summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/process_32.c
blob: ff40e74c9181f0e009b51909a0e76ce25c1c2cf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 *  Copyright (C) 1995  Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/mc146818rtc.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/personality.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <linux/ftrace.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/kdebug.h>
#include <linux/syscalls.h>

#include <asm/pgtable.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/fpu/internal.h>
#include <asm/desc.h>
#ifdef CONFIG_MATH_EMULATION
#include <asm/math_emu.h>
#endif

#include <linux/err.h>

#include <asm/tlbflush.h>
#include <asm/cpu.h>
#include <asm/syscalls.h>
#include <asm/debugreg.h>
#include <asm/switch_to.h>
#include <asm/vm86.h>
#include <asm/intel_rdt.h>
#include <asm/proto.h>

void __show_regs(struct pt_regs *regs, int all)
{
	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
	unsigned long d0, d1, d2, d3, d6, d7;
	unsigned long sp;
	unsigned short ss, gs;

	if (user_mode(regs)) {
		sp = regs->sp;
		ss = regs->ss & 0xffff;
		gs = get_user_gs(regs);
	} else {
		sp = kernel_stack_pointer(regs);
		savesegment(ss, ss);
		savesegment(gs, gs);
	}

	printk(KERN_DEFAULT "EIP: %pS\n", (void *)regs->ip);
	printk(KERN_DEFAULT "EFLAGS: %08lx CPU: %d\n", regs->flags,
		smp_processor_id());

	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
		regs->ax, regs->bx, regs->cx, regs->dx);
	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
		regs->si, regs->di, regs->bp, sp);
	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);

	if (!all)
		return;

	cr0 = read_cr0();
	cr2 = read_cr2();
	cr3 = read_cr3();
	cr4 = __read_cr4();
	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
			cr0, cr2, cr3, cr4);

	get_debugreg(d0, 0);
	get_debugreg(d1, 1);
	get_debugreg(d2, 2);
	get_debugreg(d3, 3);
	get_debugreg(d6, 6);
	get_debugreg(d7, 7);

	/* Only print out debug registers if they are in their non-default state. */
	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
	    (d6 == DR6_RESERVED) && (d7 == 0x400))
		return;

	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
			d0, d1, d2, d3);
	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
			d6, d7);
}

void release_thread(struct task_struct *dead_task)
{
	BUG_ON(dead_task->mm);
	release_vm86_irqs(dead_task);
}

int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
	unsigned long arg, struct task_struct *p, unsigned long tls)
{
	struct pt_regs *childregs = task_pt_regs(p);
	struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
	struct inactive_task_frame *frame = &fork_frame->frame;
	struct task_struct *tsk;
	int err;

	frame->bp = 0;
	frame->ret_addr = (unsigned long) ret_from_fork;
	p->thread.sp = (unsigned long) fork_frame;
	p->thread.sp0 = (unsigned long) (childregs+1);
	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));

	if (unlikely(p->flags & PF_KTHREAD)) {
		/* kernel thread */
		memset(childregs, 0, sizeof(struct pt_regs));
		frame->bx = sp;		/* function */
		frame->di = arg;
		p->thread.io_bitmap_ptr = NULL;
		return 0;
	}
	frame->bx = 0;
	*childregs = *current_pt_regs();
	childregs->ax = 0;
	if (sp)
		childregs->sp = sp;

	task_user_gs(p) = get_user_gs(current_pt_regs());

	p->thread.io_bitmap_ptr = NULL;
	tsk = current;
	err = -ENOMEM;

	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
						IO_BITMAP_BYTES, GFP_KERNEL);
		if (!p->thread.io_bitmap_ptr) {
			p->thread.io_bitmap_max = 0;
			return -ENOMEM;
		}
		set_tsk_thread_flag(p, TIF_IO_BITMAP);
	}

	err = 0;

