diff options
author | Robert Richter <robert.richter@amd.com> | 2008-12-09 01:21:32 +0100 |
---|---|---|
committer | Robert Richter <robert.richter@amd.com> | 2008-12-10 14:20:18 +0100 |
commit | 6dad828b76c7224a22ddc9ce7aa495d994f03b31 (patch) | |
tree | 364de7a3efd56d60c0742145e3a8d3d4f73bcde4 /drivers/oprofile/cpu_buffer.c | |
parent | e09373f22e76cc048ca5fe10a9ff9012f5d64309 (diff) | |
download | blackbird-obmc-linux-6dad828b76c7224a22ddc9ce7aa495d994f03b31.tar.gz blackbird-obmc-linux-6dad828b76c7224a22ddc9ce7aa495d994f03b31.zip |
oprofile: port to the new ring_buffer
This patch replaces the current oprofile cpu buffer implementation
with the ring buffer provided by the tracing framework. The motivation
here is to leave the pain of implementing ring buffers to others. Oh,
no, there are more advantages. Main reason is the support of different
sample sizes that could be stored in the buffer. Use cases for this
are IBS and Cell spu profiling. Using the new ring buffer ensures
valid and complete samples and allows copying the cpu buffer stateless
without knowing its content. Second it will use generic kernel API and
also reduce code size. And hopefully, there are less bugs.
Since the new tracing ring buffer implementation uses spin locks to
protect the buffer during read/write access, it is difficult to use
the buffer in an NMI handler. In this case, writing to the buffer by
the NMI handler (x86) could occur also during critical sections when
reading the buffer. To avoid this, there are 2 buffers for independent
read and write access. Read access is in process context only, write
access only in the NMI handler. If the read buffer runs empty, both
buffers are swapped atomically. There is potentially a small window
during swapping where the buffers are disabled and samples could be
lost.
Using 2 buffers is a little bit overhead, but the solution is clear
and does not require changes in the ring buffer implementation. It can
be changed to a single buffer solution when the ring buffer access is
implemented as non-locking atomic code.
The new buffer requires more size to store the same amount of samples
because each sample includes an u32 header. Also, there is more code
to execute for buffer access. Nonetheless, the buffer implementation
is proven in the ftrace environment and worth to use also in oprofile.
Patches that changes the internal IBS buffer usage will follow.
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Diffstat (limited to 'drivers/oprofile/cpu_buffer.c')
-rw-r--r-- | drivers/oprofile/cpu_buffer.c | 63 |
1 files changed, 48 insertions, 15 deletions
diff --git a/drivers/oprofile/cpu_buffer.c b/drivers/oprofile/cpu_buffer.c index 5cf7efe38e67..eb280ec96e24 100644 --- a/drivers/oprofile/cpu_buffer.c +++ b/drivers/oprofile/cpu_buffer.c @@ -28,6 +28,25 @@ #include "buffer_sync.h" #include "oprof.h" +#define OP_BUFFER_FLAGS 0 + +/* + * Read and write access is using spin locking. Thus, writing to the + * buffer by NMI handler (x86) could occur also during critical + * sections when reading the buffer. To avoid this, there are 2 + * buffers for independent read and write access. Read access is in + * process context only, write access only in the NMI handler. If the + * read buffer runs empty, both buffers are swapped atomically. There + * is potentially a small window during swapping where the buffers are + * disabled and samples could be lost. + * + * Using 2 buffers is a little bit overhead, but the solution is clear + * and does not require changes in the ring buffer implementation. It + * can be changed to a single buffer solution when the ring buffer + * access is implemented as non-locking atomic code. + */ +struct ring_buffer *op_ring_buffer_read; +struct ring_buffer *op_ring_buffer_write; DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer); static void wq_sync_buffer(struct work_struct *work); @@ -37,12 +56,12 @@ static int work_enabled; void free_cpu_buffers(void) { - int i; - - for_each_possible_cpu(i) { - vfree(per_cpu(cpu_buffer, i).buffer); - per_cpu(cpu_buffer, i).buffer = NULL; - } + if (op_ring_buffer_read) + ring_buffer_free(op_ring_buffer_read); + op_ring_buffer_read = NULL; + if (op_ring_buffer_write) + ring_buffer_free(op_ring_buffer_write); + op_ring_buffer_write = NULL; } unsigned long oprofile_get_cpu_buffer_size(void) @@ -64,14 +83,16 @@ int alloc_cpu_buffers(void) unsigned long buffer_size = fs_cpu_buffer_size; + op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS); + if (!op_ring_buffer_read) + goto fail; + op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS); + if (!op_ring_buffer_write) + goto fail; + for_each_possible_cpu(i) { struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); - b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size, - cpu_to_node(i)); - if (!b->buffer) - goto fail; - b->last_task = NULL; b->last_is_kernel = -1; b->tracing = 0; @@ -140,10 +161,22 @@ static inline void add_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc, unsigned long event) { - struct op_sample *entry = cpu_buffer_write_entry(cpu_buf); - entry->eip = pc; - entry->event = event; - cpu_buffer_write_commit(cpu_buf); + struct op_entry entry; + + if (cpu_buffer_write_entry(&entry)) + goto Error; + + entry.sample->eip = pc; + entry.sample->event = event; + + if (cpu_buffer_write_commit(&entry)) + goto Error; + + return; + +Error: + cpu_buf->sample_lost_overflow++; + return; } static inline void |