
	struct drm_gem_object *obj;
	void *tmp_dst, *tmp_src;
	int ret, i, cursor_pages;

	/* if we want to turn of the cursor ignore width and height */
	if (!handle) {
		/* turn off the cursor */
		temp = CURSOR_MODE_DISABLE;

		if (gma_power_begin(dev, false)) {
			REG_WRITE(control, temp);
			REG_WRITE(base, 0);
			gma_power_end(dev);
		}

		/* Unpin the old GEM object */
		if (psb_intel_crtc->cursor_obj) {
			gt = container_of(psb_intel_crtc->cursor_obj,
							struct gtt_range, gem);
			psb_gtt_unpin(gt);
			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
			psb_intel_crtc->cursor_obj = NULL;
		}

		return 0;
	}

	/* Currently we only support 64x64 cursors */
	if (width != 64 || height != 64) {
		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
		return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, handle);
	if (!obj)
		return -ENOENT;

	if (obj->size < width * height * 4) {
		dev_dbg(dev->dev, "buffer is to small\n");
		return -ENOMEM;
	}

	gt = container_of(obj, struct gtt_range, gem);

	/* Pin the memory into the GTT */
	ret = psb_gtt_pin(gt);
	if (ret) {
		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
		return ret;
	}

	if (dev_priv->ops->cursor_needs_phys) {
		if (cursor_gt == NULL) {
			dev_err(dev->dev, "No hardware cursor mem available");
			return -ENOMEM;
		}

		/* Prevent overflow */
		if (gt->npage > 4)
			cursor_pages = 4;
		else
			cursor_pages = gt->npage;

		/* Copy the cursor to cursor mem */
		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
		for (i = 0; i < cursor_pages; i++) {
			tmp_src = kmap(gt->pages[i]);
			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
			kunmap(gt->pages[i]);
			tmp_dst += PAGE_SIZE;
		}

		addr = psb_intel_crtc->cursor_addr;
	} else {
		addr = gt->offset;      /* Or resource.start ??? */
		psb_intel_crtc->cursor_addr = addr;
	}

	temp = 0;
	/* set the pipe for the cursor */
	temp |= (pipe << 28);
	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;

	if (gma_power_begin(dev, false)) {
		REG_WRITE(control, temp);
		REG_WRITE(base, addr);
		gma_power_end(dev);
	}

	/* unpin the old bo */
	if (psb_intel_crtc->cursor_obj) {
		gt = container_of(psb_intel_crtc->cursor_obj,
							struct gtt_range, gem);
		psb_gtt_unpin(gt);
		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
		psb_intel_crtc->cursor_obj = obj;
	}
	return 0;
}

static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct drm_device *dev = crtc->dev;
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	int pipe = psb_intel_crtc->pipe;
	uint32_t temp = 0;
	uint32_t addr;


	if (x < 0) {
		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
		x = -x;
	}
	if (y < 0) {
		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
		y = -y;
	}

	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);

	addr = psb_intel_crtc->cursor_addr;

	if (gma_power_begin(dev, false)) {
		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
		gma_power_end(dev);
	}
	return 0;
}

void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
			 u16 *green, u16 *blue, uint32_t type, uint32_t size)
{
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	int i;

	if (size != 256)
		return;

	for (i = 0; i < 256; i++) {
		psb_intel_crtc->lut_r[i] = red[i] >> 8;
		psb_intel_crtc->lut_g[i] = green[i] >> 8;
		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
	}

	psb_intel_crtc_load_lut(crtc);
}

static int psb_crtc_set_config(struct drm_mode_set *set)
{
	int ret;
	struct drm_device *dev = set->crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;

	if (!dev_priv->rpm_enabled)
		return drm_crtc_helper_set_config(set);

	pm_runtime_forbid(&dev->pdev->dev);
	ret = drm_crtc_helper_set_config(set);
	pm_runtime_allow(&dev->pdev->dev);
	return ret;
}

/* Returns the clock of the currently programmed mode of the given pipe. */
static int psb_intel_crtc_clock_get(struct drm_device *dev,
				struct drm_crtc *crtc)
{
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	struct drm_psb_private *dev_priv = dev->dev_private;
	int pipe = psb_intel_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	u32 dpll;
	u32 fp;
	struct psb_intel_clock_t clock;
	bool is_lvds;
	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];

	if (gma_power_begin(dev, false)) {
		dpll = REG_READ(map->dpll);
		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
			fp = REG_READ(map->fp0);
		else
			fp = REG_READ(map->fp1);
		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
		gma_power_end(dev);
	} else {
		dpll = p->dpll;