	/*
	 * Set a new TLS for the child thread?
	 */
	if (clone_flags & CLONE_SETTLS)
		err = do_set_thread_area(p, -1,
			(struct user_desc __user *)tls, 0);

	if (err && p->thread.io_bitmap_ptr) {
		kfree(p->thread.io_bitmap_ptr);
		p->thread.io_bitmap_max = 0;
	}
	return err;
}

void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
	set_user_gs(regs, 0);
	regs->fs		= 0;
	regs->ds		= __USER_DS;
	regs->es		= __USER_DS;
	regs->ss		= __USER_DS;
	regs->cs		= __USER_CS;
	regs->ip		= new_ip;
	regs->sp		= new_sp;
	regs->flags		= X86_EFLAGS_IF;
	force_iret();
}
EXPORT_SYMBOL_GPL(start_thread);


/*
 *	switch_to(x,y) should switch tasks from x to y.
 *
 * We fsave/fwait so that an exception goes off at the right time
 * (as a call from the fsave or fwait in effect) rather than to
 * the wrong process. Lazy FP saving no longer makes any sense
 * with modern CPU's, and this simplifies a lot of things (SMP
 * and UP become the same).
 *
 * NOTE! We used to use the x86 hardware context switching. The
 * reason for not using it any more becomes apparent when you
 * try to recover gracefully from saved state that is no longer
 * valid (stale segment register values in particular). With the
 * hardware task-switch, there is no way to fix up bad state in
 * a reasonable manner.
 *
 * The fact that Intel documents the hardware task-switching to
 * be slow is a fairly red herring - this code is not noticeably
 * faster. However, there _is_ some room for improvement here,
 * so the performance issues may eventually be a valid point.
 * More important, however, is the fact that this allows us much
 * more flexibility.
 *
 * The return value (in %ax) will be the "prev" task after
 * the task-switch, and shows up in ret_from_fork in entry.S,
 * for example.
 */
__visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
	struct thread_struct *prev = &prev_p->thread,
			     *next = &next_p->thread;
	struct fpu *prev_fpu = &prev->fpu;
	struct fpu *next_fpu = &next->fpu;
	int cpu = smp_processor_id();
	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);

	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */

	switch_fpu_prepare(prev_fpu, cpu);

	/*
	 * Save away %gs. No need to save %fs, as it was saved on the
	 * stack on entry.  No need to save %es and %ds, as those are
	 * always kernel segments while inside the kernel.  Doing this
	 * before setting the new TLS descriptors avoids the situation
	 * where we temporarily have non-reloadable segments in %fs
	 * and %gs.  This could be an issue if the NMI handler ever
	 * used %fs or %gs (it does not today), or if the kernel is
	 * running inside of a hypervisor layer.
	 */
	lazy_save_gs(prev->gs);

	/*
	 * Load the per-thread Thread-Local Storage descriptor.
	 */
	load_TLS(next, cpu);

	/*
	 * Restore IOPL if needed.  In normal use, the flags restore
	 * in the switch assembly will handle this.  But if the kernel
	 * is running virtualized at a non-zero CPL, the popf will
	 * not restore flags, so it must be done in a separate step.
	 */
	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
		set_iopl_mask(next->iopl);

	/*
	 * Now maybe handle debug registers and/or IO bitmaps
	 */
	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
		__switch_to_xtra(prev_p, next_p, tss);

	/*
	 * Leave lazy mode, flushing any hypercalls made here.
	 * This must be done before restoring TLS segments so
	 * the GDT and LDT are properly updated, and must be
	 * done before fpu__restore(), so the TS bit is up
	 * to date.
	 */
	arch_end_context_switch(next_p);

	/*
	 * Reload esp0 and cpu_current_top_of_stack.  This changes
	 * current_thread_info().
	 */
	load_sp0(tss, next);
	this_cpu_write(cpu_current_top_of_stack,
		       (unsigned long)task_stack_page(next_p) +
		       THREAD_SIZE);

	/*
	 * Restore %gs if needed (which is common)
	 */
	if (prev->gs | next->gs)
		lazy_load_gs(next->gs);

	switch_fpu_finish(next_fpu, cpu);

	this_cpu_write(current_task, next_p);

	/* Load the Intel cache allocation PQR MSR. */
	intel_rdt_sched_in();

	return prev_p;
}

SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
{
	return do_arch_prctl_common(current, option, arg2);
}
OpenPOWER on IntegriCloud