1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
/*
* Memory subsystem initialization for Hexagon
*
* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <asm/atomic.h>
#include <linux/highmem.h>
#include <asm/tlb.h>
#include <asm/sections.h>
#include <asm/vm_mmu.h>
/*
* Define a startpg just past the end of the kernel image and a lastpg
* that corresponds to the end of real or simulated platform memory.
*/
#define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
unsigned long bootmem_lastpg; /* Should be set by platform code */
unsigned long __phys_offset; /* physical kernel offset >> 12 */
/* Set as variable to limit PMD copies */
int max_kernel_seg = 0x303;
/* indicate pfn's of high memory */
unsigned long highstart_pfn, highend_pfn;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
/* Default cache attribute for newly created page tables */
unsigned long _dflt_cache_att = CACHEDEF;
/*
* The current "generation" of kernel map, which should not roll
* over until Hell freezes over. Actual bound in years needs to be
* calculated to confirm.
*/
DEFINE_SPINLOCK(kmap_gen_lock);
/* checkpatch says don't init this to 0. */
unsigned long long kmap_generation;
/*
* mem_init - initializes memory
*
* Frees up bootmem
* Fixes up more stuff for HIGHMEM
* Calculates and displays memory available/used
*/
void __init mem_init(void)
{
/* No idea where this is actually declared. Seems to evade LXR. */
free_all_bootmem();
mem_init_print_info(NULL);
/*
* To-Do: someone somewhere should wipe out the bootmem map
* after we're done?
*/
/*
* This can be moved to some more virtual-memory-specific
* initialization hook at some point. Set the init_mm
* descriptors "context" value to point to the initial
* kernel segment table's physical address.
*/
init_mm.context.ptbase = __pa(init_mm.pgd);
}
/*
* free_initmem - frees memory used by stuff declared with __init
*
* Todo: free pages between __init_begin and __init_end; possibly
* some devtree related stuff as well.
*/
void __ref free_initmem(void)
{
}
/*
* free_initrd_mem - frees... initrd memory.
* @start - start of init memory
* @end - end of init memory
*
* Apparently has to be passed the address of the initrd memory.
*
* Wrapped by #ifdef CONFIG_BLKDEV_INITRD
*/
void free_initrd_mem(unsigned long start, unsigned long end)
{
}
void sync_icache_dcache(pte_t pte)
{
unsigned long addr;
struct page *page;
page = pte_page(pte);
addr = (unsigned long) page_address(page);
__vmcache_idsync(addr, PAGE_SIZE);
}
/*
* In order to set up page allocator "nodes",
* somebody has to call free_area_init() for UMA.
*
* In this mode, we only have one pg_data_t
* structure: contig_mem_data.
*/
void __init paging_init(void)
{
unsigned long zones_sizes[MAX_NR_ZONES] = {0, };
/*
* This is not particularly well documented anywhere, but
* give ZONE_NORMAL all the memory, including the big holes
* left by the kernel+bootmem_map which are already left as reserved
* in the bootmem_map; free_area_init should see those bits and
* adjust accordingly.
*/
zones_sizes[ZONE_NORMAL] = max_low_pfn;
free_area_init(zones_sizes); /* sets up the zonelists and mem_map */
/*
* Start of high memory area. Will probably need something more
* fancy if we... get more fancy.
*/
high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
}
#ifndef DMA_RESERVE
#define DMA_RESERVE (4)
#endif
#define DMA_CHUNKSIZE (1<<22)
#define DMA_RESERVED_BYTES (DMA_RESERVE * DMA_CHUNKSIZE)
/*
* Pick out the memory size. We look for mem=size,
* where size is "size[KkMm]"
*/
static int __init early_mem(char *p)
{
unsigned long size;
char *endp;
size = memparse(p, &endp);
bootmem_lastpg = PFN_DOWN(size);
return 0;
}
early_param("mem", early_mem);
size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
void __init setup_arch_memory(void)
{
int bootmap_size;
/* XXX Todo: this probably should be cleaned up */
u32 *segtable = (u32 *) &swapper_pg_dir[0];
u32 *segtable_end;
/*
* Set up boot memory allocator
*
* The Gorman book also talks about these functions.
* This needs to change for highmem setups.
*/
/* Prior to this, bootmem_lastpg is actually mem size */
bootmem_lastpg += ARCH_PFN_OFFSET;
/* Memory size needs to be a multiple of 16M */
bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
~((BIG_KERNEL_PAGE_SIZE) - 1));
/*
* Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
* memory allocation
*/
max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
min_low_pfn = ARCH_PFN_OFFSET;
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmem_startpg, min_low_pfn, max_low_pfn);
printk(KERN_INFO "bootmem_startpg: 0x%08lx\n", bootmem_startpg);
printk(KERN_INFO "bootmem_lastpg: 0x%08lx\n", bootmem_lastpg);
printk(KERN_INFO "bootmap_size: %d\n", bootmap_size);
printk(KERN_INFO "min_low_pfn: 0x%08lx\n", min_low_pfn);
printk(KERN_INFO "max_low_pfn: 0x%08lx\n", max_low_pfn);
/*
* The default VM page tables (will be) populated with
* VA=PA+PAGE_OFFSET mapping. We go in and invalidate entries
* higher than what we have memory for.
*/
/* this is pointer arithmetic; each entry covers 4MB */
segtable = segtable + (PAGE_OFFSET >> 22);
/* this actually only goes to the end of the first gig */
segtable_end = segtable + (1<<(30-22));
/*
* Move forward to the start of empty pages; take into account
* phys_offset shift.
*/
segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
{
int i;
for (i = 1 ; i <= DMA_RESERVE ; i++)
segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
| __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
| __HEXAGON_C_UNC << 6
| __HVM_PDE_S_4MB);
}
printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
segtable_end);
while (segtable < (segtable_end-8))
*(segtable++) = __HVM_PDE_S_INVALID;
/* stop the pointer at the device I/O 4MB page */
printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
segtable);
#if 0
/* Other half of the early device table from vm_init_segtable. */
printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
(unsigned long) _K_init_devicetable-PAGE_OFFSET);
*segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
__HVM_PDE_S_4KB;
printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
#endif
/*
* Free all the memory that wasn't taken up by the bootmap, the DMA
* reserve, or kernel itself.
*/
free_bootmem(PFN_PHYS(bootmem_startpg) + bootmap_size,
PFN_PHYS(bootmem_lastpg - bootmem_startpg) - bootmap_size -
DMA_RESERVED_BYTES);
/*
* The bootmem allocator seemingly just lives to feed memory
* to the paging system
*/
printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
paging_init(); /* See Gorman Book, 2.3 */
/*
* At this point, the page allocator is kind of initialized, but
* apparently no pages are available (just like with the bootmem
* allocator), and need to be freed themselves via mem_init(),
* which is called by start_kernel() later on in the process
*/
}
|