		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
			fp = p->fp0;
		else
		        fp = p->fp1;

		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
								LVDS_PORT_EN);
	}

	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;

	if (is_lvds) {
		clock.p1 =
		    ffs((dpll &
			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
			DPLL_FPA01_P1_POST_DIV_SHIFT);
		clock.p2 = 14;

		if ((dpll & PLL_REF_INPUT_MASK) ==
		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
			/* XXX: might not be 66MHz */
			i8xx_clock(66000, &clock);
		} else
			i8xx_clock(48000, &clock);
	} else {
		if (dpll & PLL_P1_DIVIDE_BY_TWO)
			clock.p1 = 2;
		else {
			clock.p1 =
			    ((dpll &
			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
		}
		if (dpll & PLL_P2_DIVIDE_BY_4)
			clock.p2 = 4;
		else
			clock.p2 = 2;

		i8xx_clock(48000, &clock);
	}

	/* XXX: It would be nice to validate the clocks, but we can't reuse
	 * i830PllIsValid() because it relies on the xf86_config connector
	 * configuration being accurate, which it isn't necessarily.
	 */

	return clock.dot;
}

/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
					     struct drm_crtc *crtc)
{
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	int pipe = psb_intel_crtc->pipe;
	struct drm_display_mode *mode;
	int htot;
	int hsync;
	int vtot;
	int vsync;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
	const struct psb_offset *map = &dev_priv->regmap[pipe];

	if (gma_power_begin(dev, false)) {
		htot = REG_READ(map->htotal);
		hsync = REG_READ(map->hsync);
		vtot = REG_READ(map->vtotal);
		vsync = REG_READ(map->vsync);
		gma_power_end(dev);
	} else {
		htot = p->htotal;
		hsync = p->hsync;
		vtot = p->vtotal;
		vsync = p->vsync;
	}

	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
	if (!mode)
		return NULL;

	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
	mode->hdisplay = (htot & 0xffff) + 1;
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
	mode->hsync_start = (hsync & 0xffff) + 1;
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
	mode->vdisplay = (vtot & 0xffff) + 1;
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
	mode->vsync_start = (vsync & 0xffff) + 1;
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;

	drm_mode_set_name(mode);
	drm_mode_set_crtcinfo(mode, 0);

	return mode;
}

void psb_intel_crtc_destroy(struct drm_crtc *crtc)
{
	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
	struct gtt_range *gt;

	/* Unpin the old GEM object */
	if (psb_intel_crtc->cursor_obj) {
		gt = container_of(psb_intel_crtc->cursor_obj,
						struct gtt_range, gem);
		psb_gtt_unpin(gt);
		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
		psb_intel_crtc->cursor_obj = NULL;
	}

	if (psb_intel_crtc->cursor_gt != NULL)
		psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
	kfree(psb_intel_crtc->crtc_state);
	drm_crtc_cleanup(crtc);
	kfree(psb_intel_crtc);
}

const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
	.dpms = psb_intel_crtc_dpms,
	.mode_fixup = psb_intel_crtc_mode_fixup,
	.mode_set = psb_intel_crtc_mode_set,
	.mode_set_base = psb_intel_pipe_set_base,
	.prepare = psb_intel_crtc_prepare,
	.commit = psb_intel_crtc_commit,
};

const struct drm_crtc_funcs psb_intel_crtc_funcs = {
	.save = psb_intel_crtc_save,
	.restore = psb_intel_crtc_restore,
	.cursor_set = psb_intel_crtc_cursor_set,
	.cursor_move = psb_intel_crtc_cursor_move,
	.gamma_set = psb_intel_crtc_gamma_set,
	.set_config = psb_crtc_set_config,
	.destroy = psb_intel_crtc_destroy,
};

