1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
/*
* Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
* Copyright (C) 2006 Atmark Techno, Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/mm.h> /* mem_init */
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/export.h>
#include <asm/page.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/tlb.h>
/* Use for MMU and noMMU because of PCI generic code */
int mem_init_done;
#ifndef CONFIG_MMU
unsigned int __page_offset;
EXPORT_SYMBOL(__page_offset);
#else
static int init_bootmem_done;
#endif /* CONFIG_MMU */
char *klimit = _end;
/*
* Initialize the bootmem system and give it all the memory we
* have available.
*/
unsigned long memory_start;
EXPORT_SYMBOL(memory_start);
unsigned long memory_end; /* due to mm/nommu.c */
unsigned long memory_size;
EXPORT_SYMBOL(memory_size);
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
static void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
/* Clean every zones */
memset(zones_size, 0, sizeof(zones_size));
zones_size[ZONE_DMA] = max_mapnr;
free_area_init(zones_size);
}
void __init setup_memory(void)
{
unsigned long map_size;
struct memblock_region *reg;
#ifndef CONFIG_MMU
u32 kernel_align_start, kernel_align_size;
/* Find main memory where is the kernel */
for_each_memblock(memory, reg) {
memory_start = (u32)reg->base;
memory_end = (u32) reg->base + reg->size;
if ((memory_start <= (u32)_text) &&
((u32)_text <= memory_end)) {
memory_size = memory_end - memory_start;
PAGE_OFFSET = memory_start;
printk(KERN_INFO "%s: Main mem: 0x%x-0x%x, "
"size 0x%08x\n", __func__, (u32) memory_start,
(u32) memory_end, (u32) memory_size);
break;
}
}
if (!memory_start || !memory_end) {
panic("%s: Missing memory setting 0x%08x-0x%08x\n",
__func__, (u32) memory_start, (u32) memory_end);
}
/* reservation of region where is the kernel */
kernel_align_start = PAGE_DOWN((u32)_text);
/* ALIGN can be remove because _end in vmlinux.lds.S is align */
kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start;
memblock_reserve(kernel_align_start, kernel_align_size);
printk(KERN_INFO "%s: kernel addr=0x%08x-0x%08x size=0x%08x\n",
__func__, kernel_align_start, kernel_align_start
+ kernel_align_size, kernel_align_size);
#endif
/*
* Kernel:
* start: base phys address of kernel - page align
* end: base phys address of kernel - page align
*
* min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
* max_low_pfn
* max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
* num_physpages - number of all pages
*/
/* memory start is from the kernel end (aligned) to higher addr */
min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
/* RAM is assumed contiguous */
num_physpages = max_mapnr = memory_size >> PAGE_SHIFT;
max_pfn = max_low_pfn = memory_end >> PAGE_SHIFT;
printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr);
printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
/*
* Find an area to use for the bootmem bitmap.
* We look for the first area which is at least
* 128kB in length (128kB is enough for a bitmap
* for 4GB of memory, using 4kB pages), plus 1 page
* (in case the address isn't page-aligned).
*/
map_size = init_bootmem_node(NODE_DATA(0),
PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn);
memblock_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size);
/* free bootmem is whole main memory */
free_bootmem(memory_start, memory_size);
/* reserve allocate blocks */
for_each_memblock(reserved, reg) {
pr_debug("reserved - 0x%08x-0x%08x\n",
(u32) reg->base, (u32) reg->size);
reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
}
#ifdef CONFIG_MMU
init_bootmem_done = 1;
#endif
paging_init();
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
free_page(addr);
totalram_pages++;
}
printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
int pages = 0;
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
init_page_count(virt_to_page(start));
free_page(start);
totalram_pages++;
pages++;
}
printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n",
(int)(pages * (PAGE_SIZE / 1024)));
}
#endif
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
void __init mem_init(void)
{
high_memory = (void *)__va(memory_end);
/* this will put all memory onto the freelists */
totalram_pages += free_all_bootmem();
printk(KERN_INFO "Memory: %luk/%luk available\n",
nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10));
mem_init_done = 1;
}
#ifndef CONFIG_MMU
int page_is_ram(unsigned long pfn)
{
return __range_ok(pfn, 0);
}
#else
int page_is_ram(unsigned long pfn)
{
return pfn < max_low_pfn;
}
/*
* Check for command-line options that affect what MMU_init will do.