/*
 * Set the default value of cursor control and base register
 * to zero. This is a workaround for h/w defect on Oaktrail
 */
static void psb_intel_cursor_init(struct drm_device *dev,
				  struct psb_intel_crtc *psb_intel_crtc)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
	struct gtt_range *cursor_gt;

	if (dev_priv->ops->cursor_needs_phys) {
		/* Allocate 4 pages of stolen mem for a hardware cursor. That
		 * is enough for the 64 x 64 ARGB cursors we support.
		 */
		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
		if (!cursor_gt) {
			psb_intel_crtc->cursor_gt = NULL;
			goto out;
		}
		psb_intel_crtc->cursor_gt = cursor_gt;
		psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
							cursor_gt->offset;
	} else {
		psb_intel_crtc->cursor_gt = NULL;
	}

out:
	REG_WRITE(control[psb_intel_crtc->pipe], 0);
	REG_WRITE(base[psb_intel_crtc->pipe], 0);
}

void psb_intel_crtc_init(struct drm_device *dev, int pipe,
		     struct psb_intel_mode_device *mode_dev)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_intel_crtc *psb_intel_crtc;
	int i;
	uint16_t *r_base, *g_base, *b_base;

	/* We allocate a extra array of drm_connector pointers
	 * for fbdev after the crtc */
	psb_intel_crtc =
	    kzalloc(sizeof(struct psb_intel_crtc) +
		    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
		    GFP_KERNEL);
	if (psb_intel_crtc == NULL)
		return;

	psb_intel_crtc->crtc_state =
		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
	if (!psb_intel_crtc->crtc_state) {
		dev_err(dev->dev, "Crtc state error: No memory\n");
		kfree(psb_intel_crtc);
		return;
	}

	/* Set the CRTC operations from the chip specific data */
	drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);

	drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
	psb_intel_crtc->pipe = pipe;
	psb_intel_crtc->plane = pipe;

	r_base = psb_intel_crtc->base.gamma_store;
	g_base = r_base + 256;
	b_base = g_base + 256;
	for (i = 0; i < 256; i++) {
		psb_intel_crtc->lut_r[i] = i;
		psb_intel_crtc->lut_g[i] = i;
		psb_intel_crtc->lut_b[i] = i;
		r_base[i] = i << 8;
		g_base[i] = i << 8;
		b_base[i] = i << 8;

		psb_intel_crtc->lut_adj[i] = 0;
	}

	psb_intel_crtc->mode_dev = mode_dev;
	psb_intel_crtc->cursor_addr = 0;

	drm_crtc_helper_add(&psb_intel_crtc->base,
						dev_priv->ops->crtc_helper);

	/* Setup the array of drm_connector pointer array */
	psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
	       dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
	dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
							&psb_intel_crtc->base;
	dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
							&psb_intel_crtc->base;
	psb_intel_crtc->mode_set.connectors =
	    (struct drm_connector **) (psb_intel_crtc + 1);
	psb_intel_crtc->mode_set.num_connectors = 0;
	psb_intel_cursor_init(dev, psb_intel_crtc);
}

int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
				struct drm_file *file_priv)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
	struct drm_mode_object *drmmode_obj;
	struct psb_intel_crtc *crtc;

	if (!dev_priv) {
		dev_err(dev->dev, "called with no initialization\n");
		return -EINVAL;
	}

	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
			DRM_MODE_OBJECT_CRTC);

	if (!drmmode_obj) {
		dev_err(dev->dev, "no such CRTC id\n");
		return -EINVAL;
	}

	crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
	pipe_from_crtc_id->pipe = crtc->pipe;

	return 0;
}

struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
	struct drm_crtc *crtc = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
		if (psb_intel_crtc->pipe == pipe)
			break;
	}
	return crtc;
}

int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
{
	int index_mask = 0;
	struct drm_connector *connector;
	int entry = 0;

	list_for_each_entry(connector, &dev->mode_config.connector_list,
			    head) {
		struct psb_intel_encoder *psb_intel_encoder =
					psb_intel_attached_encoder(connector);
		if (type_mask & (1 << psb_intel_encoder->type))
			index_mask |= (1 << entry);
		entry++;
	}
	return index_mask;
}

/* current intel driver doesn't take advantage of encoders
   always give back the encoder for the connector
*/
struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
{
	struct psb_intel_encoder *psb_intel_encoder =
					psb_intel_attached_encoder(connector);

	return &psb_intel_encoder->base;
}

void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
					struct psb_intel_encoder *encoder)
{
	connector->encoder = encoder;
	drm_mode_connector_attach_encoder(&connector->base,
					  &encoder->base);
}
OpenPOWER on IntegriCloud