*/
static void mm_cmdline_setup(void)
{
unsigned long maxmem = 0;
char *p = cmd_line;
/* Look for mem= option on command line */
p = strstr(cmd_line, "mem=");
if (p) {
p += 4;
maxmem = memparse(p, &p);
if (maxmem && memory_size > maxmem) {
memory_size = maxmem;
memory_end = memory_start + memory_size;
memblock.memory.regions[0].size = memory_size;
}
}
}
/*
* MMU_init_hw does the chip-specific initialization of the MMU hardware.
*/
static void __init mmu_init_hw(void)
{
/*
* The Zone Protection Register (ZPR) defines how protection will
* be applied to every page which is a member of a given zone. At
* present, we utilize only two of the zones.
* The zone index bits (of ZSEL) in the PTE are used for software
* indicators, except the LSB. For user access, zone 1 is used,
* for kernel access, zone 0 is used. We set all but zone 1
* to zero, allowing only kernel access as indicated in the PTE.
* For zone 1, we set a 01 binary (a value of 10 will not work)
* to allow user access as indicated in the PTE. This also allows
* kernel access as indicated in the PTE.
*/
__asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
"mts rzpr, r11;"
: : : "r11");
}
/*
* MMU_init sets up the basic memory mappings for the kernel,
* including both RAM and possibly some I/O regions,
* and sets up the page tables and the MMU hardware ready to go.
*/
/* called from head.S */
asmlinkage void __init mmu_init(void)
{
unsigned int kstart, ksize;
if (!memblock.reserved.cnt) {
printk(KERN_EMERG "Error memory count\n");
machine_restart(NULL);
}
if ((u32) memblock.memory.regions[0].size < 0x1000000) {
printk(KERN_EMERG "Memory must be greater than 16MB\n");
machine_restart(NULL);
}
/* Find main memory where the kernel is */
memory_start = (u32) memblock.memory.regions[0].base;
memory_end = (u32) memblock.memory.regions[0].base +
(u32) memblock.memory.regions[0].size;
memory_size = memory_end - memory_start;
mm_cmdline_setup(); /* FIXME parse args from command line - not used */
/*
* Map out the kernel text/data/bss from the available physical
* memory.
*/
kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
/* kernel size */
ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
memblock_reserve(kstart, ksize);
#if defined(CONFIG_BLK_DEV_INITRD)
/* Remove the init RAM disk from the available memory. */
/* if (initrd_start) {
mem_pieces_remove(&phys_avail, __pa(initrd_start),
initrd_end - initrd_start, 1);
}*/
#endif /* CONFIG_BLK_DEV_INITRD */
/* Initialize the MMU hardware */
mmu_init_hw();
/* Map in all of RAM starting at CONFIG_KERNEL_START */
mapin_ram();
#ifdef CONFIG_HIGHMEM_START_BOOL
ioremap_base = CONFIG_HIGHMEM_START;
#else
ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
#endif /* CONFIG_HIGHMEM_START_BOOL */
ioremap_bot = ioremap_base;
/* Initialize the context management stuff */
mmu_context_init();
}
/* This is only called until mem_init is done. */
void __init *early_get_page(void)
{
void *p;
if (init_bootmem_done) {
p = alloc_bootmem_pages(PAGE_SIZE);
} else {
/*
* Mem start + 32MB -> here is limit
* because of mem mapping from head.S
*/
p = __va(memblock_alloc_base(PAGE_SIZE, PAGE_SIZE,
memory_start + 0x2000000));
}
return p;
}
#endif /* CONFIG_MMU */
void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask)
{
if (mem_init_done)
return kmalloc(size, mask);
else
return alloc_bootmem(size);
}
void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask)
{
void *p;
if (mem_init_done)
p = kzalloc(size, mask);
else {
p = alloc_bootmem(size);
if (p)
memset(p, 0, size);
}
return p;
}
|